
1

Abstract

Application-specific processor (ASIP) design is a prom-
ising approach for meeting the performance and cost
goals of an embedded system. We have developed a new
microarchitecture for automatically constructing
ASIP’s. This new architecture, called a wide counterflow
pipeline (WCFP), is based on the counterflow pipeline
organization proposed by Sproull, Sutherland, and Mol-
nar. Our ASIP synthesis technique uses software pipelin-
ing and design-space exploration to generate a custom
WCFP and instruction set for an embedded application.
This type of architecture synthesis requires an infra-
structure for rapidly prototyping ASIP’s to evaluate
design trade-offs. This paper presents the requirements
and implementation of such an environment for auto-
matic design of WCFP’s. First, we describe a database
for specifying design elements and architectural con-
straints. Second, we present an intermediate representa-
tion for WCFP synthesis and reconfigurable simulation.
Finally, we describe a fast and reconfigurable simula-
tion methodology for WCFP’s.

1: Introduction

Application-specific processor design is a promising
approach for improving the cost-performance ratio of an
application. Application-specific processors are espe-
cially useful for embedded systems (e.g., automobile
control systems, avionics, cellular phones, etc.) where a
small increase in performance and decrease in cost can
have a large impact on a product’s viability. We are
researching techniques for automatically designing such
processors based on the counterflow pipeline (CFP)
architecture.

Our research uses an application expressed algorith-
mically in a high-level language as a specification for a
CFP. This type of aggressive and automatic design
requires a prototyping environment that is highly recon-
figurable and extensible to permit fast exploration of
microarchitecture alternatives. The prototyping environ-
ment should:

• Let a designer describe the design space of an appli-
cation-specific processor;

• Have a flexible intermediate representation for con-
structing ASIP’s automatically;

• Be able to quickly evaluate cost–performance
trade-offs.

In this paper, we describe our prototyping infrastruc-
ture, which supports the requirements above using a
design database to describe computational devices and
resource constraints; a graph-based intermediate repre-
sentation (IR) of custom pipelines; and, a fast and recon-
figurable simulator.

2: Background

We have extended the original CFP proposal [9] to a
wide-issue counterflow pipeline (WCFP) that is appro-
priate for the automatic design of custom instruction-
level parallel processors [2,3]. We have used the infra-
structure described in this paper to construct WCFP’s
tailored to embedded kernel loops. This work showed
that automatically designed WCFP’s achieve perfor-
mance competitive with traditional application-specific
VLIW architectures at a low development cost.

In this section, we briefly describe the WCFP archi-
tecture and our methodology for constructing custom
WCFP’s. This background information motivates the
discussion of our prototyping environment.

2.1: Wide Counterflow Pipelines

The WCFP has two pipelines flowing in opposite direc-
tions as shown in Figure 1. One is the instruction pipe-
line, which carries instructions from an instruction fetch
stage to a register file stage. When an instruction issues,
an instruction bundle is formed that flows through the
pipeline. The instruction bundle has space for the
instruction opcode, operand names, and operand values.
The other pipeline is the results pipeline that conveys
results from the register file to the instruction fetch
stage. Whenever a value is inserted in the result pipe-
line, a result bundle is created that holds a register’s
name and value.

The instruction fetch stage decodes and issues
instructions and creates their instruction bundles. It also
discards results from the pipeline. The register file holds
destination registers of instructions that have exited the
pipeline.

The WCFP has pipelined functional units called sid-
ings that execute instructions. Sidings are connected to
the processor through launch and return stages, which
initiate siding operations and return values from sidings.
Figure 1 shows an example siding for memory that is
connected to the pipeline by mem_launch and
mem_return. Instructions may also execute in a pipe-

Rapid Prototyping of Application-Specific Counterflow Pipelines

Bruce R. Childers, Jack W. Davidson
Department of Computer Science, University of Virginia

Charlottesville, Virginia 22903
{brc2m, jwd}@cs.virginia.edu

2

line stage of an appropriate type without using a siding.
For example, the add_add stage executes two addition
operations simultaneously.

The instruction and results pipelines interact: instruc-
tions copy values to and from the result pipe. This inter-
action is governed by rules that ensure sequential
execution semantics. For a more complete description of
the WCFP architecture, see Childers and Davidson [2].

2.2: Design Strategy

Our design technique generates a WCFP customized to
the resource requirements of an application’s kernel
loop to improve overall performance [2]. The customi-
zation process operates at the architectural-level on pre-
designed functional devices such as pipeline stages, reg-
ister files, and functional sidings.

The design space of WCFP’s is defined by processor
functionality and topology. Processor functionality is
the type and number of devices in a pipeline and topol-
ogy is the interconnection of those elements. We charac-
terize processor functionality by an user-supplied design
database of computational elements that indicates

device type (siding or stage) and semantics for each
database entry.

Figure 2 is a diagram of the customization process.
The customization system accepts an application pro-
gram (in C) with its kernel loop annotated as an input to
the code improver vpo [2], which compiles the applica-
tion and transforms the loop using code optimizations
such as strength reduction, induction variable elimina-
tion, global register allocation, loop invariant code
motion, etc.

vpo passes the optimized kernel loop to the synthesis
phase, cfpsyn, which selects and instantiates computa-
tional devices from the design database and derives the
processor interconnection network. The synthesis step
emits a description of the custom pipeline for the simu-
lator, cfpsim, which collects performance statistics and
an execution trace.

2.3: Custom Pipelines

The optimized instructions emitted by vpo and the syn-
thesis database are used to derive a WCFP. The synthe-
sis process has four steps:

1) Software pipelining: A software pipelined loop is
constructed from the instruction sequence emitted by
vpo. The design database gives resource and latency
constraints used during the formation of the software
pipeline loop.

2) Pipeline extraction: The software pipeline kernel
specifies the operations and functional elements to
include in a WCFP. Pipeline extraction instantiates pipe-
line stages and sidings for kernel instructions from the
design database. Individual pipeline stages in the data-
base may be combined into composite stages that exe-
cute wide instructions. During pipeline extraction, an
intermediate representation of a WCFP is constructed.

3) Instruction set extraction: This step determines an
instruction set architecture (ISA) for a WCFP, including
instruction format layout and opcode assignment. The
synthesized processor’s IR is annotated with informa-
tion about its ISA.

4) Code generation: This step generates the full
instruction schedule using the IR to emit and build
WCFP instructions.

After constructing a WCFP, it is simulated to gather
performance statistics. We have found that performance
can be improved by executing the kernel loop and
adjusting pipeline stage order to match the kernel loop’s
execution behavior.

3: Design Database

Our prototyping infrastructure uses a database to specify
design elements and resource constraints. The database
is constructed once by a designer—it can be re-used for

resultreg_file

resultmem_return

resultadd_cmp

resultmem_launch

resultinstr_fetch

m
e
m
o
r
y

Figure 1: An example wide counterflow pipeline.

kernel

database

vpo

cfpsyn

cfpsim

execution trace

Figure 2: The synthesis system uses a kernel loop
optimized by vpo as a specification for a custom
WCFP determined by cfpsyn. The custom WCFP
is simulated and analyzed by cfpsim.

3

different applications that have similar requirements.
We expect the design database to be relatively small: our
current database has 34 entries and 261 lines of text.

Pipeline extraction uses the database to select
devices for a WCFP. The database lists characteristics
and semantics of pipeline stages and functional sidings.
Device characteristics are attributes such as latency,
opcode repertoire, cost, and semantics.

The database has the minimum information needed
for synthesis and simulation. This includes an attribute
for device opcode repertoire, which maps instruction
dependency graph nodes to functional devices. Pipeline
extraction uses the opcodes to determine which devices
to include for a dependence graph node. Database
entries also have an attribute for listing a device’s exter-
nal connection ports. Ports describe how a WCFP’s
stages and sidings are interconnected. For example,
pipeline stages have four ports to connect to adjacent
stages: instruction input (i_in), instruction output
(i_out), result input (r_in), and result output (r_out).

Database entries also have an attribute for device
semantics, which are used to automatically configure
WCFP simulations to support different instruction sets.
Device semantics specify the effect of opcodes in a
device’s repertoire. Register transfer lists (RTL’s) are
used to describe semantics because RTL is a small lan-
guage that concisely captures instruction effects [5].

An example of device semantics is shown on lines 6–
8 of Table 1 for an addition stage. This stage does two
operations: register–register addition and register–

immediate addition. The RTL on line 7 indicates that
arbitrary registers may be added together with the sum
placed in a register, and the RTL on line 8 specifies that
a register and a 16-bit immediate can be added together.

4: Pipeline Intermediate Representation

WCFP synthesis uses a pipeline intermediate represen-
tation (PIR) to specify a WCFP configuration. The
requirements of the PIR include:

1) Flexibility: The PIR should be usable for both syn-
thesis and simulation.

2) Simplicity: The PIR should be easy to manipulate
and modify on-the-fly during architectural synthesis.

3) Abstraction: The PIR should represent devices at
the architectural level without low-level detail that does
not affect synthesis decisions.

These requirements lead to a structural representa-
tion that has device entities, port connections, and
design literals. An entity is an instantiated pipeline stage
or siding, and a port is a communication channel
between two devices. A literal is a value supplied to a
device attribute; e.g., latency, memory size, etc.

The PIR is a directed graph as shown in Figure 3.
Nodes are entities with attributes and edges are port
connections. The PIR can be used to generate simple
structural VHDL (which is useful for timing analysis,
cost-estimation, etc.)

A pipeline description is a textual form of the PIR.
Pipeline extraction emits a description which is used to
configure a WCFP simulation. The example in Table 2
configures a counterflow pipeline with five stages and
one siding. To specify a WCFP, the PIR has three parts:
global literals, stage instantiation, and siding instantia-
tion. Global literals specify memory size, register file
geometry, and result pipeline width. Table 2 illustrates a
CFP with a 64K memory, a register file with 32 general-
purpose registers, and a double wide result pipeline.

Stages are instantiated using description blocks that

1 database “Example” {

2 // an addition stage
3 stage “addition” {type=execute;

4 latency=5; cost=0.5;

5 opcodes={ADD,ADDI};

6 semantics={

7 r[$]=r[$]+r[$];

8 r[$]=r[$]+imm(16); };

9 ports={i_in:in,i_out:out,

10 r_in:in,r_out:out}; }

11 // a memory siding
12 siding “memory” {type=rlu;

13 latency=15; depth=3; width=2;

14 cost=2.0; opcodes={LD,ST};

15 launch_opcodes={LD,ST};

16 return_opcodes={LD};

17 semantics={

18 ld: r[$]=M[r[$]+r[$]];

19 st: M[r[$]+r[$]]=r[$]; };

20 disallow={<st,st>};

21 ports={l_in:in,r_out:out}; }

Table 1: An example CFP database with an addition
stage and a memory siding.

memory add_add

memr

regfile

meml

fetch

i_out connected
to i_in

r_out connected
to r_in

Figure 3: The PIR is a directed graph with device
entities (nodes) and port connections (edges).

4

connect ports and assign literal values to attributes.
Stages are listed in the order they should be connected
in a pipeline, starting with the first stage. A description
block has a type to specify the simulation model to
instantiate for a stage.

Table 2 lists an addition stage on lines 13–17. The
add_add stage is an execution stage that does two addi-
tion operations in five simulation time units. A stage’s
opcode corresponds to the instruction that executes in
the stage (in this case, it is given as the ADD_ADD mne-
monic.) The description gives semantics of synthesized
devices; the add_add stage has an RTL that indicates
the stage can do two register–register additions:

These semantics were generated by combining the
RTL’s of the operations that compose the add_add
stage. The stage adds the first and second source oper-
ands of an ADD_ADD instruction, writing the sum to the
fifth register operand. Similarly, the third and fourth
operands are added with their sum written to the sixth
operand. An instantiated stage’s semantics describe

instruction format by listing operand type and position
in a bit-field independent way.

The final section of a CFP description lists functional
sidings. Lines 18–20 of Table 2 show a memory siding
that has latency of 15 simulation time units and a pipe-
line depth of 3 stages. The latency and depth attributes
describe a resource vector for modeling a siding’s pipe-
line. The memory siding lists port connections that
determine where the siding is connected to the main
pipeline. In this case, the memory siding is connected to
the meml launch and memr return stages.

CFP pipeline descriptions are small structural speci-
fications. The largest description our synthesis system
has generated was for an implementation of Floyd-
Steinberg image dithering. This description listed 17
devices (stages and sidings) in 131 lines of text. Most
descriptions are under 100 lines long.

Because the descriptions are simple, they are easily
manipulated by pipeline extraction to construct a WCFP.
Their simple nature also makes it easy to automatically
configure our simulator to evaluate designs.

5: CFP Simulation

Simulation is an important step in the development of a
computer architecture because it lets engineers test ideas
and techniques prior to building actual hardware. For
embedded system development, it lets designers make
trade-offs between hardware and software functionality.

5.1: Device Modeling

The WCFP simulator can be configured for different
counterflow pipeline architectures. This includes chang-
ing pipeline structure, device repertoire, and instruction
set features. To make automatic architecture design fea-
sible, a structural IR is used to configure the simulator.
This differs from parameterized simulators such as Sim-
pleScalar [1] and Shade [4] which use design arguments
(e.g., cache size, branch prediction strategy, etc.) to con-
figure a simulation. Most parameterized simulators do
not permit changing the underlying microarchitecture
without modifying simulation models.

The WCFP simulator separates instruction semantics
and architectural state from pipeline behavior and tim-
ing using a structural simulator and an execution engine.
The structural simulator models the movement of
instructions and results in a WCFP. This includes mod-
eling pipeline rules, latency, resource usage and con-
flicts, etc. The execution engine interprets instructions
to maintain architecturally visible state. The structural
simulator invokes the execution engine, which interprets
device semantics (RTL’s) to simulate instruction effects.

Because stage semantics are specified by a pipeline
description, simulation models do not need to be written
for every custom WCFP. Separating semantics from

1 pipeline “Example” {

2 // memory has 64K bytes
3 memory {size=64K;}

4 // reg file has 32 32-bit regs (r0-r31)
5 registers {r:<size=32,width=32>};

6 // results hold 2 reg name-value bindings
7 resultwidth=2;

8 // there are 5 pipeline stages
9 stage “fetch” {type=fetch;

10 latency=3; }

11 stage “meml” {type=launch;

12 opcode={LD,ST}; latency=3; }

13 stage “add_add” {type=execute;

14 opcode={ADD_ADD}; latency=5;

15 operations={<add,add>}; }

16 semantics={<r[$4]=r[$0]+r[$1],

17 r[$5]=r[$2]+r[$3]>; }

18 stage “memr” {type=return;

19 opcode={LD}; latency=3; }

20 stage “regfile” {type=regfile;}

21 // a memory siding for loads & stores
22 siding “memory” {type=rlu;

23 opcode={LD,ST}; latency=15;

24 depth=3;

25 semantics={

26 r[$2]=M[r[$0]+r[$1]];

27 M[r[$1]]+r[$2]]=r[$0]; }

28 l_in=meml.l_out;

29 r_out=memr.r_in; } }

Table 2: An example CFP description with a
memory siding and five stages.

r[$4]=r[$0]+r[$1], r[$5]=r[$2]+r[$3];

5

structural pipeline models also has the advantage that
the execution engine can be used independently to ver-
ify functional correctness without the expense of tim-
ing-accurate simulation.

Reconfigurable simulation is key to WCFP synthesis
because it makes it possible to automatically construct
and run a simulation for a WCFP to collect statistics and
evaluate design trade-offs. The flexibility of the simula-
tor eliminates the need to write simulation models for
every custom pipeline. This has lead to a highly main-
tainable and stable system because the likelihood of
introducing errors by writing new simulation models is
non-existent. Furthermore, verification of the simulator
needs to be done only once during initial development.
It is the absence of these steps—writing and verifying
models—that make automatic design feasible.

5.2: Execution-Driven Simulation

We use execution-driven simulation to model WCFP’s
because the underlying instruction set and microarchi-
tecture are modified. The alternative technique is trace-
driven simulation which uses a program execution trace
to drive a simulation. However, reliance on a previously
collected trace implies that the instruction set (and
microarchitecture) can not be changed from the trace’s
instruction set. This makes it inappropriate for WCFP
design because WCFP microarchitectures and instruc-
tion sets differ per application. Execution-driven simu-
lation also makes the WCFP simulator extensible: it can
easily model different WCFP structures, devices, and
instruction sets.

5.3: Timing Model

The WCFP simulator needs to be fast because it is used
to iteratively adjust a pipeline design; our prototype syn-
thesis system (implemented in Java) evaluates up to 240
designs per hour (including synthesis and simulation) on
an Intel Pentium II 333 MHz Linux workstation. To
accomplish this, the simulator uses a fixed-increment
timing model. Every simulation device receives a “tick”
per simulation cycle to indicate advancement of time.
This differs from event-driven simulation where devices
schedule events in an queue (a “timing wheel”) that is
advanced to the next cycle only when there are no more
events for the current cycle. The simulator models
behavior at the device level, which lends itself well to
fixed-increment timing.

6: Related Work

There have been many proposals for description lan-
guages that could be used in an ASIP design framework.
This includes VHDL and the domain-specific HMDES
[6] (used by the IMPACT compilation system.) How-
ever, it is not easy to describe instruction semantics with

these languages. nML is an instruction description lan-
guage for hardware/software co-design; however, it
doesn’t describe processor structure [7]. Hawk com-
bines processor structure and instruction semantics in a
single description [8]. Nevertheless, this language is too
powerful for our needs: it requires full lexical analysis,
parsing, and semantic handling.

7: Summary

The automatic design of application-specific integrated
processors requires a prototyping environment to make
cost–performance trade-offs. This paper describes such
an environment for the design of custom counterflow
pipelines. First, we present a database for specifying
WCFP design elements and resource constraints. Sec-
ond, we describe an intermediate representation for con-
structing and simulating WCFP’s. Finally, we describe a
methodology for quickly simulating and evaluating
WCFP design alternatives.

References

[1] D. Burger and T.M. Austin, “The SimpleScalar tool
set, version 2.0”, TR #1342, Computer Science
Dept., Univ. of Wisconsin-Madison, June 1997.

[2] B.R. Childers and J.W. Davidson, “Application-spe-
cific wide-issue counterflow pipelines”, submitted
for conference publication, available from: http:/
/www.cs.virginia.edu/~brc2m/cfp.

[3] B.R. Childers and J.W. Davidson, “Architectural
considerations for application-specific counterflow
pipelines”, to appear, 25th Conf. on Advanced
Research in VLSI, Atlanta, GA, March 1999.

[4] B. Cmelik and D. Keppel, “Shade: A fast instruc-
tionset simulator for execution profiling”, Proc. of
Conf. on the Measurement and Modeling of Com-
puter Systems, pp. 128–137, May 1994.

[5] J.W. Davidson and C.W. Fraser, “The design and
application of a retargetable peephole optimizer”,
ACM Trans. on Programming Languages and Sys-
tems, pp. 191–202, Vol. 2, No. 2, April 1980.

[6] J.C.Gyllenhaul, W.M. Hwu, and B.R. Rau, “HMDES
version 2.0 specification”, Tech. Report IMPACT–
96–3, Univ. of Illinois at Urbana-Champaign, 1996.

[7] M.R. Hartoog et al., “Generation of software tools
from processor descriptions for hardware/software
co-design”, Design Automation Conference, pp.
303–306, Anaheim, CA, 1997.

[8] J. Matthews, B. Cook, and J. Launchbury, “Micro-
processor specification in Hawk”, IEEE Int’l Conf.
on Computer Languages, pp. 90–101, May 1998.

[9] R.F. Sproull, I.E. Sutherland, and C.E. Molnar, “The
counterflow pipeline processor architecture”, IEEE
Design and Test of Computers, pp. 48–59, Vol. 11,
No. 3, Fall 1994.

