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ABSTRACT

Given a connected graph G = (V,E) with positive edge weights, define the distance dg(u,v)
between vertices  and v to be the length of a shortest path fomutovin G. A subgraph G’ of
G is said to be a t-spanner for G if, for every pair of vertices u and v, dg(u,v) St - dgu,v). We

show how to construct a (1 + €)-spanner for a complete Euclidean graph in O(nlogn + —5&-}

time; this algorithm works in any L, metric. This spanner is used to construct approximate
minimum spanning trees, oblaining a result similar to Vaidya [13].

1. Introduction
Let G = (V,E) be a connected graph with positive edge weights. A subgraph G = (V.E ") of G is a t-spanner if

dG '(u,V) <t

maXy, ve vm =t
¥

where dg(u,v) is the length of a shortest path from « to v in G. There are several sparse graphs which are known (o
be t-spanners for the 2-dimensional complete Euclidean graph; by sparse, we mean the number of edges is linear in
the number of vertices. These graphs include Delaunay triangulations (3,6, 10] and the fixed angle theta graph of
Keil {9]. Related results are found in Levcopolous and Lingas [11] and Das and Joseph [S]. Althofer, Das, Dobkin,
and Joseph [2] prove that there exists a linear-sized graph which is a t-spanner for any d-dimensional complete

Euclidean graph, but they do not give an efficient construction. In this paper, we construct a 1+ “"2";21?"{'393"““’

m = 3, for complete d-dimenéional Euclidean graphs, where distance is measure in the L, metric. Construction of
the spanner takes O ((cd)* nlogn + {cd)? n 2™) time, and the spanner CoRtains O((cd)* d n 2™%) edges.

We use this spanner to construct approximate minimum spanning trees to obtain a result similar to Vaidya
[13]. Given a set of n points and an [, metric, Vaidya constructs a spanning tree with length at most 1 + € times the

Jength of an actual minimum spanning tree in O(—%— log n) time. We can do a bit better, obtaining a spanning tree
€
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with the same upper bound on length but in time O(n logn+-§!og[3(f;—,n)), where
Bm,n)=min { i :log¥n <m/n).

An outline of the paper is the following. In Section 2, we show how to construct & i-spanner for complete
Euclidean graphs. Section 3 presents the result on approximate minimum spanning trees, and Section 4 summarizes
the resuits and states some open problems.

2. Spanner Construction

Throughout this section, let G = (V,E) be a complete Euclidean graph, where intervertex distance is measured in an
L, metric, Letu and v be vertices of G; we will abbreviate the distance from u to v in G by d{u,v).

Lemma I: Let ¢ > 1 be a real number. Let G*=(V,E”) be a connected subgraph of G such that forall u,v € V,
there is a pair x,y € V satisfying
1. (x,y) e E',

2. dux) +d(y,v)<vdi(x,y),0<y< %, and

3. iy+l <t
l-vy
Then G’ is a t-spanner for G.
Proof: We prove the lemma by induction on the rank of the interdistance d (u,v). Asabasis,ifuandvarea

closest pair, then x = w and y = v, and d-(u,v) = d (u,v). To prove this, note that if {2} is true,

d(ux) Syd(xy).

By the triangle inequality,

d@,x) +d(u,v) +d(y,y) 2d(xy).
These two imply that

Yd(x,y)+du,v)+d(y,v) 2dx.y)

duv)+d{y,vy2 (1 -nd(xy).
Again applying (2),
Yd(x.y)2duv)+dy.v)z (1 -vd(xy).
This implies that
Yzl-y

and



N.[-—

This contradicts the assumption 0 <Y < %—

Now suppose d (4,v) has rank greater than one. We first claim that d (u,x) < d (,v), so the rank of d {u,x) is
less than the rank of d(u,v). By the triangle inequality,

duv)+dux) +dv.y)2 di{x,y)

and (2) implies that

dWN)+d@J)+d®J)Z%%d@J)+dUJ»

dmwa@wnwmn+ﬂw»

Since 0 <Y< 3. —-3— > 2, and d(wv) > d ().
By the inductive hypothesis, dg(u,x) < t - d(ux). Similarly, de(v,y) £t - d{v,y), and we have
dg-(u,v) < dge(u,%) + dgr(v.y) + d (x.)
St {d@x) +dvy) +dxy)
<@ y+1Ddkx.y)
Again using the triangle ineguality,
d(x.y) <d(ux) + d(v.y) +d.v)

<vd{xy)+du,v)

SO

d(y) € 117 d(uv).

This implies
der(u,v) S %d(u,v}.

Finally, condition (3) implies that G’ is at-spanner. [

Construction of the t-spanner is based on Vaidya's algorithm for the all-nearest-neighbor problem [ . vaidya
all-nearest-neighbor .]. Roughly speaking, Vaidya’s algorithm is a process which, over a series of O{(n) stages,
recursively divides the input set P into a "tree of boxes,” Thatis, a d-dimensional hypercube (a box, say bo) with
smailest possrble side length is placed around point set P. In the first stage, this box by is divided into 24 smaller
boxes bo yoo bg by d onthogonat hyperplanes passing through the center of by. These boxes bo, . E:%‘ make up
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the set immediate —successors(bo). Discarding the empty immediate successors and shrinking the remaining boxes
a5 small as possible, one arrives at a second set of boxes, b, . . . » bb, making up the sct successors(bg). In the ree
of boxes, successors(by) are the children of bg.

For each box b, Vaidya associates three additional quantities, a real number estimate(b), a set of boxes
neighbors(b), and another set of boxes attractors(b). Given boxes b and b, define

d ax (b) = MAxX [du,v): v € b}
d in(B,b7) = min {[duv):ueb,ve b}

d ex (BB = max (duyv)y:ueb,ve b")

The number estimate(b) is defined as
doax(b) | P | =2
estimaie (b) - minb’ e neighborsth) {dmax(bab’)} + [b ~F i =1

Vaidya's algorithm subdivides the box with the largest value of dpss(b). During a particular stage, the set
neighbors(b) consists of currently existing boxes within estimate (b) of b, and the set attractors(b) is defined as

attractors(p)y={b" 1 b € neighbors(b™}.

We refer the reader to Vaidya {14] for details about the algorithm.

Vaidya proves that the maximum size of neighbors(b) and the maximum size of attractors(b) are constants
for a fixed dimension. The actual boxes contained in these sets vary during a box-subdivision step. Since each
box-subdivision step affects only a constant nrumber of boxes and there are O (n) box-subdivision steps, the total
size of all the distinct neighbor and attractor sets is O (n). With a minor change to Vaidya’s algorithm, the
following restriction can be enforced without affecting Vaidya's results.

Invariant: When b’ is removed from neighbors(b), dmin (5,b") 2 dax (D).

We are now ready to present the algorithm to construct {-Spanners. Let p(b) be the parent of box b,
p*by=pp®d)be the grandparent, and so on. Let ¢, (b) be the leftmost child of b, ¢ z(b) be the second child from
the left, c?(b) be the lefunost grandchild, and so on. For any box existing after the final stage, let Fneighbors (b) he
the ultimate neighbor set of b; by the correctness of Vaidya's algorithm, this is the nearest neighbor to the single
point in b under the L, metric,



Algorithm Construct-spanner (G, )
t
Cmo=lg— 2
1. m=g t-—lj +

. Run Vaidya’s algorithm in the appropriaie metric. For each box &,
store the set deleted (b) of boxes ever deleted from neighbors(b) during
step 4 of Modify-set-estimates. These appear as pairs b6

and are placed in the deleted pairs list. Also store representative {b),
an arbitrary point in b V.

3. For each box b
if |b V| 22then
For each b’ € deleted(b) do B
For each choice of b = ¢cJ(b) or feaf b=ci(h),0Si € m—1
and for each choice of b’ = cp(bnor feaf b’ = ci(b"), 0SS m-1
Place (represeniative (b),representative (b7 into E ’

if b V|=1then
For each box b’ & Fneighbors (b) U deleted (b) do
For each choice of b” = c(b") or leaf b* = ck(pN0sism -1
Place (representative (b),representative (b") into E".

First we prove COrectness and then argue the time complexity:

Lemma 2: G’ is connected.

Proof: By induction on the number of vertices in a component of G. As a basis, any single vertex is trivially
connected. Now consider a box b containing a set of n vertices in V. Box bo is split into by, ... ,bh. By
induction, the components in b} through b are connected. We show that there is always an edge from bj 10 bb.
s#t Letu e byandv € b, Consider the family of boxes containing u: these boxes form a path P, in the ree of

boxes: the path P, can be similarly defined. £ (b',E’) appears ofn the deleted pairs list, where b e P, and
b e P, thenstep 3 implies there is an edge from some vertex inb' to some vertex in 5. This implies that b3 and

b}, are connected by an edge.

if no pair (5',5’) appears on the deleted pairs list, then for every box b' e P,, some box on P, is in every
neighbor set neighbors(l_:'). This can only happen if v is a closest vertex to u, so in step 3, u and v are connected by
an edge. Ol

Lemma 3: For all u,v € V, there is a pair x,y € V such that {(x.y) € E’ and d(u,x) +d(»y) < yd(x,y), where

m=z23,

0<ys Py

Proof: Again define the paths P, and P,. Note that there is at mostone pair of the form (b,b") in the deleted
pairs list, where b € p,and b” € P,. Toprove this, suppose there are two pairs (b,b") and (E,E‘), Suppose without
loss of generality that b is a (not necessarily proper) descendent of b. Then the time b was present during the coﬁrse
of the algorithm preceded the time b was present. This implies that B’ must be a (not necessarily proper) descendent
of b’. As b’ was deleted from neighbors(f) and the construction of Vaidya’s algorithm implies that no descendent

of b can contain a proper descendent of b in its neighbors list, (5,5’) cannot have been placed in the deleted pairs
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list.

This observation implies that there are at most w0 pairs involving boxes in P, and boxes inpP,, one of the
form (b,b”) and the other of the form (b".b), b.b € P, b’ 5" € P,. Consider the pair which was added to the
deleted pairs list in a later siage, say (b,b"). (If they were both added during the same stage, then b = b and b* = )
Note that b must be a descendent of b and b’ must be a descendent of b’ (not necessarily proper). We call (b, b a
good pair.

The important property of a good pair (0,67} is
a6 MK ) 6N 2 7 o ) + 6D
To prove this, recall that the invariant states that when b’ is removed from neighbors(b},
d in{b,b") 2 dex (D)
and when b is removed from neighbors(l; g]
deain(B"5) 2 dan (b
Since b’ is a descendent of b” and b is a descendent of b,
A, (5,67 2 iy (B7.5)
and
droax (B7) 2 droan (0
implying the property above.

Since box subdivisions are at the physical center, d nax (¢ (b)) < ——d maxlB). In general we have

A (™(B)) < —é%dmcb).

Let x either be representative(cT (b)), u € cP(b), or u if no such box cT(b) exists, and let y either be
represenrative(ci‘(b')),v & ¢f(b"), or v if no such box cP(b") exists. Then

d(u,x) €~ dmax(b)

dw,y) < E%dm,x<b').

Therefore,
d(x,y) 2 dumin(b,00 2 2771 (d () + A (V).

Itis evident that y< < 1 .3

Theorem 1: Let G be a complete Euclidean graph, where interveriex distance is measured in an L, metric. The
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——-wlw——? This algorithm

algorithm above constructs G’, a t-spanner for G of size O(cdy n 2m4y, where t = 1+ =

takes O ((cd)" nlogn + (cd¥n 27y time,

Proof: Lemma 2 implies that G* is connected. For G’ 1o be a spanner, it is sufficient o prove that the three

conditions in Lemma 1 are satisfied. Lemma 3 implies that (1) and (2) are satisfied with 0 <¥$ m =z 3. For

2m—1 '

3y, lett = . Then

1

1-2v
ty+1 1 y+i-2y 1 =t
1-y 1-2v 1-¢ 1-2y

By Lemma 3,Y< -é;;l-:f— sot <1+ . Vaidya’s algorithm takes O{(cd)* n log n) time, and the entire size of

2m—2 _
the neighbor sets is O ((cd)* n) [14]. For each deleted neighbor, at most 2™ work is done, since the maximum
degree of the tree is 2%. (0

3. Approximate Minimum Spanning Trees

A t-spanner can be used in the construction of approximate minimum spanning tees for complete d-dimensional L,
distance graphs. For d =2, Shamos and Hoey [12] gave an O (nlogn) time algorithm for Euclidean minimum
spanning trees in the Lo metric. Yao [15] obtained o (N 2) time algorithms for the metrics L1, Lz, and Lo, ind 23.
in the L, and L., metrics, Gabow, Bentley, and Tarjan [7] presented O(n log” n loglog n) time algorithms, where for
L., r=d=-2 whendz3, and for L,, r= 1,2,4 when d=3,4,5 and r=d when d > 5. Agarwal, Edelsbrunner,
Schwarzkopf, and Welz! indicate how to reduce the time complexity to Ofn log?n) [1}. In addition, Agarwal,
Edelsbrunner, Schwarzkopf, and Welzl gave a randomized 0(n** 1og*? n) expected time algorithm for Euclidean
minimum spanning trees in 3 dimensions. '

Regarding approximate minimum spanning tree algorithms, important papers are by Clarkson [4] and Vaidya
[13]. The most general result is Vaidya's, where in O (=% n log n) time he extract a graph of O(e™* n) edges that is
guaranteed to contain a spanning ree of length at most (1 + £) times the length of a minimum spanning tree. In
comparison, our algorithm extracts a (1 + €)-spanner of size 0(%—) m Qnlogn + —é%) time. Theorem 3 below
€
relates the length (the sum of the edge weights) of a minimum spanning tree of G” 1o the length of a minimum
spanning tree for a complete Euclidean graph G.

Let MST(G) be the length of a minimum spanning tree for G, and let length (G) be the length of a graph G.

Theorem 2: Let G* be a t-spanner for G. Then MST(G") < ¢t - MST(G).

Proof: Let T = (V,E*) be a minimum spanning tree for G. We argue that there is a connected subgraph G of
G’ for which length(a} <t - MST(G). For each edge e = (u,v) € E* thereisapath p fromutovin G of length at
most ¢ + d(u,v). Include all the edges in p in G. Note that G is connected since T is connected, it is a subgraph of
G’, and length(G) < t - MST(G). Therefore



MST(G") < length(G) < t - MST(G).
0
After constructing G*, we can run the minimum spanning tree algorithm of Gabow, Galil, Spencer, and Tarjan
(8] to get an approximate minimum spanning tree. Their algorithm takes O(m log B(m,n)), where m is the number
of edges, n is the number of vertices, and B(m,n) =min { i : log¥n S m/n}. This approximation is within {1 +¢)
times the length of an actual minimum spanning tree.

Theorem 3: Let G be a complete Euclidean graph, where intervertex distance is measured in an L, metric. For

any € > 0, there is a tree with length at most (1 +€) MST(G) which can be built in O(nlogn + % log{S(-%—,n))
£ £

time.

4. Final Remarks and Open Problems

We present a method to construct sparse spanners for complete Euclidean graphs in any dimension. The spanning
factor of this graph can be made arbitrarily small at the cost of larger size and more expensive construction. It
would be interesting to find a sparse -spanner for some constant 1 where each vertex has constant degree. Such a
spanner could be used in an algorithm to select the n* smallest interdistance determined by » points in R¢.
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