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ABSTRACT

The conventional way to distribute digitized voice over a computer network is to packetize some number
of voice samples and transmit them as unacknowledged datagrams. If the number of voice samples per
packet is small, then the loss of any one.packet is unlikely to affect the perceived quality of the voice
channel. The price paid for this simplicity is that, since this is a datalink protocol, the voice stream can
not be routed over an internetwork. A resonable question to ask is whether a voice stream could in fact
afford (in terms of latency) the higher quality service provided by transport and network layer protocois.
If so, then the connection could be routed over internetworks and it could profit from the end-to-end relia-
bility mechanisms inherent to transport protocols (e.g., transparent retransmission). And, depending upon
the transport protocol, the voice stream might be able to utilize new services such as multicast. We
experimented with this concept by building a multichannel voice distribution system using the Xpress
Transfer Protocol running over an FDDI network. We made throughput, latency, and jitter measurements
for a basic configuration and then for several variations: background synchronous traffic on FDDI of up to
75 Mbits/sec; packet loss rates of up to 10%; multicast distribution rather than unicast; and combinations

of the above,
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1. DIGITIZED VOICE

In the context of computer systems, there is much to be gained from treating digital voice as sirnpiﬁr
a special cése of digital data—special because it has timing requirements as well as accuracy require-
ments. If digital voice can be carried over computer networks and still meet system timing requirements',
then it may be possible to collapse two separate systems (telephone system and computer system) into
one. In fact, if the commuhicationé subsystem provides sufficient bandwidth, digital video could also be
carried along with voice and data to form a tmiy intcgrated, multimedia, all-digital communications ser-

vice. Five advantages of such a system are:

(1) lower bit error rate

(2) higher system reliability

(3) integration of voice, video, and data
(4) reuse of existing network components
(5) shared use of a single cable plant

The last three items may be of significant value to a security-conscious system, since they reduce security
certification and validation complexity by dealing with one integrated system rather than three indepen-

dent systems.

3. DIGITIZED VOICE DISTRIBUTION

While digitized voice is easy to acquire (there are many commercial vendors of analog-to-digital
and digital-to-analog converters), voice samples can not be transmitted over a network on a sampie-by-
sample basis. To make distribution practical, multiple voice samples must first be "packetized"— that is,

multiple COntiguous samples must be accumulated and processed as a single data packet. This is neces-



sary because there is considerable overhead associated with transmitting, receiving, and processing each

data packet.

In a digital voice distribution system, Some number (typically 1-8) of analog voice channels are pro-
cessed by an analog-to-digital converter. Each voice channel produces a 64 Kbit/sec (8 Kbyte/sec) digital
data stream. The A/D converter continuously samples the analog voice channel and outputs one digital
sample (onie byte) every 125 microseconds. These digital samples accumulate in a FIFO queue (one
queue per voice channel). Digital voicelprocess‘mg is a special (and simpler) éase of digital signal pro-
cessing, which uses more accurate digital samples (typicaily 12 or 16 bits) and a higher sampling fre-

quency to recover more information from the incoming data stream.

A microprocessor periodically services the queue for each voice channel and removes n bytes of
data. (Frequency of service and the number of data samples available are inversely related.) The n bytes'
of data become the payload of a message sent from the transmitting host to the destination host over an
intervening computer network. At the destination host, a microprocessor processes the incoming mes-
sage, extracts the payload, and delivers n bytes of data to a FIFO queue. A digital-to-analog converter
extracts one byte of data every 125 microseconds and replays the resulting analog sigﬁal through a

speaker or telephone handset.

A block diagram of a single-channel voice system is shown in éigure 1. On the transmitting side,
the A/D circuitry monitors the analog input (e.g., microphone) and delivers one sainple to the first-in-
" first-out (FIFO) queue every 125 microseconds. The user application program, running on the host,
removes data samples from the FIFO and submits them to the communications subsystem for processing.
The communications protocol, shown here as the Xpress Transfer Protocol, builds a Transport Protocol
" Data Unit (TPDU) which contains the application’s data. XTP submits the packet to the FDDI LAN,
which frames the packet and physically trgnsmits it over the ring. On the receiving side, FDDI hardware
extracts the packet from the ring, deframes it, and delivers it to XTP. XTP performs its reliability func-

tions, transparently recovers from any data rrors, and delivers the payload to the destination application.
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This user application writes the data into a FIFO queue. The D/A circuitry removes one sample from the
FIFO every 125 microseconds and directs the corresponding analog signal to a playback device such as a

speaker.

Note that Figure 1 is a simplification of a real system. Practical systems would operate with multi-
ple channels simultaneously, channels would be bi-directional, and the single segment token ring shown
could in reality be any number of network segments (either local area or wide area), and could be joined

by either bridges or routers.

The performance goal of such a system is simply stated for a single voice charmel: empty the A/D
converter’s output FIFO sufficiently often £hat it never overflows (fills up with data), and deliver that con-
tent to the D/A converter’s input FIFO sufficiently often that it never un&crﬂows; (nmé out of data). In
addition, this process must be performed with a sufficiently small end-to-end latency such that it does not

affect the quality of bi-directional communications.

Using fnodem computing hardware, software, and communications protocols, all the above can be
easily achieved for a single voice channel—but it would make the world’s most expensive telephone!
Such a system is only practical if it can handle multiple voice channels simultaneously. It is highly desir-
able that such a system utilize common, commercial (as opposed to proprietary) components; that it -
operate over standard computer networks, and that it operate with standard computer communications

protocdls.

3. COMMUNICATIONS PROTOCOLS

The A/D converter can be considered a continuous source of data and the D/A converter a continu-
ous sirk for data. The purpose of the communications protocol is 10 provide the logical connection
between the A/D’s FIFO at the data’s source and the D/A’s FIFO at the data’s destination. 1n addition,

the protocol must support simultaneous use of the transport connection by multiple voice channels.

For each voice channel, a user process at the source collects n bytes of data, representing n contigu-

ous voice samples, and delivers it (along with addressing information sufficient to identify the recipient)



to a buffer that connects the user process to the communications subsystem. In d real system, each voice
channel could produce n data bytes every n* 125 microseconds; in our system, we assumed that data was
available whenever it was needed. Thus we simulated a system with an unlimited number of potential
voice channels to transport, and it was a goal of the experiments to determine how many voice channels

could be transported under given circumstances.

On the transmitting side, the role of the transport protocol was to collect whatever data had accumu-
lated in its buffers at the moment of protocol invocation, to package the data as a Transport Protocol Data
Unit (TPDUY), to encapsulate the TPDU as a legal FDDI frame, and finally to transmit the frame. On the
receiving side a symmetric process‘ occurred which accepted an FDDI frame, extracted a TPDU, delivered 5
its payload to the buffers that connect the receiving traﬁsbort protocol to the user process, and signal the
destination user process that it has received data. The user process would then extract its data and deliver -
‘it. In a real system, the user process would deliver its data to a particular D/A converter’s. input FIFO

queue; in our system we just delivered it to dedicated memory locations.

One of the advantages of using a transport protocol is. that, at each invocation, it moves whatever
amount of data has accumulated since the lést invocation. This means that if, say, two contiguous data
sample groups, each of size n bytes, accurriulate in the user’s transmit buffers for a single voice channel,
then.the protocol will ﬁackefize and deliver one packet with a payload of 2n bytes rather than th0 packets
with a payload of n bytes each. This is an additional source of efficiency in the event that the system

experiences transient loading of the processor or the network.

An outstandirﬁg quéstion is whether the overall system goals are best met by a datalink proto'coi ora
transport protocol. This question is discussed further in a later section. Héwever, in summary, a datalink
protocol is limited to a single segment network, whereas transport protocols permit system operation over -
-multiplc network segments connected by routers. In addition, transport protocols transparently recover

from data errors of all types (e.g., bit errors on the medium, buffer overflow in the receiver, packet loss in

the router). Another way of looking at the question is this: if a system can have all the advantages of a



transport protocol and still meet its timing requirements, then it is possible to use a transport protocol and
thereby enable multi-segment networks, routers, transparent error recovery, etc. All our efforts in this
study were directed at documenting the cost (primarily in terms of latency) of the transport protocol; we

did not study datalink protocols at all.

Given the decision to evaluate only a transport protocol approach, the requirements of the transport
protocol were that it provide sequenced, in-order delivery without duplicates, with transparent error
recovery, and that it do so with latency and jitter characteristics which did not degrade the quality of thé '
voice channels being carried. This suggested that efficiency of implementation v}as a major concern, and
for that reason we chose the Xpress Transfer Protocol (XTP) to supply this service. Qur previous testing
of XTP, reported in [Hart91], had shown XTP to be more efficient than either TCP or TP4 for this type of |
transport task. XTP prow}idcs all the services found in the classi;: transport protocols such as TCP and’
. TP4, and in addition provides several useful new features such as a priority subsystem, intra-protocol
scheduling, selective acknowledgement, selective retransmission, and transport layer reliable multicast.

Each of these functions, unique o XTP, is a potentially valuable feature for a voice delivery service.

priorz"ty subsystem—XTP allows a user to mark messages (and hence packets) with a transport layer
priority. At every moment in time XTP will then work on its most important (highest priority) packet.
Thus, voice péckets could be given priority over other message types in the transport protocol (as well as

on the FDDI ring).

intra-protocol scheduling—the priority subsystem is active end-to-end, which means that high priority

packets are treated expeditiously in the transmitter, in the receiver, and in all intermediate routers.

selective acknowledgement—rather than require an explicit acknowledgement for each voice packet (as in
TCP and TP4), selective acknowledgement allows the transmitter to ask for acknowledgements when and

if desired.

selective retransmission—rather than handling retransmissions with a go-back-n scheme as in TCP and



TP4, XTP can retransmit only the gaps in a data stream.

multicast—multicast allows identical information to be reliably sent to any number of receivers with ohly

a single transmission.

The scope of this study restricted us to experimentation with a single protocol, so all results reported

herein reflect the use of XTP,
4. EXPERIMENT DESIGN

4.1. Hardware and Software

We used two "stations," each consisting of a Motorola 133XT prbcessor board (25 MHz Motorola
68020 with 4MB memory); VMEbus backplane, pSOS real-time operating system, and Martin Marietta‘
FDDI network. Our software included user applications and the Xpress Transfer Protocol (version 3.6),‘
both written in Microtec C. While replacing selected system components could have increased overall
performance (e.g., replacing the 68020 with a 33 MHz 68040, or choosing a faster FDDI board), we did
not attempt such "heroic” measures to increase performance. The hardware suite is simple, commercial,
standard, and readily available; thﬁs our goal was merely to document its performance, rather than to
optimize it to produce some predefined level of performance. Throughout the experiﬁlentsrepdrted here,

there was no explicit attempt to "tune” the system for better performance.

Each station was both a transmitter and a receiver in the experiments discussed later, thereby ena-
.bling true bi-directional communication. Actual A/D and D/A converters were not used, nor were physi-
cal microphones or speakers. The lack of physical A/D and D/A devices should have minimal effect on
_the vélidity of our results, since we believe that read/write operations on the FfPO queues should be

equivalent 1o the read/write operations we performed on user memory.

For some experiments, background traffic was generated in FDDI’s synchronous class by a data
load generator (described later). LAN throughput measurements were made with FiberTap, our real-time

FDDI network monitor [Weav89].



FDDI supports bomlsynchronous and asynchronous data classeé. Synchronous data is served pre-
ferentially at each station at each token arrival, and asyngpronous data is served if and only if the token
rotation time is less than a user-defined limit. Throughout all our experiments, we used the default value
in the AMD SuperNet FDDI chip set for negotiated token rotation time (T_neg = 10.1 ms). Since voice
traffic was deemed most important in theée experiments, all voice traffic was assignéd to the FDDI syn-

chronous class.

Different FDDI implementations use different default values for T_neg; although AMD chose 10.1
ms, National Semiconductor chose 40 ms. In accordance with the definition of FDDI, the network
chooses the smallest of these values as its operational goal token rotation time. Thus, even though later

experiments with multicast introduce a second manufacturer’s FDDI chips, the AMD parameters prevail.

Even so, the selection of the goal token rotation time was not critical in these experiments. Nor-
mally, FDDI's Station Management (SMT) protocol is used to negotiate a portion of the network’s syn-
chronous bandwidth foruse by each station with synchronous data; however, SMT was not functional on

the Martin Marietta FDDI equipment, so this feature was not used.

4.2. Overview of Experiment

The focus of the experimental work was on moving the data through the end-to-end communica-
tions system as fast as possible, and observing the effect of various system parameiers on system

thfoughput. latency, and jitter.

To that end, we developed a basic experiment in which the two stations described above continu-
ously exchanged "voice packets." The i)asic system measurements were fa) network throughput, (b) end-
to-end latency, and (c) jitter (i.e., variation in packet delivery time). Throughput. was important because
| that measure, divided by 64 Kbits/sec, iﬁdicated how many voice channels could be simulténeously
active. The latency measurements documented how long it took to deliver a packet, and we could com-
pare that to the interpacket arrival rate required by the hardware for any given packet size. The jitter

measurements demonstrated the variability in packet “delivery times, especially when there was



contention for system resources (processor and network).

The basic experiment was performed for voice sample sizes (i.e., values of n) ranging from 8 to
4096, and the throughput, latency, and jitter characteristics were measured. Throughput and latency
measurements were presenied in tables; jitter measurements were presented as scatter plots of the latency
times of 1000 individuai packets. Latency was calculated by timing the round trip of a voice packet and
dividing by 2 to yield the one-way latency. From the jitter data we calculated the average end-to-end
latency of a data packet, and we calculated the 99.9% threshold point—that is, the latency value such thaf

99.9% of all measured latency values were equal to or smaller than that value.

The basic experiment was then extended to introduce background load on the FDDI network. Since
backgfound asynchronous load was eﬁcpected {and verified) to have little effect on'the ﬁerformancc of the
synchronous data, all background loads were in the synchronous class so that it truly competed with the
voice traffic for system resources. The experiments above (which had no background FDDI load) were
then repeated with background loads of 25, 50, and 75 Mbits/sec. While doing these experiments we
noted that system performance was sensitive to the type of background load as well as its intensity. Thus
background load was generated two ways, one using ﬁ single packet per token service discipline (SPPT)
in which at most one data frame is emitted per token reception, and the other using a multiple packet per
token scheme (MPPT) in which multiple data frames are chained together and transmitted after token
reception. The former is the most common FDDI service discipline, although the latter might be utilized
By a system designer who was trying to optimize throughput of a highly loaded synchronous server. FljDI
certainly permits MPPT service, but using it is awkward since it means withholding packets which are
otherwise ready for transmission just so they can be chained with others; even if this service type was
desirable, it is more likely to be used in an asynchronous service class (e.g., for file servers) than in the
sfnchronous class. Although we think that the former (SPPT service) is the more likely, we ran experi-._

ments with both cases to gauge its impact.
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Another set of experiments documented the performance if the system under conditions of packet
loss. Although the actual system was normally error-free, we artificially introduced packet loss rates of
1%, 5%, and 10% to observe its effect on throughput, latency, and jitter. These experiments exercised the

reliability and error repair mechanisms of the underlying transport protocol.

The above experiments assumed a traditional unicast connection between transmitter and receiver;
however, one of the unique features of XTP is that it can support 1-to-m, or multicast, connections.
Using multicast, a single transmission can be reliably received by m receivers. We repeated selected

eiperiments using maulticast to determine the potential performance cost of this new service type.

4.3. Timing

The performance measurements reported here all depend_ upon maintaining an accurate time base
throughout the duration of the experiment. Our Motorola 133XT processor boards were equipped witﬁ
programmable timers with a resolution of 81.3 microseconds; that is, the timer provided a register which
could be read via software, and the register was incremented by one every 81.3 microseconds. Since ali
our latency measurements are in units of milliseconds, ihe timer resolution was perfectly adequate for our

needs.

5. EXPERIMENT 1: BASIC CONFIGURATION

5.1. Experiment 1; Design

The basic experiment provided the transport protocol with a continuous stream of n byte packets.
On the {f;nsmitting side, the processor’s only job was to collect n bytes of data from a pseudo-FIFO
(dedicated memory), deliver it to XTP, run the transport protocol, and transmit the data over FDDI. On
. the receiving side the processor performed the symmetric operations: receive an FDDI packet, run X"I‘P,-
deliver data to the user, and have the user deliver the data to a pseudo-FIFO (again, dedicated memory).
There was no background load on the FDDI network, and nb other computational or communications

load on the processor. The basic experiment represents a "best case” (for the given system architecture)
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-for data throughput and latency, thus we use it as an upper bound for determining how many voice chan-

nels could be simultaneously supported by this particular system architecture.

All real-world considérations sﬁch as contention for the network (background traffic on the LAN),
* contention for the processor (background computational load or non-voice communications load on the -
processor), packet loss in the network (bit errors on the medium, buffer overruns in the receiver, packet
loss in network routers), and less efficient transport protocols will result in decreased system performance
from that reported for the basic experiment. The impact of these additional influences are considered in

the experiments which follow.

The basic experiment transmitted one megabyte (1,048,576 bytes) of pseudo-voice data from one
station to.the other, utilizing the full reliability features of XTP. Data to be transmitted was delivered 1o
XTP in units of 8, 16, 32, 64, 128, 256, 512, 1024, 2048, or 4096 bytes; this number represents the value |
of n and is called "voice data size." When data of size n bytes is delivered toIXTP, it is placed inside an
XTP frame which consists of a 40-byte header and a 4-byte trailer. The header contains a key field which
uniquely identifies the receiving process; the trailer contains a 4-byte transport checksum which provides
an additional integrity check for the data. The XTP frame (44 bytes plus user data) is in turn encapsulated
in a 25-byte FDDI frame (8 bytes for the LLC header, 6 bytes for the MAC destinatidn address, 6 bytes

for the MAC source address, 4 bytes for the cyclic redundancy code, 1 byte for the frame status ﬁeld)

| X’I‘P allows the user to specify programmatically the degree of reliability to be unposed on the
transmission. If error checking is elected (thereby making this transm1551on connection-oriented, as
opposed to connectionless), the user may further specify how often XTP should solicit acknowledgements
for the daté stream. Acknowledgement frequency can vary from never to always. In these experiments
we have chosen the most robust error-checking possible, namely that an acknowledgement packet is
required from the receiver for every data packet transmitted by the sénder. These acknowledgements are
provided by an XTP "control packet" of size 117 bytes. Thus, every transmitied packet of size n+69

bytes forces a 117 byte acknowledgement packet to be transmitted on the reverse channel. Since both sta-
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tions are transmitting data and receiving data simultaneously, data and acknowledgements are flowing in
both directions at all times. Even though each transmitted packet requires an acknéwledgement. the
transmitter does not enter into a stop-and-wait protocol; the Hmmmittér proceeds as fast as it can (it is
paced primarily by the amount of buffer space available in the receiver), using the acknowledgements

only for error control (not flow control).

As an optimization, we could reduce the reverse channel traffic by decreasing the frequency of ack-
nowledgements, or even eliminating them altogether by using a transport datagram (i.e., unack-
nowledged) service. However, we chose to document the cost of the most robust service type, knowing

that optimizations such as these were available if we needed to build a higher performance system. For
example, throughput would improve if we reduced the frequency of acknowledgements, thereby reducing

both network load and acknowledgement processing. |

5.2. Experiment 1: Analysis

Table 1 shows a number of results for the basic experiment. As identified in the first column, each
row represents the measured and calculated results for an experiment in which the user provides data to
XTP in units of » bytes (labeled "voice data size"), where n varies from 8 to 4096 by powers of two. The
second column of each row, labeled "frame size," shows the actual amount of data which has to be sent to
carry n bytes of Qser data; this number.reﬂects the 69 bytes of overhead added to each packet by XTP (44
bytes) and by FDDI (25 bytes). "The third entry shows how many packets, each with a payload of n bytes,

were sent in order to transmit one megabyte.

Column four, labeled "user throughput," documents the end-to-end, single-channel throughput in
unig.§ of rﬁegabits/sec. and includes only the voice data in ﬁhe compﬁtation of througﬁput (i.e., XTP and
FDDI framing are not counted as user throughput). The "network throughpﬁt" figure in column five
(megabits/sec) does account for the required XTP and FDDI framing. Looking at row one, sending voice
data in 8-byte groups results in 30 Kbits/sec of user throughput but, because of framing overhead,

requires 288 Kbits/sec of network throughput to accomplish it.
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"Total time" in column .six records the duration of the experiment in seconds. The "packet rate” in
column seven indicates how fnany XTP packets were transmitted per second. Column eight ("average
latency") records the average one-way, end-to-end latency (in milliseconds) for a packet with payload n
bytes. Finally, column nine ("99.9% threshold") identifies that latency, in milliseconds, for which 99.9%

of all packets have a latency which is equél to or less than this latency.
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Overhead. Framing ovethead ranges from 90% when using small voice data sizes (8 bytes of pay-
load in a 77 byte frame) to 1.5% when using large voice data sizes (4096 bytes of payload in a 4165 byte
frame). As expected, large frames are much more efficient than small frames, and, all other variables
being equal, this fact alone would argue for using the largest possible voice data size. (Other factors make
this less attractive.) User throughput and network throughput measurements further verify the efficiency

of large packets,

Packet rate. This is a fundamental measure of the overhead found in the entire architecture. Using a
voice data size of 8 bytes, the fastest possible transmission rate is 470 packets per second. In other words,
this architecture is incapable of produéing any kind of packet faster than once every 2.1 milliseconds.

This is a fundamental system limit.

Theoretically, packet generation rate is orthogonal to packet latency; that is, if an application can
generate x packets/sec, the packet arrival rate at the destination will reflect the generation rate, regardless
of the packets’ latencies. The side-effect, of course, is that as latgncy increases, it becomes more and
more difficult to maintain a true bi-directional conversation.. Thus, we have chosen a more rigorous stan-
dard of performance: not only must the transmitting FIFO be serviced at a minimum rate (dependent ﬁpon
voice data size), but the resultmg packets must be delivered with a latency which avoids creating a pipe-
line of packets in transit through the communications protocol (the pipeline effect is unavmdable in the
two FIFOs due to the nature of the hardware). From this point on, we focus on latency as being the pri-

mary indicator of system performance.

Latency. Average latency varies from 2.7 ms for a voice data size of 8 bytes to 7.7 ms for a voice
data siz¢ of 4006 bytes. The 99.9% threshold numbers are very close to the average latencies, varying by
at most 0.14 ms; this indicates very low variance in the delivery time of packe_ts.' However, the real
meaning of the end-to-end latencies can only be understbod by contrasting them with what a practical

system would require, and then looking at what margin of safety these measures provide.
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| In a real system, fixing the size of n places an upper bound on the acceptable delivery time of a
packet of that size. Any group of n voice data samples represents n* 125 microseconds of voice. If n
voice samples are collected and transmitted repeatedly, then each such group must be delivered within

n* 125 microseconds, or else the destination FIFO will underflow due to lack of data. To appreciate the

impact of this delivery deadline, examine Table 2.

BASIC EXPERIMENT
No background processor load
No background FDDI load
69 bytes framing overhead
voice data size  new data needed every  new data generated every packet generation rate :
(bytes) (ms) (ms) - (packets/sec)
8 : 1.000 2.127 470
16 2.000 2127 470
32 4.000 2.132 469
64 8.000 2,155 464
128 16.000 - 2.208 453
256 32.000 2,283 438
512 64.000 2.481 ' 403
1,024 128.000 2.695 n
2,048 256.000 3.257 307
4,096 512.000 4.329 : 231
Table 2

‘Basic Experiment: Required vs. Observed Arrival Periods

A packet with a payload of n bytes must be delivered within n* 125 microsecdnds of the packet
before it. Table 2 shows, for each value of », the maximum time which may elapse before the output
FIFO underflows (labe_led "new data needed every") and the observed amount of time v&;hich was required
to generate a packet with n bytes of payload (labeled "new data generated ev¢ry"). The "new data gen-

erated” column is computed from the packet rate in column four.

For example, if packets contain 8 bytes of payload, then they must arrive once per millisecond to
avoid a FIFO underflow; however, they can only be generated every 2.1 ms, so this value of »n is not prac-

tical. The table reveals that 16-byte payloads are likewise impractical for the same reason. At the other
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end of the scale, if there are 4096 voice samples per packet, then they are needed once every 512 ms, yet

they can be generated every 4.3 ms. So large values of n are very practical from the standpoint of the
delivery schedule (other factors make them less attractive). The results in Table 2 show that as the differ-

ence between the values in columns 2 and 3 increases, we have a greater margin of safety in assuring

timely delivery of packets.

Note that the results in Table 2 are for a single voice channel, and that a practical system must
simultaneously manage multiple voice channels. Thus the "margin of safety” discussed above represents
time which could be used for handling additional voice channels.

Table 3 shows how many voice channels could be carried in this particular experiment.

BASIC EXPERIMENT
i ' No background processor load
No background FDDI load
69 bytes framing overhead
voice data size  user throughput  equivalent voice channels
(bytes) (Kbits/sec) (64 Kbits/sec each)
8 30 0
16 60 ' 0
32 120 ' 1
64 238 3
128 468 7
256 897 - 14
512 1661 25
1024 3050 47
2048 5115 79
4096 7294 113
Table 3

Basic Experiment: Voice Channels Available

As shown in Table 3, dividing the user throughput measurement (in Kbits/sec) by 64 Kbits/sec
yields the number of voice channels which could be carried using this architecture. For a system support-

ing, say, 60 voice channels, a voice data size of nearly 2 kilobytes is required.
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This experiment suggests that channel efficiency and capacity increase as payload size increases,
and indeed this is true. But an opposing factor is the startup timé of the pipeline which is being con-
structed between the transmitter and receiver. As shown in Table 2, a voice data sample of n bytes takes
n* 125 microseconds to collect before it even begins its journey through the network. Thus there is a
startup delay upon connection establishment of n* 125 microseconds plus the end-to-end latency, and the
same delay whenever speech begins anew after a period of silence. As n becomes large, so does the -

startup latency; at n=4096, for example, the startup delay is in excess of half a second.
6. EXPERIMENT 2: SYNCHRONOUS SPPT BACKGROUND FDDILOAD

6.1. Experiment 2: Design

Our second experiment was designed to illustrate the influence of background Ioad on the FDDI net-
work. Since background traffic in the asynchronous class can reasonably be expected to have little effect
on the voice traffic in the asynchronous class, we restricted our experiments to background synchronous

traffic.

The basic experiment was repeated three times, except that a baékground load of différing intensity
was imposed on the FDDI network for each trial. This load was created by attaching a separaté station to
the FDDI ring, and having it generate 25, 50, or 75 Mbits/sec of data which was addressed to a non-

existent station. The sole purpose of this "traffic generator" was to make the FDDI ring look busy.

The traffic generator was a high-performance personal computer (25 MHz Intel 80386 processor) -
equipped with an AMD Fastcard FDDI interface. It created FDDI frames of length 4167 bytes (33,336
bits); at FDDI’s 100 Mbits/sec transmission rate, each frame required 333 microseconds to transmit. An
important decision was whether each frame should be processed individually (ie., transmit at most one
data frame per token arrival), which we call "single-packet-per-token" or "SPPT" service, or whether mul-
tiple packets should be chained together to make a larger burst of transmitted data (i.e., transmit more

than one packet per token arrival), which we call "multiple-packet-per-token” or "MPPT" service. Obvi-
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ously, MPPT service is more efficient for the network since it reduces overhead, but is more injurious to
the variance of voice data latency since it permits non-voice stations to capture the token for longer

periods of time.

In a previous section we observed that SPPT service is the more natural selection, since MPPT ser-
vice requires withholding packets that are otherwise ready for transmission until multiple packets can be
chained togéther for bulk transmission. Not only is this awkward, but such a low level decision is nor-
mally made by the network interface software (i.e., by the low level drivers connecting the comrnunica'-
tiohs protocol to the network hardware); the user would normally never be aware that such a decision
existed, and thus would normally have no control over it. However, since the outcome of‘ this decision
obviously affects performance, we have modeled it both ways. In experiment two, the background load

generator produced SPPT traffic; in experiment three it produced MPPT traffic.

For experiment two the load generator produced traffic according to Table 4.

SPPT BACKGROUND LOAD GENERATION

Packet size  Packetsize  Packet generation rate  Total offered load

(bytes) (bits) (packets/sec) {(Mbits/sec)
4167 33336 750 25
4167 33336 1500 50
4167 33336 2250 75

Table 4

SPPT Background Load Generation Parameters
6.2. Experiment 2: Analysis

Experiment two, "Synchronous SPPT Background Load," augments the basic experiment by adding
a background load of 25, 50, or 75 Mbits/sec. All of the background load is cartied in FDDI’s synchro-
nous class (and thus competes for channel bandwidth with the voice traffic), and all of it is generated

using a SPPT service discipline.
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Table 5 shows the number of voice channels which could be carried for a given voice data size and

given background synchronous SPPT load on FDDI.
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In Table 6 we display 99.9% threshold values, rather than average values, so that we get an even
better picture of the effect of background synchronous SPPT load on end-to-end latency. As expected,

the addition of background load does increase the overall delay, but not by a significant amount.

SYNCHRONOUS SPPT BACKGROUND LOAD

voice data size $9.9% threshold iatencies
(bytes) (ms)

0 Mbits/sec 25 Mbits/sec 50 Mbits/sec 75 Mbits/sec

8 2.764 2.927 2.927 3171
16 2.846 2.927 2.927 3.171
32 2.846 2.927 3,089 3.171
64 2927 3.008 3.008 3.252
128 3.008 3.089 3.089 3.496
256 : 3.171 3,333 . 3.659 - 3.659
512 3496 3,740 3,821 3.821
1024 4.146 4.228 4.390 4.634
2,048 5.366 5.528 5610 5.772
4,096 7.805 7.967 8.049 8221
Table 6

99 9% Threshold Latency with Synchronous SPPT Background FDDI Load

Adéing 25 Mbits/sec of background load increases the 99.9% threshold point by about 0.15 ms; 50 -
Mbits/sec of background load increases it by about 0.3 ms; 75 Mbits/sec of background load incpeases it
by about 0.5 ms. None of these increases are significant. Thus we conclude that syﬁchronous SPPT
background load on FDDI, even at a rate of 75 Mbits/sec, has no serious effect on overall voice data
latency. |

We must point out that a major reason that the effect is so minor is that, even though the load gen-
erator can produce lots of traffic (2250 packets/sec for the highest loading case), each packet is served
using SPPT service. So in an FDDI ring of three nodes (two voice stations and the traffic generator), the
voice traffic of any one station is interrupted by the transmissions of at most two other stations. As will
be seen from the next experiment using MPPT service, SPPT service is highly desirable because it

smooths the flow of synchronous traffic among stations, allowing each voice station a timely opportunity
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to transmit.

7. EXPERIMENT 3: SYNCHRONOUS MPPT BACKGROUND FDDI LOAD

7.1. Experiment 3: Design

Experiment three differed from experiment two in that the synchronous backgfound load on FDDI
was generated using a multiple—packet»pér—token (MPPT) service djséiplme rather than SPPT. MPPT
correctly models the situation in which a particular station is capable of high, sustained loads in the syn-
chronous class, aﬁd furthermore that network efficiency is of such paramount importance that the network
interface routines have been written to hold packe;s for transmission until a prescribed number of them
have been accumulated and chained together; when the prescribed number has been accumulated, then

that group of packéts is transmitted upon the next token arrival.

MPPT traffic is generated by reprogrammihg the load generator. Packets are generated intermally
using the same scheme described previou's.ly; however, 15 packets are accumulated before physical
transmission is attempted. Packets are 4167 bytes (33,336 bits) each, so a group of 15 of them represents
a transmission of 500,040 bits behind a single token. At the 100 Mbits/sec rate of FDDI, eaqh MMPT

transmission requires 5 ms.

The MPPT experiment generates "bursty” traffic at the rates shown in Table 7.

MPPT BACKGROUND LOAD GENERATION

Packet size ~ MPPT parameter Burstrate Burst period Total offered load
(bytes) (packets/burst) (bursts/second)  (ms between bursts) (Mbits/sec)
4167 15 50 20 25
4167 15 - 100 10 50
4167 15 150 6.66 75
Table 7

. MPPT Background Load Generation
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7.2, Experiment 3: Analysis

Given that a single burst will consume 5 ms of network transmission time, and that voice packets
are being generated continuously, some voice packets will be delayed the full 5 ms while others, gen-
erated after the burst begins, will suffer a smaller delay. Table 8 summarizes the results for the average

jatencies.

SYNCHRONOUS MPPT BACKGROUND LOAD

voice data size average latency
(bytes) (ms)

»

0 Mbits/sec 25 Mbitsfsec 50 Mbits/sec 75 Mbits/sec

8 2.728 3.526 . 4958 6.501

16 2.732 3.522 4939 6.501
32 2.751 3.525 - 4938 . 6.504
64 2.791 3.522 4956 6.501
128 2.890 3.816 4.957 6.503
256 3.062 3.884 4957 6.504
512 3.417 4.319 4958 6.505
1,024 4,015 4861 5.397 6.502
2,048 5.242 6.498 9.932 6.503
4,096 7.699 8.765 9.940 9.919
Table 8

" Average Latency with Synchronous MPPT Background FDDI Load

The average latencies resulting from MPPT service show the expected result—average latency gen-
erally increases wiih increasing background load. From looking at the jitter plots (not shown here) we
observe that variance has increased substantially when compared to SfP‘T service. For SPPT service,
Jatency is tightly grouped between 4.0 and 4.2 ms; for MPPT service, latencff falls into two bands, one
around 4 ms and another around 3.7 ms. Latencies in the higher band resulted from packets which were
genefated while the token was being held by the load generator, and thus their delivery was partly delayed
by the burst created by MPPT service in the load generator. Latencies in the lower band resulted-from
packets which were generated and then transmitted betweeﬁ bursts from the load generator. The 10\#31‘

band around 4 ms corresponds closely to the results from the basic experiment in which there was no
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background load.
Table 9 shows the 99.9% threshold values from these same experiments. These results are not as

consistent as the averages since they are reporting the second-highest latency observed in a group of 1000

packets. An important point is that, in all of Table 9, the worst case 99.9% threshold value was 10 ms.

SYNCHRONOUS MPPT BACKGROUND LOAD

voice data size 99.9% ttxfeshold latencies
(bytes) (ms)

25 Mbits/sec S0 Mbitsfsec 75 Mbits/sec

8 5.122 4.959 6.585
16 5.122 - 4.959 6.585
32 5.122 5.041 6.585
64 5.041 4.959 6.585
128 5.447 4959 6.962
256 5.203 5.041 6.585
512 5.854 5.041 6.585
1,024 5.772 7.967 6.585
2,048 7.236 10.000 6.667
4,096 9.837 10.000 9919
Table 9

99.9% Threshold Latency with Synchronous MPPT Background FDDI Load

Once again, we must point out that the latencies recorded from the MPPT experiment are directly
related to the architecture of having two stations and one load generator. Each voice station is given an
Qpportuhity to transmit with a delay which is at most one 15-packet burst‘ from the load generator and one
voice packet from the other voice station. Had the background load been generated by multiple load gen-
erators, each of them could have held the token for some amount of time (here 5 mé) and thus could have
dramaticauy increased end-to-end delay. Note that the potemiél increase in token rotation time iS
bounded only by the operation of FDDI Station M'anagemem which limits the amount of synchronous
data which any one station can emit on any one token cycle. Although SMT was not operational on our

hardware, it should be operational in a production system to avoid starvation of the voice servers.
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However, the whole issue is avoided if SPPT service is used in preference to MPPT service. SPPT
is the natural service type for voice stations. Requiring SPPT rather than MPPT service on the whole net-
work would at most impact the efficiency of a station sending non-voice traffic in the synchronous class.

Thus we recommend the user of SPPT service everywhere,
8. EXPERIMENT 4: RETRANSMISSION

8.1. Experiment 4: Design

Modem fiber optic local area networks rarely lose data, but when they do it is the responsibility of |
the transport protocol to retransmit it without intervention by the user. As a result, the user had the illu-

sion that the end-to-end bitpipe was error-free.

. All transport protocols add sequence numbers to their transmitted packets so that a receiver can
detect out-of-sequence data. TCP and XTP use byte-oﬁented sequence numbers, whereas TP4 uses
packet-oriented sequence numbers. Upon detecting Out-of-sequence data, TCP and TP4 both revert to a
go-back-n strategy in which the first missing data element (a byte in TCP and a packet in TP4) are
retransmitted, along with all following information. Thus TCP and TP4 may resend data already

correctly buffered by the receiver,

XTP uses a selective retransmission scheme in which the receiver notifies the sender of exactly
which spans of data were received correctly. From that list of acknowledged data XTP creates a list of

gaps (contiguous bytes) which should be retransmitted. XTP then retransmits only the missing gaps.

While this feature lis active in XTP, it is difficult to see error repair in action because errofs are so
rare én good FDDI equipment. Thus, to observe any errors at all, we had to ﬁMiW XTP such that it
failed to acknowledge x% of the packets received, thereby making them appear to be lost in transit. -
When a receiver received the next (out-of-order) voice packet, that caused the receiver to notify the

sender that data was missing. XTP then retransmitted the lost data.
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In this experiment we introduced data loss rates of 1%, 5%, and 10% to investigate its effect on data

latency.

8.2, Experiment 4: Analysis

Table 10 records average latencies when the systém is subject to random losses of 1%, 5%, and 10%
of total voice packets. For comparison, we include in the second column the results from the basic exper-

iment in which the loss rate was zero.

RETRANSMISSIONS
voice data size average latency
(bytes) (ms)
- O%loss 1%loss S%loss 10% loss
8 2.728 2.838 2.837 2.838
16 2.732 2.838 2.837 2.838
32 2.751 2.940 2.838 2.838
64 2,791 2980 2979 2.985
128 - 2.890 2.989 2.988 2.988
256 3.062 3122 3.117 3.120
512 3.417 3492 3.487 3.451
1,024 4,015 4,068 4,070 4,071
2,048 5.242 5.316 5.317 5.313
4,096 7.699 7.779 17976 7.776
Table 10

Average Latency with 1%, 5%, and 10% Packet Loss

Table 10 makes a strong case for the power and utility of XTP as a transport protocol Error repair
is extremely effective and efficient. Comparing the columns for 0% and 10% loss, we see that the worst |
case increase in average delivery time was less than 0.1 ms, even for the largest voice data size. An
operational network with a loss rate of 10% would be extremely unusual, and yet even in that abnormal

situation the expected increase in latency was insignificant.
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9. EXPERIMENT 5: MULTICAST

9.1. Experiment 5: Design

A unique feature of XTP is its capability for supporting a 1-to-many connection called mullticast. It
is thought that multicast will have natural application to situations such as conference calls in which mul-
tiple destinations should receive an identical data stream. Using multicast, this is accomplished with a
single transmission; for lack of any multicast capability, a user of TCP of TP4 could at best simulate the
feature using some number of serial unicasts. Even so, management of such a multi-peer connection
-§vou1d then become a user responsibility, whereas in XTP the management of a multicast connection is

inherent to the communications protocol.

In experiment five we enlarged our network to include not only the tWO voice stations and the back-
ground traffic generator, but al-so an additional voice stétion that was a member of the multicast voice
group. Due to lack of identical equipment, the additional receiver was not the same as the two Motorola
68020/VMEbus/pSOS-based voice stations; it was an ALR FlexCache running XTP on a 25 MHz Intel
386 processor. Another difference was that the FlexCache operated a Network Penpherals FDDI inter-
face (which used the National Semiconductor FDDI chip set), which proved to be interoperable with the

Martin Marietta equipment and its AMD SuperNet FDDL

In this experiment each voice message was assigned to a multicast. group and trans'lx_nitted using a
tran_spért multicast group address. Any number of stations could have been listening on that group
address, but in this experiment only two receivers were active. Message delivery to the set of multicast
receivers was entirely reliable, that is, XTP assured that all data was reliably transmitted to all active
receivers. Error repair, if any, was completely transparent as beﬁts a transport protocol The expenments
conducted included: a basic multicast experiment, followgd by its repetition with the addition of 25, 50,

and 75 Mbits/sec of synchronous background traffic using MPPT service.
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9.2. Experiment 5: Analysis

Table 12 shows the average latencies and table 13 shows the 99.9% threshold latencies for the mul-

'ticast experiment.
MULTICAST
Two receivers
voice data size average latency
(bytes) {ms)
0 Mbits/sec 25 Mbits/sec 50 Mbits/sec 75 Mbits/sec
background load  background load  background load  background load
8 5.266 6.311 6.209 ‘ 7.559
16 5.273 6.318 6.213 ) 7.564
32 5.277 6.293 6.240 7.573
64 - 5.336 6.330 : 6.247 . .7.588
128 5.431 - 6.375 6.290 7.608
256 5.603 6.412 6.609 7.673
512 5.894 6.461 8.136 7.770
1,024 6.712 9.515 10.460 10.804 -
2,048 7.997 11.174 ' 13.761 11.608
4,096 10.402 14.134 15.247 14.575

_ Table 12
~ Average Latency for Multicast
with Synchronous Background MPPT FDDI Load
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MULTICAST
Two receivers

voice data size 99.9% threshold
(bytes) (ms)
0 Mbits/sec 25 Mbitsfsec 50 Mbits/sec 75 Mbits/sec
background load  background load  background load  background load
8 5.366 7.724 7.724 7.805
16 5.447 7.724 - 7724 8.537
32 _ 5.336 7.724 9.756 8.347
64 5.447 7.724 7.480 8.293
128 5.528 7.805 7.805 8.211
. 256 5772 7.886 10.488 9.431
512 6.016 7.967 10.163 8.293
1,024 6.829 13.171 17.967 _ 19.512
2,048 8.211 119.837 20.081 21.463
4,096 © 10.569 24.878 . 24,146 33.984
Table 13

99.9% Threshold for Multicast
with Synchronous Background MPPT FDDI Load

Multicast is inherently a zhore expensive operation than unicast since the protocol must handle mul-
tiple receivers; still, multicast can be less expensive than serial unicast for recei?er groups even as small
as two or three.

‘ For the case of no background load on FDDI, the average latency using a two receiver zﬁulticast.was
less than twice the latency' of a serial unicast in all cases. For small voice data sizes the increase was from
ébout 2.7 ms using unicast to about 5.2 ms using multicast. Since the muiticast repiaéed two unicasts, the
proper comparison would be 2%2.7=5.4 ms for unicast vs. 5.2 ms for multicast, which makes multicast
slightly faster.

For the largest voice data size, the increase was from about 7.7 ms using unicast to 10.4 ms using |
multicast. Again, the proper comparison is the delay of two unicasts (2*7.7=15.4 ms) vs. 10.4 ms for
multicast. So, in this architecture, multicast is more effective that two serial unicasts, ew;fen for a receiver

group size of two, for all voice data sizes..
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As background load increased, the spread in latencies became more pronounced. When compared
to multicast with no background load, a 75 Mbits/sec MPPT load increased average latency for small
voice data sizes from about 5.2 to about 7.5 ms. At the largest voice data size, average latency increased

from 10.4 to 14.5 ms.

In spite of its favorable performance in this experiment, the muiticast results would have been bettér
had we used a better FDDI chipset. The AMD SuperNet interface does not support multicast link layer
addresses (i.e., MAC group addresses), so all data in this experiment was actually transmitted using a link
layer broadcast and then filtered at the transport layer to recognize the transport multicast address. Newer l
FDDI chips, such as those from National Semiconductor, do support link. layer multicast addresses; that
in turn would reduce processing in the destination hosts which would increase throughput and decrease

latency.

10. CONCLUSIONS

Using the Xpress Transfer Pro.tocol is clearly more costly than using a datalink layer protocol. Isit
worth it? |

A survey of the literature on using local area networks for the di;Mbuﬁon of voice data ([Arth79],

[Frie89], [Gait89], [Gait90], [Gehl91], [Suda89]) suggests the following:

(1) the acceptéble jitter between successive voice packets is about 20 ms
(2) an acceptable loss rate for voice packets is 1-2%

(3) historically, voice packets have carried a modest amount of information (20 to 50 ms) so that
the loss of any one packet had little impact on voice understandability

(4} the total delay between voice nodes should not be greater than 230 ms to avoid the start/stop
effect (common to satellite voice channels)

These criteria are easily met by a datalink protocol running over FDDI, but, with the propér choice
of voice data size, XTP can meet those goals as well. Thus we can not discard either approach based on

these historical criteria,
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Datalink protocols have the advantage of simplicity; since they are less powerful than transport pro-
tocols, they therefore consume less of the CPU_. If we restrict the comparison to an environment in which
a datalink protocol will work (e.g., a single segment LLAN), then in a head-to-head competition against a
transport protocol a datalink protocol would probably suppoft a larger number of voice channels. At least
on a single segment LAN, the packet loss rate of a datalink protocol operating over FDDI should be per-
fectly adequate. With a datagram protocol, steering a voice channel to a particular destinatibn process
would require the user tp manage process addresses, since the protocol manages only host addresses -
(MAC addresses). In contrast, the transport protocol manages peer addresses automatically when it
accomplishes connection setup. In the context of a single segment LAN, both approaches work. The
datalink layer protocol could reasonably be expected to be somewhat more efﬁciént, whereas the tran-

sport protocol is probably easier to use because it provides a greater variety of services to the user.

" The advantages of a transport protocol emerge when we .leave the environment of a single segment
network. Datalink protocols do not opérate over routers, and at a minimum a network layer protocel is
re&juired. If a network protocol is added to accommodate routing, then a transport protocol is & natural
addition as well. A transport protocol provides guaranteed, in-order, sequential delivery without dupli-
cates, which is generally good for data even though not strictly required for voice. If XTP is chosen as
the transport protocol, then there is the unique advantage of multicast, Wlﬁch in these experiments was

shown to have lower latency than serial multicast even for receiver group sizes as small as two.
So the original question (is it worth using a transport protocol?) now divides into sub-questions.

(1) Must the system operate over multiple, interconnected LANs? If s0, then the LANs must be
intérconnected by bridges or routers. If the choice is bridges, datalink and transport protocols
are both feasible; if the choice is routers, only a transport plus network protocol is feasible.

(2) Must the system interconnect with wide area networks? If so, only a transport plus network
protocol is feasible.

(3) Would the system benefit from a transport multicast capability? If so, only a transport proto-
col, and in fact only XTP, is feasible.
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Can a given system afford the power and convenience of a transport protocol? The answer is obvi-
ously application dependent, but the data we gathered is encouraging. Consider the case when voice data
size equals 1024 bytes. For a single voice chiannel, delivery must occur every 128 ms. Yet if we examine
all the data we coﬂemed (excluding multicast which is a special case), the worst case latency observed
was 10 ms (this was the 99.9% threshold with ﬁeavy background synchronous Ioadj. Thus, the perfor-
mance of a transport protocol for any single voice channel is clearly well within bounds, and it is a matter

of further experimentation to determine how many voice channels can be carried simultaneously.

Finally, we repeat the point that we made no attempt to tune the system for higher performance.

There are many obvious optimizations: improve the hardware, reduce the number of required ack-
nowledgements, compress the voice data, don’t transmit silence, etc. Had we tuned the system, we are

confident that we could have doubled the number of voice channels carried.
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