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Empirical Analysis of Isotach Networks

Abstract

This paper presents the results of a simulation study designed to evaluate the performance
of isotach networks. An isotach network is an interconnection network that provides
hardware support for atomicity and sequential consistency in parallel computations. The
results show conventional networks are more efficient than isotach networks under a
workload with no atomicity or sequencing constraints, but that when such constraints are a
significant factor in the workload, isotach networks outperform conventional networks.
Isotach networks perform best in relation to conventional networks when execution is
required to be sequentially consistent, data dependent operations are far enough apart that
they do not restrict pipelining, contention for shared variables is high, and atomic actions
are large. When two or more of these characteristics apply to the workload, isotach
networks can outperform conventional networks by an order of magnitude or more.
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1.0 Introduction

The isotach network [RWW89, WiR91] is a new type of interconnection network designed
to provide hardware support for the task of coordinating and synchronizing processes in a
parallel computation. The isotach network is so named because it implements a logical
time system in which each message in the network progresses towards its destination at
the same rate: one switch per logical time unit. This characteristic property of the isotach
network, called the velocity invariant, makes the network a powerful coordinating mecha-
nism. The velocity invariant makes it possible for a process to control the logical time at
which its operations are received and executed through its control over when it emits the
operations. This control over the logical time at which its operations are executed at mem-
ory enables processes to access multiple shared variables atomically without acquiring
locks and to pipeline operations without risk that the operations be executed out of order,
in contrast with conventional, i.e., non-isotach-based, systems that typically use locks and
delays to achieve the same resuits.

The way an isotach network works is very similar to the way a conventional network of
the same topology works except that the individual switching elements within an isotach
network operate in a locally synchronous mode - each switch applies a simple list-merge
algorithm in determining the order in which to route incoming operations with the result
that each switch stays loosely synchronized with its immediately neighboring switches.
Local synchrony is the basis for the individual switch’s ability to enforce the velocity
invariant using only local information, but it does have a cost: an operation may be
delayed at a switch in an isotach network when it would not be delayed in a conventional
network. Thus the “raw power” of the isotach networks, i.e., the throughput and latency of
the networks under a workload with no synchronization constraints, can be expected to be
worse than that of a comparable conventional network.

This paper reports on a simulation study of the performance of isotach networks. Among
the questions studied are the following:

1. How much lower is the raw power of an isotach network than a conventional
network?

2. Under what conditions, if any, does an isotach network make up for the
expected loss in raw power through more efficient support of synchroniza-
tion?

The simulation also provided an opportunity to explore alternative implementations of
isotach networks and to study the effect of various network and workload parameters,
such as the network size, number of network buffers, average size of atomic actions, and
traffic model.

All the networks we simulated, both isotach and conventional, are clocked, baseline net-
works that use store-and-forward routing. The simulated workloads assume a MIMD
shared memory computation with no support for private caching of shared variables. The
study does not cover the full range of isotach networks. Isotach networks can take other
forms and can support other programming models.
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The simulation compares isotach systems using isotach based synchronization techniques
to conventional systems that enforce atomicity with two-phase locking (2PL) [EGL76]
and that enforce sequential consistency by restricting pipelining. We ran the simulations
under a variety of synthetic workloads to capture different atomicity, sequencing, and data
dependence constraints among operations. The results of the simulation confirm that an
isotach network has lower throughput and higher latency than a comparable conventional
network, but that an isotach system is more efficient than a conventional system in execut-
ing computations with significant synchronization requirements. We believe the reason the
conventional systems perform relatively poorly in these computations is that the means by
which they enforce atomicity and sequencing constraints, i.e., locks and delays, slow exe-
cution by restricting concurrency and prevent the conventional system from taking advan-
tage of its higher raw power.

This paper is organized as follows. Section 2 defines the isotach network and explains how
the network supports synchronization. Section 3 describes the networks simulated. Sec-
tion 4 describes the simulation and reports the results. Section 5 summarizes the results
and describes ways in which we intend to extend our study of isotach network perfor-
mance.

2.0 Isotach Networks

This section defines the isotach network, describes an implementation, and shows how an
isotach network supports process coordination. The material presented in this section is a
summary of previous work [RWW89, WiR89, WiR91], repeated to make this report self-
contained. '

2.1 A Logical Time System

The isotach network is defined in terms of the logical time system it implements. Infor-
mally, a logical time system is a set of rules for numbering events of interest, that is,
assigning each event a logical time, such that the times assigned are consistent with cau-
sality, e.g., if event a causes event b, a logical time system assigns a a lower, i.e., earlier,
time than it assigns b.

In the logical time system implemented by an isotach network, a time is assigned to each
event of emitting a message into the network and of receiving a message from the net-
work. Each logical time is, in general, an n-tuple of integers, in which the first and most
significant component is called the pulse component. In the case of the isotach networks
we simulated, each logical time is a 4-tuple of integers. Logical times are compared com-
ponent-wise and are lexicographically ordered. The times assigned are consistent with the
happens-before relation in the logical time system defined by Lamport [ Lam78.], i.e., the
logical time assigned to the event of emitting a message into the network is less than or
equal fo the time assigned to the event of receiving the message, and for any two events
occurring at the same node, the logical times assigned are consistent with the order in
which the events actually occur.
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The logical time system implemented by an isotach network differs from others [Lam78,
Mat88, Fid91] in that it relates communication time with communication distance. In an
isotach network each message is received exactly DIST pulses after it is emitted, where
DIST is the number of switches through which the message is routed, i.e., a message emit-
ted at time £y, = @, V, j, k) is received at time treceive = (i+ DIST, v, j, k). An isotach net-
work maintains the following invariant, the velocity invariant:

DIS T/ treceive - temit) = 1 sWitch/pulse

In other words, all messages in an isotach network progress towards their destination at
the same velocity -- one switch per pulse of logical time.

2.2 Local Synchrony

This logical time system can be implemented in a distributed way using a form of syn-
chronization we call local synchrony. Each switch in a locally synchronous network stays
loosely synchronized with its immediate neighbors through pulses of conwrol signals
called zokens that propagate through the network. In more vivid terms, the network pulses
like a heart. These pulses supply the timing mechanism for a distributed logical clock.
Local synchrony has been used by Ranade in a CRCW-PRAM emulation, by Awerbuch to
support execution of SIMD graph algorithms on asynchronous networks [.Awe85.], and
by Birk, et al., to support barrier synchronization [.BGS89.].

An isotach network can be implemented on many different types of networks and for
many different reasons. We restrict this discussion to the type of system simulated: an
equidistant network that supports process coordination in shared memory model (SMM)
computations with no private caching of shared variables. In an equidistant network,
sometimes called a dance hall network, the length of every routable path from a process-
ing element (PE) to a memory module (MM) is the same. The implementation requires
reliable FIFO communication links. We assume processes communicate only by accessing
shared memory. Every message is either an operation, i.e., an instruction accessing a
shared variable, or a response, i.¢., a reply to an operation. A system of the type simulated
requires that the velocity invariant be maintained only for operations, i.., only in the for-
ward, PE to MM, direction. We assume the reverse network is a conventional network.

For simplicity, each PE and MM is assumed to be connected to the network via a switch
interface unit (STU). The SIUs are responsible for assigning logical times to the events of
interest -- the events of emitting and receiving operations. Each SIU maintains a local log-
ical clock which it uses in assigning logical times. A local logical clock is simply a vari-
able that records the current logical time, i.e., the time assigned the last local event.

The clocks at the SIUs are coordinated by local synchrony as follows. Initially each switch
emits a token pulse, i.e., it emits a token on each output, including, for the switches in the
first and last network stages, the output to each adjacent SIU. Each switch thereafter emits
token pulse i after receiving token i-7 on all inputs, including each adjacent SIU, if any.
Thus the token pulses keep each switch loosely synchronized with its neighbors. The
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token pulses also drive logical clocks at the SIUs. The pulse component of the logical time
at each SIU is the number of tokens that have passed through the SIU.

Between tokens the SIU for a PE (PE-SIU) may emit zero or more operations. Before
emitting each pulse of operations, a PE-SIU first sorts the operations in increasing order
by address of the variable accessed, using a stable sort to preserve the issue order among
operations on the same variable. Each operation receives a timestamp. The timestamp for
operation op;, denoted ts(op;), is the 4-tuple (pulse, var, pid, rank), where pulse is the pulse
in which op; is emitted by the PE-SIU, var is the variable accessed, pid is the identifier of
the issuing PE, and rank is op;’s issue rank within the pulse, i.e., the rank component of
the timestamp for op; is j if op; is the jth operation emitted by that PE-SIU in the current
pulse. Note that a PE-SIU emits operations in timestamp order and that timestamps are
unique. This technique for assigning unique timestamps without centralized control is
widely used in database concurrency control [RSL78, Ree83). When a PE-SIU emits an
operation it updates the local clock, setting the clock equal to the timestamp of the opera-
tion. Each PE-SIU emits operations in timestamp order so each PE-SIU’s clock moves for-
ward monotonically.

Between token pulses, each switch routes operations as usual except it chooses messages
to route in timestamp order. Each 2x2 switch continuously merges the 2 sorted lists arriv-
ing on its inputs to produce 2 sorted output lists. As it routes each message, the switch
increments the pulse component of the message’s timestamp. Since each SIU emits opera-
tions in timestamp order and timestamp order is maintained at each switch and across each
link, operations are received at each MM in timestamp order. Consider the tree of switches
rooted at a given MM with leaves at each PE-SIU. A simple induction on the depth of the
tree shows that operations arrive at the root MM in strictly increasing order by timestamp.
Each SIU for an MM (MM-SIU) maintains a local clock in the same way as a PE-SIU,
except an MM-SIU updates its clock for receive events.

The velocity invariant holds because a message with timestamp (i, v, j, k) arriving at a
switch in pulse i (after the ith token received on the input on which the message arrives)
leaves with timestamp (i+1, v, j, k) in pulse i+ (after the i+ st token pulse). Since travel-
ing through a switch adds 1 to the pulse component of a message’s timestamp and does not
otherwise change the timestamp, a message emitted at time (i, v, j, k) is received at time
(i+DIST, v, j, k). The logical times at which operations are emitted and received are also
consistent with Lamport’s happens-before relation since an operation is always received at
a later logical time than it is emitted and the logical clocks at all SIUs move forward
monotonically. This isotach network implementation is also deadlock-free [ReW91].

The implementation described here is an abstract implementation intended to be useful in

reasoning about the isotach network, but is not an implementation we recommend for an
actual system. Though the tokens are necessary, the timestamps and logical clocks are not.
Operations need carry only the information they carry in conventional networks. The algo-
rithm actually simulated is described in section 3.
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2.3 Atomicity and Sequential Consistency

The isotach network provides hardware support for the task of contrblling the concurrency
of parallel computations, in particular, in enforcing atomicity and sequential consistency.

Atomicity and sequential consistency are important properties of parallel executions that
are expensive to enforce using existing techniques. The atomic action, a group of opera-
tions required to be executed as an indivisible step, was developed in the context of data-
base concurrency control by Eswaran [EGL76]. Early proposals for using the atomic
action as a device for structuring parallel programs include those of Owicki and Gries
[Ow(76] and Lomet [Lom77}. The atomic action is a group of one or more instructions
issued by the same process that appears to be executed indivisibly, without interleaving
with other instructions. In database concurrency control and in some programming lan-
guages designed for geographically distributed systems, the atomic action is also a unit of
recovery, i.e., the instructions in an atomic action are executed on an all-or-nothing basis,
even in the presence of hardware failures. In our research, we have assumed hardware reli-
ability.

Atomic actions are typically specified by operations on locks or semaphores or by critical
sections or monitors implemented with locks or semaphores. Existing hardware support
for atomic actions is designed to make locking more efficient. The principal drawback to
the use of locks in implementing atomicity is the unnecessarily restricted access to shared
variables implied by locking. Variables cannot in general be partitioned so that each
atomic action can, by acquiring a single lock, control all the variables it must access and
no others. Atomic actions either acquire a single lock, and lock some variables unneces-
sarily, or acquire multiple locks. To avoid deadlock, an atomic action that requires multi-
ple locks must typically obtain the locks sequentially. During this lock acquisition phase,
the variables controlled by already acquired locks are unavailable to other processes.

The second property, sequential consistency, means that the order in which assesses are
executed is consistent with the order specified by each individual process’s sequential pro-
gram [Lam79)]. Maintaining sequential consistency is a problem in multiprocessors
because stochastic delays in the network allow operations issued by the same process 10
arrive at the MM’s in an order inconsistent with the order in which the operations were
issued. The simplest solution, disallowing pipelining of memory accesses, is undesirable
since pipelining is an important way to lessen effective memory latency. An isotach net-
work enforces sequential consistency without restricting the pipelining of operations.

The isotach network was originally designed to support the isochron, a synchronization
primitive derived from the parallel operation [Wag87, RWW89]. The isochron is an
atomic, sequentially consistent multicast. In SMM terms, it is a group of one or more oper-
ations that appear to be executed as an indivisible step. A process can pipeline isochrons
without risk that the operations be executed in the wrong order.

Given the velocity invariant, implementing isochrons on a equidistant isotach network is
straightforward. We require only that

1. each MM execute operations in FIFO order;
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2. each PE-SIU emit all operations from the same isochron in the same logical
pulse; and

3. if a PE-SIU emits more than one operation on the same variable in the same
pulse, it emit the operations in the order in which they were issued.

We have shown that these rules ensure atomic and sequentially consistent execution of
isochrons by proving that for each parallel execution, an equivalent serial execution can be
constructed from the logical times at which operations are received at memory, such that
operations in each isochron are executed without interleaving and operations issued by the
same process are executed in the order in which they were issued.

The isotach network supports atomic execution of isochrons, but isochrons represent only
a limited class of atomic actions. Operations in an isochron must be issued as a batch, so
operations with data dependencies cannot be executed in the same isochron. We have pro-
posed techniques based on isochrons together with access sequences and split operations,
defined in a previous report [WiR89], to support a broad class of atomic actions. An access
sequence for a variable is the sequence of elements representing accesses made to the vari-
able over time. Each element in the access sequence either records the value read or writ-
ten by an access or reserves a position for an access. Split operations are the set of
operations defined for the access sequence representation and are based on the idea of
splitting an access into two steps -- a scheduling step that appends an element to the access
sequence to reserve the context for an access and an assignment step that transfers a value.
For writes, the transfer is from a process’s local variable or register to the element
appended by the scheduling step for the write. For reads, the direction of transfer is
reversed, from the access sequence to the local variable or register. Splitting a write into
two steps allows the write to be scheduled before the value to be written is known. A pro-
cess schedules a write by issuing a SCHED operation and completes a previously sched-
uled write by issuing an ASSIGN operation. The steps can be collapsed into a single step
(initiated by a WRITE operation) if the process knows the value to be written when it

schedules the write. An MM executes a SCHED operation by appending an element with ™™

the special value nil denoted A and returning the identifier eld of the element. When it
determines the value to be written, the process executes an ASSIGN operation containing
both the value and the eld returned in response to the SCHED. The eld enables the MM to
assign the value to the element reserved for it. In the case of reads, the assignment step is
initiated by memory, so the set of split operations contains only one operation relating to
reading variables. A process schedules a read by issuing a READ operation and the MM
executes the READ by 1) identifying the preceding write, i.¢., the write whose SCHED
reserved the element most closely preceding the read in the access sequence, and 2) if the
assignment step for that write has been executed, i.e., if the value of the element reserved
for the write is not A, returning the value assigned. If the assignment step for the preceding
write has not yet been executed when the MM executes the READ, the MM responds to
the READ when the assignment is executed. As part of executing an ASSIGN operation,
an MM sends the value assigned to all of the reads on the same variable scheduled imme-
diately after the write.

A process executes an atomic action by issuing an isochron that schedules all the accesses
required for the atomic action, executing the assignment steps for those accesses as it
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determines the values to be assigned. For example, a process executes the assignment
A=B+C atomically, where A, B, and C are all shared variables, by 1) issuing an isochron
containing a SCHED operation on A and READ’s on B and C; 2) waiting until it receives
the value of B and C in response to the READ’s and the eld of the element reserved for the
write in response to the SCHED; and 3) issuing an ASSIGN operation containing both the
eld and the value to be written, i.e., B+C.

Execution is atomic because the isochron used to schedule the accesses reserves a consis-
tent “time skice” across the histories of the accessed variables. This technique, called the
scheduling isochron technique, works for atomic actions with access sets that can be
determined at the beginning of execution of the atomic action. We have proposed varia-
tions on the technique for atomic actions with data dependent access sets [WiR89]. The
simulation described below is limited to atomic actions that can be executed using the
scheduling isochron technique.

3.0 Simulated Networks

The architectural model assumed in this study is a MIMD shared memory parallel proces-
sor based on a multi-stage switching network. Four networks are simulated in the study,
two conventional (C1 and C2) and two isotach (I1 and I2). Each network is composed of
2x2 switches interconnected in the same baseline network topology. A diagram of a multi-
stage interconnection network with this topology is shown in Figure 1. The message trans-
mission protocol is store-and-forward using a send-acknowledge protocol [REFg8T7]. To
allow the use of time-stepped simulation, we assume the networks are clocked, i. e.,
switches begin each cycle simultaneously. We believe the results are also applicable to
self-timed networks.
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FIGURE 1. A 4 stage intercoennection network.
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The networks differ only in the design of the individual switches and in the algorithms the
switches execute. Networks C1 and I1 are both composed of 2x2 crossbar switches with
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input buffer queues. Networks C2 and I2 use more sophisticated switches, called z-
switches, that yield higher throughput at some cost in latency. We developed the z-switch
to improve the throughput of the isotach network. When it proved successful, we trans-
lated it into a conventional switch design to enable us to compare the z-switch version of
the isotach network (I2) to a conventional network with comparable routing advantages
(C2). In the context of a conventional network, the z-switch is similar to switch designs
with output buffers [KHM87] or internal buffers [KuJ84].

We assume switches in C1 and I1 have the same cycle time, i. e., we assume that the
amount of time required in the absence of conflicts for a message to travel through a
switch in C1 is the same as in I1. All performance data is measured in units of this cycle
time. The switches in networks C2 and 12 are assumed to have twice the latency of those
in C1 and I1.

3.1 Conventional Networks Simulated

This section describes the two conventional networks, C1 and C2, included in the study
for comparison with the isotach networks.

3.1.1 Conventional network C1

The switches in network C1 consist of two input queues, two output buffers, and a routing
_unit that can route a message from either of the two inputs to either of the two outputs.
Each buffer can hold a single message and each queue consists of one or more buffers. A
diagram of the switch architecture appears in Figure 2.

Router

=
v

FIGURE 2. Simple switch design (C1 and I1)

The switching cycle of switches in network C1 consists of two steps: a “route” step in
which each switch attempts to route messages on its inputs to its outputs, and a “push”
step in which each switch attempts to send the messages on its outputs to the inputs of
switches at the next stage using a send-acknowledge protocol. The route and push steps at
each switch are as follows:
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Route Step:
1. Choose an input randomly such that each input is chosen with equal probabil-
ity. ‘ -
2. If the input holds a message, determine the output on which the message
should be routed.

3. If the output is available, route the message, i.e., move it to the correct out-
put. '

4. Repeat steps 2 and 3 with the other input. (Note that a switch is capable of
routing two messages in a single route step.)

Push Step:

1. For each non-empty output, send a copy of the message on the output to the
next stage swiich connected to the output.

2. For each input on which a new message arrives, if room in the input queue is
available, add the message to the queue and send an ACK to the sender.

3. For each output for which an ACK is received, mark the output empty.

3.1.2 Conventional network C2

Network C2 is a high-throughput conventional network based on the z-switch. In network
C2, switch outputs are decoupled from switch inputs to provide better throughput at some
cost in network latency. Decoupling inputs from outputs prevents a blocked message from
blocking another message merely because it arrives on the same input. In a z-switch, a
message whose output buffer is available can make progress even though a message arriv-
ing previously on the same input is blocked due to a full output buffer.

] ]

Splitter Splitter

FIGURE 3. Z-switch high-throughput design.
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Each switch element consists of four components: a “splitter” for each switch input and a
“merger” for each switch output. Each splitter has one input queue and two output buffers,
one for each merger. Each merger has two input queues, one for each splitter, and one out-
put buffer. A diagram of the switch design appears in Figure 3.

As in C1, each switch cycle in C2 consists of a route step and a push step. Each splitter
and merger participates in both steps of the cycle:

Route Step - Splitter:
1. If the input is empty, skip the route step.
2. Determine the output on which the incoming message should be routed.

3. If that output is available, route the message.

Route Step - Merger:
1. If the output is full, skip the route step
2. Randomly choose an input.
3. If the input holds a message, route it.

4, Otherwise, route the message, if any, on the other input.

Push Step - Splitter:

1. For each non-empty output, send a copy of the message on the output to the
merger connected to the output.

2. If a new message arrives on the input and room in the input queue is avail-
able, add the message to the queue and send an ACK to the sender.

3. For each output for which an ACK is received, mark the output empty.

Push Step - Merger:

1. If the output holds a message, send a copy of the message to the next stage
switch connected to the output.

2. For each input on which a new message arrives, if room in the input queue is
available, add the message to the queue and send an ACK to the sender.

3. If an ACK is received for the output, mark the output empty.

The latency time for C2 is assumed to be two cycles because the splitter and merger each
have one cycle latency time.
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3.2 Isotach Networks Simulated

‘The two isotach networks simulated, I1 and 12, correspond to C1 and C2, respectively. In
ecach isotach network the structure of the switches is similar to that of the switches in the
corresponding conventional net, but the switch algorithm is different. The isotach switches
apply the local synchrony algorithm described in section 2. The local synchrony algorithm
requires that the switch route messages arriving in the same pulse in a given order. In iso-
tach networks I1 and 12, each switch routes operations in non-decreasing order by “route-
tag”, The “route-tag” of an operation is the ordered pair “(dest, source)”, where “dest” is
the variable accessed by the operation and “source” is the pld of the source PE. Route-tags
are lexicographically ordered.

Isotach networks carry two types of messages in addition to operations: tokens and ghosts.
As described in section 2, tokens are control signals that divide pulses. A ghost [Ran87] is
a copy of an operation with a bit set to indicate it is not a real operation. In other respects,
ghosts look like operations. In particular, ghosts have route-tags. When a switch sends an
operation on one output it sends a ghost with the same route-rag as the operation on the
other. A switch receiving a ghost knows that all further operations it receives on the same
input in the same pulse will have a larger route-tag than the ghost. This knowledge may
enable the switch to route an operation on its other input. Ghosts improve network perfor-
mance and are necessary in some networks for deadlock freedom [ReW91].

3.2.1 ISotach network 11

In network 11 the switches have the same structure as the switches in C1, i.e., each switch
has two input queues, two output buffers, and a router.

Each switch in 11 records the route-tag of the last message it routed as “last_tag”. The
value of “last_tag” represents the best conservative guarantee the switch can make about
the route-tag of the next message it will route. Initially, and at the beginning of each pulse,
the value of “last_tag” is reset to (-1,-1).

Each switch in I1 always chooses the minimum message for routing, i.e., the message with
the minimum route-tag. Identifying the minimum message requires that both inputs hold a
message. In identifying the minimum message, tokens are treated as having a route-tag
greater than that of any other type of message and operations and ghosts are treated identi-
cally. If both inputs hold tokens, the minimum message is chosen arbitrarily. If only one
input holds a token, the message on the other input is the minimum message. I neither
holds a token, the minimum message is the message with the lowest route-tag,

Whenever it has no operation or token to route on an output, a switch routes a ghost.
Ghosts take up only unused bandwidth and unused buffers. A ghost can always be over-
written by a newer message. Therefore an output buffer is “available” if it is empty or con-
tains a ghost, and room in an input queue is “available” if the queue is not full or if the
message at the tail is a ghost.
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The route and push steps in I1 are as follows:

Route Step:
1. Determine the input holding the minimum message.

2. If the minimum message is a token and both outputs are available, remove
the tokens from both inputs, place tokens on both outputs, and reset last_tag.
(Note that if the minimum message is a token then the other input also holds
a token.)

3. Otherwise, set last_tag equal to the route-tag of the minimum message. If the
minimum message is an operation, determine the output on which it should
be routed. If the output is available, route the operation.

4, Emit a ghost with route-tag = last_tag on each available output.

Push Step:
Same as the push step in CI.

Network I1 has low throughput in relation to C1 because the switches in I1 can route only
one message per cycle. A switch in an isotach network that can see only the operations at
the head of each of its inputs has insufficient information to route more than one operation
per cycle given the requirement that a switch must route operations in sorted order. The z-
switch used in network I2 was designed to overcome this throughput limitation,

3.2.2 Isotach network I2

The switches in network I2 have the same structure as those in C2. However the units
called splitters in C2 are called muliiplexors in I2 to better represent their function in I2.
The function of a multiplexor is to copy each operation received on its input onto both out-
puts. The function of a merger is to route the message streams received from both multi-
plexors in order by route-tag. Each multiplexor and merger records the last_tag as in I1.

The route and push sieps in 12 are as follows:

Route Step - Multiplexor:

1. If the input holds a token and both outputs are available, consume the token,
put tokens on both outputs, and reset last_tag,

2. Otherwise, set last_tag equal to the route-tag of the message on the input. If
the input holds an operation, determine the output on which it should be
routed, and move the message to that output if it is available.

3. Emit a ghost with route-tag = last_tag on each available output.
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Route Step - Merger:
1. If the output is not available, skip the route step.
2. Determine the input holding the minimum message.

3, If the minimum message is a token, remove the tokens from both inputs,
place a token on the output, and reset last_tag.

4. Otherwise, set last_tag equal to the route-tag of the minimum message and, if
the minimum message is an operation, move it to the output.

5. If the output is available, emit a ghost with route-tag = last_tag.

Push Step - Muiltiplexor:
Same as the push step for the splitter in C2.

Push Step - Merger:
Same as the push step for the merger in C2.

The simulation data presented in the next section compares each of the four networks pre-
sented here. Isotach networks, as simulated, are simple variations of the networks
described here, modified to allow piggybacking of tokens. Piggybacking of tokens occurs
when a switch knows that a token follows the current message, and sends the message
with a ‘token bit’ set, instead of sending the message followed by a token. Piggybacking
thus reduces traffic in the network.
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4.0 Performance Results

This section presents results from simulations of the four networks described in the previ-
ous section. Our assumption is that networks C1 and I1 have the same switch cycle time,
and that C2 and I2 have latency double that of C1 and I1.

Our simulation environment allows us to present data for each network and to vary a num-
ber of operational parameters and workload models. The simulation parameters include
the following:

Network Size - The number of PE/MMs.
Variables/MM - The number of shared variables per MM.

Network Switch Queue Size - The maximum number of messages that a switch input
queue can hold. In C2 and 12, the queue size applies to the input queues of both the
splitter/multiplexer and the mergers.

READ probability - The probability that any given access is a READ, as opposed to a
WRITE.

Atomic Action Mean - In workload models that include atomic actions, the average
number of operations in an atomic action. The sizes of atomic actions are from an expo-
nential distribution with a mean equal to the mean supplied as a parameter and a range
from 1 to (10 * (mean-1)) + 1.

Forced Singleton Probability - A user defined probability p. The probability that an
atomic action is a singleton, i.e., that it is of size 1, is p + q(I-p), where q is the proba-
bility of choosing 1 from the distribution of atomic action sizes described above.

Atomic Action Cap - In workload models that include atomic actions, the cap on the
number of atomic actions that any PE may have started and not completed at any given
time.

Traffic Model - A set of parameters that describe the distribution of operations on vari-
ables. The simulation uses three different types of traffic models: a uniform model, in
which all variables are accessed with equal probability; a hot-spot model, in which one
variable is accessed with greater probability; and a warm-spot model, in which several
variables are accessed with greater probability.

‘Workload Model - A set of rules governing the production and execution of opera-
tions. The simulation uses many different workload models, ranging from a “raw
power” workload, in which PE’s produce a saturation or probabilistic load of generic
operations with no constraints on the order in which operations are executed, to a work-
load with atomicity, sequencing, and data-dependency constraints among operations.

The study is divided into six series of simulations, each focusing on a different workload
model, or, in one case, traffic model. For each series, a ‘base case’ is defined giving the
default parameter settings. The base case for each parameter and the range of values tested
is presented in table 4.1. In the remainder of this section, we describe each series and its
results.
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Network 5 stages (32 PE/MMs) 4,6,8,10
Size
Variables/MM u 32 - i
" Network Switch 1 2,3,4,5,6
Queue Size
READ 75 0, .25, .50, .90, 1.0 l]
Probability “ |
H Atomic Action 3 1-10, 16
Mean
Atomic Action - 1,3,6,12, 16, 20, 24, H
Cap unlimited
Forced Singleton H 0 0,.1,.25,.5,.75
" Probability
Traffic Uniform Hotspot, Warmspot
Model H

TABLE A - Value Ranges for Simulation Parameters

All data points represent results from at least 10 independent runs. For data points at
which runs give results with a high variance, we report 99% confidence intervals based on

16 runs.

The following legend applies to all graphs presented. The parenthetical descriptions of the
differences between data lines apply only to series 3 and 6.1. In other series, only the first
legend for each network will appear.

G—0 Network C1
&1 Network 11 (No AA Cap)
&---<> Network 12 (No AA Cap)
= Network 11 (AA Cap = 3)
o4 Network 12 (AA Cap=3)

—— Network C2
99% Confidence Interval
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4.1 Raw Power Data

The first series measures the “raw power” of each of the networks. We use the term “raw
power” to mean network throughput and delay under a workload of operations with no
atomicity or sequencing constraints. The workload model consists of generic, independent
operations -- reads and writes are not distinguished and operations may arrive at memory
in any order. In the base case the load on the network is a saturation load. A PE generates
a new operation whenever its output buffer is empty. Only the forward, i.e., PE->MM, net-
work is simulated in this series. Each MM is a sink for operations. We assume the memory
cycle time is the same as the switch cycle time -- each MM can consume one operation per
cycle.

In I1 and I2 enforcement of atomicity is relaxed by specifying an isochron size of one. No
comparable way exists in I1 or I2 to relax enforcement of sequential consistency. Thus
series 1 actually compares isotach networks that enforce sequential consistency with con-
ventional networks that do not.

Unless otherwise stated, the delay reported in series 1 is the network delay per stage. The
delay does not include source queueing or other non-network delay such as delay at the
network interface. More specifically, the delay is the average number of cycles between
the time an operation is sent from the PE-SIU to the first-stage switch until the time it is
sent from the last stage switch to the MM-SIU for the destination MM, divided by the
number of network stages. In this series the throughput reported, unless otherwise stated,
is the average number of operations arriving at memory per cycle, divided by the number
of MMs.
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# Stages ¢ Stages

GRAPHS 1-Scalability - Data for series 1, variation of network size.

Base Case - Base case performance of the networks is shown in several of the series 1
graphs, €.g. in Graphs 1-scalability at stages = 5. Each isotach network has lower through-
put and higher delay in the base case than the corresponding conventional network. 12’s
throughput is two-thirds that of C2, and its delay is one-fourth longer than C2’s. I1’s
throughput is slightly over half C1’s and its delay is two-thirds longer than C1’s. Although
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the difference in the raw power of each pair of corresponding networks is significant, the
faster of the isotach networks has delay in the base case comparable to that of the slower
of the conventional networks and the high throughput isotach network has throughput
comparable to that of the low throughput conventional network.

In each part of the series, one parameter is varied while each of the other parameters
remains at its base case setting.

Secalability - Graphs 1-scalability show the effect of increases in the number of network
stages on network throughput and delay. The throughput of each network decreases slowly
at about the same rate for each network. The delay per stage increases slowly for Il and 12
and stays roughly constant for C1 and C2.
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GRAPHS 1-prob_load - Series 1 data for variation in offered load.

Probabilistic Load - Graphs 1-prob_load show throughput and delay data for specified
offered loads. Instead of generating a new operation whenever its output buffer is empty, a
PE generates a new operation each cycle with probability 7. As r increases, throughput for
each network increases up to the network’s saturation point. Delay for each network
increases sharply near the saturation point.When load is generated independently of the
state of a PE’s output buffer, source queueing can account for a significant portion of total
delay. Therefore, in this part of series 1 source queueing is included in delay. Delay is
measured from the time the operation is generated until it leaves the MM-SIU. Each of the
conventional networks can handle a higher load with less delay than the corresponding
isotach network. The request rate at which C2 saturates is the highest, 0.65; and I1 the
lowest, 0.25. C1 and I2 saturate at about the same request rate, 0.45 and 0.43, respectively.

Switch Input Queue Size - Graphs 1-switch_queues show the effect of increases in the
size of the swiich input queues. As the number of buffers in each switch input queue
increases, throughput improves for all networks, but delay worsens. The graphs indicate
that performance is best when the switch input queues are small, able to queue only 1 or 2
operations at most. The result applies only to saturation loads in which source queueing is
not a factor.
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GRAPHS 1-switch_quenes - Series 1 data for variation of the number of buffers per switch queue,

Hot-Spot Traffic - Graphs 1-hot_spot give performance results for the hot-spot traffic
model. The hot-spot traffic model [PhN85] is a simple variation on the uniform traffic
model in which one variable, the hot-spot, is accessed more often than the other variables.
The hot-spot is chosen randomly such that for each trial, each global variable may be the
hot-spot with equal probability. The probability that a given operation accesses the hot-
spot is the hotspot probability r plus (1-r) divided by the total number of variables. As the
probability of generating operations accessing the hot-spot increases, throughput
decreases and the differences in throughput among the networks narrows. The delay of the
z-switch networks, C2 and I2, increases at a significantly faster rate than the low-through-
put networks. Again, the result applies only to saturation loads in which source queueing
is not a factor. :

1 4.0 L l ¥ l 1 I L] i L4
12.0
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Delay (per stage)

0.00 0.0
o 5 10 15 20 25 0 5 10 15 20 25

% Hotspot Traffic % Hotspot Traffic

GRAPHS 1-hot_spot - Series 1 data for various hotspot loads.-
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Warm-spot Traffic - Table1 gives results from a warm-spot traffic model. A warm-spot
traffic model has several “warm” variables instead of a single hot variable. We defined the
warm-spot traffic model in an attempt to identify a model that captures contention for
shared variables more realistically than either the uniform or the hot-spot traffic models.
The warm-spot traffic model is based on the 80/20 rule (see e.g. [Knu73)), a rule of thumb
widely used in describing the pattern of accesses to a pool of shared objects. The 80/20
rule says that 80% of the accesses are 1o 20% of the variables. The rule is applied recut-
sively, i.e., 80% of the initial 80% of accesses are to 20% of the initial 20% of the
accesses, and so on until the number of objects in the set of most accessed objects reaches
one. The warm-traffic model we use is a modified version of the standard 80/20 rule that
supports ratios other than 80/20. For simplicity, it truncates the recursion at 4 levels and it
assumes that the probability of assessing the most frequently accessed variables at level i
is the probability of accessing the most frequently accessed variables at level i-/ cubed.
The effect of this modification is to lessen the contention for the most frequently accessed
variables. Table 2 shows performance under three different warm-spot traffic models: light
contention (60/30 rule); medium contention (70/20); and heavy contention (80/10}. The
table indicates that increased contention affects the relative performance of the networks
in the warm-traffic model in the same way as in the hot-spot model: the differences in
throughput narrow and delay in the z-switch networks C2 and I2 grows faster than delay
in C1 and I1.

2 0.585 0.487 0.163 I
1 0.247 0.233 0.124
, ) 0413 0.362 0.147

3.952

c1 1.805 1.964

I 2 3.305 3.970 8,957

I 1 3.001 3.164 5396 1
2 4.135 4.546 9.529

| e e e e

TABLE 1. Series 1 Warm-spot data.

The results from Series 1 show that each conventional network outperforms the corre-
sponding isotach networks for workloads with no atomicity, data dependence, or other
sequencing constraints. Each of the remaining series compares the performance of the net-
works under a workload that includes some combination of atomicity and sequencing con-
straints. In addition to including constraints on execution order, series 2-6 differ from
series 1 in other ways:
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1. Processes - Each process is independent, executing its own program on its
own PE, and each process’s program consists of a sequence of atomic
actions, each containing one or more operations on shared variables.

2. Reverse network - Each network simulation includes traffic in both the for-
ward (PE->MM) and reverse (MM->PE) directions. All of the reverse net-
works are conventional networks. I2 uses C2 as the reverse net and the other
networks use C1. In each cycle each MM (PE) can both receive one opera-
tion (response) from the network and issue one response (operation).

3. Throughput - The throughput reported is the atomic action throughput
instead of the access throughput. Unless otherwise stated, the throughput
reported is the average number of atomic actions completed per cycle
divided by the number of MMs.'

4. Delay - The delay reported is the atomic action delay. Unless otherwise
stated, delay is the average number of cycles from the time an atomic action
is generated until it is completed. Note that delay is not normalized for the
number of network stages as it is in series 1.

5. Networks - Results are shown only for C1, I1, and I2. We simulated all four
networks, including C2. Although C2 outperforms all the other networks in
series 1, it performs more poorly than C1 in the remaining series. The results
show that at every data point, C1 provides more throughput with less delay
than C2. The reason for C2’s poor performance relative to C1 is that in the
later series C2 retains its high latency but can’t take advantage of its high
throughput. Both conventional networks are under-utilized in series 2-6
because higher level synchronization constraints prevent processes from
issuing operations fast enough to saturate the network. For simplicity, we
omit further discussion of C2.

4.2 Sequential Consistency Only Data

Series 2 compares the networks under a workload model requiring sequential consistency.
In this series, all atomic actions are singletons (size 1) and no data dependencies constrain
the issuing of operations, but each process’s operations must appear to be executed in
order. Tn I1 and I2, operations can be pipelined without risk of violating sequential consis-
tency, whereas C1 must enforce sequential consistency by limiting each PE to one out-
standing operation at a time. In C1, each PE repeatedly issues an operation, waits for a
response from memory, and then issues its next operation (. ¢., the simulation parameter
“aa_cap” equals 1). In I1 and 12, each PE issues a new operation whenever its output
buffer is empty (aa_cap = unlimited). Note that the isotach network simulations in series 1
and 2 are the same except for the inclusion of the reverse networks and the difference in
the way results are reported. Delay in series 2 is the number of cycles between the time an
operation is placed in the PE’s output buffer until the time the PE receives the response to
the operation.
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Base Case - Throughput for C1 in the base case is only about 15% of its series 1 through-
put, reflecting the high cost of enforcing sequential consistency in a conventional network.
For the isotach networks the throughput in series 1 and 2 is the same. Because they can
pipeline operations, the isotach networks outperform C1 in terms of throughput but the
delay per operation is longer than C1’s delay. In the base case I1 can execute 3.6 times as
many operations as C1, but each operation takes 2.3 times as long. I2 can execute 6 times
as many operations, but each takes 2.7 times as long. Delay for all networks is higher than
in series 1 because delay in series 2 includes delay due to the reverse network and non-net-
work delay.

In each part of the series, one parameter is varied while each of the remaining parameters
remains at its base case setting.

Scalability - Graphs 2-scalability show the effect of varying the network size from its base
case setting of 5. As network size increases from 4 to 10 stages, throughput slowly
decreases and delay per stage remains roughly constant. Delay per stage in I1 and 12 is rel-
atively constant as the number of network stages increases because the delay due to the
forward network is only one component of the delay reported in series 2. The other com-
ponents, the reverse network and non-network delay either remain constant on a per stage
basis or decrease. Delay per stage due to the reverse network is roughly constant since the
reverse networks are conventional networks. Non-network delay declines on a per stage
basis as the delay is amortized over more stages. Throughput decreases for each network
at about the same rate but for different reasons. Throughput per MM decreases in the iso-
tach networks because in isotach networks throughput per MM decreases as the number of
stages increases. Throughput per MM decreases in the conventional networks because a
PE can have only one outstanding operation at a time and delay for each operation
increases as the number of stages increases.
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GRAPHS 2-scalability - Series 2 data for variation of network size. 0-CLI-11;9-12;
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GRAPHS 2-hot_spot - Series 2 data for various hotspot loads. O - C1; T -11; 0 - 125

Hot-spot and Warm-spot Traffic - Graphs 2-hot_spot and Table 2 show network perfor-
mance for the hot-spot and warm-spot traffic models, respectively. As in series 1, net-
works I1 and I2 show significant decreases in throughput and increases in delay as
contention increases. Network C1 has low throughput and low delay. Over the range of
traffic model parameters tested, C1 is unaffected by increases in the probability of hot-spot
and warm-spot traffic. Throughput and delay are unaffected in C1 because the network is
operating at only about 28% capacity due to the restriction on pipelining.

1 34,032 36.038 56.861 l
40344 42.887 76.587 l

|
|
|
|
|

TABLE 2. Series 2 warmspot data.

Data Dependencies - Graphs 2-aa_cap show the effect of changes in the data dependence
distance on system performance. Data dependencies diminish throughput of isotach net-
works by an amount that depends on the distance between data dependent operations.
Until now, we have assumed data dependencies either do not exist or are between opera-
tions that are so far apart that the data dependencies do not effect pipelining. In this part of
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series 2 we relax this assumption. With a data dependence distance of 1 (modeled by
imposing an aa_cap of 1), the throughput of the isotach networks is lower and the delay
higher than that of C1, as can be predicted from the results of series 1. Beginning at a data
dependence distance of 2 (aa_cap of 2), the throughput of the isotach systems is higher
than C1’s although the delay also continues to be higher. C1 requires an aa_cap of 1 in
order to maintain sequential consistency and so is unaffected by the data dependence dis-
tance. I2 requires a dependence distance of about 16 to take full advantage of its through-
put. For I1, a dependence distance of about 5 is sufficient. 12 performs less well than I1 at
small dependence distances because 12 cannot take advantage of its higher throughput but
is hurt by the higher response turnaround time due to its higher latency.
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GRAPHS 2-aa_cap - Series 2 data for variation of data-dependence distance, L1 - 11; 0 - 12;

4.3 Atomicity Only Data

Series 3 compares the performance of isotach and conventional systems under a workload
requiring atomic access to multiple shared variables. The atomic actions are assumed to be
flat, i.e., no data dependencies exist among operations from the same atomic action, and
independent, i.e., no data dependencies among different atomic actions inhibit pipelining.
The atomic actions must appear to be executed as an indivisible step, but may appear to be
executed in any order, i.e., the workload does not require enforcement of sequential con-
sistency. Although sequential consistency is not required, the isotach networks guarantee
sequential consistency by their design.

Techniques for enforcing atomicity in isotach systems were described in section 2. Isotach
networks enforce atomicity by issuing all the operations in an atomic action in the same
isochron. The conventional systems we simulate enforce atomicity using 2PL. A process
does not release any lock acquired in an atomic action until it acquires all locks for the
atomic action. To avoid deadlock, each process acquires the locks it needs for each atomic
action in a predetermined linear order. Since execution need not be sequentially consis-
tent, a process may execute more than one atomic action concurrently.
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The algorithm for lock acquisition and release simulated is more efficient than that used in
most systems. Instead of spinning on a lock, processes queue lock requests at memory.
The algorithm distinguishes read locks from write locks and only the latter are exclusive.
Several processes can concurrently hold a read lock on the same variable. Instead of send-
ing a lock request for an operation, a process sends the operation itself. Each operation
implicitly catries a request for a lock of the type indicated by the operation. When it
receives an operation, the MM enqueues it. If no conflicting operation is enqueued ahead
of it, the operation is executed and a response returned to the source PE. A PE knows it
has acquired a lock when it receives the response. Eliminating explicit lock requesting and
granting messages reduces traffic and eliminates the roundtrip delay from memory to the
process and back when a lock is granted. When the PE has acquired all the locks for the
atomic action, it sends a lock release for each lock it holds.

Since execution need not be sequentially consistent, locks are not obtained for operations
from singleton (size 1) atomic actions. The MM’s execute operations from singleton
atomic actions as soon as they are received even if another process holds an exclusive lock
on the variable accessed. In the base case, with an atomic action mean size of 3, about
22% of atomic actions are of size 1.

Delay in series 3 is the number of cycles from the time the atomic action is generated until
the last response is received. Note that for conventional networks, the time required to
release Jocks is not included in delay. A process generates a new atomic action whenever
its output buffer is empty and the number of atomic actions it has started but not com-
pleted is fewer than a given number, aa_cap, supplied as a parameter. Initially we set
aa_cap = unlimited for both isotach and conventional systems to allow unrestricted pipe-
lining. We found however that allowing unlimited production of atomic actions in the con-
ventional networks is counterproductive due to contention for locks. Latency rises steeply
with no gain in throughput. This effect does not occur in the isotach systems, where lock-
ing is not necessary. We present data for C1 with aa_cap = 3. For I1 and 12, we show
results for aa_cap = 3 and for aa_cap = unlimited.

Base Case - When each network is subject to an aa_cap of 3, throughput in the isotach
networks is slightly higher in the base case and delay slightly lower than in C1. The per-
formance of the uncapped isotach networks is better than the capped networks. When 121is
uncapped, its throughput is almost 3 times that of C1 and its delay remains lower than
Cl’s.
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Scalability - Graphs 3-scalability show the effect of varying the number of network
stages. With aa_cap = 3 for all networks, the graphs indicate that the performance of 11
and I2 becomes worse than that of C1 for large systems (stages > 9), but that the uncapped
isotach networks continue to outperform C1. The graphs show that as the number of stages
increases, throughput and delay gradually decrease. The delay reported in this part of
series 3 is the delay normalized for the number of stages. The decrease in throughput and
delay is attributable to the factors discussed under the scalability part of series 2. The
graphs show an anomalous result for delay in large isotach networks: delay becomes
worse when a cap is placed on the number of active atomic actions.
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Atomic Action Cap - Graphs 3-AA_cap show the effect of varying the cap on the number
of atomic actions a PE can have active at any one time. The graphs show C1 performs very
poorly with a large aa_cap. Cl does not benefit from increasing the aa _cap because
increasing the aa_cap also increases contention for locks. This contention is reflected in
the delay for C1, which rises steeply as the aa_cap increases. Throughput for C1 levels off
at about 6. For I1 and 12, throughput and delay rise as the aa_cap increases until the net-
work is saturated (at about 6 for I1 and about 12 for 12) and thereafter remain constant,
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GRAPHS_ 3-hot_spot - Series 3 data for variation of hotspot load.
O-CL;IJ-11;0-12; M -11 (AA Cap = 3); ¢ - 12 (AA Cap = 3);

Hot-spot and Warm-spot Traffic - Graphs 3-hot_spot and Table 3 show network perfor-
mance for the hot-spot and warm-spot traffic models, respectively. The results show that
C1 performs increasingly poorly relative to I1 and 12 as the percentage of traffic going to
hot and warm variables increases. C1 is more adversely affected by nonuniform access
patterns because the use of locking as the means for enforcing atomicity magnifies the
effect of contention. The throughput graph shows that until the percentage of hotspot traf-
fic is about 15%, throughput for I1 and 12 is lower when aa_cap = 3 than when aa_cap =
unlimited, indicating that the cap itself is the limiting factor. Thereafter the capped and
uncapped networks have similar throughput, indicating that the hotspot traffic has become
the limiting factor. We attribute the large confidence intervals exhibited by C1 to the fact
that placement of the hot-spot variable changes with each trial, while the order in which
locks are acquired remains the same.
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C1 (AA Cap=3) 0.0269 0.0127 0.0035

(.0267 - 0271} (0125 - .0129) (0034 - .0036)
11 (AA Cap=3) 0.0611 0.0599 0.0415
(.0606 - .0616) (.0595 - .0603) (0405 - .0427)
12 (AA Cap=3) 0.0625 0.0622 0.0561
‘ (0615 - .0635) (.0615 - .0629) (.0539 - .0583)
I1 (No AA Cap) 0.0693 0.0661 0.0390
' (-0682 - 0705) (.0649 - .0673) (0371 - .0409)

0.1359 0.1238 0.0565
(.1341 - .1376) (1214 - .1263) (.0527 - .0602)

12 (No AA Cap)

108.393 232,193 849.973
(107.537 - 109.250) | (228.971 - 235.414) | (817.718 - 882.228)

Cl(AA

I1 (AA Cap=3) 45,751 46.711 67.186
(45.460 - 46.042) (46.252 - 47.170) (65.508 - 68.864)

12 (AA Cap=3) 46.312 46.558 52,123
(45.635 - 46.989) 46,004 - 47.111) (49.918 - 54.328)

I1 (No AA Cap) 52.291 54.602 86.775
: (51.664 - 52.918) (51,664 - 52.918) (82.979 - 90.570)
B2 (No AA Cap) 55.702 60.092 112.505

(55.156 - 56.249) (59.208 - 60.976) | (105.842 - 119.168)

TABLE 3. Series 3 warm-spot data. 99% confidence intervals are shown in parentheses.

Atomic Action Size - Graphs 3-AA_size show the effect of varying the average size,
aa_mean, of atomic actions. Throughput as reported in this part of series 3 is normalized
for atomic action size, i.e., reported throughput is atomic action throughput times the aver-
age number of operations per atomic action. Thus reported throughput is the average num-
ber of operations arriving at each MM. Delay is also normalized. Delay is the atomic
action delay divided by the average number of operations per atomic action. The results
show C1 performs poorly for large atomic actions. As the atomic action mean size
increases, C1’s throughput drops and its delay rises steeply. The isotach networks, both
capped and uncapped, outperform C1. The drop in throughput is more gradual and, instead
of increasing, normalized delay actually decreases. The decrease is attributable to the fact
that operations in the same atomic action are delivered and executed concurrently in an
isotach system, so delay per operation declines as the number of operations per atomic
action increases. For large atomic actions, the isotach systems perform markedly better
than the conventional systems. When the average atomic action size is 16, the delay in the
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conventional systems is greater than the delay in the isotach systems by a factor of about
22 and the throughput is less than the throughput in the isotach systems by a factor of
about 12 (I1) to 16 (I2). The steep rise in delay in the conventional systems is attributable
to the locking protocol. A process waiting to acquire a lock retains the locks it has already
acquired for operations in the same atomic action. As atomic actions grow larger, not only
does the number of operations contending for access grow, but also the length of time each
lock is held. U
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GRAPHS 3-AA size - Series 3 data for variation of atomic action size.
0-C1;0-11;0-12; M- 11 (AA Cap = 3); # - 12 (AA Cap =3);

The capped versions of I1 and I2 have lower throughput than the uncapped versions when
the atomic actions are too small to saturate the network.
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GRAPHS 3-force sing - Series 3 data for variation of singleton probability,
0-CI;[-11;0712; M -11 (AA Cap =3); ¢ -12 (AA Cap = 3);

June 1992 28



Empirical Analysis of Isotach Networks

Forced Singletons - Graphs 3-force_sing show the effect of varying the probability of
forced singletons. Recall that the actual percentage of singleton atomic actions, ie.,
atomic actions of size 1, is larger than the forced-singleton probability because some sin-
gleton atomic actions may be drawn from the exponential distribution of atomic action
sizes. With an atomic action mean of 3, a forced singleton probability of 50% corresponds
to a total probability of singleton atomic actions of about 61%. The results show that net-
work C1 performs well when the percentage of singletons is high. Since C1 does not
enforce sequential consistency in series 3, or acquire any locks for singleton atomic
actions, as the percentage of singletons increases, its performance becomes increasingly
similar to its performance in series 1. The isotach networks are less sensitive to the per-
centage of singleton atomic actions. As the singleton percentage increases, their perfor-
mance improves, but the rate of improvement in delay is less than that of C1 and, except
for the uncapped version of 12, the rate of throughput is about the same as Cl’s, As a
result, the isotach networks, with the exception of the uncapped version of 12, perform less
well than C1 when the percentage of singletons is high.
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GRAPHS 3-read _prob - Series 3 data for variation of READ probability.
0 -C1; 01 .11; 0~ 12; M- 11 (AA Cap = 3); ¢ - 12 (AA Cap =3);

Read/Write Probability - Graphs 3-read_prob show the effect of varying the percentage
of accesses that are READ operations from the base case setting of 75%. The conventional
networks perform better as the percentage of read accesses increases because the read-
locks required for READ’s can be shared, whereas WRITE’s require exclusive locks. The
isotach networks are unaffected by the percentage of reads.

Series 3 shows that for a workload model that requires atomicity but not sequential consis-
tency, the isotach networks outperform the conventional networks. Even with the handicap
of also insuring sequential consistency, the isotach networks are able to perform better
than the conventional networks.
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4.4 Flat Atomic Action Data

Series 4 compares the performance of the networks under a workload which requires both
atomicity and sequential consistency. As in series 3, the atomic actions are assumed to be
independent and fiat, but in this series, the atomic actions must not only be executed atom-
ically but also must appear to be executed in order.

The conventional networks ensure atomicity through the locking protocol discussed
above. Sequential consistency is enforced by limiting the number of outstanding atomic
actions per PE to one (aa_cap = 1) and by requiring processes to obtain locks for singleton
atomic actions. In the isotach systems, by contrast, a PE may have any number of active
atomic actions and it need not obtain locks. :

This series is very similar to series 3. Throughput and delay are measured and reported in
the same way as in series 3. In terms of the simulation parameters, the only difference is in
the setting of the aa_cap. For the conventional networks, aa_cap is reduced from 3 to 1.
For the isotach networks, only the uncapped versions are relevant in this series. The
results reported for I1 and 12 are identical to those reported in series 3 as the results for the
uncapped versions of I1 and I2. Our report for series 4 is limited to the differences
between series 3 and series 4.

Base Case - C1 has lower throughput and lower delay in series 4 than in series 3 because
the cap on the number of atomic actions is lower. The lower cap reduces delay by reducing
the load on the network and by reducing contention for locks. As a result, C1’s delay is
better in relation to I1 and I2 in this series than in series 3 and its throughput is worse. C1’s
per stage delay in the base case is slightly better than that for 11 and I2 (9.2 for C1 as
opposed to 10.3 for I1 and 10.9 for 12), but its throughput is much worse: in the case of 11,
by a factor of 3.5 and in the case of 12 by a factor of 7.
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GRAPHS d4-scalability - Series 4 data for variation of network size. 0 - CL; 0 -11;0 - I2;
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Scalability (Graphs 4-scalability) - As in series 3, throughput and delay per stage drop
off gradually in both the isotach and conventional systems as the number of stages
increases from 4 to 10. ' '
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GRAPHS 4-hot_spot - Series 4 data for variation of hotspot load. O - C1; O-11;0.12;

Hot-spot and Warm-spot Traffic (Graphs 4-hot_spot and Table 4) - As in series 3, the
results show that the advantage of isotach networks over conventional networks grows as

the probability of hot spot and warm spot traffic increases.

0.0175
(.0175 - .0176)

0.0115
(0115 - 0116)

0.0032
(.0031 - .0033)

0.0693
(0682 - .0705)

0.0661
(.0649 - .0673)

0.0390
(.0371 -.0409)

0.1359
(1341 - 1376

0.1238
(1214 - .1263)

0.0565

54.086
(53.907 - 54.264)

83.755
(83.185 - 84.325)

308.015
(296.555 - 319.475)

52,291

(59.208 - 60.976)

34,602
(53.784 - 55.421)

86.775
(82.979 - 90.570)

55.702
(55.156 - 56.249)

60.092
(59.208 - 60.976)

112,505
(59.208 - 60.976

TABLE 4, Series 4 warm-spot data, 99% confidence intervals are shown in parentheses,
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Atomic Action Size (Graphs 4-AA_size) - The delay in C1 is lower than is series 3, so
the difference in delay between the conventional and isotach systems is less in this series.
The delay in C1 is higher than that of I1 and 12 by a factor of about 7.5 instead of 22 for

aa_size = 16.
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GRAPHS 4-AA_size - Series 4 data for variation of atomic action size. O - CL-11;0-125

Forced Singletons. (Graphs 4-force_sing) - C1 does not show as great an improvement
as the percentage of singletons increases in this series as it does in series 3. The reason C1
derives less benefit from singletons in series 4 is that singletons are subject to more restric-
tions. In series 4, singletons cannot be pipelined by C1 and must respect locks in the same

way as ordinary accesses.
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GRAPHS d-force_sing - Series 4 data for variation of the singleton probability. 0 - C1;J-11; 0 - 12;

Read/Write Probability (Graphs 4-read_prob) - C1 is less sensitive to the proportion of
reads and writes than in series 3. Reducing the aa_cap from 3 to 1 means fewer operations
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are contending for access to the same variable. In the base case of series 4 (25% WRITES)
the percentage of lock requests that are granted immediately is 97 as opposed to 91% in
series 3. Concurrently active operations access the same variable so infrequently in this
series that increasing the percentage of writes has little effect on performance.
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GRAPHS 4-read_prob - Series 4 data for variation of READ probability, O - Cl1; Q-11;0-125

This series shows that the isotach systems perform very well and the conventional systems
very poorly when each process’s workload consists of a sequence of fiat, independent
atomic actions. The conventional systems cannot take full advantage of the greater raw
power of their networks because the rate at which operations can be issued is severely lim-
ited by the locking protocol and the restriction on pipelining. The performance of the iso-
tach systems, by contrast, is limited only by the performance of the raw power of the
networks. Though the raw power of the networks is somewhat lower than that of the con-
ventional networks, the synchronization support the isotach networks provide allows the
isotach systems to outperform the conventional systems by a wide margin.

4.5 Data Dependency Data

This series compares the performance of conventional and isotach systems for a workload
model in which data dependencies exist both within and among atomic actions. The exist-
ence of data dependencies among atomic actions means that a process cannot issue an
atomic action until the proceeding atomic action is complete. To simulate this type of data
dependence, we set aa_cap =1 for all networks.

The data dependencies within atomic actions are assumed to be of a simple type: each
WRITE depends on all the READ’s in the same atomic action. As a consequence, a pro-
cess cannot issue a WRITE until it has received responses to all the reads in the same
atomic action. The introduction of data dependencies within atomic actions should make
C1 very slightly less efficient than in series 4, but we assume for simplicity that C1’s per-
formance remains the same. The data for C1 in this series is copied from the data from
series 4. For an isotach system the impact of data dependencies is much more significant
since they prevent the isotach system from taking advantage of its ability to pipeline while
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maintaining sequential consistency. In the case of I1 and I2, the data dependencies within
atornic actions are modelled by using the scheduling isochron technique in section 2
(access sequences and split operations) for every atomic action containing a WRITE.

Base Case - Both the throughput and delay are lower for the isotach systems than in series
4, Delay is lower because the networks are more lightly loaded. As noted above, the data
for C1 is copied from series 4. I1 and I2 perform only slightly better than C1 in the base
case. Throughput for C1 is lower (.020 for C1 instead of about .030 and .027 for I1 and I2)
and delay per stage is higher (9.2 for Cl1 instead of 6.6 and 7.5 for I1 and 12).
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GRAPHS 5-scalability - Series 5 data for variation of network size. O - C1; -¥1;0 . 12;

Scalability (Graphs 5-scalability) - The throughput of C1 and 12 diminish gradually and
at about the same rate. I1 scales slightly less well than I2 under this series’s workload. The
throughput of I1 drops faster than 12’s and, instead of diminishing, the delay per stage for

I1 increases very slightly. '
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GRAPHS 5-hot_spot - Series 5 data for variation of hotspot load. O - C1; LI -I1; 0 - 12;
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Hot-spot and Warm-spot Traffic (Graphs 5-hot_spot and Table 5) - Although the
throughput for the isotach networks is much lower than in series 4, it remains higher than
the throughput of C1, Delay for the isotach networks improves significantly over the delay
in series 4 and is much lower than the delay for C1. When the probability of accessing the
hot-spot is 10%, the throughput for I1 and 12 is about 3.5 times higher than C1’s and delay
is about 3.5 times lower. When the probability of hot spot access is high (0.23), throughput
for I1 and 12 is higher than C1 by a factor of about 7.8 and 5.25 respectively and delay is
lower by a factor of about 8.5 and 6. The warm-traffic data show the same pattern.

00175
(.0175 - 0176)

0.0115
(0115 - 0116)

(0031 - .0033)

0.0032

0.0301
(0297 - .0304)

0.0288
(0287 - 0289)

0.0207
(.0202 - .0212)

0.0260
(.0258 - .0262)

0.0245

(0243 - .0247)

0.0163
(0159 - .1067)

54.086
(53.907 - 54.264)

83.755
(83.185 - 84.325)

308.015

(296.555 - 319.475)

32.869
(32.259 - 33.479)

34.356
(33.844 - 34.868)

47973
(47.331 - 48.615)

38.246
(38.011 - 38.482)

40.642
(40.260 - 41.024)

61.089
(59.694 - 62.48

TABLE 5. Series 5 warm-spot data. 99 % confidence intervals are shown in parentheses)

Atomic Action Size (Graphs 5-aa_size) - As in series 3 and 4, throughput and delay for
this part are normalized for the atomic action size. As the atomic action mean size
increases, the data show that throughput for the isotach networks initially increases, and
then decreases, whereas normalized delay initially decreases and then increases. Through-
put increases initially because increasing the atomic action size increases the number of
operations presented to a network that is underutilized because of the cap of 1 on the num-
ber of active atomic actions. The subsequent decrease in throughput can be attributed to
several factors:

1. the network becomes less efficient as the size of the atomic actions increases;

2. the percentage of atomic actions that include a WRITE increases with the
result that a greater percentage of atomic actions must be executed in 2
stages; and

3. more operations are accessing the same number of variables with the result
that the probability a READ waits on an unsubstantiated SCHED increases.
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GRAPHS 5-AA_size - Series 5 data for variation of atomic action size. O - C1;1d - 11; Q- 12;

Delay increases for the reasons throughput decreases. The initial very small decrease in
delay occurs because operations in the same atomic action are issued and executed con-
currently so delay per operation tends to decrease as the number of operations per atomic
action increases. Although the efficiency of I1 and I2 is much lower than in series 3 and 4,
the isotach networks still outperform the conventional networks by a margin that increases
as the atornic action size increases. When the atomic action mean size is 16, throughput is
about 3.5 to 4.5 times higher for 11 and I2 than for C1 and delay about 4 to 5 times lower.
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GRAPHS 5-read_prob - Series 5 data for variation of READ probability. O - C1; [ -11; ¢-12;

Read Probability (Graph 5-read_prob) - The efficiency of each of the systems increases
gradually as the probability of a read access increases. None of the systems is very sensi-
tive to the percentage of reads because the probability that operations concurrently access
the same variable is low, given the cap of 1 on the number of active atomic actions per PE
and the uniform distribution of accesses.
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Forced Singletons. (Graphs S-force_sing) - This data shows that isotach networks con-
tinue to outperform conventional networks even under the performance limiting effects of
this series until the forced-singleton probability reaches about .5 (meaning the percentage
of singleton accesses is about 60%).

Series 5 shows that isotach systems can outperform conventional systems even for work-
loads in which the existence of data dependencies negates one of the principal advantages
of isotach systems, the ability to pipeline operations while maintaining sequential consis-
tency. The series indicates that the scheduling isochron technique is more efficient than
2PL for structured atomic actions of the type simulated, especially for large atomic actions
or nonuniform access patterns.

4.6 Warm Traffic Data

Series 6 compares the performance of the networks when accesses are not uniformly dis-
tributed. This series repeats patts of earlier series using an 80/20 rule warm traffic model
in place of the uniform traffic model. We include this series to explore the effect of conten-
tion for shared variables in conventional and isotach systems.

This series also differs from earlier series in that it uses a switch buffer size of 2 for the
isotach networks. C1 is slightly more efficient with a switch buffer size set at 1 instead of
2 and the isotach networks are slightly more efficient at 2 instead of 1. In all previous
series, the switch buffer sizes are all set at 1. In this series we compare the conventional
and isotach systems when each has its optimal switch buffer size: 1 for C1 and 2 for I and
12.

In the first part of series 6 (series 6.1), the workload model is the atomicity only model
from series 3. In the second part (series 6.2), the workload model is the flar atomic action
model from series 4.
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Base Case - In the base case for series 6.1 (atomicity only), the throughput of the capped
version of 12 is higher than C1’s by a factor of about 9 and delay is about 8 times lower. In
the base case of series 6.2 (flat atomic actions) throughput of 12 is 18 times higher than
CI’s and delay about half that of C1. When accesses are not uniformly distributed the mar-
gin by which isotach networks outperform conventional networks increases. The perfor-
mance of the isotach networks in series 6.1 and 6.2 is similar to their performance in series
3 and 4. The throughput is essentially the same and the delay only slightly higher. The
increase in the buffer size helps offset the decrease in throughput caused by the non-uni-
form distribution of accesses. The performance of C1, by contrast, is considerably worse
in series 6. When the probability of conflicting operations is low, locks have less impact
on performance than when it is high. The use of locks to enforce atomicity means C1’s
performance suffers when accesses are not uniformly distributed.
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GRAPHS 6.1-AA-size - Series 6.1 data for variation of the atomic action size.
0-CL;J-11;0-12; M- 11 (AA Cap = 3); ¢ - 12 (AA Cap = 3);

Atomic Action Size - Graphs 6.1-AA_size and 6.2-AA_size show the effect of varying
the atomic action size under a warm-traffic model. These graphs correspond to Graphs 3-
AA_size and 4-AA_size, respectively. When atomic actions are large and traffic is non-
uniform, C1’s performance is very poor relative to the isotach networks. For large atomic
actions (aa_size = 16), the throughput in series 6.1 of the capped version of 12 is about 43
times higher than C1’s and delay about 57 times lower. In series 6.2, 12’s throughput for
large atomic actions is about 78 times higher than C1’s and its delay about 24 times lower.
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GRAPHS 6.2-AA_size - Series 6.2 data for variation of the atomic action size, O - Cl; -11;0-12;

Read Probability - Graphs 6.1-read_prob and 6.2-read_prob show the effect of varying
the probability that an access is a READ, The isotach networks are not sensitive to the
READ probability, but C1 is, and to a much greater extent than under the uniform traffic
model. The effect on C1 is much greater under a warm traffic model because the probabil-
ity that two operations conflict is significantly higher than when accesses are uniformly
distributed. In the base case (read_prob = 75%), the percentage of locks granted immedi-
ately declines from 91% in series 3 to 81% in series 6.1 and from 97% in series 3 to 83%
in 6.2. When the READ probability is low (25%), the throughput in series 6.1 of the
capped version of I2 is higher than that of C1 by a factor of about 15 and its delay is lower
by a factor of about 13. The comparable figures for series 6.2 are 29 for throughput and 2.7

for delay.
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GRAPHS 6.1-read_prob - Series 6.1 data for variation of the READ probability.
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Series 6 indicates that isotach systems outperform conventional systems by a wider mar-
gin when accesses are not uniformly distributed.
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GRAPHS 6.2-read_prob - Series 6.2 data for variation of READ probability. O - CL; L1 -11; Qu12;

5.0 Conclusions

‘We have presented results from a simulation study comparing the performance of isotach
and conventional networks. The study shows conventional networks have higher raw
power than isotach networks, but that under a workload of operations with atomicity and
sequencing constraints, isotach networks outperform conventional networks. Isotach net-
works perform best in relation to conventional networks under workloads with the follow-
ing characteristics:

1. execution is required to be sequentially consistent;

2. the distance between data dependent operations within the same process’s
program is large enough to allow operations to be pipelined;

3. atomic actions are large; and

4. contention for shared variables is high.

When the workload has two or more of these characteristics, an isotach network performs
markedly better than a conventional network. In some cases, the improvement in both
throughput and delay is more than ten-fold.

The isotach systems outperform the conventional systems in spite of the lower raw power
of the isotach networks. A conventional system cannot take advantage of the higher
throughput and lower delay of its network when the synchronization techniques it uses
work by restricting throughput and imposing delays. In conventional systems, the limiting
factor on execution speed is not the network, but restrictions and delays imposed by the
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synchronization techniques. In isotach systems, the limiting factor is the network itself.
Atomicity and sequencing constraints have markedly less effect on execution speed in iso-
tach than in conventional systems.

The simulation results indicate that network throughput is of more importance relative to
network latency in its effect on system performance in isotach systems than in conven-
tional systems. Isotach systems are better able to take advantage of high throughput and
are better able to use pipelining to mask latency. The high-throughput z-switch isotach
network (I2) in most cases outperforms the lower throughput isotach switch (I1) in spite of
the assumption that I2’s cycle time is twice that of I1. In designing conventional networks,
however, the simulation indicates that accepting worse delay for beiter throughput is a
poor decision. The high-throughput z-switch C2 outperforms all other networks in raw
power, but consistently performs worse than the simpler conventional switch C1 under a
workload with synchronization requirements.

The most important assumptions made by the study are as follows: 1) the cycle time for
each isotach network switch is the same as that of the corresponding conventional switch
and the cycle time for a z-switch is twice that of a single-cycle switch -- in particular, that
the latency of the isotach network which performs best (I2) is twice that of the conven-
tional network that performs best (C1); 2) the workload models simulated are relevant to
actual parallel computations; and 3) the conventional system simulated is a good basis for
a fair comparison of conventional with isotach systems.

One of our goals for future research is the refinement of these assumptions. This work
includes the following tasks:

1. Specifying the low-level design of the isotach network switch. A more
detailed design should allow us to determine the relative cycle time of the
isotach network switch with more certainty.

2. Extending the study to include more complex atomicity and sequencing con-
straints such as those implied by pointer-following or data dependencies
between operations issued by different processes.

3. Driving the simulations with operation streams derived from actual programs
or with a synthetic workload that more closely models typical parallel pro-
grams. Parallel programs typically use locks on execution paths to enforce
atomicity instead of locks on individual variables. The method of enforcing
atomicity assumed in the simulation is closer to that used in databases than in
parallel programs.

4. Comparing isotach-based techniques to conventional techniques other than
2PL, such as timestamp or optimistic concurrency control techniques.

Another goal for future research is improving the raw power of the isotach network. We
intend to investigate the following ideas for improving performance:

1, Substituting C1 for C2 as the return network (MM->PE) for 12. The higher
latency network C2 was used as the return network for 11 although the simu-
lation results indicate that C1 is a good match for 12 in throughput. Substitut-
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ing C1 as the reverse network can be expected to decrease the latency of the

12 system without decreasing the maximum throughput. A preliminary inves-
tigation using the series 5 base case shows an improvement of about 7.5% in
both latency and throughput.

2. Modifying the switch algorithm so that the synchronization delay imposed on
an operation not subject to any atomicity or sequencing constraints is
decreased or eliminated. The simulation shows isotach networks perform less
well in relation to conventional networks when the workload does not require
synchronization or when synchronization requirements are low. The reason
for the relatively poor performance is that the isotach networks simulated
impose a synchronization charge on every operation, whether the operation
requires synchronization or not. The modification required to decrease the
synchronization charge imposed on operations not subject to synchronization
constraints appears to be straight-forward. A tag bit is added to each opera-
tion and the tag bit for an operation is set if the operation can be executed
correctly in any order in relation to other operations. Each switch routes
tagged operations contingent only on the availability of the required output,
i.e., the switch would apply the local synchrony algorithm to maintain order-
ing by route-tag only among the untagged operations. We would expect the
modified algorithm to improve the performance of the isotach networks in
series 1, 3, 5 (the ASSIGN operations can be tagged), and where the percent-
age of singleton atomic actions is high and sequential consistency is not
required.

3. Moedifying I2 to decrease latency. The current switch design of 12 is based on
2 two-step cycles. We believe it may be feasible to design a switch based on
3 single-step cycles with a latency closer to 1.5 times that of the low through-
put switch.

A third goal for future research is generalizing the study of the isotach network perfor-
mance to other systems or networks, as follows:

1. Networks that use worm-hole or virtual cut-through instead of store-and-for-
ward routing,.

2. Network switches with more than 2 inputs and outputs.

3. Systems with privately cached shared variables. Isotach networks support a
family of new cache coherence protocols that are more concurrent than pro-
tocols for conventional systems [WiR90]. We expect inclusion of caches to
increase the margin by which isotach systems outperform conventional sys-

- tems. Private caches also replace the elements in access sequences, eliminat-
ing the need for access sequences.

4. Recombining networks [KSS88] that can combine concurrently issued oper-
ations that access the same variable. Although conventional systems can ben-
efit from combining, we expect the benefit to be greater in isotach systems. In
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isotach systems, unlike conventional systems, the network can combine
operations from different non-trivial atomic actions and yet maintain atomic-
ity and sequential consistency [WiR91]. -

5. Isotach networks with other topologies, in particular the mesh and hypercube
topologies.
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