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ABSTRACT

A global object code optimizer performs optimizations at the machine level. It uses
information at the procedure level as well as knowledge about the specific capabilities of the
target machine to produce high quality code. It takes many months, even years, of
development effort to produce these optimizers. Performing optimizations at the machine
level has traditionally been accomplished by machine-dependent algorithms. Retargeting to a
new machine requires large portions of the optimizer to be re-written to handle the

idiosyncrasies of the new architecture.

This thesis presents an optimizing compiler that performs global optimizations using a
machine-independent notation to describe machine-dependent instructions at the machine
level, The machine-independent notation that we call Register Transfer Lists is presented and
its ability to describe machine-dependent instructions is discussed. Machine-independent
algorithms that manipulate the Register Transfer Lists to perform common code-improvement

transformations are explained.

Measurements of the effectiveness of the optimizing compiler on three different
machines are given. The effectiveness of the some of the global optimizations is discussed.
The effort required to retarget the optimizing compiler to new machines is estimated to be in

the order of weeks.
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CHAPTER 1

INTRODUCTION

Traditional compilers are developed with one source language and one target machine in
mind. This philosophy leads to / X m compilers. Early in the development of compilers, this
fact was recognized [STEE61], and a solution was proposed: partition compilers into a front
end capable of translating a source language into a more manageable intermediate language
and a back end capable of translating the intermediate language to machine instructions. ‘In
this manner, only one front end is required per high-level language and only one back end is
needed for each different machine. As simple as this strategy is, it is not until the last decade

that it has seriously been applied. The reasons include:

(1) Designing an intermediate language capable of supporting a number of high-level

languages is difficult.

(2) Assumptions made by the intermediate language may not result in an efficient transla-

tion to machine code on some computer architectures.

(3) The optimal placement of a code optimizer in the front end/back end approach is not

obvious.

Despite these difficulties the ability to write a simple back end and immediately open up
& huge library of software to 2 new computer architecture, or to write a front end for a new

language and instantly have the ability to execute on any existing machine has it advantages.

This thesis describes an optimizing compiler that uses a front end/back end approach to
portability, The front end transforms a C source file [KERN78] into a intermediate language

file. The intermediate language makes few assumptions about the target machine. Each inter-



mediate language statement is expanded into a low-level representation that describes
machine-specific instructions in a machine-independent notation. Machine independent
optimizations are pérformed on the low-level representation. Machine-dependent peephole

optimization is also employed.

1.1, Compilers and High-Level Language Evolution

From the earliest days of high-level languages, the quality of the code generated by a
compiler has been important. Development of FORTRAN [BACKk81] had as one of its primary
goals the ability to generate code that was not significantly slower than code writte;n by hand
in assembly language. For.all but academic settings, where programs are developed, executed
a few times and then discarded, the quality of the code that a high-level language compiler
generates determines the usefulness of the high-level language as a labor-saving tool.
Although many of the problems that initially gave compilers a reputation for being difficult to
develop have been overcome by compiler generating tools such as lex [LESK79] and yacc

[JOHN78], writing a good optimizing compiler remains a difficult and time-consuming task.

Another important factor affecting the usefulness of a high-level language is the speed at
which a compiler can translate it into machine code. Although this factor is controlled to
some extent by the actual implementation of the compiler, it is also determined by the
language itself. For example, languages that support separate compilation of modules are pre-
feﬁed for development systems over languages that force the recompilation of the entire pro-
gram source even when only a single procedure has been changed. The amount of run-time
checking required by a language may also affect compiler speed by requiring extra code to be
generated to verify that the proper constraints are satisfied after operations are performed on
objects. Although compiler users are generally willing to wait a little longer for a compiler to

generate better quality code, the ability to trade code quality in exchange for increased execu-



tion speed is desirable.

1.2. Previous Work

Retargetable optimizing compilers and optimizers capable of working with many dif-
ferent source languages are not new developments. A brief survey of the recent work on these
~ optmizers suggests a number of useful strategies towards the goal of developing a highly

portable, high-quality, multiple-source language optimizer,

1.2.1. The PL.8 Compiler

The PL.8 compiler’s optimizer [AUSL82] is designed to accept multiple source
languages and produce high-quality code for a number of different machines. The PL.8 com-
piler works on a.low-ievel intermediate language representation that is essentially assembly
language for an abstract machine. All operations in the intermediate language are performed
on registers and, in order to delay hardware register binding until late in the optimization pro-
cess, an unlimited number of symbolic registers is assumed. In order to avoid phase ordering
problems caused by the interdependency of some phases, the intermediate language represen-
tation is maintained by all phases of the optimizer, thus allowing the iteration of phases to

resolve these interdependencies,

The PL.8 compiler is cleanly separated into many phases. Each phase performs one
well-defined optimization on the intermediate language. The most important phases include:
dead code elimination, common subexpression elimination, code motion,. conétant expression
evaluation, strength reduction, dead store elimination, instruction scheduling and unnecessary
range checking elimination. Register allocation is performed by a graph coloring algorithm
with an additional mechanism to insert register spills as required to color the register interfer-

ence graph.



Final assembly of the intermediate language to machine code is performed by a table-
driven algorithm, The final assembly phase also deals with the condition codes, because the
- intermediate language has no suitable mechanism for handling them. A final peephole optim-

ization pass is required to remove useless condition code recalculations.

The PL.8 compiler generates high-quality code for two's complement, byte-addressable
32 bit machines. Because of the nature of the intermediate language, portability is subject to
some architectural restrictions. For machines having 32 or more general-purpose registers, 95
percent of the routines compiled generate no spill code [AUSL82]. This value goes down to
less than 50 percent when only sixteen registers are available, These figures represent the
drawbacks of performing optimizations that tend to increase the lifespan of temporary expres-
sions before performing register allocation when there is a limited number of registers avail-
abie to hold temporary expressions. The PL.8 compiler would produce unacceptable amounts

of spill code on machines with fewer than sixteen registers,

1.2.2. UOPT

Chow [CHOWS3] describes a machine-independent optimizer, called UOPT, that works
at the intermediate language level. UOPT performs a large number of machine-independent
transformations on U-Code [PERK79], which is more machine and source-language indepen-
dent than the P-Code [PERK79] that it is based on. With UOPT, there is only one front-end
per source language and one code generator per target machine. U-Code is low level to permit
optimization of array references calculations and global register allocation, yet high level
enough to allow machine-independent optimizations to be made with only the most basic
information about the size of the different types of memory references required. U-Code is
stack based and uses Pascal-like semantics that can easily be extended to support most alge-

braic languages (e.g., FORTRAN, Algol, C, PL/1).



UOPT performs the following optimizations: stack height reduction in expression
evaluation, constant propagation, constant expression evaluation, address collapsing in array
expressions, dead code elimination, copy propagation, common subéxpression elimination,
loop-invariant expression optimization, code motion, strength reduction, induction variable
elimination, redundant store elimination, dead variable elimination, evaluation order determi-
nation, and global register allocation. All of these optimizations, with the notable exception
of global register aliocation, are machine independent. Global register allocation is included
in UOPT because of its high payoff in terms of code improvement and because the data-flow
information required is available to UOPT. The global register allocator is given information
regarding the number and types of registers available on the target machine, as well as the
relative access times for the different registers and memory types in the memory hierarchy of

the target machine.

Final translation of U-Code to machine instructions is performed by a machine specific
code generator. Since the nuances of the target machine are not known to UQOPT, the code
generator is expected to perform some machine-dependent optimizations. A drawback to this
strategy is that a peephole optimizer must be included in the code generator. Any changes in

the code made by the code generator cannot fed back to UOPT for further optimization.

UOPT is intended to be an automated optimizer tool. Once a front end has been con-‘
structed that generates U-Code, UOPT will provide the optimizations required to produce high
quality code. Code generators have been developed for the DECsystem-10 [DIG176], Motorola
68000, VAX-11 [DIcI81], MIPS, FOM and S-1 {CHOW83] machines. The amount of time
and effort required to implement a code generator and its associated peephole optimizer is not
mentioned, but the benefits of performing machine-independent optimizations were evident

on all of these machines.



1.2.3. HP Precision Architecture Optimizer

Johnson and Miller [JOHNSG} determined the benefits of performing global optimiza-
tions at the machine level. The optimizer works with a number of h%gh~1evei languages,
including C [KERN78], Pascal {JENS75], FORTRAN and COBOL. The optimizer is invoked
after code generation and is source-language independent. Portability is not an issue and the
target machine is the Hewlett-Packard Precision Architecture, which is a 32 register RISC

machine with a simple instruction pipeline.

The optimizations performed by the optimizer include: dead code elimination, common
subexpression eliminatién, unnecessary memory reference elimination, code motion, induc-
tion variable elimination, register allocation, peephole optimization, branch optimization and
nstruction scheduling. Phases were ordered so that global data-flow information could be
updated rather than recalculated as each phase was invoked. In order to reduce the amount of
work required to generate the data-flow information, early peephole optimization was per-

formed 1o reduce the number of instructions.

Although modeled after the PL.8 compiler, the optimizer is conservative enough o
avoid excessive generation of spill code. Two register allocators are available, one is a fast
‘but simple allocator that performs no optimizations other than eliminating redundant register-
to-register transfers. The second is a graph coloring allocator capable of computing the pay-
offs involved in spilling registers in order to allocate them to ffequently referenced local vari-
ables. The optimizer generates significantly fewer register spills than the PL.8 compiler, but
its inability to be ported to machines with less than 32 registers prevents closer inspection of

the overall effectiveness the optimizer’s register allocation strategy.



1.2.4. Retargetabie Code Generators

Glanville and Graham [GRAHSZ] have made significant a breakthrough in the area of
code generation with an approach that uses a context-free grammar desﬁribiﬁg the instruction
set of the target machine to generate a parsing table to drive a machine-independent code gen-
erator. Using Graham-Glanville techniques, code generator generators have been developed
[AIGR84]. The instruction set descriptions contain the syntactic and semantic information
required to transform a low-level intermediate representation based on Polish prefix expres-

sions into assembly code for the target machine.

Graham-Glanville code generators are very promising despite their limitations: the
context-free grammar required to describe the VAX-11 [DiGI81] has over 1000 productions
{GANAR2] and sometimes fails to make correct decisions when choosing between two-address
and three-address variants of instructions, Ganapathi, Fischer and Hennessy consider table-
driven code generation methods such as the Graham-Glanville method to be the most flexible

and least ad-hoc technology for creating retargetable code generators.

Ganapathi and Fischer added extended semantic attributes, disambiguating predicates
and a semantic evaluation framework to the basic Graham-Glanville code generation algo-
rithm and described the target machines using attribute [KNUTS8] instead of context-free
grammars, These enhancements permit the machine description to fit better into the f;'ame-
wbrk of an optimizing compiler and more completely address the problems of real machine
architectures. The Ganapathi-Fischer approach allows multiple instruction results, such as
condition code results to be tracked and provides a method of describing complex transfer pro-

ductions that entail data*type conversion and register-to-memory transfers.
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Davidson [DAVi81] describes a retargetable peephole optimizer, PO, that uses a machine
description and a machine-independent low-level intermediate representation, called register
transfer lists {RTLs) to accomplish instruction selection in the process of performing peephole
optimization. Common subexpression elimination, branch chain elimination and register
assignment are added to the peephole optimizer to generate code comparable to existing pro-
duction compilers. PO’s machine descriptions are transformed by lex [LLESK79] into subrou-
tines that implement the recognizer and transducer. Addressing modes are factored out of the
instruction definition allowing even complex machines such as the VAX-11 [DIGI81] to be
described in a few hundred lines of grammar. PQ’s machine description allows multiple
instruction results to be tracked, so that condition code results are explicitly described by
RTLs instead of being implicitly handled by the semantic actions as is the case in the

Ganapathi-Fischer approach.

1.3. Retargetable Optimizing Compilers

Despite the recent advances in retargetable and multiple source language optimizers,
there is still room for improvement, The previous work suggests possible strategies towards
an improved optimizer:

(1) = Use a very simple front end that performs no optimizations. It generates a simple, naive
intermediate language code and concentrates primarily on ensuring a correct translation

from the source language to the intermediate language.

(2) Use a simple code generator to translate each intermediate language operation into a
sequence of target machine instructions. The code generator should not perform any
optimizations. It must be simple and easy to modify, since it must be written or modi-

fied to suit each target machine.
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)

(5

(6)

Do all optimizations at the machine level, where all calculations are exposed and all pos-
sible addressing modes can be utilized.

Effectively use the registers available on the target machine and avoid register spills.

Maintain a consistent representation of the code so that phase ordering problems can be

eliminated through iteration.

Perform optimizations that yield good code guality improvements for the amount of

time invested in making them.

In the next chapter, we present a machine-independent representation of machine

instructions that permits optimizations at the machine level and explain the machine descrip-

tion and semantic actions required to build a recognizer for a machine. Chapter three will dis-

cuss the general layout of a retargetable optimizing compiler. Chapter four presents the

results obtained by comparing the optimizing compiler to existing compilers on the VAX-

11/780 [Dic1I81], the Concurrent 3230 [PERK82] and the Motorola 68020 [PREN85]. The final

section concludes with general observations on the effectiveness of our code generation stra-

tegies and the areas that require further research.



CHAPTER 2

REGISTER TRANSFER LISTS

Register transfer lists (RTLs) are machine-independent representations of machine-
dependent operations. RTLs have their origins in the /SP notation developed by Bell and
Newell [BELL71]. The initial notation was altered slightly to facilitate its use as a low-level
intermediate language. The RTLs described here are identical to those described by Davidson
for PO [DAVI81] which was the logical starting point for the work presented in this thesis.
The advantages of using RTLs as a powerful, low-level intermediate representation were evi-
dent from Davidson’s work with PO; what PO lacked was the global optimizations necessary

to show that the advantages of the RTL notation could be exploited by an optimizing compiler.

For pedagogical reasons, RTLs will be presented here in a readable notation. In actual
implementations, a more compact RTL notation is used to reduce the amount of memory
required to store RTLs and reduce the amount of time required to parse RTLs. The examples
used in this chapter are not intended to pertain to any one particular target machine. The pur-
pose is to describe the RTL notation in general and the reader should be aware that the RTL
notation can be augmented to suit the requirements of the machine instruction set of any par-

ticular target machine.

An RTL describes the effect of a machine instruction. Most machine operations can be
defined in terms of the data movement that they effect. For this reason, the RTL notation is

particularly suited to describing data transfers between registers and memory locations.

10



11

2.1. Register References
The most basic instruction available on most machines is a register-to-register transfer,
Such an operation is represented in RTL notation in the following wa}.{: -
r(3] = r(5];
In this instruction, the contents of general-purpose register five are moved to general-purpose

register three. On the VAX-11, this instruction may be represented by the assembly language

statement:
movl x5,r3
On the Motorola 68020, it would be:
movl d5,d3
And on the Concurrent 3230:
lr 3,5

The assembly language instruction or machine instruction notation actually required to per-
form the register-to-register transfer is not important, what is important is that general-purpose
register three contains the same value that is stored in general-purpose register five after the

operation is performed.

Since most machines have more than one type of register, the RTL notation permits
register type discrimination. For example, the Motorola 68020 has address registers and data

registers, and the R7L for describing a data register to address register transfer is:
ai{3] = d[5);
Many machines allow a register to contain data objects that are smaller than the register.

Both the VAX-11 and the Motorola 68020 have 32-bit general-purpose registers and address-

ing modes that refer to the least-significant 16 bits (word) and least-significant 8 hits (byte) of
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a register, In RTL notation, size is described by the same mechanism that is used to discrim-
inate register types. Moving the ieaSt»signiﬁcant 8 bits of general-purpose register five to the
least-significant 8 bi;s of general-purpose register three is represented in RTL notation in the
following way:

B[3] = b[5];
And moving 10000 into the least-significant 16 bits of general-purpose register four:

wld4] = 10000;

2.2. Operations

RTLs permit logical and arithmetic operations. These operations generally use operators

as defined by the C programming language:

Operation RTL notation

Addition r[5] = r[3] + r(2};
Subtraction r{5] = r[3] - x[2];:
Multiplication ri{5] = r{3] * r[2]:
Division 5] = x[3} / rl2};
Modulus r{5]) = r[3} % ri[2]:
Unary minus (5] = —x[3];

2’s complement r[53] = “r[3]:

Bitwise OR r{5] = ri3] | (2]
Bitwise AND r[8] = ri3] & r[2];:
Bitwise exclusive OR | r (5] = z[3] " rl2]:
Left shift cr[5] = (3] << r£(2]:;
Right shift r{5] = r(3] >»>> ri2]};

Complex combinations of these operations are permitted. Parentheses can be added to indi-

cate the required operator precedence.

2.3. Memory References

A memory reference can be denoted in R7L notation in the following way:
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L[ _base] = x[2];

In this instruction, the contents of general-purpose register two are moved to thé longword (32
bits on most machines) memory location assigned to _base. The size of the memory refer-
ence or the expected format of the data in a memory location can be specified by the memory

reference type. For example:

Reference size RTL notation
Byte (8-bits) B[ base]
Word (16-bits) W[ _base]
Longword (32-bits) | L[ base]
Floating-point F[_base]
Double-precision D[_base}

The addressing modes available from machine to machine vary, but RTLs provide a con-
sistent and highly descriptive method of describing the semantics of an addressing mode.

Here are a few examples:

Addressing Mode RTL notation

Direct ‘ L{_base]

Indirect L{L[ base]]

Register Deferred Liz([5]]

Displacement Lizx[5] + offset,]

Displacement Deferred | L{L[x[5]] + offset.]

Index L{ir[4]) << 2 + r[5]]

Index Displacement Llr{d] << 2 + z[5] + offset.]

RTLs provide a notation that is not only capable of describing every addressing mode possible,

it also does so in a well-defined, intuitive way.

On machines with special autoincrement and autodecrement modes, ++ and —-— opera-

tors are used:
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Addressing Mode | RTL notation

Autoincrement L{x{5]++]
Autodecrement L{-=r[5]]

This syntax is borrowed from C. In the case of the autoincrement mode, the position of the
++ after the register indicates that the value in the register is referenced first and then the
register is incremented-this is more generally known as a postincrement. In the autodecre-
ment mode, the -~ before the register indicates that the register is decremented first and then
referenced-more generally known as a predecrement. The complementary preincrement and

postdecrement addressing modes would be indicated, if the target machine supported them, as:

Addressing Mode | RTL notation

Preincrement Li++x[5]]
Postdecrement Lir[5]—-]

24, Compare Instructions

Most machines have comparison operators that set proper bits in a condition code regis-
ter according to the outcome of a comparison. In order to describe these, a special condition
code register is defined. For example, comparing two general-purpose registers can be

described in RTL notation as:
CC = r[3} ? r[5]):

In this instruction, the contents of general-purpose register three is compared against the value
of general-purpose register five. The value of the condition code register, CC is updated

accordingly. Neither of the general-purpose registers are changed.

2.5, Branch Instructions
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In order to describe a branch instruction, a special program counter (PC) register is util-

ized. An unconditional branch in RTL notation is:
PC = LABEL;
This RTL describes an unconditional branch to the program location denoted by LABEIL.

For conditional branches, the condition code register is examined and, depending on its

contents, a branch is executed. In RTL notation, a conditional branch is represented as:

PC = CC >= 0 —> LABEL | PC:

2.6. Type Conversions

Many machines have instructions that convert from one format to another. A common
conversion is from floating-point format to integer format and vice-versa. In the RTL nota-
tion, proper register typing makes describing type conversion instmct%ons simple. For exam-
ple, if an integer value stored in a general-purpose register needs 1o be converted into a
floating-point value and stored in a floating-point registers, the appropriate RTL representation

of the instruction is:
£l2] = r[8]:

This RTL indicates that the integer value in general-purpose register eight should be converted
to the equivalent value in floating-point representation and moved to floating-point register
two. On machines that do not have separate floating-point registers and use the general-
purpose registers to hold floating-point values, the register typing should still be used in the
RTLs. The optimizer is capable of mapping any number of register types to a single set of

registers on the target machine,
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2.7. Complex Instructions

Some machines have a number of complex, but useful instructions whose semantics are
difficult to captur;s using RTL notation. The general rule for handliﬁg these cases is to use a
macro-like syntax that shows which registers values are needed by the instruction. An exam-
ple of this is the link instruction on the Motorola 68020 that sets up an activation record for a
procedure. This instruction places the value of the frame pointer on the stack and allocates
enough space on the stack to store local variables. It also remembers how much stack space
was allocated so that the complementary unlink instruction can remove the activation record at

the end of the procedure.: The RTL form of the link instruction is:
L{a{7]] = LINK(a[6]}, 40):

where address register seven is the stack pointer, address register six is the frame pointer and
40 is the number of bytes to allocate for local variables. The macro notation requires addi-
tional knowledge about the target machine to select the proper machine instruction. This

information is present in the form of semantic actions.

Another example of a complex instruction is the call instruction available on many

machines to transfer control to a subroutine. A call instruction in RTL notation is:
STK = CALL{foo):

This RTL denotes an instruction that transfers control to the subroutine foo.

2.8. Multiple Effects

Many machine instructions perform more than one register transfer operation. One com-
mon example is setting the condition code register in a register-to-register transfer. A naive
approach to describing this operation would be to leave out the effect of setting the condition

codes in favor of the register to register transfer. The disadvantage of the naive approach is
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that it does not give a machine-independent optimizer enough information to recognize

sequences of RTLs that can be combined to form a single target machine instruction,
The following sequence of RTLs can be performed with a single farget- machine instruc-

tion:

r{3] = rl4];

CC =
In order to allow the representation of multiple effects, the RTL notation permits RTLs to be
concatenated. The semicolon is used to separate the effects. The full effect of a register-to-
register transfer instruction can be represented with the following RTL:

r{3] = r[4]; CC = rid] ? 0;

RTL semantic rules state that all uses are evaluated before any updates. This eliminates any

ambiguity on RTLs that use and update the same register or memory location.

2.9. Advantages

This brief introduction to the RTL notation has demonstrated the expressive power of
RTLs 10 denote complex machine instructions and addressing modes. Additional reasons why

the RTL notation is a powerful instruction representation form include;

(1)  Since the RTL form is machine independent, the algorithms that manipulate RTLs are

also machine independent.

(2) Because RTLs represent machine specific instructions, they allow optimizations to be

performed at the machine level.

(3) Because RTLs are well-defined, it is possible to construct recognizers that can determine

whether an RTL represents a legal instruction on a target machine.
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(4) RTLs are powerful enough to represent machine instructions in all optimization phases.



CHAPTER 3

IMPLEMENTATION

The optimizing compiler consists of three main sections: The front end, the code

expander and the optimizer (see Figure I). The code expander and the optimizer comprise the

back end of the compiler.

3.1. The Front End

The front end translates a program written in a high-level language into a corresponding

set of intermediate language statements. Although the front end is capable of performing

optimizations, our strategy is to just perform a naive translation of the source code. There are

several reasons why we believe this to be a good strategy:

(1) A naive front end is easier to write and debug than an optimizing front end.

(2) Few optimizations, with the possible exception of procedure inlining, are as effective

when applied to source or intermediate-language code as they are at the machine level.,

The reason for this is that the capabilities of the target machine (the addressing modes,

number of general purpose registers, number of addresses per instruction, etc.), have a

source
anguage
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vpee
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language
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vpo
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significant impact on the optimizations that can be or should be performed. The source
or intermediate-language code are too far removed from the target machine to ensure

that all of the optimizations can be performed are performed.

(3) Any optimizations performed by the front end would have to be duplicated for every

high-level language front end that expects to produce the best possible code.

The front end used in this thesis is vpce (Very Portable C Compiler) [WATTS6]. Vpee is
a complete C compiler {KERN78] that includes bit fields, floating-point and enumeration
types. Source code is translated into a stack-oriented intermediate language consisting of 46
simple operations. Consider the following C statement:

r=x * x +y << 3;

This statement will be translated by vpce into the following sequence of intermediate-

language operations:

Operation Type  Argument Description

ADDR int % push address of local variable x

@ int load an integer using address on top of stack
ADDR int x push address of local variable x

@ int load an integer using address on top of stack

* int multiply two integers on top of stack, push resuit
ADDR Coint v push address of local variable v

@ int load an integer using address on top of stack

+ int add two integers on top of stack, push result
CON o oint 3 push the integer constant 3

<< int left shift using two integers on stack, push result
ADDR int r push address of local variable

= int store into address on top of stack the integer below it

Note the simplistic approach that is taken to describe memory references. For exampie, a
local variable reference is described as two separate operations: the address calculation and
the dereferencing of the address. In general, the intermediate-language operations are simple,
thereby ensuring a straightforward mapping into R7Ls on the target machine, which is the task

of the code expander.
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Other front ends exist that are capable of working within the framework of our optimiz-

- ing compiler, and they are all essentially similar in their approach to code generation.

3.2. The Code Expander

The code expander accepts a sequence of intermediate-language statements and
translates them into a corresponding sequence of RTLs., The code expander is machine depen-
dent because the RTLs that it emits must denote valid machine instructions on the target
machine. The strategy of having the front end emit simple intermediate-language operations

ensures a simple mapping to RTLs that represent valid target-machine instructions.

The code expander has knowledge of the types of register and memory references avail-
able on the target machine. In order to postpone register allocation, the code expander uses
pseudo registers. This allows the code expander to assume that a 1arge number of registers are
available on the target machine. Pseudo registers have the same form as hardware registers in
RTL notation. Any register with a number greater than the actual number of registers avail-
able on the target machine is a pseudo register. For example, on the Motorola 68020, d[0]
through 4[7] represent the data registers available and d (8] through d[255] are pseudo
registers that will be bound later in the compilation phase to a data register. The number of
pseudo registers is limited for the sake efficiency. Compiling a suite of non-trivial programs
shows that 200 pséudo registers are sufficient. The method used to allocate pseudo registers is
simple:

(1) A counter is set at the beginning of each source language statement to the first available

pseudo register number.

(2) The value of the counter is used whenever a new pseudo register is needed, then the

value of the counter is incremented to reflect the next available pseudo register.
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Multiple effects increase the descriptive power of RTLs, but raise a serious issue: should
the code expander be forced to describe the full effect of each instruction, or should it emit
only the effect or eft;ects that it immediately requires? Having to emit the full effect of an RTL
increases the amount of storage required to keep RTLs. Not describing the full effect of each
RTL uyndermines a machine-independent optimizer’s ability to determine which values are
stored in every register. A solution to both of these problems is to provide a simple method of
indicating that the value of a register is altered by an instruction without having to describe
the details of the change. This is done by placing a register whose contents are potentially

destroyed on the dead register list of the RTL,

A hardware register that is altered by an instruction whose new value is not considered
important is placed on the dead register list. In the case of a register-to-register transfer that

also sets the value of the condition code register, the correct RTL representation would be:
r(3] = ri4]; {CC)

This is the standard notation for denoting that the condition code register is on the dead regis-
ter list. The contents of the dead register list may be the determining factor in deciding
whether an RTL represents a valid instruction on the target machine. In the case shown above,
removing the condition code register could result in an iflegal instruction if the target machine

has no way of performing a register-to-register transfer without affecting the condition codes.

The dead register list performs another important task: if a pseudo register is placed on
the dead register list, it does not mean that its value is altered by the instruction, but rather that
the pseudo register will never be referenced again. This mechanism permits the hardware
register allocation phase of the optimizer to free the hardware register bound to a pseudo

register, thus allowing it to be bound to a new pseudo register.
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The code expander also determines the calling conventions for procedure and function
calls. Issues such as whether arguments are 10 be passed in registers or on the machine stack
affect the code emitted by the code expander. The mechanism used to retumn the results of a
function call is also determined by the code expander. Since pseudo registers do not overlap
hardware registers, the code expander can reference hardware registers and thus generate code

that returns function values in specific hardware registers.

Like the front end, the code expander does not attempt any optimizations and the result-
ing RTLs will usually present many opportunities for optimization. This naive approach to

code expansion makes the code expander easy to write and modify.

Returning to the example given for the front end, the following is an example of the
RTLs that the code expander for the Motorola 68020 would generate for the sequence of

intermediate-language operations;

Operation Type Argument RTL

ADDR int bl al{B8] = a{6] + x.: (CC)

@ int ‘ d[9] = L[a[B]]: ' (CC,af8])
ADDR it ® allG] = ai6] + x.: {CC)

@ int dill}] = Lial[l0]]: (CC,a(l01}
* int df{e] = d[(9] * 4(11]: (CC,d[111)
ADDR int Y all2] = a{6] + y.: {CC}

@ int dll3] = Lial12]]: (CC,afl2})
+ int d[9] = d{9] + d[13]; (CC,d[131)
CON int 3 4{14] = 3; (cC)

<< int - d[9] = d[9] << d[14]: (CC,d[14])
NAME int r all3] = aié] + r.: (CC)

= int Llall15}1 = d[9]; (CC,al5],d[9])

Note how often the condition code register (CC) appears on the dead register list. The reason
for this is that many instructions on the Motorola 68020 set the condition code regiéter
depending on the value calculated or transferred by the instruction. Even this simple example
shows how much space is saved by not describing the full effect of every instruction. This

example also shows pseudo registers on the dead register list of the last RTL in which they are
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referenced. The code expander can determine when a pseudo register should be placed on the
dead register list because it keeps every live pseudo register on the intermediate stack. When
a pseudo register is taken off the stack, referenced, and not pushed back on the stack, the code
expander places that pseudo register on the dead register list. This strategy is correct because,
if the pseudo register is not on the intermediate stack, it cannot be referenced in any future

operation.

Code expanders are easy to implement because a significant portion of the effort
required to re-target the optimizing compiler to a new target méchine entails writing or modi-
fying a code expander. All of the code expanders that have been implemented consist of a
loop that reads each operation in the intermediate file and a switch statement that transfers
control to the statements or the procedure that emit the appropriate RTL(s). For example, the

following code handles the + operation on the Motorola 68020’s code expander:

type = getw({fp): /* Operation type */
argl = *--gp; /* Take registers from stack */
arg2 = *--sp;

printf ("+%c[%d] = %ci%d] + %c[3d]: (CC,%c(%d]) \n",
REGCHR (type), arg2, REGCHR(type), arg2,
REGCHR (type), argl, REGCHR (type), argl);

*sp++ = argl: /* Push register with result */

This example shows how the intermediate stack is managed. The stack contains only the
number of the pseudo register that contains the value needed in an operation. The intermedi-
ate language provides the type, so there is no need to keep it on the stack along with the
pseudo register number. The function REGCHR maps operation types to the corresponding
register types used in the RTL notation for the target machine. Since the code explicitly takes
two pseudo registers from the stack and only returns one back to the stack, the pseudo register

that is not returned (o the stack is placed on the dead register list. Since the addition operation
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on the Motorola 68020 affects the condition codes, the condition code register is placed on the
dead register list as well. Also note that the first character emitted is a **+"". .This indicates
that the line contains an RTL, There are instances where the code expander must pass infor-
mation other than an RT. o the optimizer, and the first character of a line indicates the nature
of the information on the remainder of the line. For example, the code expander éan pass text
directly to the assembler (to allocate space for global variables, for instance) by placing a **~"’

at the beginning of the line.

3.3. The Optimizer

The optimizer is called vpo (Very Portable Optimizer) and is composed of optimizing
phases that operate on RTLs. The optimizations currently implemented are: useless branch
elimination, dead code elimination, instruction selection, global register allocation, common

subexpression elimination, constant propagation and dead store elimination.

Breaking the difficult task of code optimization into a series of phases or passes in order
to reduce complexity and simplify the implementation is standard practice. The order in
which the different phases are invoked is a critical part of the optimizer’s design. Designing
the phases so that they are capable of operating in isolation simplifies the implementation of
each phase; however, some interaction must take place between the phases in order to pro-
duce good code. Designing and ordering phases 1o interact without interfering with each other
is called a phase ordering problem [BENI88].” Most optimizers suffer phase ordering problems
because the ordering of the phases is starically determined in either a carefully planned or ad-
hoc fashion. Interaction between the separate optimizing phases generally results in a specific
ordering that cannot be changed easily after the optimizer has been designed. Carefully
planned phase ordering attempis to ensure that the work performed at each phase does not

create new situations that a previously executed phase is responsible for optimizing., Even the
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most careful phase ordering cannot prevent these situations from occurring in general. Vpo
‘uses an iterative approach to phasé ordering, By maintaining the RTL notation through all
optimization phases, vpo is capable of re-invoking previously executed phases when new pos-

sibilities have been introduced for further optimizations,

3.3.1. Basic Blocks

Vpo operates on a program a procedure at a time. As vpo reads in the RTLs that make up
a procedure, it partitions them into basic blocks. A basic block is a sequence of RTLs having
only one entry and exit point. Vpo recégnizes RTLs that might have more than one predeces-
sor because the code expander emits a label before every such RTL . Exit points are found by
looking for branches: both conditional and unconditional. Since a branch ends a basic block,

any RTL following a branch begins a new basic block.

The data structure used by vpo 1o represent basic blocks defines not only the boundaries
of the basic blocks, but also the possible flow of control between the basic blocks. Every
basic block has a left and right child pointer. This left and right pointer approach models the
traditional method of transferring control of the program: the conditional and unconditional
branch. The left child is considered to be the ‘‘normal’’ successor, while the right child is
reached only when the basic block ends with a conditional branch. Only blocks that end with
an unconditional return from the procedure have no children. Every basic block also keeps a
list of the predecessor to the block, and every basic block except for the entry block to a pro-

cedure has one or more predecessors. For example, the following sequence of RTLs:

CC = r[20] ? rl[22};
PC = CC !'= 0 —> L5 | PC:
r[23] = 0;
PC = L&;

L5;: r{23] = 1;

L6:
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Would be stored in a data structure roughly described in the following figure:

label

x{201 ? z{22];
CC != 0 -> L5 | PC;

cc

code - oe

left right

label tabel

code - ;é‘?‘z]Lz_o" code s £ [23]

left | right | left | right

I

1; |

label
code —= . |

left | right

Figure II.
Basic blocks capture the essential program flow within a procedure. Vpo needs to know
the flow of control for the following reasons:

(1) Knowing the flow of control allows vpo to eliminate dead code—that is, code that cannot

be reached from the entry point of a procedure.
(2) Calculating data-flow information requires knowing the flow of control in a procedure.

(3) Locating loops in a procedure in order to determine how frequently local variables are

likely to be referenced requires knowing the flow of control.
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3.3.2. Useless Branch Elimination

Useless branch elimination removes branches by rearranging basic blocks. It also
removes branch chains—instances where a branch branches to a branch instruction, by chang-

ing the target label of the first branch to reflect the final destination of the chain.

Useless branch elimination locates instances of a basic block having no predecessor that
falls through 10 it. In such a case, the basic block is placed directly after one of its predeces-
sors and the unconditional jump to the basic block in the predecessor is removed so that the

predecessor now falls through to the basic block.

Another type of useless branch elimination is performed by finding instances of a condi-
tional branch followed by an unconditional branch where the target of the conditional branch

follows the unconditional branch:

PC =CC > 0 — 1,33 | PC:
PC = L56;
L33:

When such an instance is located, vpo removes the unconditional branch and negates the con-
dition of the conditional branch, The sequence of RTLs shown above become the following

equivalent sequence:

PC = CC <= 0 -> L56 | PC;
L33: ...

Branch chain elimination is accomplished by locating instances of branches to blocks

that immediately branch to other targets:

BC

L45;
L45; PC = L82;

L82:

Vpo optimizes branch chains by replacing the target label of the first branch with the final
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destination of the chain. In the case shown above, the optimized sequence would be:

[}

rC 182;

pC

L82;

L.82:

Note that the label 145 is no longer used, since all branches to 145 have been replaced with
branches to L82. The unconditional jump will be removed unless the predecessor of the
basic block containing the jump falls through to the basic block, thus relying on the uncondi-

tional branch to reach L82.

3.3.3. Dead Code Elimination

Dead code elimination consists of determining which basic blocks cannot be reached
from the entry point in a procedure and eliminating such blocks. Vpo determines which
blocks are unreachable by first marking every basic block in the procedure unreachable and

calling the following simple procedure with the entry block of the procedure:

Mark Reachable (Block)
{ .
while (Block != NULL && Block->Reached != TRUE) {
Block->Reached = TRUE; o
if (Block->Right != NULL) {
Mark Reachable (Block->Left);
Block = Block-»Right;
}
else
Block = Block->Left;
}
}

After this algorithm is applied, vpo examines each basic block and disposes of any block for

which Block->Reached isnotequal to TRUE.
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3.3.4. Window Definifion

RTLs provide the ability to combine the effects of two instructions and quickly deter-
mine if the resulting RTZ. defines a valid machine instruction on the target machine. Consider

the following RTLs:

r[17]
rilé]

5;
r{l6] + r[17]; {r{17])

Combining the effects of these two RTLs can be done with a simple machine-independent

algorithm td yield:
r{l7] = 5;r[16] = r[l1l6} + 5; (r[l7])

Note, however, that the pseudo register r {17 has been placed on the dead register list (the
combining algorithm concatenates the dead lists of the original RTLs) to indicate that r{17]
will not be used again, thereby removing the need to store the constant § into r 117]. The

actual effect of combining the two original RTLs is;
r{l16] = rl[l6] + 5;

This new RTL will be passed to the machine description for the target machine and, if

accepted, will replace the two original RTLs that combined to create it.

Combining RTLs is peephole optimization. Peephole optimization is commonly per-
formed by usihg a small window into the code and replacing pairs or triples with single
instructions according to a predefined template of patterns. Peephole optimizers have tradi-
tionally considered lexically adjacent instructions as candidates for optiniization. RTL com-
bining also uses the concept of a window, but instead of lexical adjacency determining the
window, global data-flow analysis information is used to define windows based on the where

a register is set and where it is first used. Consider the following example:
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1 r[17] = 5;
2 r[16] = L[ _base];
3 r{1l6)] = rlle] + r(17]; {(r{17])

AnRTL co-mbinex-' using lexical adjacency would attempt to combine kTLé 1 and 2 to obtain:
r[(17] = 5:r[16] = L{ base]:
which is an unlikely instruction on most target machines. It would then try 2 and 3 to obtain:
r(l6] = LI base] + r[l7]: (x[17])
which is also an unlikely instruction, especially on RISC architectures. If the window size
permits, it may consider all three instructions:
r{l6] = L{ base] + 5;

and still fail to find a valid instruction on the target machine. Had it considered combining 1

and 3, it might have found a valid target instruction and reduced the three RTLs to the pair:

2 r[16] = L[ basel;
3 r[16] = r[l6] + 5;

Vpo addresses this problem by defining a window between the RTL that sets a register and the

RTL that first uses the register. In the example above, vpo would define the following win-

dows:
1 ri{l?7} = 5;
2 r{lé] = L[ _base]l;
3 {1, 2} r{le] = r[16] + r{1i7]: {(r[171)

The numbers inside the braces indicate the windows. RTL three and RTL one are a window
because r[17] is set by the first RTL and first used by the third RTL. RTL three and RTL

two define a window because r[16] issetin RTL two and first used in RTL three.

Using data flow information to define combination windows increases the likelyhood

that attempted combinations will result in valid target machine instructions, allows instruc-
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tions separated by many other instructions to combine and because the algorithm used to set
up windows is conservative, less work is required to consider just the windows defined than
would be required t;) consider all lexically adjacent instructions. Davidéon’s' experiments with
PO and windows showed a 20% reduction in code size over the traditional lexical adjacency

window by an optimizer employing the set and use windows [DAVI&1].

3.3.5. Instruction Selection

The instruction selection phase of the optimizer combines RTLs using the set and use
windows. In addition to cdmbining RTLs, instruction selection also invokes an RTL simplifier

that performs some of the following simplifications:
(1) Perform arithmetic operations where constants are available. ‘For example:
r(le] = r[16] * (5 + 6);
would simplify to:
r{16] = r[1l6] * 11;

2) Remolve' useless operations, such as adding by zero, subtracting by zero, multiplying by

one, dividing by one and bitwise ORing or exclusive ORing by zero.
(3) Remove double unary minuses or one’s complement instructions. For example:

r{l8] = ~"x[15];
would become:
r[18] = r[15]:

{(4) Remove instructions whose outcome can be determined, like multiplying by zero, sub-

tracting two identical values and bitwise ANDing by zero.
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(5) On machines with autoincrement or autodecrement instructions, the simplify algorithm
is responsible for noting combinations that can be simplified with an appropriate index-

ing mode, The following RTL combination:
r(2l] = L{r{19]1;x([1l9%] = r[l19] + 4;
would be changed to:

r{21] = LIr[19]++];

Combinations using the windows are attempted in pairs and in triples. Although there is
no reason why four or more RTLs cannot be combined and tested for validity, efficiency con-
siderations and the low probability of finding valid combinations of four or five RTLs that

cannot be obtained by first collapsing a pair or a triple are responsible for the three RTL limit.

In order to determine whether a combination of two or three RTL s denote a valid target
machine instruction, the machine description is consulted. The machine description consists
of yacc [JOEN78] generated parser and an associated group of semantic actions that determine
the validity of an instruction. 'In cases where the RTL describes a valid instruction, the
machine description also returns the cost, in microseconds or some other arbitrary measure, of
executing the instruction. The instruction cost is used by the instruction selection phase to
prevent the combination of a pair or triple whose resultant instruction actually takes longer to
execute than it would to execute the component RTLs separately. These cases are rare, but
they do exist because of poor machine design or because combining instructions introduces a

new pipeline delay.

Phase iteration is used by vpo to prevent phase ordering anomalies. Instruction selection
is a commonly re-invoked phase because even small changes introduce the potential for new
instructions to be used. In order to limit the amount of work that each iteration of instruction

selection must do, each RTL has a flag that is set by any phase that modifies an RTL so that
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the next iteration of the instruction selection phase will only operate on newly altered RTLs.

Some of the examples in the rest of this chapter will show the importance of phase iteration.

3.3.6. Global Data-flow Analysis

The primary purpose of data-flow analysis in vpo is to define windows for instruction
selection across basic blocks. Defining windows within basic blocks entails remembering
where each register is set and defining the window when the first use of the register is encoun-
tered. Defining windows across basic blocks is not as simple because vpo must determine that

a window is *‘safe’” before defining it. Consider the following sequence of RTLs:

1 CC = r[16] 7?7 5: {(r[l6])
2 BPC = CC == -> L% | PC:
3 r(1l7] = {;
4 PC = L6
L5
5 r{l7} = 1;
L6
6 L{ base] = z[17]; (z[17])

The algorithm that we described above for defining windows inside basic blocks might
attempt to define a window from RTL six to RTL five. If it did so, then instruction selection

phase, depending on the capabilities of the target machine, might make the following optimi-

Zation;
1 CC = r[l6] 2 5: (r{l6])
2 PC = CC w= J ~> L5 | PC;
3 r[17} = (;
4 PC = 1L6;
L5
L6
6 L[ base] = 1;

This sequence of RTLs does not have the same semantics as the original sequence, therefore a
window defined from RTL six to RTL five is not safe. A safe window will never cause the

instruction selection phase to alter the semantics of the original RTLs.
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There are two rules that vpo must follow to cnsuré that the windows defined across basic
blocks are safe. The first rule prevents vpo from defining the unsafe window described above:
define a window from the use of a register oniy if one definition of the register reaches the
use. Looking at RTL six in the example shown above, it is easy to see that two definitions of
r[17] reach RTL six: one at RTL three and a second at RTL five. In order to abide by this
first rule, vpo must determine the reaching definitions for each basic block. Before stating the

second rule, consider the following RTLs:

1 r{19} = Q;
2 CC = r[1l7] 2 r[18]; {r[17],xi18))
3 PC = CC != (0 —-> L19;
4 r{l%] = r[19] + 5;
5 PC = L20;
L19
6 r[18] = r{ig] + 8;
L20
7 L[ _base] = rii8); (rf{19)

In this example we have a single definition of r{19], so the first rule of window definitions
across basic blocks is satisfied. Consider what might happen if vpo defines a window between

the first use of r ({19} at RTL four and its definition at RTZ one:

2 CC = r[17] 2 r[18]: (r{171,r[18])
3 PC =CC I= (0 ~>» L19;
4 riis8} = 5;
5 PC = L20:
19
) r[l8] = r{1l9] + 8;
L20
7 L{ base] = r[19]; {(r{19])

The instruction selection phase combined RTL one and RTL four removing RTL one in the
process. If RTL six is reached, then there is no longer any guarantee that r [ 1 91 will contain
a zero, therefore the semantics of the original RTLs have been changed. The secoﬁd rule of
window definitions across basic blocks prevents this problem: a window can be defined from

the first use if it is the only first use of the set. In order to enforce the second rule, vpo uses
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live variable information.

Aho, Sethi gmd Ullman [AHOSG} present two different algorithms for calculating reach-
ing definitions and live variable information. One set of algorithms ﬁse tﬁe interval approach
which works only on a class of flow graphs called fea’ucible. The second set of algorithms use
the iterative approach and work on any arbitrary flow graph. Although the iterative algo-
rithms have a greater worst-case execution time, they are quite efficient for the flow graphs
created from most user programs. Vpo uses the iterative algorithms because their ability to

work with arbitrary flow graphs ensures that they are source-language independent.

Even thought the data-flow algorithms aré efficient, a reduction in the number of RTLs
that have to be considered yields a desirable decrease in the time it takes to calculate the data-
flow information. Vpo takes advantage of this by performing dead code elimination and one
instruction selection phase with windows defined only within basic blocks. These two phases
combined reduce the number of original RTLs by an average of fifty percent. After data-flow
analysis is performed, windows are defined across basic blocks and instruction selection is

performed only for the RTLs affected by the new window definitions.

3.3.7. Register Allocation

There are two distinct register allocation phases in vpo. Ihe first one deals with the
problem of assigﬁ'mg hardware registers to temporary pseudo registers. This register ailoca-
tion phase is executed only once, since vpo's phases do not introduce any new pseudo regis-
ters. The second is a global register allocation phase that deals with allocating local variables

to registers, This section discusses the first register allocator.

The code generator assumes that a number of registers are available on the target
machine. Even though the code generator uses an average of ten pseudo registers per state-

ment, after the initial code selection phase, the number of pseudo registers remaining is
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roughly half of the original amount. Of these, only two or three of them are simultaneously
live at any point in a procedure. The register allocator usually succeeds in allocating only as
many hardware reéisters as the maximum number of instantancously live pseudo registers.
The need for special register pairs on some machines sometimes causes the register allocator

to use one more hardware register than the simultaneously live number.

Register spills are introduced when the number of live pseudo regiéfers becomes greater
than the number of allocable registers available on the taréet machine. Registers are spilled to
memory. When vpo is forced to spill a register, it defines a window between the spill location
and the last set or next use of the register spilled so that the next iteration of the instruction
selection phase can choose better instructions to perform the spill on the target machine. Con-

sider the following sequence of RTLs as they would appear before the register allocation

phase:
1 r{23] = L[ _i];
2 {1} r{25) = £[237]:
10 r(28] = L{_j];
16 1.7[28] = r{28] + r[231;: {(r{23])

After register assignment, the following RTLs would be left:



38

1 r[2] = Li_il;
2 {1} r{3] = ri2];

9 Litmpl] = z[2]: (r[2])
10 r[2] = L[ _3]:

15 r(3] = Litmpl];

16 {15} r[2] = r(2] + r{3]; (r(3])

Note that the register allocator was forced to spill a register to a temporary memory location,
but it also defined windows for the next instruction selection phase. After the next instruction

selection phase, the resulting RTLs are:

1 - r(2] = L[ il
2 {1}  r(3] = r[2];

9 Litmpl] = r(2]; (r121)
10 r[2] = L{_3j1:

16 £[2] = (2] + Litmpl];:

RTL 15 and RTL 16 have combined to reference the spill location directly in the addition

operation.

3.3.8. Global Register Allocation

Global register allocation assigns registers to local variables over the life of a procedure.
First, the global register auécator estimates how often each local variable in a procedure is
referenced. This estimation is made by using a simple heuristic that assumes that local vari-
able references inside loops are executed more often than references outside loops. After

estimating how often local variables are referenced, the global register allocator attempts to
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replace the most frequently used local variable references with a register of the appropriate
-type, provided that there are no indirect references to the local variable. Vpo can determine
which local variables are indirectly referenced because the address of these variables is calcu- -

lated outside of a memory reference. For example, the C statement:
foo (%)

Where x is a local variable would result in the following RTLs:

1 r{2] = L{x[12] + x.];
2 L{--r(14]] = r[2]; (x{27)

3 STK = CALL( foo}:

An indirect reference such as;

foo {&x)
Results in the following RTLs:
1l r[2] = r{l2] + x.;
2 Li-=-x[14]] = r[2]; (x(2])
3 S8TK = CALL(_foo}:

The only difference in these examples is in the first RTL. In the first example, the address of
local variable x is calculated inside a memory reference. In the second example, the address

is not calculated inside a memory reference.

The process of allocating registers to local variables continues until there are no local
variables remaining that are used often enough to overcome the cost of using a new register in
the procedure. The cost of using a new register depends on the convention used to maintain
the value stored in a register when a procedure calls another procedure. There are two popular
conventions: caller-saves and callee-saves. The caller-saves convention requires the pro-
cedure that is making the call to save any live registers before making the call and restore

them upon return from the called procedure. The callee-saves convention requires the called
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procedure to save the registers that it will use and to restore them before returning to the
caller.

When using the caller-saves convention, tﬁe cost of using a register in a procedure is
determined by the number of calls made from the procedure, since each call requires a register
save and restore for each register used. If a call is made from inside a loop, then the cést of
saving and restoring must be multiplied by the number of times that the loop is expected to
iterate. When using the callee-saves convention, the cost of using a new register is the effort

required to save the register on entry to the procedure and restore it on exit.

Parameters passed to the procedure are also considered for register allocation by the glo-
bal register allocator. If a parameter is allocated to a register, an initial load of the parameter

from its initial location is inserted at the entry point of the procedure,

The global register allocation phase never creates spill code. If a register is not évailable
over the whole procedure, then it is never allocated to a local variable. Since register alloca-
tion is performed before global register allocation, the number of registers allocated to tem-
porary expressions is known, and all of the allocable registers remaining on the target machine
can be used for local variable replacement. This strategy prevents vpo from having to lmit

the number registers available to each allocation phase.

3.3.9. Common Subexpression Elimination

Common subexpression elimination is performed by maintaining an equivalence list of
available expressions and deleting code that recalculates an expression that is currently avail-
able. The common subexpression phase in vpo is similar 1o PO’s Cacher, but has significant
differences. PO’s Cacher operated on RTLs before register assignment and was capable of
detecting all common subexpressions present in a sequence of RTLs without labels. A label

forced Cacher to forget all equivalences because PO did not have any mechanism that allowed
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it to determine which equivalences were still valid at a point where multiple control paths
merged. In addition, Cacher’s ability to detect all common subexpressions, coupled with its
lack of knowledge about how many allocable registers were available on the target machine,

sometimes caused PO’s register allocator to generate register spills.

Common subexpression elimination in vpo is performed after register allocation. The
life of a register will never be extended to the point where a register spill is required. This
limitation sometimes causes the common subexpression phase to miss some common subex-
pressions. Whereas PO’s Cacher could claim to detect all common subexpressions, vpo's
common subexpression eliminator can claim to never make the code any worse than it was

before common subexpression elimination.

PQ’s Cacher operated on the RTLs generated by the code expander. Vpo's common
subexpression phase does not operate until at least one instruction selection phase has exe-
cuted. For an equivalent source language procedure, vpo's common subexpression eliminator

examines an average of half of the RTLs that Cacher would have to examine.

Common subexpression elimination works at the basic block level. Before the common
subexpression eliminator operates on a basic block, it operates on all of the predecessors of
that block. Having obtained a final equivalence list for each predecessor block, the common
subexpression eliminator merges the lists to create a new equivalence list containing only
equivalences that are true regardless of which path control is transferred from. Loops prevents
the common subexpression eliminator from operating on all of the predecessors of a block.
When a loop is detected, the common subexpression eliminator starts with an empty
equivalence list, making no assumptions about which equivalences hold for the loop. We call
this initial pass through a loop a dryrun. Once a dryrun is complete, the common subexpres-

sion eliminator operates on the loop once more, this time being able to merge the equivalence
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lists of all of the predecessors of the loop. Consider the following sequence of RTLs:

W~ s Wb
&=
w

10
11
12
13
14
15
16
17
18
19
20
21 L4

r[3]
ri3]
rf{2]

CC = .

PC =
r{3]
ri3]
r{2]
r{3]
r(3]

L[i.]

r[3]
r{3]
Lia.
r(3)
r[3]
r{z]
r[3]
cC o=
PC =

L{i.]:

r[3] * 4;

Lia. + z(3]]; (r(3])
0; (r{2])
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= Lla. + r[31];
= L{i.]:

= i3] + 1;
r{3];

= L[i.];

= r{3] * 4;

+ r(31] = r(2];
= L{i.};

r(3) * 4;
Lia. + r{31]:
Lii.];

ri3] > 63;

CC == (§ -> L5 | PC:;

(r[31)

i

(r{3])

(r[2])

(r{3])

(r[31)

The first iteration through the loop beginning at L5 starts with an empty equivalence list,

since it is impossible to merge the equivalence lists of all of the predecessors of 15 until the

loop is examined. This first pass yields the following RTLs:

L5

WW MU WwN P

r{3]
ri3]
r[2]
CC =
PC =
r(3]
r[3}
r{2}
r{3}
3]

Lli.]

r{3]
Lia.
r{3]
CC =
PC =

LIi.]:

r[3] * 4;

Lia. + £{3]11: {r {31}
(2] > 0 {(r{21)
C == 0 -> L4 | PC;

Lii.];

r[37 * 4;

Lia. + £[31]:

Lii.};

r{3] + i;
= r[3];

i3] * 4;

r{3]] = rl21;
= L[i.];

r{3] > 63;
CC == 0 -> L5 | PC:

[T G 2 o S 1 B

{r[3])

oAb

(r{31)

+

(r{2])

(r{3]}
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After this first pass through the loop, the equivalence tables for the basic block ending with
RTL 5 and the equivalence table for the loop indicate that r[2] and L{a. + L[i.] *
4] are equivalent. Assuming that these are the only predecessors of LS, when these two
equivalence tables are merged the equivalence will remain. On the second pass through the

loop, this equivalence will permit the remaining common subexpression to be eliminated. The

final sequence of RTLs is:
1 r[3] = L[i.}:
2 r[3] = r[3] * 4:
3 r[2] = L{a., + £[3]1; {r(31)
4 CC = r[2] > 0; (r2])
5 PC = CC == (§ -> L4 | PC:
6 L5:
9 r{3} = L{i.];
10 r{31 = ri{3] + 1;:
11 Liid.} = r[3]:
13 r{3] = r[3] * 4:
14 Lla. + x[3]] = r[2]: (r{2},x[3])
18 r[3] = L{i.];
19 CC = r[3] > 63; (r{3])
20 PC = CC == Q0 ~> L5 | PC;
21 L4:

The common subexpression eliminator uses the instruction costs returned by the
machine description to determine which of the items in an equivalence list provides the
cheapest form of an expression. An additional advantage of using the machine description is
that it prevents the common subexpression elimination phase from making any changes that
result in an RTL that does not translate to an instruction on the target machine. This is espe-

cially useful on machines that require register pairs to perform certain operations.

3.3.10. Constant Propagation

Constant propagation is particularly effective for optimizing array references. Consider

the following C statement:



ali]

ali + 1] + afi + 2];

“where aisaninteger array and 1 is an integer. The RTLs for this statement would look like

this:
1 rl(i]
2 {1} ril}
3 r{2]
4 {3} r[2]
5 {4} r{2]
6 {5} rl(2]
7 r[3]
8 {7} ri{3]
9 {8} r{3]
10 {8} r(3]

11 {6,10} r[3]
12 (2,11} Lla.

bog

a8 ¢ 3

H

= Lla,.

'

Lii.];
r{l] *
L{i.]»
r{21 +
r{2] *
Lia. +
L{i.1:
r[3]
r[3]

T I

r[3]
ril]]

4;

1:;
4;
ri{2ll;

2:

4;

r{3)]:

r(2];
r{3]):

(r[2])
(r[l],r{:ﬂ)

The constant propagation phase attempts to locate instances where a constant can be pro-

pagated through an operation. In the RTLs shown above, constant propagation would perform

the following transformations:

1 r{l]
2 {1} rilj
3 r(2]
5 {3} r(2]
6 {5} r{2]
7 r[3]
g (7} r([3]
10 {8} r[3]

11 (6,10} x{3]
12 {1,111} L{a.

4 0 & n

+

Lii.1:
r[il] *
Lii.]);
r{21 *
Lia. +
L{i.];
r[3] *
Lia.
r{3]
r{il]

+
b

4;

4;
r[2] + 41;
4;
ri3]
r{2];
r{3];

+ 81
(r{2])
(c[11,2(31)

The fact that adding a constant to an expression before a multiplication is the same as

adding the constant times the multiplicand to the result is exploited on machines having a dis-

placement addressing mode. The biggest payoff in constant propagation is obtained when it is

used in conjunction with common subexpression elimination. vpo's common subexpression

eliminator would not have been able to perform any further optimizations on the original set

of RTLs: with constant propagation, common subexpression elimination can make the
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following optimizations to the code:

1 r[1] = L[1.]:

2 {1} ril} = {1} * 4;

& ri2l = Lla. + r(1l] + 4};:

10 r[3] = Lia. + r[l]l + 81;

11 {6,10} r[3] = x[3] + r{2]; (r{2])

12 {1,211} Lia. + x[1]] = ¢[31: (r{1l.,ri31)

3.3.11. Dead Store Elimination

Dead store elimination removes useless stores by keeping track of the number of times
that a register or a memory location is used before it is updated. Dead store elimination is
built into the common subexpression phase, since all the information required to eliminate

dead stores safely is available to the common subexpression eliminator.

Although most useless stores are avoidable by writing more efficient code, there are
instances where a front end will generate useless stores even when the user has written what

appears to be efficient code. Consider the following C code:

struct {
unsigned £1 : 1:
ansigned £2 : 1;

} flags:
flags.fl = 1;
flags.f2 = 1;

The RTLs generated for this example are:

r{l] = L[flags.]:

{1} r{l] = rll)] 1'1;

{2} L{flags.] = r[l1l]1: (i)
r{l} = L{flags.]:

{41} rlil] = r[1] | 2:

{5} Liflags.] = x{1]; (r{1}}

S o W

Dead store elimination removes the useless store at RTL three. The combined effect of dead

store elimination and common subexpression elimination will result in the following sequence
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of RTLs:
1 r{l] = L[flags.]:
2 - {1} r{l] = ril] t 1;
5 {2} r{l] = xf{l] | 2;
& {5} Liflags.] = x[1}: {(c[1])

A final iteration of the instruction selection phase will improve the code even further:

1 r{l] = Liflags.]:
5 {1} (1] = {1} | 3:
6 {5} Liflags.] = r[1]; (x{1])

There are rare instances where eliminating what appears to be a useless store results in
incorrect code. Some machines map device control registers to special memory locations, for
instance, and stores to such locations must not be eliminated. There is a mechanism which
can be used to prevent vpo from removing what appears to be a useless store. The code
expander can emit & trash command, which is a line starting with a *‘t”" and followed by the
memory location whose previous history should be forgotten. Without the previous history of
a memory location, vpo cannot determine if the next store to tha; memory location is useless,
therefore, vpo will not eliminate any subsequent store. If a machine has device registers, then
the code expander should be made capable of recognizing them so that it can emit a trash
command whenever a store is made to one of these registers. If it is impossible to determine
when a device register is referenced, then the user must supply a special option to vpo that

prevents dead store elimination.



CHAPTER 4

RESULTS

The real test of a retargetable optimizing compiler is to port it to a number of machines
and gauge not only the quality of the code that it generates, but also the effort required to
retarget it. Towards this end, we have ported vpo to three machines: the VAX-11/780, the
SUN-3/75 and the Concurrent 3230. This section presents the results of our efforts and some

of the lessons leamned along the way.

4.1. Machine Variations

The three machines used to measure vpo's effectiveness represent a reasonable cross-
section of the problems facing retargetable optimizing compilers. Some of the potential stum-

bling blocks that we have identified while retargeting vpo are:
(1) Complex addressing modes

(2) Non-regular use of addressing modes or registers

3 Pairing adjacent registers

(4) Procedure calling conventions

Complex addressing modes present a potential problem by permitting a large number of
combinations of addressing modes and instructions. A rule-based system of code generation,
for example, would require a large number of rules to handle all of these combinations. A
table-driven system might suffer inefficiencies because the size of the table is exponentially
related to the number of addréssing modes and instructions available. Fortunately, vpo factors
out the addressing modes from the instructions, so that the problem is not how many different

addressing modes are available on the target machine, but rather how many exceptions there

47
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are as to which modes cannot be used in particular situations. For example, despite the fact
that the VAX-11/780 provides twice as many addressing modes as the MC68020-based SUN-
3/75, the machine description for the VAX-11 is only 95 lines longer than the description for

the MC68020 (389 vs. 294).

It is difficult to find machines that do not have at least one exception to otherwise regu-
lar addressing modes and instruction sets. On the Concurrent 3230, for example, all of the
general-purpose registers with the exception of register zero can be used in indexed addressing
modes. Exceptions are difficult to express in a machine description. In order to handle them,
semantic actions can be invoked to perform special case tests. In the case of the 3230, the
description of the indexed addressing mode syntax allows any general-purpose register to
form an indexed expression, but a semantic action is always invoked that checks the register

and sets an error condition if the register used is register zero,

Some machines have instructions and data formats that implicitly use adjacent register
pairs. On the VAX-11, double-precision floating point values are stored in general-purpose
register pairs. The addressing mode states only the lowest numﬁered register of the pair. On
the 3230, integer multiplications and divisions require odd/even register pairs to be available.
The burden of providing appropriate register pairs, triples and so forth falis on the register
allocator. The current register allocator in vpo is a product of two major revisions and four
upgrades intented to enhance its ability to be quickly adapted to the particular needs of a large

number of architectures.

Machines vary widely on the mechanisms that they provide to support the procedure
model. On the VAX-11, an instruction is provided that not only transfers control to a pro-
cedure, but also saves and restores registers automatically through the use of a mask indicating

the registers that shouid be saved on the call and restored on the corresponding return. The
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MC68020 provides special instruction that set up and tear down an activation record. The
- 3230 is the most primitive of the three machines, providing only a simple branch-and-link
instruction that sa\;es the return address in a specified register. Multipie register save and load -
instructions are also provided on the 3230, but their usefulness is somewhat limited in that
only the starting register number can be given, and the muliiple store and load continues until
every register from the starting register number to the highest available register of the given

type is saved or loaded.

There are two popular schemes used to manage register usage across procedure calls:
caller-saves and callee-saves. The caller-saves scheme in its purest form allows a procedure
to modify the value of any register, thus forcing the caller to save and restore the value of any
register whose life must reach across the call. The callee-saves scheme ensures that a pro-
cedure call will not alter any of the registers, thus placing the burden of saving and restoring
any register that are needed on the called procedure. In practice, the schemes used tend to be
mostly caller-saves or callee-saves with the exception of a sm'all number of registers, known
as scratch registers, that may or may not be altered across a procedure call. A smart compiler
will use scratch registers to hold temporary values whose lives do not cross a procedure call

because no overhead is required to save and restore these registers.

Sometimes, the instructions provided by a machine to support procedures suggest the
best scheme for register management across procedure calls. For this reason, vpo is capable of
supporting both the caller-saves and the callee-saves schemes. Our method for determining
which scheme to use on a given machine is to adopt the same calling conventions used by the
existing C compiler on the target machine. The ability to use the existing C library functions
and to use the ability to compile one procedure or file at a time with vpo and link it 10 pro-
cedures or files compiled by a fully-tested compiler to aid debugging and reduce the amount

of time required to retarget to a new machine. After the machine description is fully tested, it



50

is easy to choose or develop an alternate calling scheme and make the required changes to
employ it. Then, the source of the C library can be compiled with the new compiler to
bootstrap the system. Currently, the VAX-11 and the MC68020 versions of vpo implement a

callee-saves scheme and the 3230 version uses a caller-saves approach.

4.2. Code Quality

Since portability is a desirable property of a compiler, it would not be unthinkable to
trade-off code quality and compilation speed in favor of portability. Our experience, however,
suggest that code quality does not have to a take back seat to portability. We cannot make the
same claim regarding compilation speed, since we have not given that aspect of the compiler
as much attention as we have given code quality, and because the subject has already been

researched with success [DAVISS]

We have tested the quality of the code generated by vpo by compiling a test suite with
both vpo and the existing vendor-supplied compilers on the VAX-11/780, the SUN-3/75 and
the Concurrent 3230. When compiling the test suite, the compilers were instructed to apply
all optimizations at their disposal. The test suite was then executed during light-load condi-
tions and the amount of user and system time required to execite each program was recorded.

The results are shown in Table 1.

The test suite was chosen to provide a fairly broad range of program types. Ackerman,
sieve, queens, and puzzle are well known benchmark programs. Mincost and tsp were chosen
for their intensive floating-point calculations. They employ simulated annealing to solve
VLSI wire-routing and the classic traveling salesman problem respectively. Cache is a cache

simulator program. Wc, grep, sort and nroff are the standard Unix” utilities included to round
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. VAX-11/780 SUN-3/75 ) Concurrent 3230
Program

cc QO vpo vpo/cc cc -0 o vpolce ce -0 vpo vpolce
ackerman 4,76 430 0.90 1.10 1.06 (.96 3.59 346 0.96
sieve 1.69 1.53 0.91 0.65 0.61 0.94 234 2.44 1.4
queens 0.61 056  0.92 0.33 026 079 0.68 058 085
puzzle 10.71 6.98 0.65 3.76 3.07 0.82 10.36 9.71 0.94
mincost 12.52 11.73 0.94 5.76 4.56 0.79 18.34 18.47 101
tsp 281.09 218.09 0.76 11901 112.80 0.95 232,70 228.70 0.98
cache 14.81 14.53 0.98 39.74 39.41 0.99 2231 2197 0.98
wC 1.58 1.21 0.77 0.78 (.51 0.65 1.06 1.10 1.4
grep 4.34 4.07 (.94 2,14 201 0.94 6.20 6.90 1.11
sort 69.63 73.60 1.06 34.66 3581 1.03 0148 10949 120
nroff 20.31 18.92 093 8.59 844  0.98 23.39 2486 106

Table I. Comparison of Execution Times (in seconds).

out the suite with some "real" programs.

The table contains three columns for each machine. The first column shows the time in
seconds required to execute the benchmark compiled with the existing compiler on the target
machine. The second column shows the time in seconds required to execute the benchmark
compiled with vpee and vpe. The third column is the result of dividing column two by
column one. In cases where vpo generates higher-quality code than the existing compiler, the
dimensionless number in the third column will be less-than one. When vpo fails to generate
higher-quality code than the existing compiler, the number in the third column will be

greater-than one. All numbers are rounded to the nearest hundredth,

The execution times show that vpo generates better quality code than the existing com-
piler on the VAX-11/780 and the SUN-3/75 for all but one program. The inability to generate

better quality code for sort is the failure of the global register allocator to fully appreciate the

*Unix is a Trademark of Bell Laboratories
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use of local variables in the sorting algorithm, consequently requiring registers to be saved and
restored more often than their actual use warrants. The heuristic used by vpo assumes that a
local reference inside a loop is executed more often than a reference outside of a loop. This is -

not always true. Consider the following loop:

if (cond)
for (i = 0; i < 100; i++)
alil = 0;

The variable 1 may be referenced either a few hundred times or zero times, depending on the
value of cond. Vpo assumes that any local variable referenced inside a loop is used often
enough to offsez the cost of allocating it to a register. Using more complicated static (and
perhaps even dynamic) procedure analysis, it is possible to improve on vpo’s global register
allocation heuristic. It is encouraging, however, that even a simple heuristic can make reason-

able decisions in the majority of cases.

On the Concurrent 3230, vpo was not able to produce significantly better code than the
existing compiler. There are two reasons for vpe’s failure. First, the 3230 executes instruc-
tions faster when they begin on.a longword boundary, a fact that we were not aware of while
we where retargeting vpo to the 3230. The existing compiler on the 3230 avoids emitting
instruction that occupy more or less than a longword. Vpo's machine description and associ-
ated semantic actions have no knowledge of the longword boundary factor, and sometimes
maice code "improvements” that actually increase execution time. Second, in keeping with
our policy of adopting the calling conventions of the existing compiler on the target machine,
we used the caller-saves convention on the 3230. The caller-saves convention changes the
heuristics that estimate the payoff of allocating a register to a local variable. We feel that the
heuristic used to estimate payoffs for the caller-saves convention can, and shouid be,

improved in the future.
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4.3. Effectiveness

Since vpo maintains the RTL notation at every phase of the optimizer, if is possible to
refrain from invoking any particular phase without affecting the correctness of any of the other
phases. Additionally, by omitting an optimization, we can calculate the effectiveness of any
particular optimization by compiling with and without the optimization in question and com-
paring the effect on the quality of the code generated. We are, of course, neglecting the fact
that optimizations overlap so that the full effects of one optimization can not be fully meas-
ured in the presence of another. The next few sections present the results that we obtained by
disabling certain optimizations. The results are presented only to show how vpo can be used
10 question the effectiveness of a given optimization on a particular machine, and not 1o

attempt to prove the effectiveness of any one optimization over another.

4.3.1. Windows Across Basic Blocks

We have already discussed vpo's ability to perform instruction selection across basic
blocks by utilizing data-flow information to determine when it is safe to do so. Table II
presents the results obtained by comparing the execution times of our test suite compiled with
and without this optimization. The results suggest that performing instruction selection across
basic blocks does not yield a high payoff. The reason is that the code generated by the C front
end does not extend the life of temporary registers across a basic block with the notable excep-
tion of the ? operator. Experimentation with a number of other languages might prove this

optimization to be more worthwhile than our current findings indicate.

4.3.2. Register Allocation

The effectiveness of the register allocator can be summed up with the following state-
ment: no register spills are generated by vpo for any of the programs in the test suite. Some

spills are needed to handle live registers across function calls on the 3230 version because the
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" VAX-11/780 SUN-3/75 - Concurrent 3230
Program

none links ink/no none links Ink/no none tinks Ink/no
ackerman 4.30 4.30 1.00 1.06 1.066 1.00 346 346 1.00
sieve 1.53 1.53 1.00 0.61 0.61 1.00 244 244 1.00
gueens 0.56 0.56 1.00 0.26 0.26 1,00 0.58 0.38 1.00
puzzle 6.98 6.98 1.00 3.07 3.07 1.00 971 9.71 1.00
mincost 1173 11.73 1.00 4.56 4.56 1.00 1847 18.47 1.00
tsp 218.09 218.09 1.00 112.80  112.80 1.00 22870 22870 1.00
cache 14.53 14.53 1.00 39.50 39.41 1.00 22.00 2197 1.00
we 1.25 121 0.97 0.52 0.51 0.98 CL10 1.10 1.00
grep 4,19 4.07 0.97 2.01 2.01 1.00 6.90 6.90 1.00
sort 73.41 73.60 1.00 35.90 35.81 1.00 109.79 10947 1.00
nroff 19.43 18.92 0.97 8.54 8.44 0.99 24.50 24 .86 1.01

Table II. Links Across Basic Blocks Comparison of Execution Times (in seconds).

caller-saves scheme is used, but these are generated only because the spill mechanism built
into the register allocator conveniently handles saving live registers across procedure calls and

not because the register allocator runs out of allocable registers.

4.3.3. Global Register Allocation

The global register allocator attempts to do what register type declarations are intended
to do, but, since the global register allocator knows how many registers are available on the
target machine, it should be able to do a better job of assigning local variables to regi§ters than
the user. One could argue that declaring which variables should be assigned to registers at the
C source code level is flawed since it introduces machine dependencies in a language that is
intended to be portable. Addiiionally, the register declaration scheme is not fully transparent
because it prevents the user from declaring both an argument and a local variable as candi-
dates for registers with the implication that the local variable should be given preference over

the argument,



55

Table III presents the results of comparing the execution times of our test suite compiled
with and without global register allocation. The respectable improvement in execution times
suggests that global register allocation is a worthwhile optimization. The data also suggests
that global register aliocation is more effective on some machines than others. On the VAX-
11/780, global register allocation is not as effective as on the other machines. In some cases,
global register allocation results in a slower program because it fails to take into account the

exact costs of saving and restoring a register against referencing a local in memory,

4.3.4. Phase Iteration

In order to be able o apply phase iteration to solve phase ordering problems, vpo main-
tains the RTL notation through all of the optimization phases. This strategy assumes that
phase iteration yields enough improvements in the quality of the code to make the effort of

implementing it worthwhile. Table IV presents the results of executing our test suite com-

VAX-11/780 SUN-3/75 Concurrent 3230

Program

none regs reg/mo none regs Teg/no none regs reg/o
ackerman 4.15 4.30 1.04 1.07 1.06 .99 3.54 3.46 0.98
sieve 2.86 1.53 0.54 1.59 0.61 0.38 3.38 244 0.72
queens 0.62 0.56 0.90 0.40 026  0.65 {3.66 058 0.88
puzzle 10.13 698 -0.69 5.08 3.07 0.60 12.92 97 0.75
mincost 12.76 11.73 0.92 533 4.56 0.86 19.29 18.47 0.96
tsp 216.66  218.09 1.01 12728 11280 0.87 22880  228.70 1.00
cache 14.87 14.53 0.98 4(.36 3941 0.98 22.82 21.97 0.96
we 1.30 1.21 0.93 0.77 0.51 0.66 1.17 1.10 0.94
grep 5.72 4.07 0.71 324 2.01 0.62 8.14 6.90 0.85
sort 87.89 73.60 0.84 4743 35.81 0.76 12992 10949 0.84
nroff 19.88 18.92 0.95 9.92 8.44 0.85 26.95 24.86 0.92

Table IiI. Global Register Aliocation Comparison of Execution Times (in seconds).
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piled with and without phase iteration. The results suggest that phase iteration is effective on
machines with a small number of ailocable registers. Even though the MC68020 has more
registers than the VAX-11, the fact that the VAX-11 has twice as many general purpose regis-

ters than the MC68020 has of any one given type of register appears to make a difference.

The majority (80%) of the procedures in our test suite required no iteration. When itera-
tion was required, an additional local variable was allocated to a register in about half of the
cases. Except in rare circumstances, the code improvements yielded a 1% to 3% improvement

in the total execution time of the program.

4.4. Retargetability

The primary intent of the vpce/vpo compiler system is to provide a compiler capable of
generating high-quality code in a short period of time. Obviously, familiarity with the system

decreases the amount of time required to retarget the compiler. A general overview of the

VAX-11/780 SUN-3/75 Concurrent 3230

Program

none iter iter/no none iter er/no none iter itet/no
ackerman 4.30 4.30 1.60 1.06 1.06 1.00 346 346 1.00
sieve 1.53 1.53 1.00 0.61 0.61 1.00 2.44 2.44 1.00
queens 0.56 0.56 1.00 0.26 0.26 1.00 0.58 0.58 1.00
puzzle 6.98 6.98 1.00 3.07 307 1.00 9,74 9.7 1.00
mincost 11,73 11.73 1.00 4.67 4,56 0.98 1845 18.47 1.00
tsp 218.09  218.09 1.00 115.30 112.80 (.98 22890  228.70 1.00
cache 14.53 14.53 1.00 3946 3041 1.00 21.92 2197 1.00
wC 1.21 1.21 1.00 0.51 0.51 1.00 1.10 1.10 1.00
grep 4.07 4,07 1.00 2.34 2.01 .86 1.15 6.90 0.97
sort 73.60 73.60 1.00 3539 3581 1.0% 110.19 109.49 0.99
nroff 19.44 18.92 0.97 8.74 8.44 0.97 2509 24 .86 (.99

Table IV. Iteration Comparison ofﬁExecution Times (in seconds).
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procedure required to retarget the compiler system t0 a new machine is presented here. A

more detailed, step-by-step description will appear in a future technical report.

4.4.1. The Front End

The front end needs to know only two things about the target machine: the sizes of the
basic data types (integers, floating and double) and the order of evaluating arguments to func-

tions (left-to-right or right-to-left) that best suits the underlying machine architecture,

4.4.2, The Code Expander

The code expander is organized as a switch statement where each of the 46 intermediate
language bperations is a case limb. Many of the operations have a one-to-one correspondence
with an instruction on the target machine. Code expanders vary in size depending on the
capabilities of the target machine. The code expanders for the VAX-11/780, SUN-3/75 and
Concurrent 3230 are 1068, 938 and 950 lines long, respectively. Only 40 to 60 percent of the

-code expander is machine dependent, the rest consists of support code that is identical on all
machines. Similarities in machines can be exploited to simplify the task of retargeting the
code expander. For example, the Concurrent 3230 is very similar to some IBM processors

and would be a logical version to modify into a code expander for these machines,

Machine dependencies affecting the code generator are: types and number of registenﬁ
available on the target machine, calling conventions (caller-saves or callee-saves), the calling
stack (some machines provide no instructions that efficiently implement a stack) and, most
importantly, the instruction set available to the user. Our experience has been that given some
familiarity with existing code expanders, a code expander for a new target machine can be
developed by one person in less than a week., Additional tools and documentation could

reduce this time 10 a single day.
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4.4.3. The Optimizer

Most of the effort required to retarget vpo goes into writing the machine description and
the associated semantic actions that comprise the core of the instruction selection mechanism.
Once the machine description is written, yacc builds the parser that, along with the semantic
actions and a simple lexical scanner, determine if a given RTL denotes a valid instruction on
the target machine. The semantic actions must be able to output the machine instruction in
assembler that the RTL represents and calculate a cost for the instruction. The assembly out-
put is required in order to create a file that the assembler for the target machine can assemble
into an object file. The cost calculation is used by the common subexpression elimination
phase to choose the "cheapest” operands out of a set (for example, if an expression is available
in both a register and a memory location, the cost would determine which of the two can be
accessed faster). Also, since it is not always the case that the result of combining two instruc-
tions yields an instruction that executes faster than the sequential execution of the instructions

that combined to form if, instruction costs prevent such combinations.

Like the code expander, vpb also needs to know the type and number of registers avail-
able on the target machine. Functions capable of mapping register types to actual machine
registers must be provided, since on some machines, like the VAX-11, floating point register
types are mapped onto the general purpose register set. The number of allocable registers and
scratch registers is also needed. Register pairs and triples are defined by writing functions
that, given a register in a pair or triple, returns the next register in the series. The function cal-
ling scheme (caller-saves or callee-saves) affects the payoff functions associated with allocat-
ing local variables to registers. A function that is called when vpo has finished optimizing a
procedure must be written to insert code 10 set up and tear down an activation record. We
delay inserting activation record code until a procedure is optimized because allocating locals

to variables can affect the selection of the optimal code sequence required to set up the
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activation record. For example, when using the callee-saves scheme, if many registers have to
- be saved when entering the procedure, then a store multiple instruction might be utilized,

whereas if only one register needs saving, a normal store instruction is more appropriate.

Roughly 1000 lines of vpo's 10000 lines of C source code and yace machine description
need to be written or modified to retarget the optimizer. Although the actual time required to
retarget vpo depends on the complexity of the target machine, a group of two or three inex-
perienced persons can retarget the complete compiler in less than a month. A single experi-

enced person can retarget the system in two weeks.



CHAPTER 5

CONCLUSIONS

This thesis has described a successful portable optimizing compiler system. In conclu-

sion, we wish to point out the strategies that enabled us to develop this system and the areas

that we feel require further investigation.

5.1. Strategies

Building portable optimizing compilers has become an easier problem. The strategies

and tools available have changed to ensure that many of the common pitfalls can be avoided.

The following strategies have been applied during the development of vpcc/vpo:

Q)

(2)

(3)

4)

Use a simple front end to perform a naive but correct translation of the source language
to a simple intermediate language. This strategy simplifies the task of writing a front

end.

Use a simple code expander to translate the intermediate language into a sequence of tar-
get machine instructions, No optimizations are applied to the code by the code
expander. This strategy allows a code expander for a new target machine to be written

in a few days.

Use the RTL notation to represent machine-dependent instructions. The machine-
independent nature of RTLs allows them to be manipulated by machine-independent

algorithms.

Perform all optimizations at the machine level where all of the factors affecting code
selection are exposed to the optimizer. Use a single mechanism, such as a machine

description, to make all machine-dependent decisions.

60
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(5) Maintain the RTL notation throughout every phase of the optimizer, so that phase itera-

tion can be applied to eliminate phase ordering problems.

By adhering to these strategies, we have been able to develop a portable optimizing
compiler. Each stratégy emphasizes the need to delay code generation decisions until all
aspects of the target machine can be taken into consideration and to concentrate knowledge of
the target machine into a simple but powerful mechanism that can be quickly retargeted. Note
that none of these strategies simplify the problems of code generation and optimization, they
merely factor out the machine-dependent aspects of the problem and allow the user to provide
his knowledge of these aspects through a well-defined mechanism. To enhance portability,
we need only to provide tools that more quickly capture the knowledge of the machine depen-
dencies from the user. Currently, yacc has been the primary tool, but as our appreciation of

the capture process increases, the need for a more powerful tool becomes apparent.

5.2. Further Research

We believe vpec/vpo to be a step towards a highly-optimizing, highly-portable compiler
system. We are encouraged by its capabilities, yet quite aware that further development is
needed to reach the elusive goal of a compiler whose code quality is at least equal to the best
optimizing compilers, whose compilation speed rivals that of the quickest compilers and
whose portability permits it to be retargeted in a few days, perhaps even in a few hours, by the
average user. Currently, our system falls short on all three aspects, but vpee/vpo is not a dead
end and every improvement we make seems to suggest even more possibilities for improve-

ment.

5.2.1. Code Quality
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We have only implemented a small number of the machine independent optimizations
that have been employed in optimizers. Code improvement techniques including induction
variable elimination, code motion, loop unrolling and evaluation érder determination will
make even further improvements to the quality of the code. Improvements can also be made
to some of the existing phases. The global register allocator, for example, should be modified
1o use a map coloring approach to register allocation. Further optimizations can be realized by
expanding the use of RTL's to the linking phase of the program. Unlike vpo, an RTL linker
can operate on the whole program, applying optimizations to utilize registers more effectively
across procedure calls, pass procedure arguments in registers, allocate global variables to

register, remove unreferenced procedures and eliminate tail recursion.

5.2.2. Compilation Speed

Compilation speed has steadily improved even as code quality has improved. Early ver-
sions of the system would require as much as twenty times the amount of time required by
existing compilers to compile a program. The lastest versions of vpec/vpo take a little less
than twice as long to compile a program as the existing compilers that we compared our test
suite against. Further improvements can be made, especially in the RTL parser. In the near
future, we will use a parser generated not by yacc which creates a table-driven parser, but by a
compiler-compiler that emits code that directly interprets each parsing action. We expect no
léss than a twenty to thirty percent speed increase with this improvement. Additional
improvements can be realized by making changes to RTLs to reduce their size and reduce the
work required to locate imbortam elements embedded in them, such as registers and local

" variable references.
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5.2.3. Retargetability

Significant improvements in retargetability hinge on the development of new tools that
will simplify writing code expanders and machine descriptions. Each new machine that the
system is retargeted to yields further insight on which aspects of the system need improve-
ments. Ad-hoc methods of dealing with machine idiosyncrasies have to be isolated and

replaced with general mechanisms.
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