
Control-Theoretic Techniques and Thermal-RC Modeling for Accurate and
Localized Dynamic Thermal Management

—UNIV. OF VIRGINIA DEPT. OF COMPUTER SCIENCE TECH. REPORT CS-2001-27
�
—

Kevin Skadron
�
, Tarek Abdelzaher

�
, Mircea R. Stan

�

�
Dept. of Computer Science,

�
Dept. of Electrical and Computer Engineering

University of Virginia
Charlottesville, VA 22904

skadron@cs.virginia.edu, zaher@cs.virginia.edu, mircea@virginia.edu

Abstract

This paper proposes the use of formal feedback con-
trol theory as a way to implement adaptive techniques
in the processor architecture. Dynamic thermal manage-
ment (DTM) is used as a test vehicle, and variations of a
PID controller (Proportional-Integral-Differential) are de-
veloped and tested for adaptive control of fetch “toggling.”
To accurately test the DTM mechanism being proposed,
this paper also develops a thermal model based on lumped
thermal resistances and thermal capacitances. This model
is computationally efficient and tracks temperature at the
granularity of individual functional blocks within the pro-
cessor. Because localized heating occurs much faster than
chip-wide heating, some parts of the processor are more
likely to be “hot spots” than others.

Experiments using Wattch and the SPEC2000 bench-
marks show that the thermal trigger threshold can be set
within 0.2 � of the maximum temperature and yet never en-
ter thermal emergency. This cuts the performance loss of
DTM by 65% compared to the previously described fetch
toggling technique that uses a response of fixed magnitude.

1. Introduction

Recent research in the computer architecture field has
explored techniques for making the processor’s response
adapt to the current workload. Unfortunately, almost all
this work has used engineering solutions whose effective-
ness is only verified experimentally for a limited set of ap-
plications. This paper introduces the notion of using formal
feedback control theory to precisely control the adaptivity

�
This technical report (Nov. 2001) is an extended version of a paper

with the same title and authors, appearing in Proceedings of the Eighth
International Symposium on High-Performance Computer Architecture,
Cambridge, Mass., USA, Feb. 2002. c

�
2001 by Skadron, Abdelzaher, and

Stan.

and minimize performance losses. The use of control theory
provides an established design methodology that yields sev-
eral benefits: runtime adaptivity, very tight control over the
value of interest, the ability to avoid large parameter-space
searches, and adaptive controllers that are easy to design.
In particular, we demonstrate its effectiveness for adaptive
control of chip temperature—dynamic thermal management
or DTM [2].

Researchers have recently expressed interest in manag-
ing heat dissipation in order to reduce the growing cost of
the CPU’s thermal package. Borkar [1] estimates that above
35–40 Watts (W), additional power dissipation increases the
total cost per chip by more than $1/W. Without some sort
of dynamic technique for managing temperature, thermal
packages must typically be designed for peak power in or-
der to ensure safe operation—even though peak power may
rarely be observed. Unfortunately, peak power dissipation
may soon be as high as 130 W [18], making thermal pack-
ages expensive. As the sophistication of high-performance
processors grows, much of the added complexity and tran-
sistors are dedicated to extracting further ILP. Yet in some
cases, these features are only intermittently active during
the program. This only widens the gap between peak and
average power dissipation.

The gap between peak and average power dissipation
suggests that, instead of designing the thermal package for
sustained peak power dissipation, designers should instead
be able to target the thermal package for some lower tem-
perature and hence lower cost. In those cases when power
dissipation does approach peak levels and temperature ap-
proaches the limits of the thermal package, various tech-
niques for DTM can be engaged to force a reduction in
power dissipation and hence avoid thermal emergency. Be-
cause these techniques typically entail slowing down the
processor in some way, there may be performance penal-
ties whenever DTM is triggered. The decision to deploy
DTM therefore requires a tradeoff between savings in ther-

mal packaging costs and consequent losses in performance.
Yet speed remains critically important for high-performance
computing, and many embedded-systems applications as
well. The challenge of DTM is to adapt the thermal man-
agement to the application’s needs in order to minimize the
slowdown and extract the optimum combination of temper-
ature and performance. For any chosen thermal package,
better performance can be accomplished either by develop-
ing new mechanisms for implementing DTM, or by more
precisely engaging and disengaging the DTM mechanisms
to minimize the performance loss. Precision is what feed-
back control provides.

To better evaluate our techniques, this work also devel-
ops a more detailed model of thermal effects. Prior work
by Brooks and Martonosi [2] on architecture-level DTM
used a moving average of chip-wide power dissipation as a
proxy for temperature. We instead apply a model from the
thermal-packaging literature that uses thermal resistances
(R) and thermal capacitances (C) to directly model tem-
perature. This model is also used in the TEMPEST work
by Dhodapkar et al. [6], but only for average, chip-wide
temperatures to capture packaging effects. Our work uses
the RC model to derive a computationally efficient thermal
model for temperature effects in individual structures, and
hence lets us model “hot spots” and appropriate DTM re-
sponses. This is important, because localized heating oc-
curs much faster than does chip-wide heating, and so ther-
mal emergencies may occur at individual hot spots well
before the chip as a whole shows any signs of entering
thermal emergency. DTM mechanisms must take this fact
into account. Other work—the most recent by Yuan and
Hong [24]—has also modeled non-uniform heating effects,
but not in conjunction with architecture-level modeling. We
are unaware of any other work that combines localized ther-
mal modeling with a microarchitecture-level model.

Overall, this paper introduces the use of thermal-RC
modeling for architecture-level thermal effects, and in-
troduces the use of control theory to guide architecture-
level thermal management. We find that the control-
theoretic DTM techniques (CT-DTM) that are based on
the commonly used PID industrial controller (Proportional-
Integral-Differential) substantially outperform the non-
control-theoretic (non-CT) techniques. Indeed, the PI and
PID controllers are able to respond so quickly that thermal
response can be delayed until the chip temperature comes
within ��� � � of the desired maximum temperature. This re-
sponsiveness provides savings of 65% in performance loss
compared to the best DTM technique described by Brooks
and Martonosi while never causing thermal emergencies.
The results presented here suggest that feedback control
would be beneficial in a range of other adaptive architec-
ture techniques as well.

The rest of this paper is organized as follows. The

next three sections provide some necessary background
on DTM, controller design, and thermal modeling. Then
Section 5 describes our specific simulation and thermal-
modeling techniques, and Section 6 compares our thermal
model to the prior technique of using only a boxcar aver-
age of power measurements. Section 7 evaluates the ef-
fectiveness of our control-theoretic DTM techniques, and
Section 8 concludes the paper.

2. Dynamic Thermal Management

2.1. Non-Control-Theoretic DTM Techniques
The DTM work by Brooks and Martonosi [2] proposed

three microarchitectural and two scaling techniques for con-
trolling temperature. All are engaged at some trigger level
close enough to the emergency threshold that a trigger in-
dicates emergency is imminent, and far enough from the
threshold to give the DTM mechanism enough time to suc-
cessfully reduce temperature before an emergency occurs.
For their work, Brooks and Martonosi used power dissipa-
tion as a proxy for temperature. They chose an emergency
threshold of 25 W and a trigger threshold of 24 W, both
based on the boxcar average of per-cycle power dissipation
over the last 10 K cycles. Unfortunately, chip-wide power
is a poor proxy for measuring temperature. Chip-wide mea-
surements do not account for the fact that localized heating
occurs much faster—typically orders of magnitude faster—
than chip-wide heating. And while power and temperature
are clearly related, heating is an exponential effect (like an
electrical RC circuit) that a boxcar average cannot capture.
This makes it difficult to choose an average power level that
indicates thermal stress. Instead, Section 4 of this paper de-
scribes a way to model temperature directly and permit the
modeling of hot spots at various granularities, and Section 6
compares the two types of modeling.

For the DTM mechanisms studied here, we set the goal
that the techniques we study should never allow the chip
to enter thermal emergency. The most effective microar-
chitectural mechanism that Brooks and Martonosi explored
consists of toggling: every � cycles, instruction fetch is
disabled. This reduces the average number of instructions
in the pipeline and reduces the rate of accesses to the ma-
jor structures on the chip. They explore values for � of
1 (instruction fetch stops completely until the DTM mech-
anism is disengaged) and 2 (instruction fetch occurs every
other cycle until disengaged). “Toggle1” is able to eliminate
emergencies, because it stops fetching entirely; “toggle2”
is not. For the control-theoretic DTM mechanisms, we
consider more fine-grained variations of the toggling rate.
Compared to these responses of fixed strength, the control-
theoretic approach lets us use mild reductions in fetch tog-
gling when the thermal stress is mild, but more aggressive
toggling as the thermal stress becomes more severe.

2

Brooks and Martonosi also explored two other microar-
chitectural techniques, throttling [17] and speculation con-
trol [14]. In throttling, instruction fetch is performed ev-
ery cycle, but the number of instructions fetched is reduced
from the normal operating bandwidth. This has the prob-
lem that the number of accesses to many structures, espe-
cially the branch predictor and I-cache, are not reduced, and
this technique often cannot prevent certain hot spots. These
problems point out the importance of monitoring tempera-
ture on a per-structure basis; the chip-wide average of power
dissipation will not capture these effects. With speculation
control, whenever more than � unresolved branches are
present in the pipeline, no further instructions are fetched
until the number of unresolved branches falls below � . Un-
fortunately, this technique is ineffective for programs with
excellent branch prediction or periods of excellent branch
prediction.

The scaling techniques consist of either scaling just the
clock frequency or scaling both the frequency and the op-
erating voltage. The advantages of the microarchitectural
techniques are that they can be engaged and disengaged
quickly, and that in some cases, the program’s ILP char-
acteristics permit the DTM mechanism to work well with-
out penalizing performance. The scaling mechanisms, on
the other hand, necessarily entail some loss in performance
because the entire processor operates more slowly. In addi-
tion, the processor must stall for as much as 10–20 millisec.
while the clock re-synchronizes. The overhead of invoking
a scaling policy also means that it must be left in place for
a significant policy delay in order to ensure that the temper-
ature has been sufficiently reduced so that scaling will not
be re-initiated in the near future. But as mentioned, during
this period of time the slower clock rate entails a loss in per-
formance, even after temperature decreases. For these rea-
sons, Brooks and Martonosi found that the microarchitec-
tural techniques had less impact on performance. Of course,
if a microarchitectural technique fails to stem rising temper-
atures, scaling can also be performed as a backup policy.

Based on the inferior performance of fetch throttling,
speculation control, and the scaling techniques, we do not
consider them further, even though a realistic implementa-
tion might employ a hierarchy of DTM techniques: for ex-
ample, a low-cost mechanism like toggling might be used
with a high trigger threshold. Only when temperature gets
truly close to emergency would auxiliary mechanisms like
voltage/frequency scaling be employed.

The prior DTM work also explored two ways in which
DTM may be triggered. In the first case, a thermal trigger
engages an interrupt, which invokes a handler that then sets
the DTM policy. After a specified time, another interrupt
checks the thermal condition and if there is no longer a trig-
gering condition, the DTM policy is turned off. The use
of interrupts, however, introduces some delay (e.g., 250 cy-

cles) for each event. This incurs some small but unavoidable
loss in performance even for an ideal DTM policy. Brooks
and Martonosi also postulate the existence of a microarchi-
tectural mechanism by which a thermal trigger immediately
engages the DTM policy, with no delay. The only perfor-
mance loss is then from the interaction of the DTM policy
and the program’s natural instruction throughput. This can
be implemented by having each temperature sensor assert
a signal indicating that it has been triggered, a feature we
assume in our model.

As mentioned, a policy delay is also necessary, even for
microarchitectural mechanisms. Once a DTM policy is in-
voked, it must stay active for a long enough period of time
to sufficiently reduce the temperature. The delay must be
set empirically: too short a policy, and the system will stay
at or near trigger; too long a policy, and the system will in-
cur an unnecessary loss in performance. The trigger level
is also set empirically. Too close to the emergency thresh-
old, and DTM will not be engaged soon enough to prevent
emergency. Too far, and DTM is engaged unnecessarily.

The use of better thermal modeling and the application
of control theory to the design of DTM mechanisms solves
these problems. Simulating temperature directly provides
more realistic indicators of how fast temperature changes,
how different structures move in and out of thermal stress,
and a more faithful replica of what actual temperature sen-
sors in a real chip would observe. Section 4 discusses issues
related to thermal modeling.

2.2. Control-Theoretic DTM Techniques

Clearly, any one DTM policy with fixed response (e.g.
toggle1) will be sub-optimal. To guarantee elimination of
thermal emergencies, a policy must aggressively reduce ac-
tivity whenever triggered. But in many cases, such aggres-
sive response is not needed. For example, mild thermal
stress need not employ the very aggressive toggle1 policy,
but of the mechanisms described so far, only toggle1 can
completely avoid emergencies. An adaptive policy, on the
other hand, can adjust the degree of response to the sever-
ity of the thermal situation. Yet designing adaptive mecha-
nisms by hand is difficult, because it typically requires large
parameter-space searches.

In this paper, we propose to use formal feedback control
theory to manage the DTM and avoid the difficulties associ-
ated with ad-hoc techniques. A control-theoretic approach
provides a number of advantages. It permits the DTM pol-
icy to adapt its response in proportion to the thermal emer-
gency and also permits it to take account of prior history and
the rate of change in temperature. The degree of response to
each of these factors is controlled by a formal methodology,
avoiding the need for ad-hoc methods. The toggling mech-
anisms provide an excellent basis for using a controller. In-
stead of a fixed toggling policy, the rate at which fetching

3

is permitted is set by the controller and adjusted every �
cycles, where � is the sampling rate—every 1000 cycles in
our experiments. As the control output ranges from 0% to
100%, the fetch toggling ranges proportionally from all the
way off to all the way on (toggle1). An output of 50%, for
example, corresponds to toggle2.

The use of control theory also provides other benefits.
Although beyond the scope of this work, controllers can be
designed with guaranteed settling times (i.e., how quickly
the temperature settles back to a desired, safe level), and an
analysis of the maximum overshoot can be used to choose a
setpoint that, in conjunction with the appropriate controller,
is as high as possible without risking an actual emergency.

For this paper, we focus on integrating DTM with more
accurate thermal modeling and explore only variations of
the PID controller, commonly used in industry. This simple
controller is sufficient to demonstrate our techniques and to
provide substantial gains in performance. The next section
presents some basic precepts of controller design and uses
them to derive the adaptive controllers we test in Section 7.

3. Basic Control-Theoretic Techniques

Feedback control theory has been very successful at de-
veloping analytic frameworks and algorithms for robust per-
formance control in physical systems. Using a mathemat-
ical model of the controlled process (such as the thermal
dynamics relating power dissipation to temperature out-
put of various microprocessor structures), it produces con-
trollers which help achieve the desired output. Control-
theoretic approaches have been applied to a variety of as-
pects of computer systems design to achieve adaptive re-
sponse, e.g., CPU scheduling [13, 21] and Internet conges-
tion control [9]. Closer to the topic of this proposal, Drag-
one et al. have described a feedback technique for voltage
scaling [8], and Wong et al. [23] have described a feedback
circuit for canceling leakage currents.

Temperature control of a physical device such as a
microprocessor is a natural application of control the-
ory. A commonly used industrial controller is the PID
(Proportional-Integral-Differential) controller. It has been
proven very successful and robust even in controlling highly
non-linear and poorly modeled systems. This subsection
explains our derivation of a PID controller for DTM; those
familiar with such derivations may wish to skip to the next
section.

Controller

Temperature
Sensor

Temperature
Target

Measured Temperature

e m Power Temperature
Thermal
Dynamics

Structure
Instruction Fetch

Actuator:

TogglingL

T

Figure 1. Control Loop

3.1. The Feedback Control Loop

Figure 1 presents the control loop being modeled. Let
�

be the thermal emergency level, such that heating of some
chip structure beyond

�
poses a threat to that structure. We

set a target temperature ��� �
for the structure, that is

very close to, but does not exceed, the emergency limit. A
feedback control loop works by sampling the actual temper-
ature, � , at discrete time instances (e.g., once every � � � �
cycles) and comparing it to the target � . The difference,�	� ��
�� is the current error in achieving the performance
target. If the error is negative, the system is overheated,
hence power dissipation should be reduced during the next
sampling interval. If the error is positive, the system can
relax any power-reduction techniques that are currently en-
gaged.

3.2. Controller Derivation

The basic PID controller responds to error by a correc-
tion that is an algebraic superposition of three actions (or
forces). The first is the proportional action. It changes
power in proportion to the value of the error and in the di-
rection that reduces the error. The second is the integral
action. It adjusts power incrementally, in proportion to the
time integral of previous errors. This action tends to accu-
mulate a slowly-changing bias that becomes constant when
the error becomes zero, hence maintaining the system at the
zero-error state. The last component is the derivative action.
It adjusts power in proportion to the rate of change of error
in the direction that reduces the rate of change, damping
the response to avoid overshoot. At any time
 , controller
output, ����
�� , is the weighted sum of the above three terms:

����
�� ��������� ��
���� ��� �!� ��
���"#
$� ��% " � ��
��"#
'& (1)

where ��� , ��� , and ��% are constants that need to be tuned
according to stability analysis to ensure that the system will
not oscillate. The selection of weights in the above equation
gives a rich design space for controller functions. Finding
the best weights requires a model of the controlled system.
This model depends on whether the system is continuous or
discrete. While in principle the system is discrete by virtue
of sampling, our sampling period is much smaller than the
time-scale of the thermal dynamics for the controlled chip
structures. Hence, for all practical purposes, the system be-
haves in a continuous manner. Continuous controller design
is typically performed in the Laplace transform domain.
The Laplace transform of the controller transfer function is:���)(*� ������� �+� ���(� ��% (& � �)(*� (2)

where (is the Laplace transform operator. The thermal
dynamics of the controlled structure are represented by its

4

Thermal quantity unit Electrical quantity unit�
, Heat flow, power � � , Current flow ��

, Temperature difference � � , Voltage ��	��

, Thermal resistance �
��� �

, Electrical resistance �� ��

, Thermal mass, capacitance ����� �

, Electrical capacitance �� ��
 =
�	��
�� � ��

, Thermal RC constant � � =
��� �

, Electrical RC constant �
Table 1. Equivalence between thermal and electrical quantities

thermal time-constant, � , and a steady state gain, ��� , rep-
resenting the steady state ratio of the change in output tem-
perature to the change in input power that produces it—the
thermal R in this application. In addition, sampling intro-
duces an effective delay, ��� , in the loop, equal to half the
sampling period. Hence, in the Laplace domain, the con-
trolled system model of temperature is:

� �)(*� � � � �"!$#&%('�+�)��((3)

where � � �+*-,/. 02143 . Note from Figure 1 that any devia-
tion, � , traveling through the feed-forward path of the loop
will be transformed by the combined function

� �)(*� ���)(*� ,
which is the product of all components on that path. If the
actuator and the temperature sensor introduce some gain
into the system, �65 and � ' , then the total transformation
is
� �)(*� � ' ���)(*� ��5 .
In the interests of space, we omit the rest of the deriva-

tion and stability analysis, and merely observe that this
yields two equations in four unknowns: 7 , ��� , ��� , and��% . To solve this set, the simplest approach is to set����� ��% � � . This solution yields a proportional con-
troller which has the benefit of computational efficiency.
Alternatively, it is possible to set only one of � � and ��%
to zero, producing a PI or PD controller respectively. This
makes it possible to introduce an additional design con-
straint via a phase constant, 8 . For the PI controller, we
set 8 to 9;:&< ; for PID, 0; and for PD,
�9;:&< . Finally, in
more complex systems, two additional design constraints
may be accommodated which uniquely determine both � �
and ��% . In our PID controller for fetch toggling, we set��� � �&:>= ��% . All the preceding values are common val-
ues that are known to work well in practice. They were
successful with no tuning, making the derivation of effec-
tive controllers extremely easy. We did test other values for
these parameters, but found that they were no better than the
conventional values. This also illustrates the robustness of
control-theoretic techniques: the performance of feedback-
control systems remains largely unaffected even when the
controlled system has not been accurately modeled in the
analysis, or when external factors that have not been ac-
counted for at design time interfere with its operation.

The final values for the PID controller were were � ' �� (idealized temperature sensor), �?5 �A@ (actuator gain),��� � = � = � , ��� � � � @ < B�� �"C and ��%�� � � �"< B�� � !$D for

a sampling frequency of 1000 clock cycles or 667 nanosec.
The time constant of the system is the *FE time constant
from the thermal model; we used the longest time constant
of the various blocks under study.

3.3. Actuator Saturation Effects
In designing the controller, it is important to consider

saturation effects. In general, actuator saturation may have
a negative effect in the presence of integral action, which
is commonly known as integral windup and is a common
problem in the design of industrial controllers. In our ex-
ample, if the application produces only a small power dis-
sipation, it may be impossible to reach the target chip tem-
perature even when the processor operates at full speed. In
this case, a positive error persists causing an arbitrarily high
increase in the output of the integral action. This increase is
meaningless to the actuator, which in this case becomes sat-
urated. Eventually, if power dissipation does increase and
temperature overshoots the set point, it will take the integral
output a long time to “unwind”, i.e., return to a reading that
is within the actuator’s input range. During that time the
actuator continues to be saturated, and the processor con-
tinues to operate at full speed, possibly entering a thermal
emergency. Integral windup can be easily avoided by freez-
ing the integrator when controller output saturates the actua-
tor. Hence, once the error changes sign due to an overshoot,
this permits controller output to immediately decrease be-
low saturation (i.e., within the actuator range), causing it to
slow down pipeline execution and reduce power dissipation
immediately, as needed. As mentioned above, we imple-
mented this mechanism in our PI and PID controllers by
preventing the integral from taking on a negative value.

4. Thermal Modeling

4.1. Using an Equivalent RC Circuit to Model Tem-
perature.

For an integrated circuit at the die level, heat conduc-
tion is the dominant mechanism that determines the tem-
perature. There exists a well-known duality [11] between
heat transfer and electrical phenomena as summarized in
Table 1. Any heat flow can be described as a “current”, and
the passing of this heat flow through a thermal “resistance”
leads to a temperature difference equivalent to a “voltage”.

5

This is really Ohm’s law for thermal phenomena. Thermal
resistances are enough for describing steady-state behav-
ior, but dynamic behavior is important for DTM, and this
requires thermal “capacitances” as well. Thermal capaci-
tances imply that even if the power flow changes instan-
taneously, there is a delay before the temperature changes
and reaches steady state. The thermal resistances and ca-
pacitances together lead to exponential rise and fall times
characterized by thermal RC time constants similar to the
electrical RC constants.

Power

T case

T junction

T ambient

R die-case

R heatsink

C heatsink

C die

heatsink

IC die
B.A.

PCB
heat spreader

heat spreader
IC package

Figure 2. IC package with heatsink.
A. physical structure, B. simple lumped thermal model.

Figure 2A shows a typical IC package with a heatsink
and an equivalent simplified thermal model. The IC die con-
sumes power when active and this power needs to be dissi-
pated as heat. In order to simplify the analysis it is general
practice to ignore all large thermal resistances and only con-
sider a simplified model as in Figure 2B with very little loss
of accuracy. Large thermal resistors in parallel with smaller
ones can safely be ignored because they cannot transfer
enough heat to further reduce the temperature determined
by the smaller values. Thermal capacitances are necessary
for dynamic behavior and these have been also represented.
To see the usefulness of the model, assume an IC that dis-
sipates 25 W, die-to-case thermal resistance of 1 K/W, and
heatsink resistance (conduction plus convection to ambient)
of another 1 K/W. For an ambient temperature of 27 de-
grees Celsius, we can predict that the steady state average
die temperature will be ��� W � � K/W � @ � � K � @ � � K or ��� �
Celsius. Furthermore, if dynamic behavior is desired, the
thermal capacitances can be used to derive such informa-
tion. For example, assuming a heatsink thermal capacitance
of 60 J/K and a much smaller die thermal capacitance, we
can determine that the time constants involved in how fast
the circuit heats up when powered on, or cools down when
powered off, are on the order of < � J/K � � K/W � < � s � �
minute.

4.2. Modeling Localized Heating
Large ICs have a heterogeneous structure with many dif-

ferent areas on the die working at different rates, which
implies that power is not dissipated uniformly on the chip.
This spatial non-uniformity is complemented by a temporal
non-uniformity in power density as many structures on the

die go from idle mode to full active mode and vice-versa
at different times. Recent emphasis on low-power design
techniques such as power modes, clock gating, etc. are ex-
acerbating the spatial and temporal non-uniformity for on-
chip power density. As a result of this non-uniformity, the
chip will exhibit so-called “hot spots”. These hot spots have
a spatial distribution as a result of the non-zero thermal re-
sistivity of silicon and also a temporal distribution due to
changing program behavior and the time constants implied
by the thermal mass (capacitance).

A model for localized heating allows simulation of the
actual physical temperature at different locations on the
chip. In order to derive a lumped circuit model we first
need to decide on the level of granularity for the lumped
elements. We decided to use a natural partitioning where
functional blocks on the chip are the nodes in the lumped
circuit model. This has the advantage that there is a one-
to-one correspondence between the model in the architec-
tural simulator and the thermal circuit, which leads to a
good coupling between the two. We also currently make
the simplifying assumption that it is feasible to have ther-
mal sensors associated with each functional block. This is
unrealistic, since the number of sensors is likely to be lim-
ited, and they may not be co-located with the most likely hot
spots. Developing a model for temperature sensor behavior
(as distinct from true physical temperature) is an important
area for future work.

x1

x3

R nor

R heat

T amb

P block

R tan

C block

x4

x2

T block

T chip
C heat

x4

x1 x2

x3

x1

x3 x4

x2

R nor
C block

P block

T block

T chip

C. B.

A.

Figure 3. IC die with 4 functional blocks.
A. physical structure with die, heat spreader and heatsink, B. de-
tailed lumped thermal model with tangential and normal block
thermal resistances and block capacitances, heatsink resistance
and capacitance, connected to ambient temperature, C. simpli-
fied lumped model with only block normal resistances and capac-
itances connected directly to the chip temperature.

We model the thermal circuit as in Figure 3B. Each block
dissipates a (different) power � ,/. 02143 and as a result will tend
to have a (different) temperature � ,/. 02143 . Nearest neighbor
blocks are connected together through “tangential” thermal
resistances *�� 5�� and each block is also connected through
“normal” thermal resistances *	� 0�
�� to the heatsink through

6

the heat spreader. Each block also has a (different) ther-
mal capacitance *F,/. 02143 . While silicon is not a very good
thermal conductor, hence the possibility of hot spots and
the necessity for finer grain modeling, the heat spreader and
heatsink are designed to be very good conductors, and can
be lumped into a single thermal resistance *����45 � and capac-
itance E����45 � .
4.3. Component Values for the Lumped Circuit

When determining the actual values for the lumped cir-
cuit, we observe two important aspects which allow us to
further simplify the thermal model as in Figure 3C:

� The values of *�� 5�� are much larger than *	� 0�
�� . This
means that the spatial distribution of the hot spots is
dominated by *	� 0�
�� and the tangential values can be
ignored for a first-order analysis.

� The RC time constants for the heatsink are orders of
magnitude larger than for the individual blocks. This
means that the temporal distribution of hot spots for
short time periods is dominated by the block values
and the heatsink can be considered at a constant tem-
perature over short periods of time.

Here is how we determine the component values for the
lumped circuit. For the individual blocks we first consider
the material properties of silicon. Both the thermal capac-
itance and thermal resistance for silicon are variable with
temperature, but the variation is small. From published data
[12] for silicon, at target temperatures, we derived an ap-
proximate thermal capacitance � � � � C � :*�	� � , and an ap-
proximate thermal resistivity
 � � � !�� � � :�
 . With these
values we can easily derive the block thermal capacitancesE ,/. 02143 as � ��� �*
 , and the block normal thermal resistances*�� 0�
�� as
 �
 :�� where � is the block area and
 the wafer
thickness. For a wafer thickness of 0.1 mm, E ,/. 02143 becomes� � � ��� and *�� 0�
�� becomes � � ! C>:�� , with the block area �
expressed in square meters.

Calculating *�� 5�� is slightly more complex. Assuming
that heat is flowing uniformly and circularly from the cen-
ter of the block, and writing thermal Ohm’s law for an in-
finitesimally narrow circle of width "�� at distance � from
the outside (i.e. at radius ��
��), we get:

� ��� � "�� �
 � ��� � � �
 "��
�&9 ����
�� ��
 9 ���
�� � � (4)

We omit the details, but this can be computed for a sili-
con wafer of thickness 0.1mm to derive *	� 5���� � � � � :�
 .
Since this is orders of magnitude larger than on chip * � 0�
��
values we conclude that we can safely ignore *	� 5�� .

The time constants associated with a block on the chip
will be on the order of � � !�� seconds (see next section),
which is much smaller than the time constants for the

heatsink. We conclude that we can safely ignore the dy-
namic aspects of the heatsink for short time periods and
consider the average heatsink temperature as a constant.
When we compared observed temperatures and thermal-
emergency events between our localized model and current
chip-wide thermal modeling techniques, we found that al-
most all thermal-emergency events detected with the local-
ized model failed to be observed by the chip-wide model.
The reason for this is that localized heating is much faster
than chip-wide heating.

We used the resulting model for computing actual tem-
peratures at various locations on the chip, and use the same
model as a proxy for what temperature sensors would ob-
serve as they drive our PID-DTM control system. The next
section describes our simulation environment and how we
derived the specific thermal R and C values used in the sim-
ulations. Section 6 briefly compares results with our ther-
mal model to those obtained with just a boxcar average of
recent power measurements.

The only other architecture-level modeling of which
we are aware is the TEMPEST work by Dhodapkar et
al. [6], which describes a multi-mode simulation package
that models performance, power, and temperature. They
use a similar RC model, but only for the microprocessor as
a whole with a focus on the effects of thermal packaging. To
the best of our knowledge, this is the first work to derive a
thermal model for heating effects in individual architectural
structures.

5. Simulation Technique and Metrics

5.1. Performance and Power Simulation
To model temperatures and controllers, we extend the

DTM version of Wattch [3] used by Brooks and Martonosi.
We use Wattch version 1.02, which is now widely used for
research on power issues in architecture. Wattch in turn
is based on the sim-outorder simulator of SimpleScalar [4]
version 3.0. Wattch adds cycle-by-cycle tracking of power
dissipation by estimating unit capacitances and activity fac-
tors. For Wattch, we chose a feature size of ��� ����� , a �$�(�
of 2.0V, and a clock speed of 1.5 GHz, which is roughly
representative of values in contemporary processors.

We extended the simulators in several ways. Because
most processors today have pipelines longer than five
stages, our simulations extend the pipeline by adding three
additional stages between decode and issue. These stages
model the extra renaming and enqueuing steps found in
many pipelines today, like the Alpha 21264 [10], and are
necessary to properly account for branch-resolution laten-
cies and extra mis-speculated execution. The extra stages
are also included in the power model. We also improve the
performance simulator by updating the fetch model to count
only one access (of fetch-width granularity) per cycle. We

7

improve the power simulation by using the improved ac-
cess counts that result from these behavioral changes and
by adding modeling of the column decoders on array struc-
tures like the branch predictor and caches [16]. These
changes were straightforward, but were also validated by
testing with microbenchmarks plus comparison with known
results.

As a processor configuration, we approximately model
the Alpha 21264, as shown in Table 2. The hybrid branch
predictor [15] is SimpleScalar’s slightly simplified version,
using bimodal (plain 2-bit counter style) predictors as the
chooser and as one of the components. The branch predic-
tor is updated speculatively and repaired after a mispredic-
tion [19]. We do not model the register-cluster aspect of the
21264.

Processor Core
Instruction Window 80-RUU, 40-LSQ
Issue width 6 instructions per cycle

(4 Int, 2 FP)
Functional Units 4 IntALU,1 IntMult/Div,

2 FPALU,1 FPMult/Div,
2 mem ports

Memory Hierarchy
L1 D-cache Size 64 KB, 2-way LRU, 32 B blocks
L1 I-cache Size 64 KB, 2-way LRU, 32 B blocks

both 1-cycle latency
L2 Unified, 2 MB, 4-way LRU,

32B blocks, 11-cycle latency, WB
Memory 100 cycles
TLB Size 128-entry, fully assoc.,

30-cycle miss penalty
Branch Predictor

Branch predictor Hybrid:
4K bimod and 4K/12-bit/GAg
4K bimod-style chooser

Branch target buffer 1 K-entry, 2-way
Return-address-stack 32-entry

Table 2. Configuration of simulated processor
microarchitecture.

5.2. Temperature Modeling
Due to a lack of any published data on thermal proper-

ties for specific structures and a general lack of any infor-
mation on per-structure areas (publicly available models for
area are currently in development but not yet available), we
were forced to derive thermal *F,/. 02143 and E ,/. 02143 values us-
ing estimates for area. We obtained these using one of the
most recent die-photos that we could find with a floorplan,
for the MIPS R10000 [7]. We scaled the resulting areas by
two generations to 0.18 � and by architectural size, and then
combined these with the values for � and
 from the previ-
ous section. This approach is clearly unsatisfactory in terms

of the approximations it requires, and we are in the process
of generating new data with areas provided by Wilcox and
Manne for the Alpha 21264 [22]. We feel, however, that
different ratios and areas of structure sizes would not ma-
terially affect the main conclusions of this paper. The use
of lumped thermal R and C values is a general approach for
modeling temperature. And regardless of structure sizes and
temperature thresholds, if DTM is used for thermal manage-
ment, feedback control confers the advantage of fine-tuning
the thermal response to the operating conditions.

To derive thermal properties, we assumed a die thick-
ness of 0.1 mm. This implies a “thinned” wafer necessary
for removing heat in high-performance processors. The ar-
eas and corresponding *F,/. 02143 , E ,/. 02143 , and *FE ,/. 02143 values
are presented in Table 3. For this paper, we explore the
load-store queue, the instruction window (which includes
physical registers for uncommitted instructions), the archi-
tectural register file, the branch predictor (including branch
target buffer), the data cache, the integer execution unit, and
the floating-point execution unit.

Temperature is computed on a cycle-by-cycle basis. First
the SimpleScalar pipeline model determines the activity of
each structure; then Wattch computes power dissipation for
each of them (���); and finally our thermal model computes
temperature based on the values of * ,/. 02143 , E ,/. 02143 , and the
power dissipation in the past clock cycle. The specific dif-
ference equation for computing each

� � for each structure
�

is
� ��� � ��� � �
E

�
� ��� � �
*

� � E � (5)

where
�
 is one clock cycle, 0.667 nanosec. The simulation

cost of computing this for each block of interest is minor
compared to the pipeline and power modeling.

We observed local dynamic temperature variations of up
to � @ � (see Section 5.4). This number is within the range
that peak power � *F,/. 02143 suggests. Of course, these temper-
ature changes slowly raise the surrounding IC temperature.
Because chip-wide temperature variations are on the order
of seconds to minutes in the presence of a heat sink and
fan, chip-wide temperatures cannot be modeled in Wattch
in any reasonable amount of time. Instead we choose a
baseline heatsink temperature of � � � � C based on the SIA
roadmap [18]. We set the thermal emergency threshold at� � � � C based on the localized temperature ranges in [24].
At � � � � , at least one of the benchmarks (if not controlled by
DTM) puts each structure within � � of thermal emergency
for some period of time, while there exist some benchmarks
that never experience thermal emergencies, and some that
never put any structure within � � of thermal emergency.
This means that our benchmark set exhibits a range of ther-
mal behavior.

Our metrics of success are the percentage of cycles spent
in thermal emergency and percentage of the non-DTM IPC.

8

structure area (m �) peak power (W) R (K/W) C (J/K) RC (J/W = sec)
LSQ 5.0e-7 2.7 8 5.0e-5 400 us
inst. window 9.0e-7 10.3 0.9 9.0e-5 81 us
regfile 2.5e-7 5.5 4 2.5e-5 100 us
bpred 3.5e-7 5.3 1.4 3.5e-5 49 us
D-cache 1.0e-6 11.6 1 1.0e-4 100 us
int exec. unit 5.0e-7 4.3 2 5.0e-5 100 us
FP exec. unit 5.0e-7 6.7 2 5.0e-5 100 us
chip 112.9 0.34 340 115 sec

Table 3. Per-structure area and thermal-R and thermal-C estimates.
For comparison, a value for chip-wide thermal R and C is also provided for the chip as a whole with heatsink [5].

Our rule is that the temperature for any structure must never
exceed the emergency temperature. Because DTM slows
down or turns off parts of the processor, IPC can never ex-
ceed the baseline value, and the benchmarks with extreme
thermal behavior will necessarily engage DTM and expe-
rience some slowdown. We are unaware of any technique
for modeling optimal DTM to obtain a lower bound on the
induced performance loss, so we simply try to make the in-
duced performance loss as small as possible.

5.3. DTM Mechanisms

As mentioned earlier, of the five DTM mechanisms
Brooks and Martonosi propose, we selected fetch toggling,
specifically toggle1, as the vehicle for applying adaptive
control.

For the CT-DTM mechanisms, we assume the presence
of dedicated hardware—an adder and a multiplier—to per-
form the controller computations. These need not be espe-
cially fast, reducing their already small cost, and they op-
erate so infrequently that their contribution to power and
temperature should be negligible. An alternative is to in-
ject instructions directly into the pipeline to perform the
controller computations. To avoid interrupting the pipeline,
special instructions that access 2–3 special registers would
be required. Because the controllers only execute at most
every 1000 cycles, the impact of this too should be negli-
gible. Indeed, we could likely have used a longer sampling
interval without significantly affecting accuracy, since the
thermal time constants are on the order of tens to hundreds
of microsec., which is much greater than 667 nanosec. De-
termining the best sampling interval and modeling the as-
sociated overhead of computing the controller in terms of
both performance and power are areas for future work.

In applying the different controllers to fetch toggling, we
assume that the controller can vary the degree of toggling
among eight discrete values distributed evenly across the
range from 0% to 100%.

To more clearly demonstrate the benefit of applying con-
trol theory to design adaptive controllers, we also manu-
ally developed a controller (“M”) whose response is propor-

tional to the temperature. This mechanism simply sets the
toggling rate equal to the percentage error in temperature,
where � � � � and less represents 0, and � � � � and above rep-
resents 100%. For example, a temperature of � � � � � � would
correspond to an error of 50% and toggle the pipeline every
other cycle.

The DTM schemes proposed by Brooks and Martonosi
use some thermal trigger temperature level, less than the
emergency level, at which the DTM mechanism is engaged.
The CT-DTM schemes we propose also require a similar
trigger level, this time to use as the setpoint. For the non-
CT schemes (toggle1 and M), we use a trigger level of � � � � .
We found that a level any closer to the emergency thresh-
old caused toggle1 to fail to stop some emergencies. For
the P controller, we used a setpoint of � � � � � � , and a sen-
sor range of � � � � � �
�� � ��� � � ; in other words, the “trigger”
threshold is � � � � � , as with toggle1 and M. For the PI and
PID controllers, on the other hand, their more robust con-
trol permitted us to use a setpoint of � � � � �

� for the PI and
PID controllers, with a sensor range of � � � � � �
'� � ��� � � ;
in other words, the “trigger” threshold above which tog-
gling starts to engage for these controllers is � � � � � . We did
also test a lower setpoint of � � � � � � (sensor range of � � � � � �
to � � ��� � �) to see how much the choice of setpoint affects
performance—see Section 7.

For all the DTM techniques, we also assume a direct
microarchitectural technique for signaling temperature ef-
fects, avoiding the overhead of OS interrupts as Brooks and
Martonosi suggested.

5.4. Benchmarks

We evaluate our results using benchmarks from the
SPEC CPU2000 suite [20]. The benchmarks are compiled
and statically linked for the Alpha instruction set using the
Compaq Alpha compiler with SPEC peak settings and in-
clude all linked libraries. For each program, we skip the first
2 billion instructions to avoid unrepresentative behavior at
the beginning of the program’s execution, and then simulate
200 million (committed) instructions using the reference in-
put set. Simulation is conducted using SimpleScalar’s EIO

9

traces to ensure reproducible results for each benchmark
across multiple simulations.

Avg. Avg. Avg. Above Above
IPC pwr temp. ������� �������

(W) � C
164.gzip 2.1 47.7 43.2 0.0 0.0
168.wupwise 2.0 46.0 42.6 0.0 0.0
175.vpr 1.7 45.0 42.3 0.0 0.0
176.gcc 2.0 52.7 44.9 81.9 99.2
177.mesa 2.4 50.7 44.2 0.5 46.4
179.art 1.2 39.0 40.3 3.9 5.9
183.equake 2.8 56.4 46.2 99.7 99.8
186.crafty 2.3 50.4 44.1 0.0 6.8
187.facerec 2.3 49.9 44.0 0.0 63.8
191.fma3d 2.6 48.0 43.3 99.6 99.7
197.parser 1.4 40.6 40.8 4.1 24.8
252.eon 2.3 52.2 44.8 0.0 98.7
253.perlbmk 2.8 47.3 43.1 48.4 48.5
254.gap 2.1 45.2 42.4 0.0 0.0
255.vortex 2.1 47.4 43.1 0.0 97.2
256.bzip2 2.0 46.6 42.8 13.3 61.7
300.twolf 1.5 40.3 40.7 0.0 0.0
301.apsi 0.9 33.6 38.4 0.0 0.2

Table 4. Average IPC, power, and temperature
characteristics for each benchmark

“Avg. temp.” assumes that the heatsink temperature is at an am-
bient of 27 � C and uses the chip-wide thermal-R of 0.34 K/W.
Percent of cycles spent in thermal emergency (above �������) and in
a level of thermal stress (above �������) assume no thermal manage-
ment and that the heatsink temperature has risen to ����� � and use
the per-structure thermal R/C values.

Extreme High Medium Low
gcc mesa facerec gzip
equake art eon wupwise
fma3d parser vortex1 vpr
perlbmk bzip2 crafty

twolf
apsi

Table 5. Categories of thermal behavior.

Due to the extensive number of simulations required for
this study, we used only 18 of the total 26 SPEC2k bench-
marks. A mixture of integer and floating-point programs
with low, intermediate, and extreme thermal demands were
chosen. Table 4 provides a list of the benchmarks we study
along with their basic performance, power, and thermal
characteristics. Table 5 breaks them into categories of ther-
mal behavior, and Table 6 provides more detail by showing
per-structure mean and maximum temperatures.

In addition to the eight benchmarks that experience ac-
tual emergencies, several others spend significant amounts

of time within � � of the emergency threshold. Table 4 lists
the percent of cycles spent above � � � � as well as the percent
of cycles spent above � � � � , and Tables 7 and 8 break this
down further by structure. Of particular interest are pro-
grams like mesa, facerec, eon, and vortex, which spend as
much as 98% of their time above � � � � , yet spend almost no
time in thermal emergency. Any successful DTM scheme
should minimize the penalties for these programs, and in-
deed the CT-DTM techniques provide some of the best im-
provements for this category. The program art, on the other
hand, has the opposite behavior. It spends only 6% of its
time above � � � � , but more than half of these cycles—4%—
are spent in emergency, meaning that art has very bursty
thermal behavior.

Using these two tables together, we break the set of
benchmarks into four categories of thermal behavior: ex-
treme, high, medium, and low, as shown in Table 5.

6. Comparison of Power and RC-based Tem-
perature Modeling

Before exploring the effectiveness of the CT-DTM tech-
niques, we briefly demonstrate the importance of model-
ing localized temperatures. Prior work has only used box-
car averages of power measurements over � cycles, where
� � �
 � � � K cycles.

We performed two sets of experiments. In the first, we
measure thermal emergencies using the boxcar average of
per-structure power dissipation over 10 K and 500 K cycles.
We are then able to count, on a per-structure-basis, how
many true thermal emergencies the power-based modeling
fails to observe and how many unnecessary thermal triggers
it generates. In the second, we measure thermal emergen-
cies using boxcar averages of power dissipation on a chip-
wide basis for the same window sizes. We are then able to
count, how many true thermal emergencies the chip-wide
treatment fails to observe and how many unnecessary ther-
mal triggers it generates.

In both cases, the same simulation also runs our temper-
ature model as a reference using all the parameters speci-
fied in the previous section. For chip-wide power, a trig-
ger occurs when the boxcar average exceeds a specified
trigger-threshold value for power, 47 W in this case. For
per-structure power values, we can more directly tie the av-
erage power readings to the thermal model. For each struc-
ture, a trigger occurs whenever � 5
	��&*�

�� ����� � � where *
is based on the values in the previous section.

The results appear in Tables 9 and 10. Table 9 shows that
both a very small and a very large window produce signif-
icant variations between the average-power and the direct-
temperature model for some programs. Although the aver-
age frequency of missed emergency and false trigger cycles
for the structure-specific average-power model is small on

10

Avg. Avg. Avg. Max/Avg. Temperature (� C)
IPC pwr temp.

(W) � C LSQ window regfile bpred D-cache ALU FPALU

164.gzip 2.1 47.7 43.2
������� �
��� C � C

������� �������� �
������� ���� C � �

������� �
��� C � �

��� � � ���� C � �
������� �
��� C � �

������� �������� �
168.wupwise 2.0 46.0 42.6

������� �
������� �

��� � � ���� � � C
������� �
������� �

������� �
��� C � �

��� � � ���� � � �
��� � � ���� � � �

��� � � ���� � � �

175.vpr 1.7 45.0 42.3
������� �
��� C � �

��� � � D��� � � �
��� � � D��� � � �

������� �
��� C � �

��� � � C��� � � �
��� � � ���� � � �

������� �
��� � � �

176.gcc 2.0 52.7 44.9
������� �������� �

������� �������� C
������� �������� D

������� ���� C � �
��� D � �������� �

��� � � C��� � � �
������� �������� �

177.mesa 2.4 50.7 44.2
��� C � ���� D � C

������� �������� D
������� �
������� �

��� C � ���� C � C
������� D�	���
� C

��� � � �������� �
��� � � ���� � � �

179.art 1.2 39.0 40.3
��� � � ���� C � �

��� � � �������� �
��� � � ���� C � �

������� �������� �
��� � � ���� C � C

��� � � C��� � � �
��� � � D������� �

183.equake 2.8 56.4 46.2
��� D � ���� D � �

��� C � ���� C � �
��� � � �������� �

������� �������� �
��� C � ���� C � �

��� C � ���� C � �
������� �������� �

186.crafty 2.3 50.4 44.1
��� C � ���� D � �

������� �
������� �

������� �������� �
��� C � ���� D � �

������� D��� C � �
������� �������� �

������� �������� �
187.facerec 2.3 49.9 44.0

��� C � ���� D � C
��� � � ���� C � �

������� C��� C � C
��� � � C��� C � �

������� D��� D � �
��� � � �������� �

������� �
��� D � �

191.fma3d 2.6 48.0 43.3
��� � � ���� � � �

������� �������� �
������� �
������� �

������� �
������� �

��� � � ���� � � �
������� �
������� �

������� �������� �
197.parser 1.4 40.6 40.8

������� ���� D � �
��� � � D��� C � �

��� � � D������� �
��� C � ��	���
� �

��� � � ���� C � D
��� � � C������� �

������� �������� �

252.eon 2.3 52.2 44.8
��� D � ���� D � D

������� �������� �
��� � � �������� �

��� C � D��� D � �
��� C � ���� C � �

��� � � D������� �
��� � � ���� � � �

253.perlbmk 2.8 47.3 43.1
��� � � ���� C � �

��� D � �������� D
������� D��� D � �

��� � � ���� C � �
��� � � �������� �

��� C � �������� D
������� �������� �

254.gap 2.1 45.2 42.4
������� �
��� C � �

��� � � C��� � � �
��� � � D��� � � �

������� �������� �
������� �
������� �

��� � � �������� �
������� �������� �

255.vortex 2.1 47.4 43.1
��� C � C��� C � �

��� � � �������� �
��� � � ���� � � �

��� D � ���� D � C
������� �
��� C � �

��� � � ���� � � �
������� �������� �

256.bzip2 2.0 46.6 42.8
��� C � �������� �

��� � � �������� �
��� � � C������� �

��� C � C�	� � � D
������� �
��� D � �

��� � � ���� C � �
������� �������� �

300.twolf 1.5 40.3 40.7
��� � � �������� �

��� � � ���� � � �
��� � � ���� � � �

������� C������� �
��� � � ���� � � �

��� � � D��� � � �
������� D������� �

301.apsi 0.9 33.6 38.4
��� � � C��� D � �

��� � � ���� C � �
��� � � ���� C � �

��� � � ���� � � �
��� � � D��� C � �

������� D������� �
��� � � C��� � � �

Table 6. Average IPC, power, and temperature for each benchmark (assuming an ambient of 27 � C and
a thermal R of 0.34 K/W), plus avg./max. temperatures for individual structures assuming a current
operating temperature of 100 � C and no thermal management.

11

Any LSQ window regfile bpred D-cache ALU FPALU
164.gzip 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
168.wupwise 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
175.vpr 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
176.gcc 81.9 81.8 0.0 0.0 0.0 50.8 0.0 0.0
177.mesa 0.5 0.0 0.0 0.0 0.0 0.5 0.0 0.0
179.art 3.9 0.0 0.0 0.0 3.9 0.0 0.0 0.0
183.equake 99.7 0.0 0.0 0.0 99.7 0.0 0.0 0.0
186.crafty 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
187.facerec 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
191.fma3d 99.6 0.0 0.0 0.0 99.6 0.0 0.0 0.0
197.parser 4.1 0.0 0.0 0.0 4.1 0.0 0.0 0.0
252.eon 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
253.perlbmk 48.4 0.0 48.4 0.0 0.0 0.0 48.2 0.0
254.gap 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
255.vortex1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
256.bzip2 13.3 12.0 0.0 0.0 1.3 0.0 0.0 0.0
300.twolf 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
301.apsi 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 7. Percent of cycles each structure spends in thermal emergency (above � � � �) without thermal
management.

Any LSQ window regfile bpred D-cache ALU FPALU
164.gzip 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
168.wupwise 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
175.vpr 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
176.gcc 99.2 99.1 0.0 0.0 0.0 92.5 0.0 0.0
177.mesa 46.4 46.0 0.0 0.0 0.0 0.7 0.0 0.0
179.art 5.9 0.0 0.0 0.0 5.9 0.0 0.0 0.0
183.equake 99.8 98.3 0.0 0.0 99.8 0.0 0.0 0.0
186.crafty 6.8 6.8 0.0 0.0 0.0 0.0 0.0 0.0
187.facerec 63.8 49.1 0.0 0.0 0.0 49.0 0.0 52.9
191.fma3d 99.7 0.0 0.0 0.0 99.7 0.0 0.0 0.0
197.parser 24.8 15.6 0.0 0.0 19.2 0.0 0.0 0.0
252.eon 98.7 98.7 0.0 0.0 10.6 0.0 0.0 0.0
253.perlbmk 48.5 0.0 48.5 48.1 0.0 0.0 48.4 0.0
254.gap 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
255.vortex 97.2 0.0 0.0 0.0 97.2 0.0 0.0 0.0
256.bzip2 61.7 18.2 0.0 0.0 43.5 0.0 0.0 0.0
300.twolf 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
301.apsi 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0

Table 8. Percent of cycles spent above � � � � without thermal management.

12

average, this is heavily influenced by the programs that ex-
hibit little thermal stress.

500K 10K
missed-e false-t missed-e false-t

164.gzip 0.00 0.00 0.00 7.77
168.wupwise 0.00 0.00 0.00 0.00
175.vpr 0.00 0.00 0.00 0.09
176.gcc 3.92 0.03 28.81 0.24
177.mesa 0.20 7.08 0.07 22.81
179.art 2.39 1.66 0.09 35.18
183.equake 0.36 0.00 0.04 0.20
186.crafty 0.00 2.10 0.00 29.36
187.facerec 0.00 0.64 0.00 3.34
191.fma3d 0.26 0.00 0.01 0.19
197.parser 2.13 4.46 1.07 13.57
252.eon 0.00 0.58 0.00 1.20
253.perlbmk 0.26 0.00 0.00 0.12
254.gap 0.00 0.00 0.00 0.00
255.vortex 0.00 0.93 0.00 0.98
256.bzip2 0.82 4.68 1.18 7.58
300.twolf 0.00 0.00 0.00 0.00
301.apsi 0.00 0.22 0.00 0.41
MEAN 0.57 1.24 1.74 6.84

Table 9. Comparison of per-structure power-
averaging to direct-temperature measure-
ments.

Percent of cycles spent in emergency according to our temperature
model but not according to the per-structure average-power model
(missed-e); and percent of cycles spent in trigger mode according
to the per-structure average-power model but not according to our
temperature model (false-t). The left-hand pair of data columns
use a boxcar average of power measurements over the last 500 K
cycles, and the right-hand pair uses 10 K cycles.

Compared to a window of 10 K cycles, averaging power
over 500 K cycles usually causes a slight increase in the
number of missed emergency cycles but a substantial drop
in the number of false triggers. That is because 500 K
cycles, which corresponds to 333 microsec., is 2–3 times
the per-structure RC constants shown in Table 3—in other
words, 500 K-cycles is about how long a sustained increase
in power dissipation takes to reach a new, steady-state tem-
perature. Unfortunately, the relationship is not a direct one,
as can be seen for gcc, where the 10 K window produces
many more false emergencies.

Table 10 shows that using chip-wide average-power
numbers causes large variations for some programs com-
pared to both the per-structure average-power model and
the direct-temperature model. Per-structure modeling, re-
gardless of the type of model, gives a much more detailed
view of thermal activity and detects hot spots that are hid-

missed-e false-t
164.gzip 0.00 23.26
168.wupwise 0.00 0.00
175.vpr 0.00 0.00
176.gcc 0.57 0.00
177.mesa 0.27 44.78
179.art 3.86 0.00
183.equake 0.36 0.00
186.crafty 0.00 89.02
187.facerec 0.00 4.35
191.fma3d 99.61 0.00
197.parser 4.03 0.00
252.eon 0.00 0.56
253.perlbmk 0.48 0.00
254.gap 0.00 0.00
255.vortex 0.00 0.00
256.bzip2 1.26 0.40
300.twolf 0.00 0.00
301.apsi 0.00 0.29
MEAN 6.14 9.04

Table 10. Comparison of chip-wide power-
averaging to direct-temperature measure-
ments.

Percent of cycles spent in emergency according to our temperature
model but not according to the chip-wide average-power model
(missed-e); and percent of cycles spent in trigger mode accord-
ing to the chip-wide average-power model but not according to
our temperature model (false-t). The average-power model uses a
boxcar average of power measurements over the last 500 K cycles.

den by the chip-wide average.
We cannot yet prove that one model is superior to an-

other, although clearly chip-wide power is a poor indicator
of thermal behavior. Per-structure power averages, on the
other hand, track direct-temperature measurements tolera-
bly closely, within a few percent in most cases. We never-
theless strongly discourage the use of average power as a
proxy for temperature for several reasons. Although we are
still in the process of validating the temperature model we
have developed here, it is founded on basic thermo-electric
properties, which cannot be said for a simple boxcar average
of power measurements. There is no validation or even es-
tablished method for accurately converting power measure-
ments into temperature measurements, so there is no reason
to prefer average power over direct temperature. A further
problem is that it is difficult to choose a thermal trigger us-
ing an average power value. We explored various trigger
levels ranging from 47 W to 55 W, and found that different
triggers worked best for different programs in terms of most
closely replicating the direct-temperature model.

13

Because the temperature model proposed in this paper
provides direct modeling of localized heating in terms of
temperature, because it is easy to use and derive, and be-
cause it is computationally efficient, we advocate this as
the best model currently available for researchers wishing
to model temperature at the processor-architecture level.

7. Effectiveness of Control-Theoretic Tech-
niques for Thermal Management

Now we evaluate the effectiveness of formal feedback
control for DTM. We developed P, PI, and PID controllers
for pipeline toggling, and compared them to both the static
toggle1 policy and the manually-derived feedback-control
policy (M) that is not based on control theory but attempts
to set the degree of toggling proportionally to the error. We
also developed a PD controller, which is discussed later in
this section. As mentioned before, the sampling rate for
all the controllers is set to 1000 cycles to match the policy
delay for the toggle1 mechanism.

To make the PI and PID controllers effective at eliminat-
ing thermal emergencies, we did have to implement anti-
windup. Otherwise, the PI and PID controllers failed to
prevent thermal emergencies. This behavior was especially
prevalent for perlbmk, which spends over half its time below
the thermal trigger, accumulating a large negative integral.
Gcc, on the other hand, does not have this problem, because
it spends almost 100% of its time with at least one structure
above � � � � .

Figure 4 therefore shows the performance of the non-CT
toggle1 controller, the manually-derived proportional con-
troller (M), and the CT-toggle controllers (with anti-windup
for the PI and PID controllers). Data for the PD controller is
omitted for simplicity, since the PD controller is slightly in-
ferior to the PI and PID controllers (but see below for more
information). All were able to completely eliminate ther-
mal emergencies, so the metric of interest is performance.
Recall that DTM only slows or disables parts of the pro-
cessor, so the best we can accomplish is to minimize the
slowdown. The figure therefore plots the percentage loss in
performance compared to the baseline case with no DTM.

The adaptive techniques are substantially better than the
fixed toggle1 policy, with the PI and PID techniques cutting
the performance loss by about 65% compared to toggle1,
and by about 37% compared to the M controller. Even the
P controller cuts the performance loss by 21% compared
to the M controller. Furthermore, the CT-DTM techniques
are always better than the toggle1 policy, and almost always
better than the M controller except for equake and a tiny dif-
ference for fma3d in the case of the PI and PID controllers,
and gcc and equake for the P controller.

The choice of a higher setpoint (� � � � �
�) for the PI and

PID controllers is essential to their good performance. We

also tried a setpoint of � � � � � � for these controllers (the same
setpoint used by the P controller). The results appear in
Figure 5. A PD controller is included in this graph too, for
completeness.

The PI and PID controllers still give impressive gains
compared to the toggle1 controller, but are actually infe-
rior to the simpler P controller. The reason for this is that
these controllers are actually doing too good a job of hold-
ing temperature to the setpoint. The P controller allows
temperatures to rise as high as � � � � �

� , while the other con-
trollers hold the temperature extremely close to the setpoint
of � � � � � � . Indeed, the temperature never exceeds � � � � � @ �
for any structure for the PD controller, and never exceeds� � � � � � � for the PI and PID controllers. This means that the
setpoint for these controllers should be set to a higher tem-
perature. Ideally, an analysis of maximum overshoot would
use the maximum possible power dissipation in each struc-
ture, the thermal RC time constant, and the response time
of the controller to identify the maximum value for setpoint
that still guarantees no thermal emergencies. For example,
if ��� � � � were proven to be the maximum overshoot for the
PID controller, then the setpoint could actually be placed at� � � � � �

� while preserving the guarantee that the emergency
level of � � � � would never be exceeded. That analysis is be-
yond the scope of this paper. Instead, for our main results in
Figure 4, we simply used the maximum observed tempera-
tures to conclude that a setpoint of � � � � �

� is safe for this
workload with the PI and PID controllers.

The most dramatic gains for CT-DTM come from
the benchmarks with extreme thermal demands and the
“medium” benchmarks that operate very close to ther-
mal emergency but rarely actually experience emergencies
(mesa, facerec, eon, and vortex). This latter category is most
severely penalized by a fixed policy, and benefits most from
the integrating action of the PI and PID controllers because
they permit a much higher setpoint, so that these “medium”
benchmarks rarely or never engage any toggling.

Of course, such fine control over temperature may be
overkill in an environment where the number of tempera-
ture sensors on chip is likely to be limited (perhaps four to
eight at most), where thermal propagation and the intrin-
sic response of the sensors themselves imply a lag between
heating at hot spots and the time at which this is detected
by a sensor, and where imprecision in the sensor may mean
accurate sensing and control to within fractions of a degree
may be impossible.

Improved methods for distributed temperature sensing
can remove most of these problems. But the main point
of this paper is broader than the specific mechanisms de-
scribed here. Rather, we used DTM as a vehicle to show
that formal feedback control theory offers a variety of ad-
vantages for adaptive techniques in processor architecture,
and the results presented here demonstrate that clearly.

14

0

0.05

0.1

0.15

0.2

0.25

0.3

gz
ip

w
up

w
is

e

vp
r

gc
c

m
es

a

ar
t

eq
ua

ke

cr
af

ty

fa
ce

re
c

fm
a3

d

pa
rs

er

eo
n

pe
rlb

m
k

ga
p

vo
rt

ex

bz
ip

tw
ol

f

ap
si

M
E

A
N

P
er

ce
n

t
L

o
ss

 in
 P

er
fo

rm
an

ce

toggle1
M
P
PI
PID

Figure 4. Performance loss for various DTM techniques relative to the IPC with no DTM. Smaller bars
mean less loss in performance.

The trigger threshold for the PI and PID controllers has been set to ������� � � (i.e., a setpoint of ������� � �). The mean reduction in performance
loss compared to toggle1 is 64% for PI and 66% for PID.

0

0.05

0.1

0.15

0.2

0.25

0.3

gz
ip

w
up

w
is

e

vp
r

gc
c

m
es

a

ar
t

eq
ua

ke

cr
af

ty

fa
ce

re
c

fm
a3

d

pa
rs

er

eo
n

pe
rlb

m
k

ga
p

vo
rt

ex

bz
ip

tw
ol

f

ap
si

M
E

A
N

P
er

ce
n

t�
L

o
ss

�in
�P

er
fo

rm
an

ce

toggle1
M
P
PD
PI
PID

Figure 5. Performance loss for various DTM techniques relative to the IPC with no DTM, but with a
setpoint of � � � � � � for all the control-theoretic controllers (i.e., a trigger threshold of � � � � � � for all the
mechanisms).

The mean reduction in performance loss compared to the fixed toggle1 policy is 46% for M, 57% for P, 51% for PD, 53% for PI, and 49%
for PID.

15

8. Conclusions and Future Work

DTM pipeline toggling based on control-theoretic tech-
niques is more effective than prior techniques at avoid-
ing thermal emergencies while minimizing performance
loss. Our CT-DTM techniques completely prevented ther-
mal emergencies while reducing the loss in performance by
65% compared to the previously proposed “toggle1” tech-
nique and 36% over our own hand-designed proportional
toggling technique. This shows that the benefits of CT-
DTM come not just from their adaptivity, but that they also
derive substantial benefit from the formal control theory
from which they are derived.

Overall, this paper makes three contributions to the field
of architecture-level dynamic thermal management.

1. We introduce the use of a new and more accurate ther-
mal model that models temperature directly and is also
computationally inexpensive.

2. We invoke DTM techniques in response to localized
hot spots rather than chip-wide effects.

3. We apply control-theoretic techniques to control the
thermal-management techniques. These controllers
provide much more adaptive control of the tempera-
ture and thus minimize performance penalties.

We feel that the most important contribution of this work
is our demonstration that formal feedback control theory
offers compelling advantages. The control-theoretic tech-
niques are effective because they engage only as much tog-
gling as necessary, while holding the temperature so tightly
to the setpoint that we were able to establish a setpoint of� � � � �

� but never exceed the emergency threshold of � � � � .
The controllers were also extremely easy to design, requir-
ing almost no tuning.

More generally, our results suggest that applying
control-theoretic techniques to other aspects of adaptive
processor control is an extremely promising research area.
The design of the controllers is itself a rich area for research,
because in addition to choosing an overall controller algo-
rithm, the controller parameters can be adjusted to formally
determine the choice of thresholds and to guarantee settling
times. This, for example, can be used to choose the highest
possible setpoint that still guarantees successful regulation
of temperature.

This work is just the first step in what we expect to
be a long-range effort in thermal modeling and manage-
ment. Our results so far suggests a variety of avenues for
future work: more detailed thermal modeling to account
for the second-order effects of thermal coupling among hot
spots, thermal modeling and feedback control that account
for the presence of only a limited quantity of temperature

sensors and the associated sensor lag, validation of the ther-
mal model against a circuit-based power model, new ther-
mal management mechanisms, and application of control
theory to other aspects of dynamic power and performance
management.

We hope that the material presented here will provide the
necessary foundation to help other architects perform more
detailed thermal modeling and to help other architects apply
control theory in the design of adaptive microarchitecture
techniques.

Acknowledgments

This material is based upon work supported in part by
the National Science Foundation under grant nos. CCR-
0105626, CCR-0098269, MIP-9703440 (CAREER), and a
grant from Intel MRL. We would like to thank George Cai,
Margaret Martonosi, and David Brooks for their helpful
comments; David Brooks for his extensive help in validat-
ing our DTM techniques within Wattch; Zhigang Hu for his
help with the SimpleScalar EIO traces; and the anonymous
reviewers for many helpful suggestions on how to improve
this paper.

References

[1] S. Borkar. Design challenges of technology scaling. IEEE
Micro, pages 23–29, Jul.–Aug. 1999.

[2] D. Brooks and M. Martonosi. Dynamic thermal management
for high-performance microprocessors. In Proceedings of
the Seventh International Symposium on High-Performance
Computer Architecture, pages 171–82, Jan. 2001.

[3] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A frame-
work for architectural-level power analysis and optimiza-
tions. In Proceedings of the 27th Annual International Sym-
posium on Computer Architecture, pages 83–94, June 2000.

[4] D. C. Burger and T. M. Austin. The SimpleScalar tool set,
version 2.0. Computer Architecture News, 25(3):13–25, June
1997.

[5] J. A. Chavez et al. Spice model of thermoelectric elements
including thermal effects. In Proceedings of the Instrumenta-
tion and Measurement Technology Conference, pages 1019–
1023, 2000.

[6] A. Dhodapkar, C. H. Lim, G. Cai, and W. R. Daasch. TEM-
PEST: A thermal enabled multi-model power/performance
estimator. In Proceedings of the Workshop on Power-Aware
Computer Systems, Nov. 2000.

[7] MIPS R10000 die photo. From website: CPU Info Center.
http://bwrc.eecs.berkeley.edu/CIC/die photos/#mips.

[8] N. Dragone, A. Aggarwal, and L. R. Carley. An adaptive
on-chip voltage regulation technique for low-power applica-
tions. In Proceedings of the 2000 International Symposium
on Low Power Electronics and Design, pages 20–24, July
2000.

16

[9] C. V. Hollot, V. Misra, D. Towsley, and W. Gong. A control
theoretic analysis of RED. In Proceedings of IEEE INFO-
COM, Apr. 2001.

[10] R. E. Kessler, E. J. McLellan, and D. A. Webb. The Alpha
21264 microprocessor architecture. In Proceedings of the
1998 International Conference on Computer Design, pages
90–95, Oct. 1998.

[11] Al Krum. Thermal management. In Frank Kreith, editor,
The CRC handbook of thermal engineering, pages 2.1–2.92.
CRC Press, Boca Raton, FL, 2000.

[12] F. J. De la Hidalga and M. J. Deen. Theoretical and exper-
imental characterization of self-heating in silicon integrated
devices operating at low temperatures. IEEE Transactions
on Electron Devices, 47(5):1098–1106, May 2000.

[13] C. Lu, J. A. Stankovic, G. Tao, , and S. H. Son. Feedback
control real-time scheduling: Framework, modeling, and al-
gorithms. Real-Time Systems Journal, Mar.-Apr. 2002. To
appear.

[14] S. Manne, A. Klauser, and D. Grunwald. Pipeline gating:
speculation control for energy reduction. In Proceedings of
the 25th Annual International Symposium on Computer Ar-
chitecture, pages 132–41, June 1998.

[15] S. McFarling. Combining branch predictors. Tech. Note TN-
36, DEC WRL, June 1993.

[16] D. Parikh, K. Skadron, Y. Zhang, M. Barcella, and M. Stan.
Power issues related to branch prediction. In Proceedings of
the Eighth International Symposium on High-Performance
Computer Architecture, Feb. 2002.

[17] H. Sanchez et al. Thermal management system for high-
performance PowerPC microprocessors. In COMPCON,
page 325, 1997.

[18] SIA. International Technology Roadmap for Semiconduc-
tors, 1999.

[19] K. Skadron, D. W. Clark, and M. Martonosi. Speculative
updates of local and global branch history: A quantitative
analysis. Journal of Instruction-Level Parallelism, Jan. 2000.
(http://www.jilp.org/vol2).

[20] Standard Performance Evaluation Corporation. SPEC
CPU2000 Benchmarks.
http://www.specbench.org/osg/cpu2000.

[21] D. C. Steere et al. A feedback-driven proportion allocator
for real-rate scheduling. In Proceedings of the Symposium
on Operating System Principles, Feb. 1999.

[22] K. Wilcox and S. Manne. Alpha processors: A history of
power issues and a look to the future. In Proceedings of
the Cool Chips Tutorial: An Industrial Perspective on Low
Power Processor Design, pages 16–37, Nov. 1999.

[23] L. S. Y. Wong, S. Hossain, and A. Walker. Leakage current
cancellation technique for low power switched-capacitor cir-
cuits. In Proceedings of the 2001 International Symposium
on Low Power Electronics and Design, pages 310–15, Aug.
2001.

[24] T.-D. Yuan and B.-Z. Hong. Thermal management for
high performance integrated circuits with non-uniform chip
power considerations. In Proceedings of the Seventeenth
SEMI-THERM Symposium, pages 95–101, Mar. 2001.

17

