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ABSTRACT
Multicore architectures are widely used in research and in-
dustry today. The innovations in parallel computer architec-
tures create an opportunity for the development of software
solutions that exploit the available parallelism. Static pro-
gram analysis is a well-explored area of research which has
many applications including detecting software vulnerabil-
ities, test case generation, debugging and program paral-
lelization. For many types of static analysis, scalability is
an important concern. In prior research, the performance
of static analysis has been improved with techniques such
as exploring a limited portion of the search space, flow-
insensitivity, context-insensitivity, abstraction and the use
of heuristics. Many of these techniques can be viewed as
trade-offs that sacrifice precision in favor of scalability and
practical applicability.

Previous work has demonstrated that demand-driven query
propagation is an effective and efficient static analysis tech-
nique that is more scalable than current techniques. In this
research, we present a version of the demand-driven tech-
nique that is multithreaded to further increase scalability.
The key idea that underlying our approach is that query-
based demand-driven analysis exhibits significant opportu-
nities for parallelization because queries typically have few
dependencies. We present a parallel algorithm for statically
detecting buffer overflows and evaluate its feasibility in a
path-based static analysis framework called Marple. We
implemented the scheme using Microsoft Phoenix [20] and
Marple [15], a tool produced at University of Virginia.
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Statically analyzing program source code to check for cer-
tain program properties is widely used in software develop-
ment and maintenance activities such as detection of soft-
ware vulnerabilities, test input generation, program paral-
lelization and debugging [14, 25]. One major advantage of
static tools compared to dynamic tools is its guarantee of
finding all bugs in a program without executing it, while dy-
namic analysis is often incomplete. That is, through static
analysis, we are able to obtain the behavior of relevant exe-
cutions of a program without running it.

Although static techniques are useful, it is challenging to
make a static tool effective in practice. A major hindrance
to static analysis is the lack of scalability. There is a lot of
research focused on increasing the precision of static analy-
sis of programs by including path-sensitivity [6]. However,
exhaustive path-based techniques have not been shown to
be scalable to a million lines of code. Nowadays software is
becoming larger and more complex thereby imposing the re-
quirement for any analysis to efficiently handle a large state
space. In the current state of the art, expensive static analy-
sis is either terminated after exploring only a limited portion
of the state space or sped up with solutions (such as intrapro-
cedural, flow-insensitivity or context-insensitivity, abstrac-
tion or heuristics) that sacrifice precision for performance
[11].

Reducing the state space of a program on which static
analyses are performed is the key to scalability. One tech-
nique used to minimize the exploration and storage of state
space associated with a program is the elimination of infeasi-
ble paths by demand-driven propagation [4]. Demand-driven
program analysis initiates processing at statements of inter-
est (depending on the information required to be extracted)
and propagates a query backward along the interprocedu-
ral control flow graph (ICFG) of the program until it can
be resolved [7].See Section 2.2 more detailed explanation
of demand-driven analysis. This technique eliminates the
propagation of information along infeasible and unnecessary
paths thereby reducing the execution time of the analysis.
Even so, demand-driven program analysis which is flow and
context sensitive does not scale sufficiently to real-world pro-
grams, which often exceed hundreds of thousands of lines of
code.

1.1 Motivation
In previous efforts to build scalable program analyses to

detect software vulnerabilities in programs, a scalable path-
based framework called Marple was developed [15]. Marple
takes as input an application program and a specification
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of program properties and automatically generates an ana-
lyzer to detect violations of these program properties in the
application. The tool has been effective in detecting several
classes of bugs such as buffer overflow, integer overflow and
null pointer deferences. Unlike other tools that perform sim-
ilar work, this framework presents the user with information
pertaining to the program paths along which the potentially
vulnerable statements are detected as well as the path seg-
ments which cause the violation and the statements which
are directly responsible for it. This results in reducing devel-
oper time required to fix the bug by providing the context
(i.e. trace) in which the vulnerability manifests itself. In
addition, the framework is also able to detect interactions
between different bugs and their impact on the correct func-
tioning of the application. See Section 2.1 for more details
on the implementation of Marple. It has been evaluated on
several benchmarks with up to 1.6 million lines of code and
has been shown to scale well with the size of the applica-
tion. In this work, we are further increasing the scalability
of path-based program analysis by exploiting architectural
innovations.

Advances in computer architectures like multi-core CPUs
have created vast interest in introducing parallelism to im-
prove the performance of several applications such as ray
tracing, abstractions for program parallelization, compiler
for Brook streaming language and communication proto-
col design (eg. [22], [26], [18], [19]) to name a few. Pro-
gram analysis is one such application that can gain sig-
nificant improvement in performance by exploiting paral-
lelism. Demand-driven program analysis is widely used due
to the several benefits it offers over exhaustive analysis. In
this technique, propagation of information (in the form of
queries) is initiated at potentially vulnerable program points
and propagated backwards along the ICFG of a program
until there is sufficient information to classify it as a vul-
nerability. Even though the queries can communicate with
each other by taking advantage of the relevant cached in-
formation at each node, it is not strictly necessary. As each
query is independent of the others, enabling the propagation
of queries that are exploring one/more program properties
to execute on different cores simultaneously increases scal-
ability. While the queries share the same call graph associ-
ated with a program, the successive passes which raise and
resolve the queries are intrinsically independent providing
opportunity for substantial parallelism.

According to Amdahl’s law, the speedup of a parallel pro-
gram is limited by the time needed for the sequential fraction
of the program [2]. We have found the time taken to raise
queries in a program to be small enough (less than 1s for
all the benchmarks tested) to not limit the speedup in most
cases. Thus the maximum speed-up of parallel demand-
based query propagation is limited by the time spent in
solving the most complex query in the analysis. In order
to gain insight in to the amount of parallelism that can
be obtained by this approach, we performed some prelimi-
nary experiments. We evaluated several benchmarks on the
Marple framework and measured the time taken to solve
each query. The highest execution time that is required to
solve a query is an approximate estimation of the execution
time of the benchmark. A previous version of Marple was
used in these preliminary experiments and has since been
updated. We use the updated version in our evaluation in
Section 4. Table 1 contains 6 synthetic benchmarks and

Benchmark
Size
(kloc)

Total
Time(sec)

Longest
query
time(sec)

Speedup
(%)

StringOp 0.033 0.68 0.16 77
Interfoo 0.075 1.09 0.4 63

Insertion Sort 0.055 7.46 7.13 4
Substring 0.037 0.71 0.24 66

String Reversal 0.031 1.6 1.2 25
Palindrome 0.029 0.47 0.09 80
Poly-0.4.0 1.7 3.9 2.9 26.1
Sendmail-2 0.7 25.3 17 32.5
Wu-ftpd 0.4 52.7 21.8 58.6

Sendmail-6 0.4 205.8 202.9 1.43
Ffmpeg 39.8 31.8 18.7 41.1
Gzip 8.2 946.3 818.5 13.5

Apache-2.2.4 418.8 6823.3 931.4 86.3
Putty-0.56 112.4 4632.1 1599 65.48

Table 1: Hypothetical Speedup for 8 C/C++ bench-
marks in the Marple framework

8 real-wrold benchmarks. A hypothetical speedup of upto
77% for the synthetic programs and 86% for the real-world
programs is seen. However, the estimate assumes that there
are enough cores to start all threads at the same time (which
is not unreasonable for the small benchmarks) and does not
take into account the overhead of thread creation and dele-
tion.

1.2 Our Solution
In this work, we develop a parallel algorithm to generate

fast and precise program analysis to detect buffer overflow
errors in C/C++ programs. Demand-driven analysis is nat-
urally parallel in that resolving each query pertaining to a
potentially vulnerable statement in a program is mostly in-
dependent. Thus, a straightforward way to parallelize the
analysis is to execute each query on a separate thread and si-
multaneously on multiple CPU cores. The challenge here is
to make optimal use of cores at all times. The threads need
to be ordered in a way that prevents many cores from being
idle at any point of time while paying attention to thread
dependencies. We have adapted our algorithm to conduct
a case study in evaluating the potential parallelism of the
Marple framework. In reality, this algorithm should be no
different from the general algorithm. However, due to rea-
sons explicated in Section 1.3, there was a need to sacrifice
some parallelism to support multhithreading. The two main
contributions of this paper are:

1. A general parallel algorithm to resolve queries corre-
sponding to desired program properties

2. An implementation and evaluation of our algorithm in
the context of the Marple framework [15]

Experimental results in Section 4 evaluate the feasibility
of this approach for a few sample programs as well as some
real-world programs.

1.3 Implementation Challenges and Properties
Even though our parallel algorithm can be applied to any

framework, we chose to evaluate it on the existing Marple
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framework. In this section, we present various factors that
contribute to the ease/difficulty of parallelizing Marple ef-
ficiently. A major challenge to the implementation of the
algorithm was the properties of the underlying framework.
Marple is built using the Microsoft Phoenix compiler frame-
work which is an analysis framework for building compilers,
tools for testing, program analysis and software optimiza-
tions [20]. While Phoenix has proved to be very useful in
building tools for program analysis, the latest release does
not contain adequate support for our work. More specif-
ically, Phoenix does not support multithreading within a
function unit (function unit refers to a function in the ap-
plication program that is being analyzed). In other words,
there is no synchronization within a function unit to pro-
tect the data structures that is maintained inside a function
unit and shared by all threads accessing the function unit.
This property combined with the limitation of selected API
results in a race condition when the shared data is enumer-
ated.

In our experience, introducing synchronization using prim-
itives like locks or mutexes contribute to a huge overhead
(around 2x slowdown) making multithreading ineffective.
Further, implementing these data structures is a huge effort
which could not be accomplished due to time constraints.
Rather than parallelizing the queries, it is easier to paral-
lelize across function units by suitably managing the depen-
dence structure of the program without incurring the cost
of employing locks. As a result, we are forced to raise the
parallelism to the function unit level. In this paper, we first
present the general algorithm for parallel static analysis fol-
lowed by a functionally parallel algorithm for the Marple
case study.

In spite of the complexity involved in parallelizing at the
function unit level, certain properties of Phoenix make it a
viable choice for us. Firstly, it provides an excellent frame-
work for quickly generating static analyses of application
programs. A plug-in model for the backend of Phoenix al-
lows for easy addition of new phases/passes to perform any
required analysis. Secondly, Phoenix utilizes the Microsoft
C++ Compiler (C2.exe) to perform analysis and code gener-
ation for function units in parallel, which reduces the execu-
tion time considerably. However, the reduction in execution
time does not make any difference to the speedup obtained
as the sequential version also uses C2. Other advantages
of the Phoenix framework include language independence,
many levels of intermediate representation and compatibil-
ity with many architectures.

2. APPROACH
We have implemented our parallel static analysis algo-

rithm in a path-based framework called Marple for identify-
ing and reporting buffer overflows in an application program
[15]. The Marple framework was created in previous efforts
by the authors of [15]. In this paper, it is being extended
to evaluate parallel static analysis. First, we present the
framework in which the parallel static analyses are imple-
mented. Demand-driven query propagation forms the crux
of our static analysis and is presented next. Finally, an
overview of parallel query propagation in a multithreaded
environment completes a high-level description of our im-
plementation.

2.1 Marple Framework

The Marple framework is used to statically generate anal-
yses, based on specific program properties. The input to the
framework consists of program properties, which we will call
specifications, and an application program which is being
analyzed for certain properties. The program paths along
with the specific path segments which exhibit the required
properties are output as a result of the analysis.

2.1.1 Specification
The path properties are defined by the user based on the

specification language that is a part of the framework. It
consists of points in a program where the property can be
observed (known as α-points and α-constraints) and how
it is effected along the different program paths (known as
α-impacts and α-transitions) [15]. An example of the spec-
ification for the buffer safety property in a program taken
from [15] is shown in Figure 1.Code signatures are used to de-
scribe the α-points and α-impacts while attributes describe
the α-constraints and α-transitions. The code signature is
a language based construct, which is in C for our purpose.
The ’$’ symbol is used to specify code signatures. This can
be altered to represent constructs in other languages as well.
Attributes specify a characteristic of the program state. For
example, in Figure 1 Size(a) refers to the size of a buffer or
Len(b) refers to the length of the string stored in it. Using
attributes, even advanced language constructs can be de-
picted effectively. There are three main sections in the spec-
ification of a property. Vars is used to define the variables
that are used in the specification. The ObservablePoints
section contains the α-points which are the statements in
the program where the property may be observed or con-
firmed. These are paired with α-constraints that indicate
the constraints that must be satisfied for the property to
hold along the paths in which the statements are present.
DefiningPoints is used to represent the α-impacts which
are statements in a program which can lead to a resolution of
the constraints imposed on it. Along with them, we also de-
fine α-transitions which are changes in program state caused
by α-impacts.

2.1.2 Approach for Generating Path-based Analysis
The first step in generating demand-driven analysis is

parsing the specification to generate code for the query con-
structor, evaluator and transformer [15]. The generator con-
sists of three modules - language, attribute and path which
make up the interface between the the specification and the
framework and enables demand-driven propagation. Pars-
ing a specification results in preprocessed code signatures
and the required syntax trees. The preprocessing step pro-
duces an intermediate representation consisting of condi-
tions and commands by replacing code signatures with con-
straints corresponding to the operator and operand in the
statement [15]. The conditions and commands are then used
to build pairs of syntax trees corresponding to α-points and
α-constraints, and, α-impacts and α-transitions. Finally,
attribute models are used to generate code based on the
structure of the syntax tree.

The output from the first step is fed to the query prop-
agator which performs the required analysis. The query
propagator uses the code modules which are produced by
the generator and guides the analysis in a demand-driven
fashion. Every node in the ICFG is examined and a query
is raised if α-point and α-constraints are determined. Path
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Vars

Vbuffer a, b; Vint d; Vany e

ObservablePoints

α-Point $strcpy(a,b)$
α-Constraint Size(a). Len(b)
or
α-Point $memcpy(a,b,d)$
α-Constraint Size(a). min(Len(b), Value(d))
or
α-Point $a[d]=e$
α-Constraint Size(a). Value(d)

DefiningPoints

α-Impact $strcpy(a,b)$
α-Transition Len(a) := Len(b)
or
α-Impact $strcat(a,b)$
α-Transition Len(a) := Len(a)+Len(b)
or
α-Impact $a[d]=e$ && Value(e)=’\0’
α-Transition Len(a) := Value(d)

Figure 1: Specification for the Buffer Safety prop-
erty

modules define the backward propagation of queries starting
at α-points, until it can be resolved as well as the forward
propagation for isolating paths [15]. When the propagation
reaches a fork, the query information is transmitted along
both paths. Similarly, the propagation merges when they
reach a join in the ICFG. Propagation to a different function
is necessary when there is a function call. A linear scan is
performed to determine the caller function and the query is
propagated only to that function. Loops are a special case
and need to be handled exclusively. Encountering a loop
causes Marple to evaluate the impact of the loop. If the loop
has no impact, propagation continues as usual. Otherwise,
the loop is executed twice and an attempt to symbolically
reason about the loop count and updated information from
each iteration of the loop is made. If no such reasoning can
be applied, the imprecision is recorded and propagation is
continued.

2.2 Demand-driven Queries
We now briefly describe demand-driven analysis; for a

full description, we refer the reader to previous work [15].
Demand-driven analysis is centered around the concept of a
query. A query q is defined as a pair

q = 〈y, n〉

where y is a program fact of interest (e.g., a predicate in a
formal logic), and n is the program point of interest (identi-
fied by a node in the ICFG). Demand-driven analysis maps
a demand into a query and identifies desired information by
computing the resolutions for the query. For example, to
report whether the program contains a buffer overflow, we
construct a query at the statement where a buffer overflow
can occur. On a high-level, the demand-driven analysis is a
worklist algorithm. Each query along with a program state-

ment is stored in the worklist. If the query and the state-
ment pair are an α-impact, they are evaluated. Queries can
be updated at each node while it is being propagated. Query
propagation rules are determined from previous work like [4,
7]. Intermediate results collected while resolving each query
can be shared by caching them at each step.

2.3 Parallel Queries
The generation and resolution of queries along the ICFG

of a program are implemented in separate passes. Each pass
consists of a series of phases which perform different analysis
tasks. The first pass in the analysis is the construction of
an ICFG and raising of queries for the application program
that is being analyzed. Once the ICFG is generated by the
Phoenix framework, we visit every call node pertaining to
functions in the program. When a potentially vulnerable
statement is encountered (α-point), a query is raised and
added to the worklist. The propagation and resolution of
queries is carried out in the next pass. The call graph gen-
erated in the first pass is stored and read by the next pass.
This portion of the analysis is the target of parallelization.
In the original Marple framework, a query is chosen from the
worklist and processed. The next query is chosen only af-
ter the previous query has completed. In our multithreaded
version, each query is processed on an independent thread
in parallel to the other threads. All threads are created
around the same time but start execution depending on the
availability of cores. Subsequently, each thread propagates
the query backwards checking for query resolution at each
α-impact.

While the above approach should be applicable in most
frameworks or environments, the Marple framework requires
working around the non-existence of synchronization within
a function unit. As noted in Section 1.3, the Phoenix com-
piler framework used in Marple necessitates the use of function-
level parallelism. In order to evaluate the application of
parallelism, we designed another algorithm in which care is
taken to ensure that not more than one thread is operat-
ing on the same function unit at the same time. Queries
are added to a query worklist which is sorted based in the
function unit. A thread is created and started for the top
element in each function unit’s worklist. The next thread
is started when the previous thread in that function unit
completes execution. Even though this workaround avoids
a race condition, the amount of parallelism now depends on
the number of function units which, in most cases, is consid-
erably less than the number of queries as suggested by the
general algorithm.

We have optimized the number of queries that are raised
by eliminating the exploration of functions that are never
called in the program. The basic idea for this optimization
is similar to demand-driven analysis in that infeasible paths
lead to false positives and hence we identify and exclude
them. Therefore, we search the ICFG for the main function
and only analyze functions which are reachable from it and
ignore the other nodes in the call graph. We found a 5x
reduction in the number of queries in the optimized version
compared to the original version.

3. PARALLEL ALGORITHM
This section contains the general algorithm for parallel

demand-driven query propagation as well as the modified
algorithm for the case study used in this paper. The algo-
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rithm for generating the path-based analyses is taken from
[15] and hence is not discussed here. The first algorithm
employs query-level parallelism and is potentially more ben-
eficial (although we do not evaluate it in this paper). The
second algorithm is based on function-level parallelism and
was constructed to overcome the constraints in the frame-
work which is being used for evaluation in this work.

Input: Program p
Output: paths of property X

1 icfg = BuildICFG(p);
2 set worklist L to {}; set queryList M to {} ;
3 foreach s ∈ icfg do
4 if isNode(s) then
5 q = RaiseQuery(s);
6 add (q, s) to M;

7 end

8 end
9 foreach (q, s) in M do

10 Create new thread t; add (q,s) to t.L;
11 Start t to execute SolveQuery(q,s);

12 end
13 Join all threads;

14 SolveQuery(query q, statement s)
while L 6= 0 do

15 remove (q,s) from L;
16 if isNode(s) then
17 transQ(s,q);
18 end
19 if q.resolved then
20 add (q, s) to A[q];
21 end
22 else
23 foreach n in Pred(s) do
24 PropagateQuery(s,n,q);
25 end

26 end

27 end
28 IdentifyP(A[q]);

Algorithm 1: General demand-driven parallel algorithm

3.1 General Algorithm
Algorithm 1 can theoretically be generalized to any demand-

driven path based static analysis framework which contains
adequate underlying synchronization support. Even in the
absence of synchronization, it is relatively easy and inexpen-
sive to lock the required data structure if it is implemented
by the programmer in contrast to the usage of existing data
structures in the tools used. This algorithm is an extension
of previous sequential demand-driven static analysis imple-
mented in Marple to the multithreaded environment [15].

The algorithm takes a program p as input and outputs
paths relevant to one/more program properties X as listed
in the specification. The path-based analysis generated in
the previous step is stored in A. In line 1, the ICFG of the
program is constructed. isNode is a call to the code gen-
erated in the previous step of the analysis. Every node is
visited and a query is raised by the RaiseQuery function
if an α-point and α-constraint are determined in lines 2-8.
Every query and statement pair is added to the querylist
to be processed by the next step. In lines 9-13, threads

are created for each element in the querylist, the query is
added to each thread’s worklist and solved simultaneously
by executing the SolveQuery function in lines 14-27. In
SolveQuery, each thread’s worklist item is extracted one
at a time and examined. If it is an α-impact, the corre-
sponding transition is performed in line 17 by the transQ
function. Subsequently, if the query is resolved, it is added
to A in line 20. Otherwise, it is propagated to its predeces-
sor in line 24 by the PropagateQuery function. Finally,
the paths corresponding to the property are identified by a
call to IdentifyP in line 28.

Input: Program p
Output: paths of property X

1 set querylist M, worklist L, threadlist W, functionlist F
to {};

2 icfg = BuildICFG(p); add function unit of node to F;
3 foreach s ∈ icfg do
4 if isNode(s) then
5 q = RaiseQuery(s);
6 add (q, s) to M;

7 end

8 end
9 solvers = InitiateSolvers(M,F);

10 foreach n ∈ solvers do
11 Start n with SolveQuery(q,s);
12 end
13 Join all threads;

14 InitiateSolvers (querylist M, functionlist F)
foreach f ∈ F do

15 Create a thread for f and add to W;
16 end
17 foreach (q, s) ∈ M do
18 SetWorklist(W,bq);
19 end
20 return W;

21 SetWorklist (threadlist W, basicblock bq)
foreach t ∈ W do

22 if t.functionUnitName = bq.functionUnitName

then
23 add bq to t.L
24 end

25 end

Algorithm 2: Marple demand-driven parallel algorithm

3.2 Marple Case Study Algorithm
The Marple case study which is evaluated in this paper

requires a few modifications on Algorithm 1 to support mul-
tithreading. A variation in constructing the worklist of each
thread is implemented in this algorithm. SolveQuery re-
mains the same as in Algorithm 1. Queries are raised from
the ICFG similar to the general algorithm. At each node
the function unit (function in the application program) at
which the query is raised is recorded in a list. The queries
are added to the querylist in line 9 from which the individual
thread worklists are constructed. A call to InitiateSolvers
in line 9 initializes and returns the set of threads to process
queries. Threads are created and the worklist of each thread
is determined in lines 14-20.

The key difference between this algorithm and the pre-
vious one is the way in which the worklist is determined
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in the SetWorklist function. Every query in the querylist
calls the SetWorklist function with the threadlist (made up
of the thread for each function unit and the basic block of
the query in line 18. Lines 22-26 sort the worklist according
to the name of the function unit. Sorting is done to ensure
that threads do not operate on the same function unit at
the same time. A check to see if the thread’s function unit
name is the same as the basic block’s function unit name is
performed in line 23. Lines 10-13 start all the threads and
subsequently join them. The result of using the technique
of sorting threads by function unit results in decreasing the
level of parallelism in most cases as the number of function
units is less than the number of queries.

4. CASE STUDY EVALUATION

4.1 Setup
We evaluated the second algorithm in the Marple frame-

work which consists of Microsoft’s Phoenix compiler infras-
tructure and the Disolver constraint solver [20, 9]. The fea-
tures provided by Phoenix include points-to analysis, ICFG
construction, and part of the attribute module. Evalua-
tion of inequalities for a range is conducted by the Dis-
olver. The experiments were conducted on an Intel quad-
core 2.3GHz machine with 16GB RAM running Microsoft
Windows Server 2003. The specification for the framework
tested for buffer overflows only. The first part of the eval-
uation tested synthetic benchmarks created by the authors.
The second part discusses the real-world benchmarks that
were tested and the extensions that were implemented for
it. Each benchmark was run three times and the average of
the three runs is presented here.

4.2 Synthetic programs

4.2.1 Benchmarks
We first evaluated the Algorithm 2 on a set of synthetic

programs that we created and manually injected with sim-
ple faults. Most of the benchmarks such as Insertion sort,
Palindrome, Substring recognition and String reversal are
well-known problems with commonly accepted textbook so-
lutions that manipulate arrays and strings. StringOp and
Interproc are test programs with interprocedural string ma-
nipulations. Polymorph-0.4.0 is actually a real-world bench-
mark which is presented again in Section 4.3 (after imple-
menting extensions) for comparison. It is a Win32 to Unix
file name converter. The program searches the current di-
rectory for ’mangled’ names created while using Windows
applications. Consequently, the mangled name is converted
to a simpler file name that follows Unix naming conventions.
The synthetic programs are 35 lines long on average while
Polymorph-0.4.0 is 1800 lines. Note that the Polymorph-
0.4.0 benchmark used here has been modified (function calls
in loops are inlined) according to the description in Section
4.3.1 to ensure a fair comparison of this result with the ex-
tended algorithm described in that section.

4.2.2 Results
Table 2 shows the results for executing the sequential and

parallel version of the analysis on 7 C/C++ programs and
the speedup which is obtained. The results for the small
programs were as expected. On average, we found that mul-
tithreading produces up to 63% speedup for these programs.

Benchmark
Size
(loc)

Query
Count

Bugs
Found

Speedup
(%)

StringOp 33 4 2 10
Interproc 75 6 4 14

Insertion Sort 55 2 0 13
Substring 37 5 1 63

String Reversal 31 5 3 7
Palindrome 29 4 2 2.4

Polymorph-0.4.0 1800 13 1 35

Table 2: Speedup for 7 synthetic C/C++ bench-
marks in the Marple framework without extensions.
Polymorh-0.4.0 is not a synthetic benchmark but is
presented here for comparison with Table 3

More specifically, certain benchmarks (with more queries
and function units) make optimal use of the available cores
and perform better consequently. Other benchmarks are too
small and raise most of their queries in the same function
unit which does not allow for a high degree of parallelism.
The Substring benchmarks shows the highest speedup of
63%. Even though all the queries are raised in the same
function unit and worked on by a single thread, it avoids
the multiple function calls to SolveQuery in comparison to
the sequential version. These results are however not repre-
sentative of performance gain in ”real” benchmarks as they
are small programs which are not complex and have man-
ually chosen faults. In addition, there is lower contention
for cores by the threads in the process compared to larger
programs. Note that these numbers will not reflect the pro-
posed speedup in Table 1 as it makes use of function-level
parallelism as oppposed to query-level parallelism described
there.

4.3 Real-World programs
Given that we saw a considerable speedup for small ap-

plications, we decided to try medium-sized, real-world ap-
plications. In order to do this, we had to implement a few
extensions to our current algorithm for the following reasons:

1)For large programs, it is necessary to explicitly synchro-
nize threads when there is a propagation request to the
caller,

2)Similar synchronization is required if we want to resolve
loops in parallel. Below, we describe the extensions that
we implemented and the modifications that were required
to evaluate real-world benchmarks.

4.3.1 Extensions
Interprocedural analysis is key to the precision of our anal-

ysis and it was very important to support it. As we have
the restriction of ensuring that two threads do not enter
the same function unit simultaneously, the act of propagat-
ing a query requires that we know in advance if there are
any threads already operating on that function unit. Since
the worklist is dynamically updated, there is no way to pre-
determine dependencies in the case of a propagation. Our
solution to this problem creates and maintains a separate
thread (R) which acts on a propagation list of all queries
which are ready for propagation. Each propagation list ele-
ment consists of a propagator function unit as well as target
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function unit. All other threads periodically check to see if
there is any query in the propagation list that needs to be
processed. If a thread shares its function unit name with
the function unit name of top element in the propagation
list which is trying to propagate or is the target of propaga-
tion, it waits and allows the thread R to continue. R waits
until both threads that are involved in the propagation enter
the wait state. When R is ready, it performs the propaga-
tion and updates the worklist of the target thread with the
query. Finally, R notifies the waiting threads to continue ex-
ecution. This way, threads not involved in the propagation
never have to wait. For this scheme to work all threads are
in a busy waiting state. This is very expensive as we will
see in Section 4.3.3 and we are looking into eliminating this
cost.

With regard to loop resolution, we decided that the syn-
chronization required for this was very heavy-weight. There-
fore, loops are executed sequentially. This obviously reduces
the parallelism and we have left parallel loop execution as
future work. In addition, function calls within loops is a
special case which requires further synchronization. For our
evaluation, we inlined function calls within loops to over-
come this. Inlining function calls for large benchmarks can
be very difficult and we hope to avoid this with better syn-
chronization techniques in the future. The extensions de-
scribed in this section were not atraightforward to imple-
ment and more multithreading experience is required to pro-
duce a more efficient algorithm.

4.3.2 Benchmarks
We chose 4 C/C++ Windows benchmarks for this por-

tion of the evaluation. Polymorph-0.4.0 has been presented
earlier and is evaluated again to provide an idea of the slow-
down incurred due to the extensions. Sendmail-6 belongs
to the buffer overflow benchmark that was created by Zitser
et al [27]. It is a command-line utility to send SMTP mail
through the SMTP server. The other two benchmarks are
Sendmail-2 and Wu-ftpd. Sendmail-2 is an earlier version of
the same utility with a different set of vulnerabilities. Wu-
ftpd is a FTP server software used in Unix-like operating
systems. The specifications of the benchmark and the re-
sults from running the sequential and parallel algorithm is
presented in Table 3.

4.3.3 Results
The execution time for the sequential version is displayed

before the ’/’ while the multithreaded version is after it. Ev-
idently, there is a huge slowdown when more synchroniza-
tions are added. Polymorph-0.4.0 shows roughly 4x slow-
down when compared to previous evaluation which used Al-
gorithm 2 without the extensions. Sendmail-2 is also very
slow compared to the sequential version. Sendmail-6 has the
same execution time as the sequential version as there is only
one query. In summary, more work is required to reduce the
synchronization overhead in analyzing larger benchmarks for
the Marple framework. Alternately, an evaluation of the
general parallel algorithm where no synchronization is re-
quired should be done using another framework to obtain
an idea of the performance gain that is possible.

5. THREATS TO VALIDITY
In this work, there are a few limitations which prevent us

from hypothesizing that parallel demand-driven query prop-

Benchmark
Size
(loc)

Query
Count

Bugs
Found

Exec time
(s/m)

Polymorph-0.4.0 1800 13 1 7.9/13.5
Sendmail-2 700 16 0 19/47
Sendmail-6 400 1 1 49.5/50

Table 3: Results for 4 C/C++ benchmarks in the
Marple framework with extensions

agation is always beneficial:

1. We have not evaluated our general parallel algorithm
to explore its feasibility due to constraints of the Phoenix
Infrastructure. We think that this will be a better indi-
cator of the speedup that can be obtained form parallel
static analysis.

2. The benchmarks we use are not representative of large-
scale, real-world benchmarks. We have shown that
smaller benchmarks may benefit from this approach
but this may be an artifact of the complexity of the
benchmarks or the type of faults chosen. More exper-
imentation is necessary to evaluate the usefulness of
our approach.

3. Medium-sized, real-world benchmarks required program-
mer effort to inline functions which is not acceptable
for larger benchmarks. We think that this problem can
be overcome by more careful thinking regarding the de-
pendencies in framework. This is however a problem
of the framework and not the approach.

There are also certain limitations that are due to the
Marple framework:

1. The framework can only handle path properties that
can be represented by the specification that is fed to
it. In other words, it can be used to perform a subset
of static analyses that is allowed by the expressiveness
of the specification.

2. The framework implements a limited modeling of func-
tion pointers and exception control flows like signal
handling. We depend on Phoenix to perform some
pointer analysis, the precision of which is unknown.

6. RELATED WORK
The widespread use of multiprocessors has led to the need

for the development of software that exploits the parallelism
they provide. There has been much research in developing
parallel algorithms such as weighted and unweighted graph-
ing algorithms [21, 5] including minimum spanning trees [3,
1, 12] and genetic computing [24] to name a few. Parallel al-
gorithms to perform data-flow analyses are addressed in [16,
17, 13]. Their techniques do not target the same problems
as we do.

Demand-driven pointer analysis has been shown to scale
to a million lines of code [11]. However, their analysis is
achieved in a flow-insensitive, context-insensitive manner.
In addition, it targets a very specific problem of resolving
pointers. Parallel test input generation on multiple cores
by distributing the search space to be tested among several
threads while sharing meta-information to avoid redundant
exploration is the focus of Siddiqui and Khurshid’s work [10].
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The key idea in this work is to use a constraint-based test
generation strategy that systematically searches for valid
test inputs. Improving the cost-effectiveness of model check-
ing a program state space by a parallelized random state-
space search to detect errors in programs is the idea in [8].
Using multiple processors to explore the state space allows
the execution to terminate when the first error is found.
However, these techniques do not perform demand-driven
analysis. As a demand-driven approach is known to be scal-
able, adding parallelism further increases its scalability. Par-
allel generation of reachability graphs for JAVA programs
has produced an 86% decrease in execution time in [23].

Currently, the proposed system focuses on parallelizing
query propagation and resolution after generating the ICFG,
but it can also be extended to parallelize the generation of
control flow graphs and raising queries. Since generation
of ICFG and raising queires has been found to contribute
to only a small portion of the execution time of program
analyis, we do not think that it is worthwhile to parallelize
it for our purposes.

7. CONCLUSIONS AND FUTURE WORK
In this work, we argue that static analysis of programs

can be made more scalable by taking advantage of the par-
allelism of multicore computer architectures. We present a
general parallel algorithm and as well as a modified version
to extend the Marple framework developed by [15]. Our
evaluation on synthetic programs has shown a reasonable
performance gain. Currently, real-world benchmarks do not
experience a performance gain in the Marple framework due
to the heavy synchronizations that are necessary to over-
come the limitations of the Phoenix compiler framework.

There are several extensions to this work that can be
performed. Firstly, it is necessary to evaluate the general
parallel algorithm on a different framework with adequate
support for multithreading. We expect to see a significant
performance gain in this scenario. Secondly, it will be inter-
esting to explore the effects of turning on the software cache
to store queries at intermediate nodes as opposed to turning
it off to eliminate the need for synchronization. Lastly, we
expect the benchmarks to scale with the number of queries
as well as the number of cores. An evaluation of scalabil-
ity in this respect will present a more complete idea on the
advantages and disadvantages of this approach.
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