
Experimental Implementation of
Dynamic Access Ordering

Sally A. McKee, Robert H. Klenke,
Andrew J. Schwab, Wm. A. Wulf,
Steven A. Moyer, James H. Aylor,

Charles Y. Hitchcock

Computer Science Report No. CS-93-42
August 1, 1993

This work was supported in part by a grant from Intel Supercomputer Division and by NSF grants MIP-9114110 and MIP-
9307626.

Appeared in Proc. 27th Hawaii International Conference on Systems Sciences (HICSS-27), Maui, HI,
January 1994. 1

‡ Current address: charlie_hitchcock@fostex.com

Abstract
As microprocessor speeds increase, memory bandwidth

is rapidly becoming the performance bottleneck in the
execution of vector-like algorithms. Although caching
provides adequate performance for many problems,
caching alone is an insufficient solution for vector
applications with poor temporal and spatial locality.
Moreover, the nature of memories themselves has changed.
Current DRAM components should not be treated as
uniform access-time RAM: achieving greater bandwidth
requires exploiting the characteristics of components at
every level of the memory hierarchy.

This paper describes hardware-assisted access ordering
and our hardware development effort to build a Stream
Memory Controller (SMC) that implements the technique
for a commercially available high-performance micro-
processor, the Intel i860. Our strategy augments caching by
combining compile-time detection of memory access
patterns with a memory subsystem that decouples the order
of requests generated by the processor from that issued to
the memory system. This decoupling permits requests to be
issued in an order that optimizes use of the memory system.

1. Increasing vector memory bandwidth

Processor speeds are increasing much faster than
memory speeds: microprocessor performance has
increased by 50-100% per year in the last decade, while
DRAM performance has risen only 10-15% each year [15].
As a result, memory bandwidth is becoming the limiting
performance factor for many applications, particularly
scientific computations.

Although the addition of cache memory is often a
sufficient solution to the memory latency and bandwidth
problems in general-purpose scalar computing, the vectors
used in scientific computations are normally too large and
are not reused soon enough to derive much benefit from

caching. For computations in which vectors are reused,
iteration space tiling [3][17][32] can partition the problems
into cache-size blocks, but the technique is difficult to
automate. Caching non-unit stride vectors may actually
reduce a computation’s effective memory bandwidth by
fetching extraneous data.

The traditional scalar-processor concern has been to
minimize memory latency in order to maximize processor
performance. For scientific applications, however, the
processor is not the bottleneck, and as processor speeds
continue to increase relative to memory speeds, optimal
system performance will leave the processor idle at times.
Bridging this performance gap requires changing the way
we think about the problem — to maximize bandwidth for
scientific applications, we need to minimize average
latency over a coherent set of accesses.

Although this paper focuses on scientific computations,
they are by no means the only applications limited by
memory bandwidth. The problem arises in any
computation involving linear traversals of vector-like data,
where each element is typically visited only once during
lengthy portions of the computation. Other examples
include string processing, image processing and other DSP
applications, some database queries, some graphics
applications, and DNA sequence matching.

In this paper we defineaccess ordering, an
augmentation of cache-based techniques for bridging the
processor-memory performance gap. We then posit how
this technique might be incorporated into a combined
hardware/software solution to the bandwidth problem and
explore the feasibility of this solution, highlighting our
simulation study results and presenting a potential
hardware design.

2. Access ordering

The assumptions made by many memory architectures
simply don’t match the physical characteristics of the
devices used to build them. Memory components are often
assumed to require about the same amount of time to access
any random location; indeed, it was this uniform access

Experimental Implementation of Dynamic Access Ordering

Sally A. McKee, Robert H. Klenke, Andrew J. Schwab,
Wm. A. Wulf, Steven A. Moyer, James H. Aylor†

University of Virginia

Charles Y. Hitchcock‡

Dartmouth College

† Authors’ addresses: {mckee, klenke, ajs, wulf, jha}@virginia.edu,
moyer@mathcs.emory.edu.

Appeared in Proc. 27th Hawaii International Conference on Systems Sciences (HICSS-27), Maui, HI,
January 1994. 2

time that gave rise to the term RAM, for Random Access
Memory. Many computer architecture textbooks ([2] and
[11] among them) specifically cultivate this view. Others
skirt the issue entirely [19][30].

Somewhat ironically, the assumption no longer applies
to modern memory devices: most components
manufactured in the last 10-15 years provide special
capabilities that make it possible to perform some access
sequences faster than others. For instance, nearly all
current DRAMs implement a form of page-mode operation
[24]. These devices behave as if implemented with a single
on-chip cache line, orpage (this should not be confused
with a virtual memory page). A memory access falling
outside the address range of the current DRAM page forces
a new page to be accessed. The overhead time required to
set up the new page makes servicing such an access
significantly slower than one that hits the current page.
Other common devices offer similar features, such as
nibble-mode, static column mode, or a small amount of
SRAM cache on chip. This sensitivity to the order of
requests is exacerbated in several emerging technologies:
for instance, Rambus [25], Ramlink, and the new DRAM
designs with high-speed sequential interfaces [12] provide
high bandwidth for large transfers, but offer little
performance benefit for single-word accesses.

For multiple-module memory systems, the order of
requests is important on yet another level: successive
accesses to the same memory bank cannot be performed as
quickly as accesses to different banks. To get the best
performance out of such a system, we must take advantage
of the architecture’s available concurrency.

There are a number of hardware and software
techniques that can help manage the imbalance between
processor and memory speeds. These include altering the
placement of data to exploit concurrency [9], reordering the
computation to increase locality (as in “blocking” [17]),
address transformations for conflict-free access to
interleaved memory [10][26][31], software prefetching
data to the cache [4][16][29], and hardware prefetching
vector data to cache [1][7][14][27]. The key difference
between these techniques and the complementary one we
propose here is that we reorder accesses to exploit the
architectural and component features that make memory
systems sensitive to the sequence of requests.

To illustrate one aspect of the bandwidth problem —
and how it might be addressed at compile time — consider
the effect of executing the fifth Livermore Loop
(tridiagonal elimination) using non-caching accesses to
reference a single bank of page-mode DRAMs. Figure1(a)
represents the natural reference sequence for a
straightforward translation of the computation:

i∀ xi zi yi xi 1––()×←

This computation contains a first-order linear
recurrence, and therefore cannot be vectorized.
Nonetheless, the compiler can employ Davidson and
Benitez’s recurrence detection and optimization algorithm
[5] to generate streaming code: each computed value is
retained in a register so that it will be available for use as

 on the following iteration. For modest size vectors,
elements from , , and are likely to reside in different
pages, so that accessing each vector in turn incurs the page
miss overhead on each access; memory references likely to
generate page misses are highlighted in the figure.

In the loop of Figure1(a), a page miss occurs for every
reference. Unrolling the loop and grouping accesses to the
same vector, as in Figure1(b), amortizes the page-miss
cost over a number of accesses; in this case three misses
occur for every six references. Reducing the page-miss
count increases processor-memory bandwidth
significantly. For example, consider a device for which the
time required to service a page miss is four times that for a
page hit, a miss/hit cost ratio that is representative of
current technology. The natural-order loop in Figure1(a)
only delivers 25% of the attainable bandwidth, whereas the
unrolled, reordered loop in Figure1(b) delivers 40%.1

Figure2 illustrates effective memory bandwidth versus
depth of unrolling, using a page-miss/page-hit cost ratio of
four. For the bottom curve, the loop body of Figure1(a) is
essentially replicated the appropriate number of times, as is
standard practice; for the middle curve, accesses have been
arranged as per Figure1(b); and the top curve depicts the
bandwidth attainable if all accesses were to hit the current
DRAM page. Reordering the accesses realizes a
performance gain of almost 130% at an unrolling depth of
four, and over 190% at a depth of eight. If it were possible
to unroll to a depth of 16, we could expect a performance
increase of nearly 240%.

A comprehensive, successful solution to the memory
bandwidth problem must therefore exploit the richness of

1. Other factors that may have minor effects on performance (e.g.
bus turnaround delay when mixing reads and writes) are ignored here for
the sake of simplicity.

xi

xi 1–
x y z

loop: loop:
load z[i] load z[i]
load y[i] load z[i+1]
stor x[i] load y[i]
jump loop load y[i+1]

stor x[i]
stor x[i+1]
jump loop

(a) (b)

Figure 1 tridiag Code

Appeared in Proc. 27th Hawaii International Conference on Systems Sciences (HICSS-27), Maui, HI,
January 1994. 3

the full memory hierarchy, both its architecture and its
component characteristics. One way to do this is viaaccess
ordering, which we define as any technique for changing
the order of memory requests to increase bandwidth. Here
we are especially concerned with ordering a set of vector-
like “stream” accesses.

As our example illustrates, the performance benefits of
doing static access ordering can be quite dramatic.
Unfortunately, without the kinds of address alignment
information that are usually only available at run time, the
compiler can’t generate the optimal access sequence. The
extent to which a compiler can perform this optimization is
further constrained by such things as the size of the
processor register file (for instance,tridiag can be unrolled
at most eight times on the i860). Moyer provides a
thorough analysis of the performance and limitations of
compile-time access ordering [23]. In light of both the
impact of access ordering on effective memory bandwidth
and the limitations inherent in implementing the technique
statically, it makes sense to consider an implementation
that reorders accesses dynamically at run time. We explore
one such scheme in the remainder of this paper.

3. The Stream Memory Controller

Since there are a number of options for when and how
the request ordering can be done, access ordering systems
can be classified by three key components:

- stream detection, the recognition of streams
accessed within a loop, along with their
parameters (base address, stride, etc.),

- access ordering, the determination of that
interleaving of stream references that most
efficiently utilizes the memory system, and

- access issuing, the determination of when the
load/store operations will be issued.

Figure 2 tridiag Memory Performance

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

depth of unrolling

20

40

60

80

100

120

140

160

180

200

ba
nd

w
id

th
 (

M
B

/s
)

natural-order accesses

re-ordered accesses

peak bandwidth
Each of these functions may be addressed at compile

time or by hardware at run time. Based on our analysis and
simulations, we believe that the best engineering choice is
to detect streams at compile time, and to defer access
ordering and issue to run time. Choosing this scheme over
a strictly hardware, runtime-ordering system follows the
philosophy that has guided the design of RISC processors
— move work to compile time whenever possible. This
helps to speed processing and minimize hardware. Here we
describe in general terms how such a scheme might be
incorporated into an overall system architecture.

The approach we suggest is generally applicable to any
computing system, but will be described based on the
simplified architecture of Figure3. Memory is interfaced to
the processor through a controller labeled “SMC” for
Stream Memory Controller. For non-stream accesses, the
SMC provides the same functionality and performance as a
traditional memory controller. For streams, the SMC
includes logic to determine the order of requests, and logic
to issue those requests. A separate Stream Buffer Unit
(SBU) provides registers that the processor uses to specify
stream parameters (base address, stride, etc.) and high-
speed buffers for stream operands. Note that the Stream
Buffer Unit isnot on the critical path to memory; the speed
of non-vector accesses is not adversely affected by the
addition of the SMC/SBU.

There are a number of options for the internal
architecture of the SBU: here we describe one feasible
organization. A set of memory-mapped registers provides a
processor-independent way of specifying stream
parameters. Setting these registers allows the processor to
initiate an asynchronous stream of memory access
operations for a set of string operands. Data retrieval from
the streams (loads) and insertion into streams (stores) may

state

FIFO

FIFO

scalar accesses

CPU

mem

mem

mem

mem

FIFO

CACHE

S
M

C

state

state

Figure 3 Stream Memory Controller and
Stream Buffer Unit

SBU

Appeared in Proc. 27th Hawaii International Conference on Systems Sciences (HICSS-27), Maui, HI,
January 1994. 4

be done in any of several ways; for instance, the SBU could
appear to be a traditional cache, or the model could include
a set of FIFOs, as illustrated in Figure 3. Each stream is
assigned to one FIFO, which is asynchronously filled from
(or drained to) memory by the access/issue logic. The
“head” of each FIFO is another memory-mapped register:
the CPU’s read instructions from or write instructions to a
particular stream reference the FIFO head via this register,
dequeueing or enqueueing data as is appropriate. Note that
the buffers do not appear identical to the processor and the
memory: for instance, the FIFOs could be implemented as
random-access register files from the memory system’s
point of view.

This organization is both simple and practical from an
implementation standpoint: similar designs have been
built. In fact, the organization is almost identical to the
“stream units” of the WM architecture [33], or may be
thought of as a special case of a decoupled access-execute
architecture [8][28]. Another advantage is that this
combined hardware/software scheme doesn’t require
heroic compiler technology — the compiler need only
detect the presence of streams, and Davidson and Benitez’s
streaming algorithm [5] can be used to do this. Note that the
compiler is responsible for detecting data dependences.

4. Simulation results

In order to validate the SMC concept, we have simulated
a wide range of SMC configurations and benchmarks,
varying:

- FIFO depth,

- dynamic order/issue policy,

- number of memory banks,

- DRAM speed,

- benchmark algorithm, and

- vector length, stride, and alignment with respect
to memory banks.

Only representative examples of our results are given
here; complete results (over 7000 simulations for varying
benchmarks and memory systems) can be found in [22].
The simulations here use 10,000-element vectors aligned to
have no DRAM pages in common, and starting in the same
bank.

Arithmetic and control are assumed never to be a
computational bottleneck, thus we model the processor as
a generator of load and store requests only. This places the
maximum stress on the memory system by assuming a
computation rate that out-paces the memory’s ability to
transfer data. Scalar and instruction accesses are assumed
to hit in the cache for the same reason.

All memories modeled here consist of interleaved banks
of page-mode DRAMs, where each page is 2K double
words. The order/issue policy is exceedingly simple. The
SMC looks at each FIFO in round-robin order, issuing
accesses for the same FIFO stream while:

1) not all elements of the stream have been accessed

2) another write operand is present in the FIFO, or
there is room in the FIFO for another read
operand.

Results reported here are for the four kernels described
in Figure 4. Daxpy and swap are from the BLAS (Basic
Linear Algebra Subroutines) [6][18], tridiag is the fifth
Livermore Loop [21], and vaxpy is a vector axpy1

computation that occurs in matrix-vector multiplication by
diagonals. These benchmarks were selected because they
are representative of the access patterns found in real
scientific codes, including the inner-loops of blocked
algorithms. Our results indicate that the actual reference
sequence has little effect on SMC performance.

As in the previous example, the DRAM page-miss cycle
time for these simulations is four times that of a DRAM
page hit, and the non-SMC results are for the “natural”
reference sequence for each benchmark using non-caching
loads and stores. SMC initialization requires two writes to
memory-mapped registers for each stream. Since this small
overhead does not significantly affect our results, it is not
included here.

Figure 5 shows SMC performance for stride-one vectors
as a function of FIFO depth and available concurrency
compared to the analogous non-SMC systems. The
similarity in the shape of the performance curves for all
benchmarks illustrates the SMC’s relative insensitivity to
access patterns in its ability to optimize bandwidth. In all
cases, asymptotic behavior approaches 100% of the peak
bandwidth that the memory system can deliver.

1. Here “axpy” refers to a computation involving some entity a times
a vector x plus a vector y: for daxpy, a is a double; for vaxpy, a is a vector.

Figure 4 Benchmark Algorithms

daxpy: ∀i yi ← axi + yi

tridiag: ∀i xi ← zi × (yi − xi−1)

swap: ∀i tmp ← yi yi ← xi tmp ← xi

vaxpy: ∀i yi ← aixi + yi

Appeared in Proc. 27th Hawaii International Conference on Systems Sciences (HICSS-27), Maui, HI,
January 1994. 5

As with our static access ordering example, the effects
of dynamic reordering are dramatic. On the daxpy
benchmark, for example, an SMC system with two
memory banks achieves 98.2% of peak bandwidth,
compared to 18.8% for a non-SMC system; this is a

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

SMC

non-SMC

(b
)

sw
ap

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

SMC

non-SMC

(a
)

d
ax

p
y

(c
)

tr
id

ia
g

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

SMC

non-SMC

(d
)

va
xp

y

Figure 5 Long Vector Performance

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

1 bank
2 banks
4 banks
8 banks

SMC

non-SMC

performance gain of over 420%. On the tridiag kernel
discussed earlier, a two-bank SMC system achieves 97.7%
of the attainable bandwidth, yielding a similar performance
gain over the non-SMC bandwidth of 18.7%. Note that
these figures are not meant to represent the increase in an
application’s total performance, but rather the increase in
performance for inner loops — kernels that are significant
parts of scientific computations and are often used to model
the behavior of such applications.

In general, SMC systems with deep FIFOs achieve in
excess of 92% of peak bandwidth for all benchmarks and
memory configurations. Even with FIFOs that are only
sixteen double-words deep, the SMC systems consistently
deliver over 75% of peak bandwidth.

Increasing the number of banks reduces relative
performance, a somewhat counter-intuitive and deceptive
effect. This is due in part to the fact that increasing the
number of banks decreases the number of accesses per
FIFO to each bank, thus page-miss costs are amortized over
fewer accesses: to maintain performance, FIFO depth must
scale with interleaving. The main reason for this effect,
though, is that we have kept both the peak memory system
bandwidth and the DRAM page-miss/hit delay ratio
constant. Thus, the eight-bank system has four times the
DRAM page-miss latency of the two-bank system. If
instead we hold the speed of the memory banks constant
and assume a faster bus, the peak bandwidth of the total
system increases proportionally to the number of banks.
The percentage of bandwidth delivered for systems with
more banks is still smaller in this case, but the total
bandwidth is much larger, as in Figure 6.

The results presented in Figure 5 and Figure 6 are for
unit-stride vectors, but the SMC is very robust in its ability
to optimize memory bandwidth regardless of stride.
Figure 7 depicts the percentages of attainable bandwidth
achieved for daxpy using vectors with small strides on an

1 bank
2 banks
4 banks
8 banks

Figure 6 daxpy Performance with Scaled Total
Bandwidth

8 16 32 64 128 256

fifo depth

100

200

400

800

re
la

ti
ve

 t
ot

al
 b

an
dw

id
th

Appeared in Proc. 27th Hawaii International Conference on Systems Sciences (HICSS-27), Maui, HI,
January 1994. 6

SMC system with 256-deep FIFOs and four banks of
memory. Attainable bandwidth for unit-stride vectors is
100% of the system’s potential bandwidth, whereas for
stride-two vectors the attainable bandwidth is only 50% of
peak, etc.

The SMC delivers over 95% of attainable bandwidth in
all cases, regardless of vector stride. For even strides we
see the same phenomenon described earlier: vectors using
fewer banks enjoy a greater percentage of attainable
bandwidth. To see why, observe that for a unit-stride
vector, each of four banks is responsible for servicing one-
quarter of the FIFO. In contrast, for a vector of stride two,
each of two banks is responsible for servicing half the
FIFO. For a read vector in this case, each bank can amortize
page-miss costs over a greater number of accesses before
the FIFO becomes full.

Figure8 illustrates SMC performance for increasing
strides. The SMC is able to deliver over 90% of available
bandwidth for strides up to 256, after which point
performance declines gradually as the stride increases to

Figure 7 daxpy Performance for Small Strides

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

vector stride

90

92

94

96

98

100

%
 b

an
dw

id
th

Figure 8 daxpy Performance for Increasing
Strides

4 8 16 32 64 128 256 512 1K 2K 4K 8K

vector stride

0

20

40

60

80

100

%
 b

an
dw

id
th

half the DRAM page size. The SMC performs as well as
possible, but as vector stride increases, fewer elements
reside within a given DRAM page. This decreases the
number of accesses over which the SMC can amortize
page-miss costs, and hence limits bandwidth.

As noted, these results are for vectors of 10,000
doubleword elements. SMC performance for shorter
vectors is not as dramatic, since there are fewer stream
elements over which to amortize the cost of the DRAM
page misses. Nonetheless, shorter vector computations still
benefit significantly from an SMC [22].

On the basis of our numerous simulations, we deem the
SMC concept worthy of further exploration. Simulation is
a useful tool, but the real test of any idea lies in the
implementation. Thus we are designing and building an
experimental SMC board.

5. Experimental hardware implementation

Our most important design goal is to provide a proof of
concept: dynamic access ordering is an interesting and
feasible solution to the memory bandwidth problem for
stream computations. We must also demonstrate that an
SMC system causes no additional delay in responding to
normal memory access requests, either scalar accesses or
cache line accesses: applications not using the SMC will
incur no performance penalties. Flexibility is another goal,
for this implementation will serve as a testbed for
experimenting with different access-ordering algorithms,
and will allow us to explore the memory bandwidth
efficiency as a function of FIFO depth and the number of
FIFOs available. Finally, we have chosen a top-down,
VHDL-based design methodology to enable element reuse
in later implementation phases.

In order to rapidly validate the SMC concept, we have
chosen to add an SMC system to an existing
microprocessor system. The Intel i860 was selected for its
support of vector operations and non-cacheable floating
point load and store instructions [13], which will be used to
access stream operands. Using this approach has the
disadvantage that the stream buffers will be external to the
processor, and will therefore incur a higher access cost than
the internal cache. However, accesses to the stream buffers
should be fast enough that using the SMC will result in a
significant performance increase.

The overall architecture of the experimental SMC
system is shown in Figure9. An i860-based board
containing a 40 MHz microprocessor and a 2-way cache
optimized interleaved 16 MB memory system provide the
starting point for the design.

The SMC test board, which is connected to the
processor board via an expansion connector, consists of
high speed buffer memory (the SBU), the SMC control
logic, several data path elements, and two interleaved

Appeared in Proc. 27th Hawaii International Conference on Systems Sciences (HICSS-27), Maui, HI,
January 1994. 7

banks of DRAM main memory. Accesses to the SMC test
board by the i860 are pipelined. This is necessary because
of the high latency of address and cycle definition lines: the
processor has a maximum latency of 11 ns for the address
and cycle definition lines, and further delay is encountered
as the signals travel to the expansion connector from the
i860, making the signals are available at the edge of the
SMC test board only 10-12ns before the (40 MHz) clock
edge. A pipeline stage is used to latch these signals, thereby
increasing the available time to access the SMC board
within the next cycle. The onboard cache-optimized
memory system is similarly pipelined.

5.1 Stream buffer memory

The high-speed memory of the SBU will be
implemented logically as a set of FIFOs. The order in
which the buffer is filled is determined by the memory
controller. In the case of stream read accesses, the FIFOs
are filled from the DRAM and drained by the i860; for
stream writes, the FIFOs are filled by the i860 and drained
to the DRAM. From the memory system’s point of view,
each stream FIFO will be implemented as a set of smaller
FIFOs (subFIFOs), one per memory bank. The control
logic must therefore fill (or drain) the stream elements from

a particular memory bank in stream order. This is not a
significant restriction, however, since there will very rarely
be any performance benefit from servicing these elements
out of order. On the other hand, the subFIFO organization
significantly reduces SMC complexity, simplifying both
the FIFO status logic and the logic to determine the next
stream request to the DRAM.

In order to provide the flexibility necessary to explore
performance ramifications of different FIFO
configurations, we have adopted a virtual FIFO scheme
using an internal dual-ported SRAM (DP-SRAM) for
storage [20]. The depth and number of FIFOs is thus
limited only by the size of the implemented DP-SRAM.

If we are to provide 100% bus bandwidth between
processor and FIFOs for pipelined, double-precision
floating point loads and stores, the SMC must be able to
provide a double word every 25 ns, for the processor can
supply a new quadword address every 50 ns. Since the DP-
SRAM (implemented in 1.2µm CMOS technology) we
intend to use for the SMC has an access time on the order
of 12 ns, we can use two banks of interleaved DP-SRAM
to meet the bandwidth requirement. In order to service
continuous, double-precision floating point accesses with
no wait states, the SMC must also be able to accept a new

1Mx64
DRAM

Even

SMC
1Mx64
DRAM

1Mx64
DRAM

Even

Odd

Main
Memory

SMC Daughter Board

PLL
clk

64

29

9

data

address

control

64

20

6

data

address
control

64

20

6

data

address

control

ref_clk

1s
t

P
ip

el
in

e
S

ta
g

e
D

is
cr

et
e

C
o

m
p

o
n

en
ts

i860 ™
Cache
Optimized
Memory
Controller

1Mx64
DRAM

Odd

Main
Memory

VLSI

CPU

Host Processor
Board

40 MHz

Figure 9 Architecture of the SMC Test Board

Appeared in Proc. 27th Hawaii International Conference on Systems Sciences (HICSS-27), Maui, HI,
January 1994. 8

Figure 10 SMC VLSI Implementation

Processor Bus

i8
60

 P
ro

ce
ss

o
r

B
u

s

E
ve

n
D

R
A

M
O

d
d

D
R

A
M

Odd Bank
Controller

(OBC)

FIFO Control

State Machine

CSC Register

State Machine

Control State
Machine

Even Bank
Controller

(EBC)
FIFO

DP SRAM

CSC
DP SRAM

Interface (PBI)

64data

64data

64

data

address every 50 ns. This address is presented to both banks
of DP-SRAM, and two double words are accessed. For
reads, the first double word is sent directly to the processor;
the second is latched within the SMC so that it can be sent
on the next bus cycle. For writes, the first double word from
the processor is latched within the SMC until the next
cycle, when the second double word arrives. Both double
words are then written into the DP-SRAM together.

5.2 SMC control logic

The proposed SMC VLSI implementation, shown in
Figure 10, consists of several state machines and Control/
Status (CSC) registers. In addition to storing the stream
parameters (base, length, and stride), the CSC registers
govern the read/write modes of the individual FIFOs and
provide a user-accessible reset control for the entire SMC.

The Processor Bus Interface (PBI) state machine is
responsible for handling all handshaking between the SMC
and the i860 for all requests from the SMC board memory,
including stream, scalar, and cache line accesses.

The FIFO state machine maintains pointers to the virtual
FIFOs contained in the SRAM, as well as status signals on
the condition of each (full, empty, half full, etc.). The state
machine allows simultaneous access to the FIFO DP-
SRAM, so that the SMC bank controllers and the processor
can access the FIFOs concurrently. This capability is
necessary for the bank controllers to keep pace with the
processor’s stream requests.

The SMC will have low-skew clock distribution trees
built into its architecture, but the fixed delay in the clock as
it is driven onto the SMC might be as great as 6 to 8 ns,
which is unacceptable for a high-speed (40 MHz) design.
The SMC therefore uses a phased locked loop (PLL) to
synchronize its on-chip clock with the system clock. In this
design, the reference signal for the PLL is connected to the

clock driven off of the SMC from its distributed clock tree,
and the locked signal is fed back to the input of the SMC
clock network. Clock synchronization within 1 ns should
be possible using this approach.

6. Test plans

Once we have verified the SMC board functionality, we
can begin relating its performance to our software
simulations. The onboard memory, which is optimized for
cache line access (loads and stores of four 64-bit double
words), will provide a basis of comparison. Initially, vector
algorithm test cases will be run out of the onboard memory
to obtain base-line timing information. These real-time
results can then be compared with those of the same
algorithms run out of the SMC-controlled memory. A few
practical considerations must be factored into our
comparisons, for the cache-optimized onboard memory
provides functionality (such as parity, error correction, and
cache snooping capabilities) that the SMC-controlled
memory will not, and these may affect the overall timing
results. Nonetheless, we expect to see significant
performance differences, the bulk of which can be
attributed to the SMC.

7. Conclusions

As the disparity between microprocessor speeds and
memory speeds increases, memory bandwidth is rapidly
becoming a performance bottleneck, especially in the
application of high performance microprocessors to vector-
like algorithms. These computations, which include many
of the “Grand Challenge” problems, lack the temporal and
spatial locality necessary for caching alone to bridge the
performance gap.

Appeared in Proc. 27th Hawaii International Conference on Systems Sciences (HICSS-27), Maui, HI,
January 1994. 9

We can get better bandwidth from existing technology if
we take advantage of the characteristics of the entire
memory hierarchy, including random-access memory
components. Performance of modern DRAM components
is sensitive to the order of requests, thus these devices
should not be treated as uniform access-time RAM.
Moreover, exploiting the special capabilities provided by
such devices is best done dynamically, since essential
information (such as alignment) will generally not be
available at compile time.

Here we have described one technique, access ordering,
that can optimize requests to exploit the underlying
memory architecture. We then proposed an interesting
alternative to existing solutions to the bandwidth problem:
a combined hardware/software scheme to implement
dynamic access ordering. This scheme complements more
traditional cache-based schemes, so that overall effective
memory performance need not be a bottleneck.

Preliminary explorations indicate that this solution is
both feasible and cost-effective: we have the necessary
compiler technology; our simulation results show that by
combining compile-time detection of streams with
execution-time selection of the access order and issue, we
can achieve near-optimal bandwidth for vector-like
accesses relatively inexpensively; and we have described
the hardware design of an experimental Stream Memory
Controller (SMC) system that will allow us to explore the
dynamic access ordering concept further.

8. Acknowledgments

We wish to thank Sean McGee and Max Salinas for their
contributions to this project, and Anh Nguyen-Tuong and
Dee Weikle for their careful reading of the final draft of this
paper. Thanks also go to the other members of Bill Wulf’s
research group for their valuable feedback: Scott
Briercheck, Rob Craighurst, Katie Oliver, Ramesh Peri,
and Alec Yasinsac. This work has been supported in part by
a grant from Intel Supercomputer Division and by NSF
contract MIP-9114110.

References

[1] Baer, J. L., Chen, T. F., “An Effective On-Chip Preloading
Scheme To Reduce Data Access Penalty”,
Supercomputing’91, November, 1991.

[2] Baron, R.L., and Higbie, L., Computer Architecture,
Addison-Wesley, 1992.

[3] Carr, S., Kennedy, K., “Blocking Linear Algebra Codes for
Memory Hierarchies”, Proc. Fourth SIAM Conference on
Parallel Processing for Scientific Computing, 1989.

[4] Callahan, D., et. al., “Software Prefetching”, Fourth
International Conference on Architectural Support for

Programming Languages and Systems, April, 1991.

[5] Davidson, J.W., and Benitez, M.E., “Code Generation for
Streaming: An Access/Execute Mechanism”, Fourth
International Conference on Architectural Support for
Programming Languages and Operating Systems, April,
1991.

[6] Dongarra, et. al., “Linpack User’s Guide”, SIAM,
Philadelphia, 1979.

[7] Fu, J. W. C., and Patel, J. H., “Data Prefetching in
Multiprocessor Vector Cache Memories”, 18th
International Symposium on Computer Architecture, May,
1991.

[8] Goodman, J. R., et al, “PIPE: A VLSI Decoupled
Architecture”, Twelfth International Symposium on
Computer Architecture, June, 1985.

[9] Gupta, R., and Soffa, M., “Compile-time Techniques for
Efficient Utilization of Parallel Memories”, SIGPLAN
Not., 23, 9, 1986.

[10] Harper, D. T., “Address Transformation to Increase
Memory Performance”, 1989 International Conference on
Supercomputing.

[11] Hayes, J.P., Computer Architecture and Organization,
McGraw-Hill, 1988.

[12] “High-speed DRAMs”, Special Report, IEEE Spectrum,
vol. 29, no. 10, October, 1992.

[13] i860 XP Microprocessor Data Book, Intel Corporation,
1991.

[14] Jouppi, N., “Improving Direct-Mapped Cache
Performance by the Addition of a Small Fully Associative
Cache and Prefetch Buffers”, 17th International
Symposium on Computer Architecture, May, 1990.

[15] Katz, R., and Hennessy, J., “High Performance
Microprocessor Architectures”, University of California,
Berkeley, Report No. UCB/CSD 89/529, August, 1989.

[16] Klaiber, A., et. al., “An Architecture for Software-
Controlled Data Prefetching”, 18th International
Symposium on Computer Architecture, May, 1991.

[17] Lam, Monica, et. al., “The Cache Performance and
Optimizations of Blocked Algorithms”, Fourth
International Conference on Architectural Support for
Programming Languages and Systems, April, 1991.

[18] Lawson, et. al., “Basic Linear Algebra Subprograms for
Fortran Usage”, ACM Trans. Math. Soft., 5, 3, 1979.

[19] Maccabe, A.B., Computer Systems: Architecture,
Organization, and Programming, Richard D. Irwin, Inc.,
1993.

[20] McCarty, D., “Tackling FIFO Design with FPGAs”, ASIC
& EDA, September, 1992.

[21] McMahon, F.H., “The Livermore Fortran Kernels: A

Appeared in Proc. 27th Hawaii International Conference on Systems Sciences (HICSS-27), Maui, HI,
January 1994. 10

Computer Test of the Numerical Performance Range”,
Lawrence Livermore National Laboratory, UCRL-53745,
December, 1986.

[22] McKee, S.A, “Hardware Support for Access Ordering:
Performance of Some Design Options”, University of
Virginia, Department of Computer Science, Technical
Report CS-93-08, April, 1993.

[23] Moyer, S.A., “Access Ordering and Effective Memory
Bandwidth”, Ph.D. Thesis, Department of Computer
Science, University of Virginia, Technical Report CS-93-
18, April, 1993.

[24] Quinnell, R., “High-speed DRAMs”, EDN, May 23, 1991.

[25] “Architectural Overview”, Rambus Inc., Mountain View,
CA, 1992.

[26] Rau, B. R., “Pseudo-Randomly Interleaved Memory”, 18th
International Symposium on Computer Architecture, May,
1991.

[27] Sklenar, Ivan, “Prefetch Unit for Vector Operation on
Scalar Computers”, Computer Architecture News, 20, 4,
September, 1992.

[28] Smith, J. E., et al, “The ZS-1 Central Processor”, The
Second International Conference on Architectural Support
for Programming Languages and Systems, October, 1987.

[29] Sohi, G. and Manoj, F., “High Bandwidth Memory
Systems for Superscalar Processors”, Fourth International
Conference on Architectural Support for Programming
Languages and Systems, April, 1991.

[30] Tomek, I., The Foundations of Computer Architecture and
Organization, Computer Science Press, 1990.

[31] Valero, M., et. al., “Increasing the Number of Strides for
Conflict-Free Vector Access”, 19th International
Symposium on Computer Architecture, May, 1992.

[32] Wolfe, M., “Optimizing Supercompilers for
Supercomputers”, MIT Press, Cambridge, MA, 1989.

[33] Wulf, W. A., “Evaluation of the WM Architecture”, 19th
Annual International Symposium on Computer
Architecture, May, 1992.

