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Abstract

The University of Virginia Computer Networks Laboratory has developed an

implementation of the SAFENET lightweight suite of communication protocols using an

off-host implementation of the Xpress Transfer Protocol (XTP). We used an attached pro-

tocol processor to test the hypothesis that such an architecture could simultaneously opti-

mize protocol performance (by giving it a dedicated coprocessor) and user application

performance (by freeing the host from the burden of protocol processing). Our experience

indicates that the choice of implementation architecture has a profound impact upon the

overall system performance. This work surveys the design issues inherent to off-host com-

munications architectures and discusses the design choices made in our own architecture.

Also presented are our performance results and the many lessons learned from the analysis

of our implementation architecture. We also provide a survey of related work performed by

other researchers. To assist the designers of future off-host architectures and to evaluate the

degree to which we exploited our particular architecture, we develop a simple analytic

model to predict the performance of an off-host architecture using readily-obtainable input

parameters. The predictions of the model as applied to our system are compared with the

system’s observed performance.
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1 Introduction

1.1.  Background

Although modern local area networks (e.g., FDDI, desktop ATM, and HiPPI) prom-

ise both high performance (100 Mbps or more of throughput) and new functionality (syn-

chronous bandwidth), traditional computer system and application designs—those that

have functioned well for older networks (e.g., Ethernet) operating asynchronously and at

lower data rates—have had difficulty delivering on such promises. Since the modern tech-

nology brings significantly-increased bandwidth into which computer systems may tap, one

might naively assume that similar improvements occur in throughput from the perspective

of application processes. Recent measurements, however, show that this is not the case. For

example, although FDDI provides a transmission rate ten times higher than that of Ethernet,

the throughput available to an application process using FDDI is typically only double or

triple that available from Ethernet.

The reason for such problems becomes apparent when one recognizes that between

the high-speed network medium and an application process stands an architectural gauntlet

of computer system hardware, communication protocols, and operating system software.

As system designers have attempted to supply more of the growing network-media band-

width to application programs, they find that these architectural fixtures are becoming more

and more of a bottleneck. In particular, it has been observed that the execution of commu-

nications protocols has played a major role in constraining user application throughput. The

research in this thesis is concerned with attacking the problem of protocol execution.

The recent criticism of protocols has prompted a rethinking of their implementation

architectures. Although many variations exist, there are only twobasic choices for where

to execute protocols; either application processes and protocols must share the host proces-

sor and contend for its cycles, or the protocols must run off-host on dedicated coprocessor

hardware and pay the penalty for the communication between their processor and the host
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computer system. The former represents the classical approach (e.g., TCP/IP embedded in

a UNIX kernel) and has been well studied; the latter is novel and has not been the subject

of as much academic investigation. At least in theory, the off-host approach seems to be a

route for improved performance. By off-loading the host of its communications processing

responsibilities, application processes will have more host processing cycles available, and

by giving communications protocols their own processor, their implementations may be

tuned to provide better performance to applications. In addition, the dedicated cycles which

the protocol processor provides to protocol processing may be essential for maintaining the

real-time communications processing deadlines inherent in continuous-media applications

that make use of synchronous bandwidth. It is reasonable to expect, however, some addi-

tional sources of overhead with the off-host approach due to the complexity of its architec-

ture. The identification of this overhead and its minimization through proper design choices

are principal subjects of this thesis.

The goals of this thesis are: (a) to identify the general design issues inherent in off-

host communications protocol architectures, (b) to study an actual off-host protocol archi-

tecture, presenting its design, implementation, and performance, (c) to identify the perfor-

mance bottlenecks in the architecture, relating them to architectural considerations in its

design, (d) to develop an analytic model of the performance of off-host communications

architectures and to validate it through comparison with observed performance, and (e) to

make qualitative judgements about the suitability of off-host communications architec-

tures.

1.2.  A General Model of Communication

Before delving into the issues of off-host protocol implementations, we first present

an overview of our general model of computer communication, including the topics of

computer networking and communication protocols. This prepares us for the discussion of

communication architectures employing off-host protocol implementations. A computer
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network consists of a set of geographically-distributed, autonomous computers, termed

hosts, that are connected via communications links. Physical links between the individual

hosts provide the basic ability to communicate through the modulation of fundamental

physical signals such as electrical potential differences and electromagnetic radiation. In

addition to this physical media, certain conventions are needed to provide a discipline for

the use of the media and to give meaning to the signals it carries. These conventions are

expressed in the form of protocols, sets of rules governing issues such as the physical links

themselves, the interaction between network hosts, and the syntax and semantics of the

information they transmit and receive.

These communications protocols are quite numerous and have perform varying ser-

vices. To organize this complexity, they are structured into protocol hierarchies consisting

of multiple layers of functionality. For the purposes of our discussion, we shall use the hier-

archical organization of the ISO/OSI reference model [24] to refer to the protocol layers

and to imply the functionality supported at each. This seven layer model, illustrated in Fig-

ure 1.1, is structured such that a protocol at layer n in the hierarchy employs the services of

the protocols at layer (n - 1) to provide communications services to the protocols at layer

(n + 1). Below the first layer are the physical communications media, and above the seventh

layer are application processes.

Application

Presentation

Session

Transport

Network

Data Link

Physical

layer 7

layer 6

layer 5

layer 4

layer 3

layer 2

layer 1

Application Process

Physical Medium

Figure 1.1: The ISO/OSI Reference Model
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A brief summary of the functionality of the protocols present at each layer in the

OSI reference model is as follows.

• An application layer protocol is responsible for dictating the format of distributed
data structures and defining the sequence of data unit exchanges for a given type of
application. The protocol directly serves the application programs above it.

• A presentation layer protocol provides a standardized syntax for application layer
data which preserves the semantics of the information, even in the face of host sys-
tem heterogeneity. Operations such as encryption may also be done at this layer.

• A session layer protocol exists to organize and synchronize presentation layer data
units. Connection establishment and release may be done at this layer.

• A transport layer protocol is responsible for the end-to-end transfer of data units
with certain reliability semantics from a session layer protocol in one host to a peer
protocol in another. Issues such as multiplexing data units from several user pro-
cesses onto a single network are often handled here. In addition, segmentation and
reassembly of data units and error and flow control are often performed at this
layer.

• A network layer protocol provides the means to route a transport layer data unit
across subnetworks and through intermediate hosts to its final destination host.
One of several access points to separate network links may be chosen at this layer
in order to forward a data unit to its proper destination.

• A data link layer protocol enables the exchange of framed network layer data units
between adjacent hosts on a multi-access or point-to-point network link. Various
reliability semantics and error detection are often supported here.

• A physical layer protocol provides the ability to transfer the bits of data link proto-
col data units on the underlying physical medium. It specifies the mechanical and
electrical standards of the medium as well as the signalling techniques involved.

Taken together, these protocols exist to provide communications services to appli-

cation programs. Thedata path of a data unit sent from one application process to another

starts at a sending process that submits data to the application layer. The data descends

through all seven layers of the model and onto the physical medium. From there it propa-

gates through the network, possibly ascending and descending through the protocols at lay-

ers one through three of the reference model in intermediate hosts. The data eventually

reaches the receiving host, where it ascends all seven protocol layers before reaching the

receiving application process.



5

We refer to a collection of communications protocols organized into a stack cover-

ing each layer of the reference model as anetwork protocol architecture. In practice, one

protocol may span multiple layers and some layers may be null. An example of a protocol

architecture is the SAFENET architecture, which is discussed further in chapter four. A

subset of the protocols in a protocol architecture that still covers each layer of the reference

model is termed aprotocol suite. An example of a protocol suite is the lightweight suite of

SAFENET, which is also discussed in chapter four.

1.3.  Protocol Implementation Possibilities

In this work we shall be concerned not with the details of the protocols residing at

the layers of the reference model, but rather with theirimplementation. Particularly, we

shall study the implementation of the transport and network layer protocols. When a proto-

col suite is to be realized in terms of an actual computer system and physical network hard-

ware, we must concern ourselves with the production of each of its protocol layers. We

introduce the termcommunications architecture to refer to the realization of an entire suite

of protocols, serving a host computer system. Some components of the communications

architecture may be built in host software, while others may be constructed off-host in addi-

tional hardware or firmware.

In the early history of computer networking, all but the physical layer communica-

tions protocols were implemented in the host computers, i.e., they were built in software

executed by the host’s central processing unit (CPU). Since physical layer protocols must

modulate the physical medium and dictate mechanical standards, such protocols were nec-

essarily implemented using special hardware devices. As time progressed, much of the

functionality of the OSI data link layer has been implemented in additional VLSI hardware

circuitry complementary to the host CPU [4][19][42]. The goal of this hardware has been

twofold: (1) to perform protocol operations at generally higher rates of speed, and (2) to

lower the burden of protocol processing on the host CPU [28].
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The trend has been for an increasing amount of higher-layer protocol functionality

to be performed in special-purpose hardware without the involvement of the host CPU. Fol-

lowing this trend, we investigate the implementation options for protocols at the network

and transport layers. For the remainder of this work we assume that the physical and data

link protocols are implemented on an integrated hardware device, hereby referred to as a

network interface. In addition, protocols present at or above the session layer of the refer-

ence model are assumed to be implemented in host software and are not considered in any

further detail. In the following sections we contrast the in-host versus off-host approaches

to protocol implementation.

1.3.1.  On-Host Implementation

The traditional approach to transport and network layer protocol implementations

has been to place them in software on the host platform and execute all protocol operations

using the host CPU. Once the choice has been made to use an on-host implementation, there

are actually several possibilities concerning where its software may reside within the host.

The choice of where to place the protocol implementation will likely be dictated by oper-

ating system architecture and security concerns.

In single-user or embedded computer systems, the secure use of shared resources

between multiple processes is not typically a concern. Furthermore, there is seldom any

address space partitioning between user processes and the operating system. In this envi-

ronment, a protocol implementation may acceptably be in the form of library code linked

with the code of an application program [41]. This approach has the benefit of avoiding

operating system security concerns and complex address space issues. As a result, the pro-

tocol implementation is likely simpler and its performance is typically higher than that of

other approaches. For example, with this implementation architecture, protocol services

can be invoked via the relatively efficient mechanism of subprogram calls, thus promoting

a low end-to-end latency.
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In systems with multiple processes or multiple users, shared resources often need to

be managed in a more secure fashion. This is typically accomplished through the use of an

operating system kernel residing in a protected address space. In such situations, transport

and network protocol implementations reside in the kernel. The provision of security is nec-

essary because such protocols may use special I/O address spaces, shared network

resources, or shared data structures that must be kept with some degree of integrity.

In this kernelized scenario, application programs typically request protocol services

from the kernel through system calls. The protocol software may be loosely integrated into

the kernel as a device driver accessed through the operating system’s I/O system calls [37],

or it may be tightly integrated into the kernel and accessed with its own set of networking

system calls [30]. Such calls are more sophisticated than subprogram calls; hence, they may

result in a significant overhead. In addition, if the kernel resides in a protected address

space, the cost of some means of accessing protocol data residing in the calling process’

address space must be incurred. An additional drawback to the kernelized approach is that

it complicates the software of the kernel.

A hybrid approach is to use a privileged server process, referred to here as aproto-

col server, to contain the protocol implementation. In such a situation, an application pro-

cess desiring network service acts as a client, sending a request message for protocol

service to the server via interprocess communication. The server process later sends a reply

message to the client when it has completed the request [26]. Access to the shared resources

is restricted to the server process, which, like the kernel, has a protected address space. This

approach has the benefit of providing secure access to shared resources without adding to

the complexity of the operating system kernel. In addition, no special system calls are

required for network communication. It is not clear, however, whether the overhead of sys-

tem calls is reduced or increased by this scheme. Furthermore, a unique source of overhead

due to the protocol server approach is that process context swaps must occur between the

client and server processes.
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No matter how the code of the protocol implementation is distributed in the host

software, the host CPU has the sole responsibility of performing all protocol operations.

The options mentioned vary only in the means in which higher layer protocols communi-

cate with the protocol implementation. The actual approach to developing protocol soft-

ware, once its in-host placement is determined, has been well studied.

1.3.2.  Off-Host Implementation

Recent efforts have resulted in the implementation of network and transport layer

protocols off-host. That is, such protocols are executed off-host by additional hardware

rather than by the host’s CPU. We refer to this additional hardware as a protocol processor

device. Off-host protocol processor designs have been developed based on the use of a cus-

tom VLSI chipset, a general-purpose single-board computer, or a hybrid solution using

both general-purpose microprocessor hardware and custom VLSI. This work is surveyed

in detail in chapter three.

VLSI implementation is performed through the design of a chipset consisting of

several application-specific integrated circuits. It has the advantage of (1) providing the

very fast implementation of protocol functions through the use of custom circuits and (2)

execution of protocol operations in parallel. The major drawback to this approach is that it

is difficult to design VLSI circuits which perform complex tasks. As a result, the class of

protocols that can be implemented in VLSI may be only those designed to be simple

enough for that task [8][44].

With a general-purpose single-board computer (SBC), protocol operations may be

carried out by a RISC or CISC microprocessor. Such an approach has the advantage that it

is capable of handling even the most complex of protocols using software similar to that of

an on-host implementation. The microprocessor approach has several drawbacks, however,

with respect to performance. The speed of particular protocol operations performed on the

microprocessor will almost certainly be lower than that of such operations performed with
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specialized VLSI circuits. In addition, the parallelism between individual protocol opera-

tions obtainable with VLSI circuits can simply not be achieved with a single microproces-

sor. The SBC approach may also suffer from fact that most general-purpose SBCs are not

likely to feature an adequate combination of stock components, such as a large bank of

high-speed static RAM, DMA controllers, and an on-board network interface, which may

be necessary for a high-performance protocol implementation.

Hybrid solutions may be composed of a combination of custom VLSI circuitry and

perhaps several microprocessors. With clever design choices, it may be possible to achieve

much of the high performance and parallelism of a pure VLSI approach while still being

able to tractably implement complex network and transport layer protocols by taking

advantage of the flexibility of the SBC approach.

1.4.  Possible Advantages of an Off-Host Protocol Implementation

Regardless of the specifics of hardware-assisted protocol implementation, the

approach offers several potential advantages to network applications. An off-host commu-

nications architecture can benefit both the host processor and the protocol implementation.

As a result, host applications can run faster and more predictably and the performance of

the protocol services provided to such applications can be optimized.

1.4.1.  Host Benefits

When using an off-host communications architecture, the host processor can poten-

tially receive the following advantages:

Reduced host load. Since all protocol processing activities are handled on the pro-

tocol processor, no host processor cycles are consumed for protocol processing.

Predictable application processing. Since transport and network protocols perform

retransmissions, react to incoming traffic, and sometimes block on network access, the exe-

cution times for protocol processing are nondeterministic. When using an off-host architec-

ture, such nondeterministic activity occurs on the protocol processor and not on the host.
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As a result, the CPU demands of host processes become more deterministic, thus promoting

the predictable operation of such processes.

Reduced and bounded host interrupt arrivals. A transport or network layer protocol

typically receives interrupts from its underlying data link service in order to indicate frame-

oriented activity. Some minimum number of frames are necessary for each transport service

data unit (TSDU), and, in addition, an unbounded number of frames may arrive from other

hosts or result from retransmissions. Each frame can cause a processor interrupt. When

transport and network protocols run on a protocol processor, the host can be shielded from

these interruptions. In such a scenario, host interrupts need only be performed by the pro-

tocol processor; thus, they can occur on a per-TSDU, rather than a per-frame, basis. This

may result in substantially fewer host interrupts per TSDU. At the very least, these charac-

teristics enable application processes to place a bound on the amount of interrupt handling

in which the host will engage.

Reduction of incident TSDU traffic. One feature of hardware implementations of

data link protocols in broadcast local area networks is that they, rather than the host CPU,

filter incident traffic that is not addressed the host. Similarly, a transport and network pro-

tocol processor can deliver to the host only those TSDUs which the host desires to receive,

thus shielding it from an accidental or malicious barrage of TSDU arrivals. Such a feature

has been referred to as a “network firewall” [27].

1.4.2.  Protocol Benefits

A communications protocol can receive the following benefits when run on proto-

col processor hardware:

Dedicated processing cycles. When run on the host, a communications protocol

must contend with application processes for processor cycles, thereby losing potential CPU

cycles and incurring overhead from scheduling and context swaps. These effects can reduce

the amount of work the host processor can perform for its application, cause slow response
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to protocol events, and lower protocol throughput. With dedicated protocol processing

hardware, all processing cycles are available to the protocol, thereby raising throughput,

and context swaps can be avoided, thereby lowering latency and preventing protocol buffer

overflow. Furthermore, such dedicated cycles, may be crucial in order for the protocol to

handle the real-time processing requirements of continuous-media traffic such as voice and

video.

Specialized hardware. Network and transport protocols can benefit from special

hardware such as high-speed RAM, efficient DMA controllers, and custom checksumming

circuitry. Such hardware may allow certain protocol operations to be accelerated or per-

formed in parallel. Components providing these services can be utilized on the protocol

processor device, providing performance not attainable with the general-purpose hardware

of the host system.

Optimized data path to the network interface. Modern transport and network layer

protocols make multiple accesses to the network interface for each TSDU passing through

the session layer. Due to segmentation, protocol headers and trailers, and retransmissions,

the traffic across the boundary between the data link layer protocol and the network layer

protocol can be much heavier than that across the boundary between the session layer pro-

tocol and transport layer protocol. Thus the throughput of the former pathway should be

optimized. One method of optimizing this path is through the placement of the network

interface on the same circuit board as the protocol processor device.

Ideal operating system environment. It has been recognized that an operating sys-

tem environment can place severe restrictions on a protocol’s performance and proper

implementation [48]. The timer, buffer, and lightweight process management services pro-

vided by the host operating system may be relatively inefficient for protocol tasks. In addi-

tion, the host operating system may impose security restrictions and other overhead which

can hinder protocol performance. With an attached protocol processor board, one is free to

choose the ideal operating system for the protocol implementation, including none at all.
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1.5.  Possible Pitfalls of Using an Off-Host Protocol Implementation

Several pitfalls may be encountered when using an off-host protocol implementa-

tion. The first set of pitfalls concerning operating system overhead are shared by both on-

host and off-host approaches; however, the other pitfalls, those of overtaxing the host CPU

and complicating the data path, are unique to off-host architectures.

1.5.1.  Incurring Operating System Overhead

It is fallacious to believe that the problems of operating system overhead discussed

in section 1.3.1 no longer exist when one uses an off-host protocol architecture. In secure,

multitasking operating system environments the protocol processor hardware becomes a

shared resource which must be managed by a trusted server process or the kernel. As a

result, much or all of the system call and context swap overhead experienced in-host imple-

mentations can still occur in the off-host case. Address space complications imposed by the

operating system may also pose a problem.

1.5.2.  Overtaxing the Host Processor

The benefits of off-loading the host by partitioning protocol processing onto an

attached processor may be eroded due to several sources of overhead:

Control, Status, and Data Transfer. When using an off-host architecture, the host

processor has to perform a certain amount of communication with the protocol processor

device. The host processor must, to some extent, drive the protocol processor by sending it

control information and reading its status. Such overhead can not be avoided; however, care

should be taken to minimize it, lest the host processor become overburdened. The transfer

of TSDUs to and from the protocol processor is a prime concern. If the host processor is

burdened with this task, the data transfer may consume a significant number of processor

cycles. This overhead may be amplified if the protocol processor resides on a separate

board on the host’s I/O bus. This bus may have relatively low bandwidth and high latency

in comparison to the data paths on the CPU board. The designers of an off-host protocol
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architecture should seek to minimize the bus transfers required by the host CPU to use the

services of the communication processor.

Management of Shared Data Structures. The host may also be made to allocate

shared data structures such as buffers for communication between itself and the protocol

processor. Similarly, designers may wish for the host to manage various protocol processor

resources such as open connections. These tasks should ideally be performed only by the

protocol processor device. If not, they should at least be avoided in the common case of data

transfer.

Multiplexing and Demultiplexing Command Requests and Status Responses. In sit-

uations where multiple application processes may use the protocol processor, the host may

also be required to multiplex protocol commands descending from multiple processes and

demultiplex protocol status ascending toward one of many processes. This may require the

protocol processor device driver to manage a state vector mapping protocol processor

response data to a particular process. The management of such a data structure results in

another source of host processing overhead.

Notification of Command Completion. Since the protocol processor executes asyn-

chronously with the host processor, there must be a way for the host to discover when pro-

tocol processor status responses have arrived for it to receive. This results in the need for

either an asynchronous notification mechanism such as hardware interrupts or the use of

periodic polling of the protocol processor response stream. The host must expend some pro-

cessor cycles to perform these tasks and also to act upon the such responses when they are

present.

1.5.3.  Increased Data Path Complexity

Another set of pitfalls results from the complexity introduced by the addition of the

protocol processing hardware into the network data path. These pitfalls may significantly

affect protocol performance.
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Low Bandwidth Connection to the Protocol Processor. The protocol processor may

communicate with the host processor and host memory over a data path having relatively

low performance. For example, the protocol processor may reside on a separate circuit

board which resides on the host computer’s I/O bus. Such a bus typically has lower

throughput and higher latency than the host’s CPU-memory bus. As a result, the off-host

architecture may cause a performance drop on accesses to memory. Similarly the off-host

architecture may force the data path between the protocol and the network interface to be

over a low-performance medium; this may further degrade performance.

Additional Data Copies. Data from the higher-layer protocols may reside in the

host’s on-board memory, and addressing restrictions may require that this data be copied to

local memory on the protocol processor device for processing. This copy occurs in addition

to one that must eventually be performed to the network interface device. The effect of this

additional copy may be a profound increase in latency. Furthermore, if the two copies are

not performed in parallel, they may also have a serious effect upon protocol throughput.

Additional Bus Contention. If the protocol processor resides on the host’s I/O bus,

communication between it and the host may result in contention with other bus mastering

devices such the network interface. This contention may erode system parallelism or may

cause unpredictable protocol throughput or response times. Even if simultaneous requests

for the use of the bus are not present, there may be an increased cost in the overhead of bus

arbitration time due to alternating requests for bus mastership.

1.6.  Summary

In this chapter we have motivated the study of off-host communications protocol

architectures and discussed the possible benefits and pitfalls of employing such designs. In

chapter two we cover the design issues inherent in off-host protocol architectures. Related

work on off-host communications architectures from the literature is summarized in chap-

ter three. Chapter four presents the design and implementation of an actual off-host com-
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munications architecture, and chapter five summarizes and profiles its performance,

identifying system bottlenecks. In chapter six we develop an analytic model to predict the

performance of off-host communications architectures, apply it to our own design, and val-

idate its predictions against the observations in chapter five. In chapter seven we conclude,

evaluating our off-host communications architecture and analytic model and making sug-

gestions for future work. Methods of obtaining input parameters for the analytic model are

presented in the appendices.
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2 Design Issues in Off-Host Communications
Architecture

2.1.  Overview

In this chapter we present the issues intrinsic to the design of off-host communica-

tions protocol architectures. These center around the components of such architectures,

their placement, and the communication between them. We first consider the interface

between the host and protocol processor. Later we discuss the architectural levels spanned

by an off-host communications architecture, followed by the hardware and software mech-

anisms used to communicate between the components at each level. In conclusion we dis-

cuss the philosophical extremes of off-host communications architecture design.

2.2.  The Host-Processor Interface to the Protocol Processor

We restrict our discussion to communications protocol architectures in which the

transport and network layer protocols run on an off-host protocol processor, the higher-

layer protocols reside in the host, and the data link layer and below are on a network inter-

face device1. Given this situation, we must have the ability to send and receive a transport

service data units between the host CPU and the protocol processor. In addition, we must

have a way to command transport layer services from the protocol processor and receive an

indication of protocol processor status. Some architectures may employ additional mecha-

nisms to provide options with the command and status information. In this section we dis-

cuss the attributes of the various streams over which this information must flow. These

streams may span several architectural layers, and several communications mechanisms

may be employed to implement their interlayer flow of information. These issues will be

covered below in sections 2.3 and 2.4.

1. The issues involved in the protocol processor’s communication with the network interface are
similar to those of the host CPU’s communication with the protocol processor. Furthermore, the net-
work interface may be integrated into the protocol processor, eliminating these communication
issues altogether. Therefore such issues will not be covered in this work.
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2.2.1.  Command Stream

The session layer must be able to request various services from the transport layer.

When using an off-host protocol implementation, the session layer must request these ser-

vices through the use of a well-defined set of protocol processor commands issued by the

session layer to the protocol processor device driver, which is charged with submitting them

to the transport layer on the protocol processor hardware via the command stream. As a

result, some host processing overhead for executing protocol processor device driver soft-

ware is unavoidable when using an off-host communications architecture. Since the proto-

col processor executes asynchronously, there must be a mechanism for the protocol

processor to recognize that a command is pending for it to process. This may be accom-

plished through hardware interrupts or through polling as discussed in section 2.4. An addi-

tional concern is that the interarrival time of commands from the host CPU may be shorter

than the protocol processor service time for such commands. As a result, queuing of proto-

col processor commands may be necessary, and a stochastic queueing delay may become a

component of the overall latency of the off-host communications architecture. The queue

may utilize one of several queueing disciplines such as first-in-first-out or priority-driven.

In addition, such a queue is likely to be of finite length, or there may be a limit to the number

of commands which can be pending for a given transport service access point. As a result,

the session layer may have to block on submitting a command to the protocol processor

device.

2.2.2.  Status Stream

The protocol processor device driver must somehow become aware of the status of

commands submitted to the protocol processor. This can be done using two styles of inter-

action and a status stream. One form of interaction is that the session layer may query the

status of a command issued to the protocol processor. Another is that the transport layer

may indicate to the session layer asynchronously that an event has occurred. These styles
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of interaction are similar to the use of interrupts and periodic polling. The protocol proces-

sor and its device driver may interrupt the session layer to indicate asynchronously the pres-

ence of pending status information from the transport layer, or the session layer may poll

to synchronously read the status of the transport protocol as provided by the protocol pro-

cessor. Interrupts and polling are discussed further in section 2.4. As with the command

stream, the interarrival time of status information from the protocol processor may be

shorter than the time for the host CPU to consume such information. As a result, queuing

of protocol processor status may be necessary, and another source of stochastic queueing

delay may be introduced into the aggregate latency of the off-host communications archi-

tecture. As is the case with a command queue, a status queue may employ one of many

queuing disciplines. Note also that if there is a limit on the length of the queue used to sup-

ply status to the host CPU, the protocol processor may be forced to block on providing sta-

tus to the host.

2.2.3.  Data Stream

Each command or item of status information passed to or from the protocol proces-

sor may have a Transport Service Data Unit (TSDU) associated with it. This TSDU must

be carried over some data stream between the two processors. It is important to point out

that this data stream need only logically carry the data; that is, the data need not be physi-

cally copied between the protocol processor and host. In fact, copies of protocol data should

be avoided since significant latencies and loss of throughput for large messages can result

from introduction of extra data copies in a communications architecture. Architectural con-

siderations and the nature of particular transport and network layer protocols may conceiv-

ably dictate the need for a physical data copy, however. Note that all data must undergo at

least one physical copy in the communications architecture; such a copy is either to or from

the network interface hardware. The data may pass either physically or logically through

the data stream between the host and protocol processor, but it must always move physi-
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cally through the network interface. In contrast with the command and status streams,

queueing of data in the data stream may not be physically necessary since pointers to such

data may be part of the command or status information which already undergo any neces-

sary queuing. If queueing is required, however, it introduces issues similar to those dis-

cussed above.

2.2.4.  Options Stream

An options stream, similar to the data stream, may also be employed to pass options

associated with commands and status between the host and protocol processor. Commands

which require these options will incur additional overhead on both the host and protocol

processor since additional processing is required to transfer and process this information.

The benefit of an options stream is that it can minimize the amount of information present

in the command and status streams. Information that need not flow in the common case of

protocol processor activity can be left out of the command and status stream and included

in the seldom-used options stream. The end result is that a minimum amount of command

and status traffic occurs in the common case.

2.3.  Hardware and Software Architectural Levels

An off-host communications architecture consists of several levels of software and

hardware architecture. These levels are the user level, kernel level, bus level, protocol-pro-

cessor level, and network-interface level; the user, kernel, protocol-processor, and network-

interface levels are structured such that they lay atop one another. The user and kernel levels

are simply subdivisions of host software, whereas the protocol-processor and network-

interface are hardware levels separated from each other and the host levels by the bus level.

The relationship between the levels is illustrated in Figure 2.1. In some architectures, the

kernel level is not present, or the protocol-processor and network-interface levels are uni-

fied. As discussed below, the nature of these levels is somewhat dictated by the operating

system environment and hardware organization of the host computer system.
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The components of the communications architecture, including the application pro-

gram interface and specific protocol layers of the ISO OSI reference model, are distributed

over each of the architectural levels. In this work we consider communications architec-

tures in which the transport and network layer are implemented off-host on a dedicated pro-

tocol processor, the session layer and above are implemented in-host, and the data link layer

and below are implemented on a network interface device. Our concern here is chiefly with

the details of the protocol processor and its interconnection to other architectural compo-

nents; however, we briefly sketch certain details of the implementation of surrounding pro-

tocol layers in order to explain how they fit into the complete off-host communications

protocol architecture.

2.3.1.  User Level

The user level refers to that at which application processes run in the host operating

system. Such processes may send and receive application service data units (ASDUs)

located in the memory of their address space. Applications transfer these ASDUs by invok-

ing communication primitives from an Application Program Interface (API). An example

of such an API is the socket interface of BSD UNIX [30]. At least part of the API imple-

User Level

Kernel Level

Protocol-Processor Level

Network-Interface Level

Bus Level

Bus Level

Figure 2.1: Architectural Levels
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mentation must reside at the user level so that it may be accessed by applications; however,

much of the API implementation may also occur at the kernel level.

Another component of the communications architecture which may reside at the

user level is the protocol processor device driver. For host operating systems such as MS-

DOS [18] in which secure access to shared resources is not a concern, the protocol proces-

sor device driver may safely run at the user level. In such cases, the driver may be in the

form of library code linked with an application program or it may be installed as a operating

system device driver where its code still resides in the user-level address space.

In host computer systems with multiple processes or users, secure access to the pro-

tocol processor device may be a concern. In such cases it may be necessary to place the pro-

tocol processor device driver in a protected operating system kernel. An alternative to this

approach, employed in operating systems such as Mach [1], allows device drivers to run

securely at the user level. Such drivers run as privileged server processes as discussed in

section 1.3.1. In these scenarios a small amount of kernel software may be required to per-

form privileged hardware operations that manage processor interrupts or to map hardware

registers into the server process’ address space. Note that in order to provide protection for

shared resources, the server process’ address space, albeit at the user level, must still be

somewhat disjoint from that of the client processes requesting protocol processor service.

Program code for implementations of protocols at and above the session layer may

also reside at the user layer. Such protocols may be in the form of library code linked with

the code of an application, or the protocols may run as server processes.

2.3.2.  Kernel Level

In operating systems such as UNIX [30] which provide the secure management of

shared resources for multiple user processes, host memory is divided into protected address

spaces. Each process has a private address space which it is separated from that of other

processes and especially the operating system kernel2; the process may only access its own
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address space. This protects kernel data structures and hardware devices from unsafe or

malicious use. To ensure the secure use of an off-host protocol implementation in such an

environment, the protocol processor device driver may be run in the operating system ker-

nel. (A secure alternative employing a protocol server is discussed in the previous section.)

When at the kernel level, the device driver executes in its own distinct address space. User-

level applications may request secure services from the device driver through a restricted

set of system calls. Software executing in the kernel layer typically executes in a privileged

CPU mode that enables certain processor instructions useful in device drivers which are

unavailable to user-layer software. For example, only kernel-level code may be able to exe-

cute privileged I/O machine instructions or enable, disable, and handle hardware interrupts.

The software implementation of protocols at or above the session layer may also reside at

this layer as may portions of the API implementation.

2.3.3.  Bus Level

The hardware components of an off-host communications architecture must be con-

nected with some variety of buses. Such hardware components are the host CPU, protocol

processor, network interface, and memory. All communication between these components

must occur over a bus as discussed in section 2.4.2.3. Note that there may be several buses

within the host computer system and that some buses may allow multiple masters and some

may not. The individual buses may have varying performance characteristics. One special-

ized type of bus is designed to have high performance, and is used to connect only a few

high-speed components such as a processor and memory; such a bus is often termed a mem-

ory bus. Another type of bus is designed to be versatile; it typically connects I/O devices

with varying response times and is termed an I/O bus. An I/O bus typically has slots to

allow the insertion of several modules which are simply circuit boards that may contain

2. Note that in many operating systems, the term kernel refers only to the software which provides
core system services and encapsulates the hardware; security features such as a protected address
space and privileged instructions are not implied by this term. It should be recognized that in this
work we use the term kernel in a stronger sense, implying the presence of these security features.
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memory, a processor, or an I/O device. Some rare memory bus designs may also support

the insertion of a small number of high-performance modules. Due to their flexible design,

I/O buses typically have lower performance than memory buses.

2.3.4.  Protocol-Processor Level

As discussed in section 1.3.2, the protocol processor may take the form of a custom

VLSI application specific integrated circuit (ASIC) chipset, a general-purpose SBC, or a

hybrid of the two. In this thesis we consider the case where the protocol processor imple-

ments both the transport layer protocol and the network layer protocol. Such a processor

may reside either directly on the host CPU circuit board or as a module on a bus connected

to it. The protocol processor may use its own local memory which may allow a faster access

time than that of the memory used by the host processor. In fact, it may even be difficult or

impossible for the protocol processor to address specific regions of host memory. This can

be particularly true when the host uses virtual memory. The protocol processor makes use

of a network interface device supporting the data link layer and below.

2.3.5.  Network-Interface Level

In chapter one, we refer to the device supporting the data link layer and below as

the network interface. This device is used by the protocol processor to transmit and receive

data link layer SDUs, hereafter referred to as frames, to and from the network. The network

interface may reside on the same board as the protocol processor, or it may be on a separate

bus module. The network interface is unique in that it has some special data interface such

as FIFO memory buffers which temporarily hold incoming and outgoing frames. It is at

some point necessary for frames to be copied to these buffers in order to reach the network,

regardless of the protocol or communications architecture in use. Similarly, it is necessary

for incoming frames to be copied from these buffers. Hence, all communications architec-

tures will require at least one copy of the data contained in application service data units.
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2.4.  Communication Mechanisms Between Levels

A critical issue determining the performance of a communications architecture is

the set of communication mechanisms employed between its components. This section

describes the possible mechanisms which may be used between the components at each

layer of a communications architecture. We first examine communication between the soft-

ware components of the host computer system, followed by that between the hardware

components of the communications architecture.

Before we examine how data transfer can occur between the layers of the commu-

nications architecture, we first review what sort of information will be transferred. We take

as an example the interlayer communication necessary for transmission of an ASDU onto

the network media from an application process. The ASDU exists as a data structure phys-

ically located in the host computer’s memory and logically in the user-level address space

of the application process. It passes through the protocol suite enroute to the network. As it

does, protocol control information is appended to the message as it becomes an SDU for

the various protocol layers. This data migrates through each of the architectural levels dis-

cussed in the previous section. In addition to this data transfer, control, status, synchroni-

zation information, and perhaps options must pass between certain layers of the

communications architecture. For example, a protocol processor device driver at the kernel

level must write control information to the protocol-processor device at the protocol-pro-

cessor level and read the device’s status. In addition, the host CPU may need to synchronize

with the protocol processor in order to notify it that a command is pending. Likewise, the

protocol processor may need to notify the host of the completion of a command.

2.4.1.  Communication Between the User and Kernel Levels

In off-host communications architectures where the protocol processor device

driver resides in the host operating system’s kernel, it is necessary to communicate between

the kernel level and the user level. Even if the device driver resides in a protocol server, a
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limited amount of communication with the kernel may still be necessary to perform privi-

leged instructions. The mechanisms described below facilitate the exchange of information

between the user and kernel levels.

2.4.1.1.  System Calls

For off-host communications architectures in which the protocol processor device

driver resides in the host operating system’s kernel, a system call mechanism is likely to be

necessary for communication between the user and kernel levels. System calls allow user-

level programs to obtain operating system services. In the case of off-host protocol imple-

mentations, we are concerned with the control of the protocol processor device; hence, we

shall limit our scope to the class of device management system calls. In our case, these calls

are ultimately supported by the protocol processor device driver. We shall be most con-

cerned with system calls which allow a user process to write information to a device or to

read information from a device.

A system call provides a service similar to a subprogram call in that it invokes a spe-

cific software routine (in our case, a device driver routine); however, it provides this func-

tionality in a unique way since the routine resides at the kernel layer. To ensure security,

system calls only allow access to a restricted set of operating system routines at well-

defined entry points. Furthermore, the system call mechanism switches the mode of the pro-

cessor so that it may access the kernel-level address space. It is also quite likely that the

system call will also place the processor in a privileged state in which it may access a larger

set of machine instructions such as those which allow the manipulation of I/O devices.

A system call is further similar to a subprogram call in that it may pass a set of

parameters and possibly return a value. However, the fact that the kernel may execute in a

distinct address space complicates this metaphor. Like subprograms, parameters may be

passed to system calls on the user process’ stack or in its registers; this is analogous to the

call-by-value parameter passing mechanism for procedures. If the kernel executes in a dif-
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ferent address space, it may have to incur some stack or register mapping overhead to be

able to manipulate these parameters. Similar efforts are likely when pointers to memory

regions in the calling process’ address space are passed to the kernel; this is analogous to

the use of the call-by-reference parameter passing mechanism in procedure calls. In this

case, the region referred to by the pointer must be made visible in the kernel-level address

space. This issue is discussed in the next section.

Like a subprogram call, a system call requires a certain amount of overhead to mod-

ify, save, and restore the state of host CPU registers. However, the system call will require

additional machine status to be saved and restored (possibly the entire process context). As

a result, its overhead is typically much larger than that of a procedure call.

2.4.1.2.  Shared User- and Kernel-Level Memory Regions

Recall that the user and kernel levels typically have protected address spaces. In

some systems, an address-range or a page- or segment-table protection scheme may be used

to prevent user processes from accessing memory allotted to other processes or the operat-

ing system kernel. Systems with virtual addressing typically protect private memory by

providing user processes and the kernel with disjoint virtual address spaces. In either of

these scenarios, a method of communication between these layers is to selectively remove

this protection over certain memory regions, thus allowing them to be shared. First we shall

review how such schemes may be achieved, and then we shall discuss their utility in an off-

host communications architecture.

For host operating system environments in which an address-range protection or a

page- or segment-table protection scheme is used, it is usually the case that user-level pro-

cesses are prohibited from reading or writing the memory regions of other processes or the

kernel. In some cases these restrictions may also apply to the kernel. In such systems, how-

ever, the kernel may modify the protection range over a region of kernel- or user-level

memory or it may enable read or write protection on a range of page or segment table
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entries. This allows unrestricted, shared access by the kernel-level or user-level entities to

each other’s memory.

In host systems with virtual addressing, user-level processes are typically given a

disjoint virtual address space from other processes and the kernel. This prevents user-level

and kernel-level entities from addressing each other’s memory, and, therefore, sharing it.

To remedy this situation, the kernel may access regions of the user-level address space by

mapping them into its own address space. In systems employing a protocol server architec-

ture it may be desirable for the privileged protocol server to map regions of the kernel-level

address space into its user-level address space. Such mappings may also be employed

between the server and its client processes. The protocol server may need to invoke the ker-

nel in order to perform such mappings. An issue unique to virtual-addressing systems is that

a pointer to an object passed between two virtual address spaces is not valid if interpreted

in the foreign address space. Some means of translating such a foreign pointer (so that it

refers to the local, mapped version of the object) must be employed for the mapped version

to be accessible.

A similar use of mapping between a host virtual address space and a physical I/O

address space may be required to allow a protocol processor in the I/O address space to

address user-level or kernel level memory. A unique issue here is that, in host systems with

virtual memory, it may be necessary to “lock down” pages of user-level memory such that

they will be physically resident when accessed by a protocol processor in I/O address space.

Communication with the protocol processor is discussed further in section 2.4.2.

The point of creating shared memory regions of user-level and kernel-level memory

is to allow protocol data units to cross the barrier between the user and kernel level without

being physically copied. The minimization of protocol data copies typically helps to ensure

high performance. This is likely the case for large data units, where the overhead of the cre-

ation of shared memory for each message is low compared to passing the information by

value on a system call parameter list. For short messages, however, a mechanism employ-
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ing the call-by-value mechanism may prove to have higher performance since such a

method avoids the overhead of shared memory creation.

2.4.1.3.  User-Level Interrupts

Some operating systems such as UNIX [30] allow kernel software to interrupt a user

process in order to notify it of the occurrence of an asynchronous event such as the arrival

of protocol processor status. This information may be sent by a kernel-level device driver

to an application process or a protocol server. Within the user level, a protocol server may

also use such a mechanism to notify its clients of pending responses. These interrupts

require processor context to be saved and possibly may change the mode of the processor.

As a result, they can have a relatively high overhead. Further problems with interrupts are

discussed below in section 2.4.2.6.

2.4.2.  Communication Between Hardware Components

We assume an off-host communications architecture that consists of the following

principal hardware components: a host CPU, a protocol processor, a network interface, and

memory. This section is concerned with the communications mechanisms used between

these components. The memory component is unique in that it may be distributed within

each component or exist as a peer component. We shall focus primarily on communication

between the host and protocol processor, although many of the mechanisms discussed may

also be used to communicate with the network interface. Furthermore, we recognize that

the protocol processor and network interface may be integrated into a single unit; in this

case, communication between these components is a non-issue.

We first consider the high-level mechanisms which may be used by processors to

convey information to other processors or devices. These mechanisms are shared memory

and I/O registers. At a lower level, we consider the issues involved in physically transfer-

ring data over the bus connecting circuit boards on which the processors, memory, and

devices reside. We then examine two approaches to driving the transfer of information over
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the bus: programmed I/O and direct memory access. Finally we consider interrupts and

periodic polling, methods of communication which simply act to synchronize the other-

wise-asynchronous components of the architecture.

2.4.2.1.  Shared Memory

One mechanism for communication between the host processor and protocol pro-

cessor is the use of shared memory. With this method, a common region of memory is

shared between the two processors. Once such a memory region is prepared, its naive use

is quite straightforward; one processor simply writes information to this memory for the

other to read and vice versa.

This naive approach is not adequate, however, because the two processors accessing

the memory execute asynchronously. As a result, some form of reader/writer synchroniza-

tion is required, lest the reader read invalid data or the writer overwrite valid data. Various

synchronization protocols may be used as discussed in [22][29][40]. The protocol proces-

sor and the host must also agree on where items in the shared memory are located, and they

may also need to be able to allocate subregions of the memory for specific uses. One

approach to ensuring that no two memory subregions allocated by the host or protocol pro-

cessor overlap due to a lack of processor synchronization is to charge one processor with

the allocation duties. Ideally the protocol processor shall be charged with most of the syn-

chronization protocol tasks in order to off-load the host (a major goal of off-host protocol

processing); however, in many cases it may be more straightforward to have the host per-

form these duties.

In addition, the very feasibility of the creation of a shared memory region is an

issue. For both the host CPU and protocol processor to be able to access shared memory

they must both be able to address it. Thus, to create a region of shared memory, there must

be a region of memory common to the address spaces of both processors. In some computer

systems, certain memories may not have this property. In others, such a region may exist,
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but it may be quite small and may be divided for use with other I/O processing devices. As

a result, there may be severe restrictions on its use, including constraints on the size and

location of the subregions that may be used.

The access time of the shared memory in use by the host and protocol processor

may have a significant effect on the performance of the off-host protocol processing archi-

tecture. Special high-speed memory may be employed on the protocol processor device in

order to optimize protocol processing and achieve higher performance. It could therefore

be a good design choice to use this high-speed memory as the shared memory region if it

is mutually addressable. However, if the use of such memory results in additional copies of

protocol data units, the benefits of its short access times may be lost, and lower performance

may result.

2.4.2.2.  I/O Registers

An alternative to the use of shared memory for communication between the proto-

col processor and the host CPU is the use of I/O registers on the protocol processor device.

I/O registers are addressed by the host in either its physical memory address space or a dis-

tinct I/O address space depending on whether the CPU supports memory-mapped I/O or

isolated I/O. These registers are command registers, status registers, and data registers.

Some registers have access restrictions; a CPU may only write to command registers, and

it may only read from status registers. Data registers may be read-only, write-only or unre-

stricted. The host’s device driver would use command registers to send commands and

options to the protocol processor device indicating that it perform one of a well-defined set

of transport protocol tasks. Later, the driver may query a status register to determine the sta-

tus of the device or the commands issued to it. Data registers (likely FIFOs) may be used

to transfer protocol data to and from the device. I/O registers may have relatively fast access

times relative to shared memory; however, they may also have strange address alignment

and data size restrictions which complicate their access. Due to their simple nature, I/O
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devices without a microprocessor often use I/O registers rather than shared memory for

communication with their driver.

2.4.2.3.  Bus Transactions

Whether they use shared memory or I/O registers, separate components connected

via a bus communicate with one another via bus transactions such as reads and writes. Spe-

cific components may act in bus transactions as masters, slaves, or both. A component

behaving as a bus master is an active entity which may initiate bus transactions which trans-

fer data to and from slaves on the bus. A component in the role of a bus slave is a passive

entity which typically may only respond to requests from a master or generate hardware

interrupts. Some components on the bus are capable of handling interrupts. Hardware inter-

rupts are discussed further below in section 2.4.2.6. For buses on which more than one

module may become a master, a medium access control scheme is required to prevent two

masters from driving the bus at once. Access control is done through an arbitration scheme

which chooses from possibly several requests originating from different bus masters and

then grants control of the bus to one specific master. One of many arbitration policies (e.g.,

fixed priority or round-robin) may be adopted. An advantage to having only one possible

master on a bus is that arbitration becomes unnecessary.

A processor (either the host CPU or the protocol processor) performs the transfer of

protocol data units or control information over the bus through the use of multiple bus

transactions. To perform a bus transaction, the master must have exclusive access to the

bus. Thus, with multiple master buses, a master wishing to utilize the bus must first request

the bus. This request may have to undergo arbitration with the pending requests of other

requesting masters. Arbitration results in overhead in addition to that of the transaction

itself. The choice of a bus release policy is another issue. A master may adopt a release-

when-done (RWD) policy in which exclusive access to the bus is relinquished at the end of

each transaction or group of transactions; otherwise, it may adopt a more greedy release-
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on-request (ROR) policy in which exclusive access to the bus is held until other masters

have pending requests. Bus arbitration overhead may therefore be minimized if the master

employs a ROR policy.

Another source of overhead that may be particularly significant for bus read trans-

actions is that the address of data to be read must initially be asserted on the bus by the mas-

ter; after a time interval, data asserted by the responding bus slave becomes available for

reading. For writes the master may assert the address and data simultaneously on the bus.

As a result, bus writes often have lower latency than bus reads, and the off-host protocol

processor can contrive to take advantage of this fact.

As another solution, two techniques may be used to improve the performance of

reads. For some buses, read transactions may be pipelined such that while the data from the

previous transaction is being asserted by a slave, the address for the next read transaction

can be asserted by the master. This parallelism removes some of the overhead of the read

transactions. Another technique which may be used in transfers of contiguous memory is

the use of block mode transactions. With such a transaction, the master asserts only the

starting address of the memory to be transferred; the data are asserted without any further

addressing overhead while the slave reads it from or writes it to successive memory words

or a FIFO register. In addition to lowering the overhead of read transactions, this scheme

may also be used to improve the performance of writes.

In order to facilitate system expansion and support a wide class of I/O devices,

backplane buses are typically designed to have many slots and support various device

speeds. As a result, electrical considerations usually require the bandwidth of a backplane

bus to be lower than that of a memory bus.

In addition to the problems of arbitration overhead in multiple-master buses, con-

tention for the bus can force requesting masters to wait for the transactions of other masters

to complete. Various arbitration policies may resolve this contention in different ways

including preemptive policies which cause the wait times of high-priority requests to be
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short; however, significant aggregate delays can result which may hurt the overall latency

of the communications architecture. Even more significant may be the effect of bus conten-

tion on overall throughput. If the protocol processor and the host CPU share a common bus

it may remove the possibility of performing data transmission in parallel. As a result, copies

that would otherwise occur in parallel may degenerate into serial copies, and aggregate

throughput may suffer greatly as a result.

2.4.2.4.  Programmed I/O Transfers

When data is transferred between components with a multiple-master bus, a distinct

issue is determining which entity drives the transfer. We refer to a transfer in which a CPU

performs the data copy as a programmed I/O transfer. In an off-host communications archi-

tecture this CPU may be the host CPU or that of a microprocessor-based protocol processor.

In such a transfer, the memory movement or I/O instructions of the CPU are used to read

or write data over the bus under program control. Programmed I/O transfers are quite

straightforward in that they do not inherently require any set up or synchronization between

the endpoints of the transfer. The major drawback to programmed I/O is that it consumes

CPU cycles which may be put to better uses. Furthermore, the efficiency of burst mode bus

transactions may be unavailable when using programmed I/O. It is clear that the use of pro-

grammed I/O by the host CPU in an off-host communications architecture erodes the ben-

efit of the architecture with respect to off-loading the host.

2.4.2.5.  Direct Memory Access Transfers

An alternative to programmed I/O for the transfer of contiguous memory regions is

the use of direct memory access (DMA) transfers. With a DMA transfer, a processor pro-

grams a special circuit known as a DMA controller to perform the data copy. A CPU must

prepare the controller for the transfer by providing it with the base addresses of source and

target memory buffers involved in the copy (one of which may be implicit) and the length

of the transfer. Then the processor commands the DMA controller to start the transfer. The
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chief advantage of DMA transfers is that the processor does not drive the copy and is there-

fore free to continue processing in parallel. One drawback of the use of DMA transfers is

the overhead of setting up the transfer. Another is that the DMA transfer is performed asyn-

chronously with the processor, and as a result some synchronization overhead must be

incurred in order to inform the processor of the completion of a DMA transfer. Thus, a pro-

cessor may spend more cycles using DMA for short buffers than if it had simply employed

programmed I/O.

2.4.2.6.  Hardware Interrupts

Note that the host CPU, protocol processor, and network interface hardware are

three autonomous components in the host computer system. Each executes its own set of

tasks asynchronously with respect to the other components. A wholly different problem

from that of transferring data between the components of an off-host communications

architecture is that of synchronizing these hardware components. Hardware interrupts are

one mechanism with which to perform this task. A processor or device may asynchronously

inform a processor of an event by sending it a hardware interrupt. This interrupt causes the

processor to postpone further processing of instructions in order to execute an interrupt ser-

vice routine (ISR) containing software which has been set up to handle the event. For oper-

ating systems which provide security between multiple processes, interrupts often change

the processor mode of the host to provide it with kernel privileges or change its address

space. This may allow the processor to perform privileged operations necessary to handle

the interrupt. The interrupt mechanism is advantageous in that it provides a timely response

to the event and incurs overhead only when events occur.

Hardware interrupts may also introduce a number of problems. Since they require

a processor to postpone the further processing of its instructions and return later, the pro-

cessor context must be saved before the ISR begins to run, and it must be restored after-

ward, otherwise unpredictable operation would result. The overhead of this context switch
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may be significant, especially if the processor mode, address protection, or virtual address

space must be changed. Another issue is that since interrupts postpone the execution of pro-

cessor instructions, they change the timing behavior of the code and thereby detract from

the predictability of real-time processing tasks. Furthermore, if the processor instructions

interrupted and the ISR routine invoked use shared resources or data structures, some form

of concurrency control may be required in order to avoid software bugs. To combat these

problems, interrupts may often be prioritized and the mode of the processor may be set such

that interrupts below a certain priority level are postponed or ignored. The use of this fea-

ture also allows pending interrupts of higher priority to be serviced before those of lower

priority. The drawback to disabling interrupts at a particular priority level is that it delays

the response to the event which generated the interrupt.

2.4.2.7.  Periodic Polling

An alternative to the use of interrupts is periodic polling. With this mechanism, a

processor periodically checks for the occurrence of asynchronous events. These events may

be indicated in status registers on a device or they may be encoded in data structures stored

in shared memory between the processor and the device. The major drawback to periodic

polling is that it absorbs host cycles even when there are no pending events. This approach

is attractive, however, in that the problems inherent in interrupting processor instructions

are avoided. Particularly, the predictability of real-time processing may be much easier to

ensure with a polling approach. Furthermore, with polling, the use of shared data structures

by event handling code and other software is readily serialized.

2.5.  Architectural Integration Continuum

The previous sections introduced a wide variety of design options for the use of

architectural levels and methods of communication between those levels. In this section we

present the two extremes of a continuum of design choices aimed at pursuing the benefits
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of an off-host protocol processing architecture. We also discuss the trade-offs inherent in

venturing toward each end of the continuum.

2.5.1.  Continuum Choices

There are two fundamental design directions open to the developers of an off-host

communications architecture in their attempt to provide the benefits of off-host protocol

processing to host applications. Developers may choose a tightly-integrated design or a

loosely-integrated one. In a tightly-integrated design, there are a minimum of software and

hardware architectural levels and the data path between them is of minimal complexity. At

the extreme, there is no kernel level and the architecture supports only independent, single-

master buses. There is only one memory and it is shared symmetrically among all hardware

components and resides in a common address space. The protocol processor and the net-

work interface are integrated into a single unit and each is a custom ASIC. Finally, all com-

ponents are connected via direct bus pathways and some addressing logic.

In a loosely-integrated design, all hardware and software layers are present, the host

CPU, protocol processor, and network interface are each on a separate circuit board resid-

ing on a multiple-master bus, and memory is distributed asymmetrically on several boards.

There are separate user-level, kernel-level, and I/O address spaces. In addition, the protocol

processor is constructed using a single microprocessor.

2.5.2.  Trade-Offs

There are a number of trade-offs which the designers of an off-host communications

architecture make in moving toward a tightly-integrated or a loosely-integrated extreme.

These trade-offs may represent factors such as the development or production cost of the

architecture, the modularity of its design, and its overall performance.

Since each of its components is on a separate circuit board, a loosely-integrated

design may be fashioned from widely-available products. As a result the development costs

may be relatively low; however, the production costs may be high since there are many
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components. A tightly-integrated design requires the development of custom circuitry

which may be an expensive development endeavor; however, the production costs may be

low since a minimum of circuitry can be employed. A tightly-integrated architecture suffers

from the drawback that it may only function with one type of host, one set of transport and

network protocols, and with one data link layer protocol, physical layer protocol and net-

work medium. In contrast, a loosely-integrated approach is modular; it may be integrated

into a variety of configurations by substituting certain components. A loosely-integrated

approach may require the host to have a common type of I/O bus into which a variety of

compatible modules may be inserted. Due to the fact that it has a more straightforward data

path than one designed from a loosely-integrated approach, a tightly-integrated design is

likely to result in lower protocol latency. In a loosely-integrated design, the host CPU, pro-

tocol processor, and network interface are on separate circuit boards so they are likely to

contend for the single I/O bus. This would hinder the parallel data flow among them. A

tightly-integrated approach with multiple, single-master buses and a protocol processor and

network interface on the same circuit board is likely to avoid bus contention; hence, it is

more likely to achieve a high degree of parallelism than a loosely-integrated approach. This

should yield relatively higher throughput.

The dilemma of the system architect is that all these design choices interact with one

another such that no single set of choices guarantees an optimal design, i.e., there are trade-

offs. The remainder of this thesis illustrates the subtle interactions encountered in various

approaches to off-host protocol processing.
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3 Related Work

3.1.  Overview

Several efforts to develop communications protocol architectures that place the

transport and network layer protocols off-host have been documented in the literature. This

chapter surveys the related work, paying close attention to how each resolves the design

issues presented in chapter two. We examine how each implementation is structured in

terms of its user, kernel, bus, protocol processor, and network interface, and we observe the

communications mechanisms between such components. Protocols present at and above

the session layer are ignored.

In an attempt to evaluate architectural design choices, we also quote the perfor-

mance results or estimates for each architecture when they are available. Some communi-

cations architectures resulted in the production of a prototype; in these cases, empirical

performance results are available. Other projects only went through initial design and unit

testing phases; such work provides only estimates of performance.

Off-host communications architectures have many similarities to parallel protocol

implementations. To this end we wish to recognize the fine body of work on parallel imple-

mentations of network and transport protocols [6][7][16][17][20][23][25][49][50][51]

[52]. This research is not surveyed here because it is largely concerned with issues intrinsic

to parallel host computers rather than with the off-host design issues presented in chapter

two.

3.2.  Chesson

A pioneering effort in the development of off-host protocol architectures was Greg

Chesson’s Protocol Engine project [9]. The goal of this project was to develop the Protocol

Engine, a custom VLSI protocol processor for the Xpress Transfer Protocol (XTP). XTP

possesses two unique architectural features relevant to off-host protocol processing. First,
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it is a transfer layer1 protocol spanning both the transport and network layers of the ISO

OSI reference model. Second, XTP was designed as part of the Protocol Engine project to

readily facilitate its VLSI implementation.

The design of the protocol processor is discussed in [10] and [44]. The most distin-

guishing feature of the Protocol Engine is its VLSI-intensive approach; in choosing an

ASIC chipset implementation for the common-case processing of XTP, the Protocol Engine

designers hoped to maximize the parallelism possible in protocol processing. For example,

they designed the engine to overlap such operations as header parsing and address process-

ing, and to pipeline the processing of back-to-back XTP TPDUs. Furthermore, the engine

architects planned to take advantage of the high speed of custom VLSI circuits in order to

process incoming MAC frames at the full bandwidth of a 100 Mbps local area network.

Several custom RISC sub-processors (engines), some with support for fast context

switching, act in concert to support the parallel and efficient processing of protocol tasks.

At the heart of the Protocol Engine are separate transmit and receive engines which handle

protocol-specific processing for the outgoing and incoming TPDU streams, respectively.

Checksums are calculated in hardware as TPDUs stream to and from the network. The

other processors in the Protocol Engine are less protocol-specific. A special buffer-control-

ler processor manages data buffers stored in two banks of DRAM, interleaved for fast

access. In order to communicate with a variety of network interfaces (e.g., Ethernet or

FDDI), the protocol processor uses a generalized MAC port which connects the protocol

processor to the bit stream of an on-board network interface. A more general-purpose con-

trol processor handles complex XTP processing tasks such as network level route manage-

ment and connection setup. Such are operations that do not occur in the common case of

protocol processing.

1. The term transfer layer originates with the protocol hierarchy of the GAM-T-103 reference model
[12].
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To communicate with the host, the Protocol Engine includes a host port. Its circuitry

transfers data buffers between host and protocol processor memory using high-speed DMA

(its transfer rate was projected to be 200 Mbps). A host port connects the Protocol Engine

to the host computer via the host’s system bus, which may be one of various I/O backplanes

such as the VMEbus or Sbus. The literature provides no details of the command and status

streams between the protocol processor and a user-level application.

3.3.  Kanakia and Cheriton

Convinced that conventional transport protocols were too slow without hardware

implementation, Kanakia and Cheriton designed the VMP2 Network Adapter Board (NAB)

[27]. The NAB is an off-host protocol processor board designed to implement Cheriton’s

VMTP transport protocol [8]. In their design, VMTP runs directly above the raw data link,

i.e., the network layer of their protocol architecture is null. Like XTP, VMTP is a simplified,

lightweight protocol, designed to allow VLSI support.

The primary goal of the NAB prototype is to allow high speed operation of VMTP

over an underlying 100 Mbps network. This is to be accomplished on the protocol proces-

sor through the use of custom hardware consisting of five major components, all function-

ing in parallel: an on-board network interface, a TPDU pipeline, a buffer memory, a host

block copier, and a general-purpose, on-board processor. The block copier is essentially a

DMA controller and is used for transferring commands, status, and data between NAB

memory and host memory. The TPDU pipeline has the effect of hiding the overhead of cer-

tain protocol-specific processing operations (e.g., checksumming and encryption) for each

32-bit data word passing through the network interface. The pipeline is designed to operate

at the full network data rate. It should be noted that such pipelining mandates the fixed-field

encoding of VMTP TPDUs.

2. VMP is the name of the multiprocessor computer with which the NAB was to be used. The NAB
design, however, is general enough to be used with other host computers as well.
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Kanakia and Cheriton felt that the memory architecture performance of networking

hardware was an issue of increasing importance, citing future gains in bus and network

bandwidth. They also wanted a design that would not prohibit concurrent access from the

parallel components of the NAB. With these issues in mind, they gave the NAB a novel

memory architecture consisting of dual-ported, high-speed, static-column RAM (40-ns

VRAM). One port is optimized for high-bandwidth (800 Mbps) sequential access during

transfers by the block copier, and the other is made to support random access by the on-

board processor. To avoid contention, these ports may be accessed independently. A dual-

port DRAM controller chip arbitrates the use of the RAM by the TPDU pipeline, the host’s

VME system bus, and the on-board processor.

The on-board processor is a 16-Mhz Motorola MC68020. It orchestrates the opera-

tion of the buffer memory, block copier, and TPDU pipeline and performs a small amount

of complex protocol processing required in the case of error-free protocol operation. In

addition, the queueing of command and status information is handled by the on-board pro-

cessor. All “special-case” protocol processing such as handling acknowledgments and

retransmissions, is relegated to the host. Thus, this communications architecture is not

purely off-host.

In addition to the goal of fast protocol processing, the NAB designers stressed the

importance of off-loading the multiprocessor host by removing overhead in the form of

host CPU cycles, system bus bandwidth, and host interrupts. The designers felt that the reg-

ister-oriented RISC cycles of their host’s high-performance CPU would be poorly utilized

if burdened with the memory-intensive task of protocol processing. In addition, they

desired minimal transfer of protocol data over the system bus since it is a critical multipro-

cessor resource, connecting the VMP processor nodes. Finally the VMP architects felt that

without a NAB, excessive host interrupts from the high-speed network interface for each

data link frame would result in poor cache performance due to the cache invalidations that

must occur in order to swap in the interrupt handler context. Therefore they designed the
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NAB to issue a minimum of host interrupts and to handle all interrupts from the network

interface, providing a “network firewall.” Such a firewall would be particularly useful if an

accidental or malicious barrage of traffic were to arrive at the host.

The NAB literature also details some of the issues of the command and status

streams to and from the protocol processor. Command blocks are sent from the host to the

NAB via a 1024-byte command and status register. Two such blocks are described in the

literature; a Transmit Authorization Record (TAR) block commands the protocol processor

to transmit a TSDU from host buffer space, and a Receive Authorization Record (RAR)

block commands the processor to receive a TSDU into host buffer space. After being writ-

ten to the I/O register, each command is copied by the NAB into a queue in its buffer mem-

ory. The data stream may be carried in one of two ways. Short TSDUs are embedded inside

the blocks; long TSDUs are memory-mapped and referenced by pointers in the blocks.

Without the authorization of a RAR, incoming TSDUs may not enter or interrupt the host;

this helps to provide the firewall effect. After the operation of a command block completes,

the NAB leaves status information in the status register and interrupts the host.

The literature provides performance estimates for the architecture derived from var-

ious architectural parameters such as the system bus transfer rate and the TSDU buffering

latency. These estimates predict NAB throughput to be 44.3 Mbps for a 16 Kbyte transfer.

The time between the start of a one-byte transmission request and the status indication of

its completion is estimated at 1.6 ms. In the analysis, most of this latency is dominated by

host processing time. Unfortunately, Kanakia and Cheriton provide no details on what spe-

cific host processing contributes to such latency.

3.4.  Cooper et al.

Cooper et al. developed the Nectar Communications Accelerator Board (CAB), a

flexible communications architecture in which various transport and network layer proto-

cols may execute off-host on a general-purpose RISC processor, supported by some proto-
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col-independent custom hardware [11][43]. This protocol processor is but one component

in the Nectar project, which aims to construct a local area network that can function as a

multiprocessor composed of workstation nodes. In this scenario, the designer’s primary

goal was to achieve low host-to-host message latency. The main benefit of employing a

general-purpose processor rather than custom VLSI to execute protocols is that a variety of

protocols may be implemented in software on the CAB, regardless of their complexity. To

illustrate this, the CAB architects developed support for several network and transport pro-

tocols, including the ubiquitous TCP, UDP and IP protocols, as well as their own Nectar-

specific Reliable Message Protocol (RMP).

For the system configuration discussed in the literature, the CAB resides on the

VME backplane of a Sun-4 host running an unspecified flavor of UNIX. The protocol pro-

cessor taps into Nectar’s 100-Mbps fiber-optic media via an on-board network interface.

All protocol-specific processing is performed using a general-purpose 16-Mhz SPARC

CPU which runs a lightweight multitasking runtime system. In other respects, however, the

CAB features a customized, yet protocol-independent, design. To avoid memory band-

width bottlenecks, a specialized memory architecture is used. The architecture employs 35-

ns static RAM divided into 512 Kbytes of program memory and 1 Mbyte of data memory.

As with the VMP NAB, data memory and program memory are optimized for access by a

DMA controller and a CPU, respectively. The custom DMA controller supports data trans-

fer among CAB memory and the network interface and among CAB memory and host

memory.

Application processes in the host communicate with the CAB using the Nectarine

API. Nectarine provides low-latency access to the CAB through the use of a mapped

shared-memory scheme that enables direct communication between the user and protocol-

processor levels, bypassing the kernel level entirely. As part of the API initialization code,

an application process at the user level maps CAB data memory into its address space using

the mmap() UNIX system call. This system call, performed only once, invokes a kernel
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device driver routine which facilitates the mapping. The application process may thereafter

directly communicate with the CAB through Nectarine subprogram calls and the shared

memory region. The primary advantage of this scheme is that it avoids the overhead of

making system calls for each CAB request. It is not likely, however, that this approach can

still provide security among application processes since they must share a common mem-

ory region. The library routines of the Nectarine interface do support synchronization for

the shared region, so conforming processes may safely communicate with the protocol pro-

cessor through the Nectarine API.

Due to the use of shared-memory, synchronization is necessary between host pro-

cesses and the CAB. This is done via condition variables and signal and wait operations.

Another form of synchronization is the indication of pending protocol processor status. To

this end, an application process may receive notification of a condition via polling at the

cost of busy waiting. Alternatively, the process may choose to sleep on the condition and

receive an application interrupt when the condition changes; however, this approach

requires kernel support and therefore incurs the cost of a system call.

The Nectarine API supports command, status, and data streams between the proto-

col processor and application process. The command stream to the protocol processor is the

CAB signal queue, and the status stream to the host is the host signal queue. A host process

can notify the CAB of pending commands via an interrupt. Similarly the CAB may inter-

rupt processes sleeping on the arrival of status; otherwise, such applications poll as dis-

cussed above. The data stream between an application process and the CAB is via

mailboxes, shared memory regions accessed through a synchronization protocol. Mailbox

writers must delimit their writes to mailbox memory with Begin_Put and End_Put

operations; similarly, readers must delimit their reads with Begin_Get and End_Get

operations. Some undefined scheme maps commands and status to the appropriate mail-

boxes containing their associated data, if any.
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Cooper et al. built a complete prototype and therefore provide actual performance

measurements of its use. These were observed at both the protocol processor (CAB) and

user (host) levels using several of their protocols. For a short message over RMP, CAB-to-

CAB latency is 241µs and host-to-host latency is 414µs. For large messages over RMP,

CAB-to-CAB throughput is around 90 Mbps and host-to-host throughput is 30 Mbps. For

the same message size, TCP gets about 35 Mbps from CAB-to-CAB and 24 Mbps from

host-to-host. TCP’s lower throughput is largely due to its checksum, which, in contrast to

the Protocol Engine and VMP NAB, receives no custom VLSI support with the CAB. RMP

does not include checksums; rather, it is optimized for the Nectar LAN, relying on its data-

link error detection. The large performance drop between the host-to-host and CAB-to-

CAB observations is blamed on the overhead of transfers across the host’s VMEbus.

3.5.  Netravali et al.

Netravali et al. developed an communications architecture in which their “SNR”

protocol runs off-host and in parallel on a set of loosely-integrated, dedicated processing

nodes [35]. They use a protocol architecture with a null network layer. A novel aspect of

their architecture is that, to minimize bus contention, their planned design connects proto-

col processing nodes via a hierarchy of buses, each of which may be mastered indepen-

dently. A “transmitter” sub-bus contains transmitting processor boards and a shared

memory board; similarly, a “receiver” sub-bus contains receiving processor boards and

another shared memory board. The two sub-buses are connected to another bus which acts

as a backbone and allows access to a Network Interface Board (NIB) and the host computer

system. The transmitting and receiving processors are general-purpose, single-board com-

puters, but the NIB requires SNR-specific custom circuitry.

The NIB is a separate circuit board which not only transmits and receives TPDU

frames to and from the network, but also has the ability to distinguish those which are for

data or control. In addition, it manages queues for free TPDU buffers, data and control
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TPDUs enroute to the network, and received data and control TPDUs. The NIB performs

TPDU checksums as well.

The command, status, and data streams from the host computer to the protocol pro-

cessor nodes are via two separate command and status FIFOs for each simplex connection.

The impression from the literature is that the host must perform segmentation and reassem-

bly of TSDUs and TPDUs, respectively. In this scenario, the host sends TPDUs to the pro-

tocol processor by acquiring a free buffer for its connection (apparently resident in host

memory) and copying its data to the buffer (presumably with programmed I/O). It then

commands the processor to send the TPDU by placing a pointer to its buffer in the connec-

tion’s own transmit FIFO. A separate host transmitter process drains each connection’s

FIFO by transmitting its TPDUs using the NIB. TPDU reception is handled similarly. The

host reads protocol processor status via a FIFO providing pointers to sent TPDUs and

received TPDUs for the connection. The received TPDUs are queued in the proper

sequence of a TSDU. The host apparently polls the status queue, since there is no mention

of the use of interrupts in the literature. A host receive process copies incoming TPDUs to

host memory.

Protocol processing is divided into the work of transmitter and receiver processes,

each of which may execute on its own processor board or as a scheduled task on a single

processor. Each transmitter or receiver process manages only one connection. All connec-

tion state resides in the shared memory board on the transmit sub-bus, and other global state

information is stored in the shared memory board on the receive sub-bus. One transmitter

process manages TPDUs for the connection, another handles retransmissions, and another

queues status for the host. One receiver process ensures proper ordering and error control,

another frees completed TPDUs and advances the flow control window, and another peri-

odically sends transport protocol control frames indicating receiver status to the transmit-

ting end of the connection.
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In contrast to the eventual plans for a hierarchy of buses, the prototype discussed in

the literature places all nodes on a single VME backplane. Each protocol processor node as

well as the host, is a general-purpose Single-Board Computer (SBC) containing a 20-Mhz

Motorola MC68030 and 4 Mbytes of local RAM. Each SBC runs a simple real-time mul-

titasking operating system. In the prototype, one SBC was used to simulate a NIB, and a

shared memory board was used to hold the NIB FIFOs and TPDU buffer memory.

The best performance results were received when two SBCs were used for all

receiving processes and one SBC was used for all transmitting processes. To factor out the

contention overhead inherent in their single-bus prototype, all measurements were per-

formed by transmitting only TPDU headers and no data. As a result, estimates of the per-

TPDU processing throughput of the architecture are highly speculative. According to the

literature, the protocol processor prototype can handle a rate of about 10,000-15,000

TPDUs per second. They expect a higher rate with a full hierarchical-bus implementation

of their architecture.

3.6.  Beach

Beach presents the design of UltraNet, a commercial architecture aimed at provid-

ing near-gigabit data transfer between supercomputers over gigabit links [3]. To achieve

such high performance, UltraNet architects use an off-host firmware implementation of a

modified TP4 and employ up to two general-purpose processors and a small amount of cus-

tom VLSI support. The network layer of this architecture is null. In addition to linking

supercomputers, their architecture also connects workstations, albeit with lower-speed

links (250 Mbps). To meet these varying demands, they provide two models of their proto-

col processor, one for supercomputers and another for UNIX workstations.

The designers chose TP4 as their transport protocol for its simplicity. Beach makes

a point that the protocol processor’s high performance (discussed below) with TP4 shows

that lightweight transport protocols are not necessary for high-speed protocol processing.
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This is inconsistent with the fact that his architects made radical lightweight modifications

to TP4, such as a simplified TPDU format, reduced options, placement of checksums in the

TPDU trailer rather than the header, expanded maximum TPDU size (32 KB), and the addi-

tion of selective acknowledgments. Thus, such a conclusion is simply not warranted.

TP4 processing is handled by two general-purpose microprocessors on the super-

computer model of the protocol processor, the Control Processor (CP), an 8-Mhz AMD

29300 and the Data Acknowledgment and Command Block Processor (DACP), a 12-Mhz

Intel 80386. For the workstation model, a single 16-Mhz 80386 acts as the CP and also per-

forms the processing of a Virtual DACP (VDACP). The DACP performs common case pro-

cessing such as the handling of data and acknowledgment TPDUs and the processing of

commands from the host. Its software is highly optimized; for the supercomputer model,

the DACP is programmed with hand-written microcode, and for the workstation model, the

VDACP executes hand-coded assembly language. The CP handles complex and/or rare

protocol processing tasks such as connection setup and error control, and is programmed in

a high-level language. The CP and DACP communicate via the shared memory of a con-

nection database. A very lightweight multitasking operating system is run on the two pro-

cessors. TP4 checksums are performed “on-the-fly” in custom hardware as the TPDU flows

through the on-board network interface. This is facilitated by the movement of the check-

sum field into the TPDU trailer.

The model of the protocol processor for UNIX workstations resides on the host’s

VMEbus, over which inter-processor communication occurs. The command and status

streams between the protocol processor and the host are constructed as two queues of com-

mand blocks resident in host memory. Notification of pending commands and status is per-

formed via hardware interrupts. The architecture is carefully designed to require only one

copy of each TSDU in the common case. This ensures higher throughput and eliminates the

need for the large pool of high-speed buffer RAM that would be required to sustain near-

gigabit transfer rates. The copy is performed using a DMA controller on the protocol pro-
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cessor. Application processes running at the user level use a Berkeley socket API to per-

form communication. The API code then invokes protocol processor device driver routines

at the kernel level through system calls.

Throughput results are presented in the literature for both supercomputers and

workstations. When sending very large messages (on the order of a megabyte) between a

Cray X/MP and a Cray 2, presumably over a 1 Gbps link, a throughput of 384 Mbps is

achieved. Between two Sun-3 workstations, their results show a peak rate of 31 Mbps.

Counter to intuition, the peak Sun-3 performance is higher than that between Sun-4 work-

stations, even though the Sun-4 machines have faster CPUs and VMEbus transfer rates.

3.7.  MacLean and Barvick

MacLean and Barvick developed an off-host Protocol Accelerator (PA) board

whose goal is to eliminate the bottlenecks in transport protocol processing. The PA

approach is to use two general-purpose microprocessors and additional custom hardware to

execute a modified TCP [31]. Their communications architecture has a null network layer

and serves a UNIX host computer containing a 25-Mhz Motorola MC68030 CPU.

A VME backplane contains the PA board along with the host processor board and

a 4-Mbyte host memory board. The protocol processor contains two 25-Mhz Motorola

MC68020 microprocessors; one is for receive processing, and the other is for transmit pro-

cessing. To avoid microprocessor bottlenecks, no operating system is used, and each pro-

cessor has its own supporting 128 KB of RAM, I/O ports, and interrupt circuitry. An

additional 128 KB pool of 40-ns static RAM is used to contain TCP Transmission Control

Blocks and is shared, facilitating communication between the two processors and the host.

The data stream is carefully designed to avoid bottlenecks. The network interface

resides on the PA board, and there is a direct data path between host memory and the net-

work interface which prevents intermediate buffering of transmitted application data units.

In addition, transfers between host memory and the protocol processor are performed by



50

one of two DMA controllers, one for sending and one for receiving. These controllers sup-

port scatter-gather DMA and, according to the literature, provide a transfer rate of up to 264

Mbps. Two hardware checksum components operating with the DMA are provided for

sending and receiving. To use the components efficiently, the TCP checksum field was

moved to form a TPDU trailer. For unspecified reasons, certain IP header information was

also added to the TCP header. MacLean and Barvick claim that all the hardware compo-

nents can operate in parallel.

Application processes use the PA through a BSD socket API which, in turn, makes

system calls to routines in two UNIX kernel device drivers, one for the transmit processor

and one for the receive processor. The command and status streams between the protocol

processor and host are presumably implemented via the fast, shared memory, and hardware

interrupts are used to inform the host of command completion.

The host-to-host throughput for 20-KB TPDUs is quoted in the literature as 11,000

TPDUs per second, and the PA-to-PA performance is 15,000 TPDUs per second. These

results are with 252-byte frames over a loopback network interface which has a 320 Mbps

transfer rate. Since the interface is loopback, a single host must both send and receive

TSDUs. To minimize the effect of this double duty on bus contention, received data is not

copied over the bus in their tests. The architects blame the host-to-host performance loss on

UNIX overhead, which increases with TSDU size. They claim that this overhead is due to

the scheduling of other host processes.

3.8.  Mitchell et al.

Mitchell et al. discuss their plans to develop an off-host communications architec-

ture for embedded systems by executing the transfer layer protocol, XTP, on an attached

processor board [38][33][34]. Their design goal is to ensure high throughput for both the

protocol and the application tasks on the host. The host system has a Motorola MC68030

microprocessor, runs a real-time operating system, and resides, along with the protocol pro-
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cessor, in a VME-like proprietary backplane bus. At the time the documents on the archi-

tecture were written, not all design issues were fully resolved. The discussion below briefly

reviews the tentative design described in the literature. No host-to-host performance esti-

mates were available.

The protocol processor board is designed to be made up of a custom integration of

stock microprocessor, memory, and network interface components. An Intel 80960CA was

chosen as the microprocessor. It executes a commercial version of XTP, modified to exe-

cute off-host and on the 80960. To maximize the performance of data transfer, the designers

hoped to utilize some form of high-speed static RAM. An on-board network interface

chipset implements an FDDI-like proprietary MAC protocol.

Plans for the command and status streams were tentative. Application processes

command the processor through a socket-like API. The command and status streams are

implemented as queues in shared memory containing control blocks. To signal pending

commands, the host interrupts the protocol processor, and to signal pending status, the pro-

tocol processor interrupts the host. Data are transferred between the host and protocol pro-

cessor using a DMA controller built into the 80960 microprocessor.

3.9.  Siegel et al.

Siegel et al. develop an architecture which seeks to overcome the bottlenecks in

transport protocol processing [39]. They approach the problem at two ends by employing

(1) a simplified version of TP4 and (2) an off-host architecture in which TP4 runs in parallel

on a set of general-purpose processors aided by custom VLSI.

First, we briefly discuss the changes to TP4 because they facilitate the use of the

custom VLSI support. The modifications eliminate segmenting TPDUs and multiplexing

TP4 connections over a single network connection. In addition, the flow control is simpli-

fied and the extended PDU numbering format is mandated.
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The protocol processor consists of a tight integration of several general-purpose

RISC microprocessors and custom VLSI circuits. There are separate processors for the

sending and receiving data streams, each with its own local memory. In addition, a custom

VLSI processor coupling device allows synchronized processor access to shared memory,

promoting inter-processor communication. Other custom circuits support timer and buffer

management and perform checksums. An “on-the-fly processor” detects the end of TPDU

headers streamed in from the network interface in order to route the header and data to sep-

arate buffers. These buffers are separated in order to optimize the use of the memory. Head-

ers are stored in high-speed 30-ns static RAM since they will be critically manipulated by

the protocol processor. Data is stored in high-capacity 70-ns DRAM since it arrives in large

quantity and need only be accessed in a single copy.

With respect to host and protocol processor communication, only the data stream

and processor synchronization mechanisms are described in the literature. For the data

stream, copies are performed with a special DMA controller that automatically allocates a

destination buffer from a pool as part of the transfer. In addition, the architecture is flexible

with respect to the notification of the host of pending status. Interrupts are recommended

for hosts with fast interrupt handler context swap times. If interrupts are inefficient on the

host, an alternate scheme involving a pollable, shared status memory can be chosen.

3.10.  Summary

We have surveyed several efforts to develop off-host communications architectures.

The designs share several common characteristics:

• Use of lightweight protocols, or common protocols (e.g., TCP) modified to be
more efficient

• Attempts to harness the inherent parallelism in protocol processing

• Optimized common-case protocol processing

• High-speed data movement hardware

• Minimized buffering and data copies
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• Optimized memory architecture for fast access to protocol data

The protocol processors tend to differ in the degree to which they use custom com-

ponents. Chesson’s Protocol Engine represents a highly-custom and tightly-integrated

approach using several custom VLSI circuits. At the other extreme, Mitchell et al. integrate

stock hardware of a general nature (e.g., processor, memory, DMA controller, and network

interface). In the next chapter, we will describe our architecture, which is even more gen-

eral-purpose and loosely integrated. It combines commercially-available hardware boards

to produce a custom system and, for the most part, executes previously-available software.
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4 An Off-Host Communications Architecture for
SAFENET

4.1.  Overview

This chapter presents the design of an off-host communications architecture that

executes a transfer layer protocol, XTP, on a single-board computer attached to a host com-

puter system. As a whole, the communications architecture is designed to implement the

SAFENET lightweight protocol suite. The design of this system illustrates our efforts to

resolve the design issues presented in chapter two. It is this system that will be studied

throughout the remaining chapters of this thesis.

4.2.  SAFENET

The United States Department of Defense has adopted SAFENET (Survivable

Adaptable Fiber Optic Embedded Network) as its protocol architecture for mission-critical

computer systems [21][36][32]. SAFENET is unique in that it specifies a dual-protocol

stack. A suite of ISO protocols is specified for use in non-real-time systems (e.g., file trans-

fer and electronic mail), and a so-called Lightweight Profile defines the protocols to be used

for latency-sensitive applications. With the ISO suite, the goal is to maximize interopera-

bility, whereas with the “lightweight” suite, the goal is to optimize performance. In the

lightweight stack, the presentation and session layers are null, and transport services are

provided by XTP running over LLC, SNAP, and FDDI-based MAC and physical layers.

The application layer provides very general communication services that map closely to

XTP functionality. Figure 4.1 illustrates the SAFENET architecture.

It is important to note that due to the design of the Lightweight Application Services

(particularly its null presentation and session layers), an ASDU has the same format as a

TSDU. As a result, we often shift terminology when describing the flow of such data
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through our architecture. The reader should not be concerned with this, as the distinction

between such data units is not particularly important in our case.

SAFENET is a part of the Next Generation Computing Resources (NGCR) pro-

gram, an effort which attempts to break from the former practice of developing highly cus-

tom government systems at great cost. Rather, the NGCR idea is to set standards specifying

minimal requirements and then employ commercially-availably technology meeting such

standards whenever possible. This new way of developing government systems cuts design

time and allows wide market support, thereby promoting higher quality and lower cost. The

NGCR philosophy had an impact on the design of our architecture as is discussed below.
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The Computer Networks Laboratory at the University of Virginia was awarded a

Navy contract to develop an implementation of the SAFENET lightweight protocol suite

for the Desktop Tactical Computer (DTC-2) host, including XTP, an FDDI MAC interface,

an Ada API, and directory services. The resulting hardware architecture, Ada API, and

XTP implementation are described in detail in [13][14][15]. The technical design decisions

that resulted in our architecture are discussed below.

The fundamental design choice that drove the rest our implementation efforts was

to use an off-host communications architecture. This decision was motivated by the char-

acteristics of the applications served by the lightweight stack. The mission-critical applica-

tions using the Lightweight Application Services have real-time requirements, i.e., they

need minimal execution time penalty from the service primitives as well as high throughput

and low latency from the protocol. With the aim of providing such performance-critical ser-

vice, we chose to use an off-host architecture. This approach offered the opportunity to gain

some of the potential benefits of off-host protocol processing outlined in chapter one; how-

ever, the actual effects of off-host implementation were not at all clear from the outset.

Thus, the determination of what benefits our off-host architecture would actually deliver

was a fundamental research question.

4.3.  Host Computer System

The host computer system served by our off-host communications architecture is

the C3 Computer Systems Desktop Tactical Computer 2 (DTC-2). The machine is based

upon a Sun 4300 motherboard including a 25-Mhz SPARC CPU and 32 Mbytes of DRAM.

The motherboard resides in the first slot of a VME backplane bus into which additional

hardware device modules may be inserted. Our DTC-2 runs the SunOS 4.1.1 operating sys-

tem, a variant of BSD UNIX.
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4.4.  Architectural Constraints

The host hardware and operating system placed several constraints upon the design

of our communications architecture. The layout of the host system’s motherboard was fixed

in that no modifications to it were possible. This forced a more loosely-coupled design for

our communications architecture than could have been the case if we had the opportunity

to architect the motherboard; with the DTC-2, any additional off-host communications

hardware would have to be connected to the host system via its I/O backplane.

The bus and motherboard architecture also forced certain other design constraints.

Since the host motherboard resides in the first slot of the VME backplane, it is required by

the VMEbus specification to act as the bus arbiter [2]. This constrained our bus arbitration

policy since the Sun 4300 motherboard supports only a fixed-priority arbitration policy

[45]. In addition, the board supports only a Release On Request (ROR) bus release strategy.

A very significant restriction imposed by the motherboard is that only a restricted region of

its virtual address space is addressable on the VMEbus. The effect of this restriction is dis-

cussed in section 4.5.3.2.

The SunOS 4.1 operating system’s use of a privileged kernel with a protected

address space acted as an obstacle in our architecture. SunOS provides security between

application processes running at the user level, the operating system running at the kernel

level, and hardware devices at the backplane bus level through the use of disjoint virtual

address spaces. To ensure security, user processes do not normally have the ability to

address the memory of other processes and the kernel. Likewise, they are also barred from

direct access to shared hardware resources such as I/O device registers; rather, they must

invoke the kernel to access such resources. Reference to I/O devices on the SPARC proces-

sor is possible only in the following manner. All SPARC access to I/O devices must be via

memory-mapped I/O; therefore, to communicate with a device, its registers or memory

must be properly mapped into a virtual address space. With SunOS, only the kernel has the

ability to create virtual address mappings, so it alone may enable the use of hardware
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devices. These constraints implied that our architecture would be forced to have a kernel

level, and that such a level would play a key role in our architecture.

4.5.  Design Choices

Within the bounds of the constraints discussed above, we were otherwise free to

design our off-host communications architecture as we saw fit. Our choices are initially dis-

cussed in terms of hardware and software layers. Since the hardware choices dictate the

software choices, we discuss the hardware first. The most important design issues are those

of the inter-layer communication mechanisms; these are discussed last.

4.5.1.  Hardware Components

As mentioned above, any additional hardware in our system would have to reside

in modules on the DTC-2’s VMEbus. This still left us with many options. We could have

attempted an architecture that was as tightly integrated as possible while still using an I/O

bus. With such an architecture we could have used a single additional module containing

custom VLSI to implement XTP functionality and an on-board network interface. Such a

highly-integrated approach, however, would require great development cost in terms of

both time and money. Unfortunately, such development-intensive design was inconsistent

with the philosophy of the NGCR program from which SAFENET was spawned. In accord

with the NGCR philosophy we were forced to seek a more economical solution. Our aim

was to integrate a set of commercially-available hardware components which could meet

our needs. A single module containing a more loosely-coupled organization of hardware

was considered. This hardware contained such components as a high-performance, yet gen-

eral-purpose, microprocessor and an on-board network interface. However, at the time, the

development cost for this approach was deemed too high.

We finally opted for a very loosely-integrated hardware architecture in which we

would employ two additional VMEbus modules, one containing a single-board computer

(SBC) that would act as the protocol processor, and another containing an FDDI network
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interface. For the SBC we chose a Motorola MVME-167A (167). Although the 167 is a

general-purpose SBC, it still comes moderately well suited for protocol processing; the

board features a 25-Mhz Motorola MC68040 microprocessor, 8 MB of on-board 70-ns

DRAM, and a DMA controller. The on-board memory is addressable in the local address

space of the SBC and may also be mapped into VMEbus address space. The 167 is capable

of mastering the VMEbus and may employ either a Release On Request (ROR) or Release

When Done (RWD) bus release policy. For the 167 we chose the pSOS+ lightweight mul-

titasking operating system. With pSOS+, multiple tasks may run on the processor, all shar-

ing a single address space.

The network interface supports the MAC layer and below of FDDI and is manufac-

tured by Network Peripherals (NP). This board is controlled by a device driver using I/O

registers. It also features a DMA controller, which allows it to master the VMEbus and han-

dle data transfers without incurring device driver CPU cycles. The controller is capable of

using the block transfer mode of the VMEbus to achieve higher throughput. The network

interface and its device driver exchange data frames through a pair of separate send and

receive hardware FIFO registers.

The necessary low-level mechanisms exist to allow communication between each

board on the VMEbus. The host, protocol processor, and network interface are all capable

of mastering the bus and addressing memory or registers in VMEbus address space. Fur-

thermore, each board may act as a slave in order to respond to read or write bus transactions.

In addition, each board may issue VMEbus interrupt requests. Only the host and protocol

processor, however, may handle such interrupts. Figure 4.2 depicts our communications

hardware architecture.
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4.5.2.  Software Layers

As a result of our hardware and operating system environment, our architecture

consists of several levels. Those at which software may reside are the user and kernel levels

of the host, and the protocol processor level. Each level has its own address space, which

serves to complicate our design. Our remaining design choices deal with how to distribute

the software implementing SAFENET functionality at each level and achieve the inter-

level communication for our command, status, data, and options streams. This section dis-

cusses the distribution of our software, and the following section discusses the communi-

cation streams. Figure 4.3 illustrates our overall system architecture.
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Our user-level software design was largely dictated by Ada and our operating sys-

tem. As required by the API specification for the SAFENET Lightweight Application Ser-

vices, our software architecture must provide communications services to Ada application

programs. Given our Ada compiler, these applications must run at the user level as SunOS

processes. Furthermore, the Lightweight Applications Services API was given as a set of

Ada package specifications. Therefore, at least part of our software was constrained to be

written in Ada. However, due to the fact that we were developing systems software for

UNIX (a system with a large bias toward the C programming language) we felt that the

majority of the API implementation would be most practically written in C. We therefore

chose a software architecture in which the API is implemented with a thin layer of Ada

package bodies that employ lower-level software in a library of C code linked with each

application.

At the kernel level, we developed a UNIX character device driver. As mentioned in

section 4.4, we were forced to have a kernel level in order to handle at least some hardware-
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intensive functions. Specifically, a kernel-level driver has two unique characteristics which

allow it to effectively operate the protocol processor. First, it has access to the system’s pag-

ing hardware and therefore has the ability to map virtual memory regions. This allows it to

access both the user-level address space and the VMEbus address space. Second, it uses the

privileged supervisor mode of the SPARC CPU. As a result, it may carry out privileged

hardware-oriented instructions. For example, only the kernel can set the interrupt priority

level of the processor, and only kernel-level ISRs may handle hardware interrupts.

Beyond the use of the kernel for these hardware-intensive operations, we made the

choice to have the kernel manage all protocol processor operations. That is, although it was

possible through the use of user-level memory mapping to allow user processes to control

the protocol processor directly, we chose to only place this responsibility on the kernel. The

drawback to this is that it requires user processes to issue system calls for each protocol pro-

cessor request. The advantage is that the device driver may act as an honest broker, provid-

ing secure access to the protocol processor. In addition to providing security, it also

provides synchronization in that, since it alone interacts with the protocol processor, all user

accesses to protocol processor are serialized.

As a result of these design choices, the kernel level device driver is responsible for

handling every operation on the protocol processor device. Such operations include writing

to and reading from it its memory or registers and handling its interrupts.

The protocol processor level contains the remainder of our software. This consists

of a commercially-available, multi-threaded implementation of XTP and a MAC level

device driver for the FDDI network interface. The XTP protocol and MAC driver run as a

set of pSOS+ tasks sharing the single address space of the 167. There were no real software

choices with respect to XTP since no other commercially-available implementation of XTP

was suitable for the pSOS+ environment. The decision to have the MAC driver run as a sep-

arate task was dictated by the XTP implementation.
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4.5.3.  Inter-Layer Communications Mechanisms

Given our hardware and choices of software placement, the issue of how to pass

command, status, synchronization, and data information between the user, kernel, and pro-

tocol processor levels was left open. Our approach to this problem revolves around the

design of the command and status streams. We chose to encapsulate command and status

information into two separate data structures. A control block indicates a user process’

command, and an acknowledgment block (so named because it usually acknowledges com-

mand completion) indicates the protocol processor’s status. Both of these data structures

contain pointers to associated TSDU data, if any.

The API features several command options which are used in protocol initialization

or connection setup calls; however, such information is not required in the common case of

data transfer. Rather than pass this information in each control and acknowledgment block,

we chose to include it in a separate options stream. With this scheme, control blocks and

acknowledgment blocks contain pointers to their options, if any; thus, such blocks are kept

smaller in size, decreasing their overhead in copies.

4.5.3.1.  User-Kernel Communication

As mentioned above, in order to ensure secure access to the protocol processor, we

allow only the kernel to manipulate the protocol processor device. Thus, only the device

driver may issue control blocks to the device and read acknowledgment blocks from it. As

a result of this decision, the C library code of a user-level application must invoke the ker-

nel-level device driver in order to perform its communications operations. This user-kernel

communication is performed through use of a combination of system calls and shared user-

and kernel-level memory. In order to issue a command, the C library code constructs a con-

trol block indicating such information as the command code, the connection on which it is

to be performed, and any associated options or data. The user-level library code then per-

forms a write() system call containing a pointer to the control block as a value parame-



64

ter. Similarly, to read status the process issues a read() system call specifying a pointer

to an acknowledgment block. When the read() completes, the C library code may exam-

ine the contents of the block. Only the pointers to such blocks are actually copied to kernel

address space; the information in the blocks is simply mapped into kernel address space.

The data and options streams cross the user- and kernel-level boundary through a similar

shared memory mapping scheme.

Another issue is the notification of an application process in order to indicate pend-

ing status from the kernel level. For this, we chose to use a combination of both polling and

user-level interrupts (UNIX signals). The reason for such complexity is that the Ada API

supports two modes of primitive calls, synchronous and asynchronous. A synchronous API

primitive call issues a command and blocks on the arrival of status before returning to its

caller. On the other hand, an asynchronous call simply issues a command and does not wait

on its status. The asynchronous call does, however, return a handle on its execution status

known as an activity index. A user-level interrupt is used to indicate the completion of a

command to the API implementation. Its arrival causes the new execution status of the

primitive call to be indicated in an internal API data structure referenced by the activity

index. To discover when an asynchronous call has completed, an application must poll the

state of the call using its index. For a synchronous call, the situation is similar, except that

the polling is performed automatically within the call so no activity index is necessary.

 More efficient and elaborate methods of implementing synchronous and asynchro-

nous primitive calls were considered. For example, rather than forcing an Ada task to busy

wait on the completion of a synchronous command, we considered blocking the task until

an interrupt for the command arrived; however, our Ada compiler did not support low-level

scheduling operations on tasks, prohibiting this approach. For the notification of the com-

pletion of an asynchronous call, we considered tying the arrival of a user-level interrupt to

the execution of a application-specified interrupt handler. This scheme was prohibited by

Ada limitations on using subprograms and task entries as first-class programming language
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type entities and by the inherent problems of calling Ada subprograms from a C-based

interrupt stack.

4.5.3.2.  Kernel-Protocol Processor Communication

We chose to perform communication between the kernel and protocol processor

levels through shared memory and interrupts. At system boot time, the kernel device driver

maps in a large region of the local memory on the protocol processor board into its virtual

address space. This shared memory region is used to contain two data structures, the To

Network (TN) and From Network (FN) queues. These act as the command and status

streams. The host CPU and protocol processor access these queues following a discipline

which promotes synchronized access to their shared memory. The kernel level device

driver writes control blocks to the TN queue and reads acknowledgment blocks from the

FN queue. In contrast, the protocol processor reads control blocks from the TN queue and

writes acknowledgment blocks to the FN queue. In addition to the use of the two queues,

the protocol processor uses interrupts to indicate to the host that is has a pending acknowl-

edgment block.

Incoming status at the kernel level causes a user-level interrupt (a SIGIO signal) as

discussed above. The following demultiplexing mechanism ensures this. The kernel-level

hardware ISR that runs as a result of a protocol processor interrupt must issue a signal to

the application for which the acknowledgment is bound. In order to route the signal to the

proper destination process, the device driver maintains connection state information which

relates the connection identifier in a field of the incoming acknowledgment block to its

owning process. This demultiplexing operation incurs some degree of overhead, as does the

maintenance of connection status.

In order to avoid bottlenecks, the design of the data stream (more so than the other

streams) should avoid copies. With this in mind, we wished to avoid buffering TSDUs on

the protocol processor. In order to accomplish this, we would need to provide the protocol
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processor with direct access to host memory. Since the protocol processor may only access

external memory that is addressable on the VMEbus, we would have to make host TSDU

memory regions addressable in VMEbus address space to avoid buffering them. Unfortu-

nately, the design of the Sun 4300 motherboard places unwieldy restrictions on what region

of its memory is addressable in VMEbus address space. There is only one such region; it is

called Direct Virtual Memory Access (DVMA) space, and it functions as follows. The

motherboard maps the highest megabyte of kernel virtual address space into the lowest

megabyte of VMEbus address space. This shared region of memory acts as a window for

VMEbus masters to access the virtual memory of the host. In addition to being addressable

by masters on the VMEbus, DVMA space may be accessed by devices on the motherboard

that are capable of DMA transfers, e.g., the on-board Ethernet interface. Due to its unique

status, DVMA space is a precious resource that must be carefully shared with other devices.

In addition, user-level memory must be carefully mapped or even copied in order to place

it in DVMA space.

Rather than deal with these restrictions, we opted to abandon our attempts to allow

the protocol processor to address host memory. This decision had a dual impact on our

design. First, it forced us to buffer all TSDUs in the protocol processor’s on-board memory.

Second, we could not use the DMA controller on the protocol processor board to copy the

TSDUs because, in order for the controller to transfer such data structures, it must be able

to address them. As a result, we were forced to use the host CPU for programmed I/O trans-

fers of TSDUs between host memory and buffers on the protocol processor board. These

same restrictions also implied that the control blocks, acknowledgment blocks, and options

must be transferred between the host and protocol processor using such a programmed I/O

mechanism.

The choice of which processor should allocate buffers was another design decision.

Data buffers for the data stream are allocated by the kernel-level device driver in the host

from a 4 MB buffer pool stored on the protocol processor. We found it much easier to have
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the driver allocate this memory since synchronization would be required in order to have

the allocation performed by the protocol processor. TSDUs enroute to the network are cop-

ied to these buffers from the user-level memory on the host as discussed above. Similarly,

TSDUs enroute to user-level memory on the host are also copied from the protocol proces-

sor’s buffer pool. Buffers for protocol options are allocated in the same fashion as data buff-

ers.

The implementation of XTP places a limit on how many commands may be concur-

rently outstanding on a single connection. In our implementation, up to four sending oper-

ations may be performed on a connection, along with up to four receiving operations. In

order to avoid exceeding these limits, the API implementation keeps a count for each con-

nection and blocks the progress of any API primitive that attempts to exceed this limit.

4.5.3.3.  Protocol Processor-Network Interface Communication

As mentioned above, the protocol processor contains an FDDI MAC device driver.

This driver issues commands to the network interface via VMEbus write transactions to its

control registers. Likewise, the protocol processor reads network interface status thorough

the use of read transactions with the interface’s status registers. TPDU frames are sent from

the local buffer memory on the protocol processor to a transmit FIFO register on the net-

work interface. The transfer of a frame is performed using the block transfer mode of the

VMEbus by the DMA controller on the network interface. The DMA controller interrupts

the protocol processor to inform it of transfer completion. The arrival of a frame is indicated

to the protocol processor via an interrupt. The transfer of the frame from a receive FIFO on

the interface to a buffer on the protocol processor is also done with block mode DMA, and

an interrupt indicates DMA completion here as well.

4.5.4.  A Data Flow Example

In order to illustrate how our design operates, we trace the data flow due to a single

synchronous API call through our architecture. To start the data flowing, an Ada application
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makes a call to an API primitive such as SEND_MESSAGE from one of our Ada packages

in order to perform a transmitting operation. The Ada SEND_MESSAGE procedure invokes

a routine called c_send_message() in the library of C code, which begins the C imple-

mentation of the API primitive. Aside from the management of some user-level resources

and state information, the function of this C code is to build a control block for the com-

mand including the connection with which it is associated and a pointer to the ASDU

referred to in the SEND_MESSAGE call. The library code then issues the control block to

the kernel-level device driver with a write() system call.

The device driver begins execution at its write() entry point. It examines the

control block to verify the user’s right to issue commands on the connection. Then the

driver acts upon the command, maintaining a small amount of state information. The driver

allocates a buffer to hold the TSDU and copies it, via programmed I/O, to the buffer pool

on the protocol processor using the kernel’s copyin() utility function. It then enqueues

the control block on the TN queue with copyin() and returns control to the calling pro-

cess. Since the API call is synchronous, the user process busy waits on the arrival of an

acknowledgment block for its command. Meanwhile, the protocol processor dequeues the

command and performs the appropriate protocol operations to send its associated TSDU.

The protocol processor transmits the TPDUs of the packet over the VMEbus and through

the FDDI network interface using the network interface’s DMA capabilities.

Once it discovers (via an acknowledgment) that the TSDU arrived at its destination,

the protocol processor queues an acknowledgment block for the aforementioned

SEND_MESSAGE control block on the FN queue and interrupts the host. This interrupt

invokes a device driver interrupt routine which in turn signals with SIGIO the user process

owning the connection identified in the acknowledgment block. A signal handling routine

for SIGIO in the C library code of the user process performs a read() in order to dequeue

the acknowledgment on the FN queue. The kernel then transfers the acknowledgment

block into user-level memory with the copyout() kernel utility function. The signal han-
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dling function uses the acknowledgment block information to cease the busy wait of the

process. The signal handler also performs another read() to check for additional

acknowledgment blocks and, finding none, returns from the interrupt. When the user pro-

cess resumes execution, it discovers the completed status of the SEND_MESSAGE call,

thereby finishing its execution.
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5 Performance Analysis

5.1.  Overview

In this chapter we study the overall performance of our off-host communications

architecture, profile it in detail, and identify the bottlenecks in its design. In order to illus-

trate the effects of our design’s multilevel architecture, we provide throughput and latency

measurements at several of its levels. To understand the reasons for our user-level perfor-

mance, we include a profile of host processing time for the SEND_MESSAGE and

GET_MESSAGE operations. We also include an assessment of the host processing required

to perform such operations. From the performance measurements, profiles, and some other

experimental results we identify the bottlenecks present in our architecture.

5.2.  Performance Observed at Various Service Levels

Our architecture is built upon several layered levels of service, each of which has

an effect on the performance of the service level above it. Note that the service levels we

speak of here are not the same as the architectural levels discussed in chapter four. These

service levels are aimed at describing the performance of the fundamental communications

services accessible at the user and protocol-processor architectural levels. The following

sections describe the communication performance of our architecture observed at three ser-

vice levels, the FDDI MAC device driver level, transport protocol level, and the user level,

for the full range of message sizes available at each. Using our terminology, a MAC-level

message is a frame, a transport-level message is a TSDU, and a user-level message is an

ASDU1. All results were obtained using time-average measurement techniques, i.e., the

time for several iterations of an operation was measured, and the resulting average time for

a single such operation is reported.

1. The user level would perhaps be more aptly termed the application level.
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5.2.1.  MAC Level

The MAC level provides the transport protocol with a raw, frame-oriented, data link

service over the 100-Mbps FDDI network. These results were obtained using a pair of Net-

work Peripherals FDDI boards driven by a pair of Motorola MVME 167A processor boards

in two stand-alone VME card cages. During these tests, no operating system ran on the pro-

cessors, and VMEbus transfers between the NP board and 167 were performed with block

mode DMA. Figure 5.1 shows end-to-end latency, and Figure 5.2 shows throughput. Here,

latency is half of the round-trip time of a frame, and throughput measures the rate at which

the MAC driver can transmit frames with no receiver. A minimum latency of 91.5 ns occurs

for a frame with no payload, and the maximum throughput of 56.6 Mbps occurs for frames

carrying a payload of 4487 bytes (4500-byte maximum FDDI frame less LLC and SNAP

headers).

5.2.2.  Transport Level

In our architecture, the transport protocol (XTP) provides reliable end-to-end deliv-

ery of memory buffers from the local memory of one protocol processor board to another.
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The performance of this service was measured at the top-level interface to XTP, which is

the interface used by our protocol processor device driver. The host system was in no way

involved with these measurements; rather, they were performed by the protocol processor

itself. For the throughput measurements, the data transfer operations were pipelined on a

single connection using the streaming features of our protocol implementation, i.e., several

TSDUs could be submitted to a connection at once. For all measurements, checksums were

disabled with the XTP NOCHECK option, but rate control was unused. End-to-end latency

and throughput are shown in Figures 5.1 and 5.2, respectively. Here, end-to-end latency

measures half the round-trip time of an entire TSDU, and throughput is for reliable trans-

mission. The minimum latency of the protocol is 2.7 ms for a one-byte message, and a max-

imum throughput of 23.8 Mbps occurs for a 64-KB message.

5.2.3.  User Level

All user-level performance measurements were obtained using two Ada programs

running on separate DTC-2 hosts using the connection-oriented SEND_MESSAGE and

GET_MESSAGE primitives. Figures 5.1 and 5.2 show end-to-end latency and throughput
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for the full range of ASDU sizes. End-to-end latency measures half the round-trip time of

an entire ASDU sent between two Ada applications. For the throughput measurements, the

communication primitives were performed asynchronously, and XTP’s rate control fea-

tures and NOCHECK option [44] were used to provide maximum performance. RATE was

set to 1.5 MB/s and BURST was set to 10 KB/burst. For the latency measurements,

NOCHECK was set, but rate control was unused. The minimum latency occurred at a mes-

sage size of one byte and was 5.1 ms. The maximum throughput was 12.1 Mbps at a mes-

sage size of 64 KB.

5.3.  Performance Profile

To study why we observe the user-level results above, we profile the host CPU’s

execution of the SEND_MESSAGE and GET_MESSAGE primitives used in our user-level

performance tests. In the next section, the analysis of the of this profile information will

help to expose the bottlenecks in our design. The profile data was compiled using two meth-

ods. The user-level components of the profiles were measured with the UNIX prof utility.

Since we had no tool which supported the simultaneous profiling of both the C and Ada

code, we profiled only the C code. This choice essentially omits from our profile only a few

Ada procedure calls, having no appreciable impact on our performance. For simplicity, all

runs use the synchronous API calls. The performance results are derived from statistical

measurements resulting from several thousand iterations of calls to the SEND_MESSAGE

and GET_MESSAGE primitives. The kernel measurements were obtained differently. Since

we had no profiling tools available for the kernel, measurements for its components were

gathered using separate test programs employing the time-average measurement tech-

niques discussed in Appendix A.

First, we concern ourselves with the processing of short ASDUs. Table 5.1 lists

where the host processor spends its time during a SEND_MESSAGE call for a one-byte

ASDU. The “other” category accounts for accumulated measurement error and operations
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which consume less than 10 µs. The profile for a one-byte GET_MESSAGE operation is

listed in Table 5.2; it is similar to that of a SEND_MESSAGE.

The wait for completion is the amount of time that the host awaits an indication that

the operation is complete. Although it accounts for most of the total time, the wait does not

require host processor cycles; rather, it is a function of the transport protocol’s performance.

All other times in the table are incurred by various UNIX services; this overhead will be

discussed in the next section. For now, it suffices to state that UNIX overhead dominates

the host processing time when the ASDU size is small.

Note that the totals for sending and receiving are the same due to the interdepen-

dency of the SEND_MESSAGE and GET_MESSAGE operations and the fact that their exe-

Operation µs/call Calls total µs

wait for completion 3,881 1 3,881

physio() & iodone() 301 3 903

read() system call 81 2 162

signal delivery 143 1 143

write() system call 83 1 83

disable signals 25 3 75

enable signals 22 3 66

control block copyin() 29 1 29

ack block copyout() 23 1 23

other 732

total 6,097

Table 5.1: Profile of a One-ByteSEND_MESSAGE

Operation µs/call Calls total µs

wait for completion 4,045 1 4,045

physio() & iodone() 301 3 903

read() system call 81 2 162

signal delivery 143 1 143

write() system call 83 1 83

disable signals 25 3 75

enable signals 22 3 66

control block copyin() 29 1 29

ack block copyout() 23 1 23

other 568

total 6,097

Table 5.2: Profile of a One-ByteGET_MESSAGE
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cution is repeated in the tests. (Such repetition is necessary for our profiling technique.)

These effects do not alter the quantities of interest to us.

To study the processing overhead of long ASDUs, we profile a SEND_MESSAGE

of 64 KB in Table 5.3. As before, the total time is dominated by the wait for completion.

However, with the long ASDU size, length-dependent operations such as the cost of allo-

cating and deallocating a buffer on the local memory of the protocol processor become

notable. Furthermore, a startling result is the time required to perform the copyin() of a

TSDU across the VMEbus. Such overhead is discussed further in the next section. It is clear

that, for long ASDUs, the time to perform the bus transfer dwarfs all UNIX overhead.

The profile for a 64-KB GET_MESSAGE is listed in Table 5.4. It is similar to that

of the SEND_MESSAGE except that the time for the data copyin() from host memory to

protocol-processor memory is replaced with that for a data copyout() from protocol-

processor memory to host memory. Note here the counterintuitive result that the host

spends more time copying the received TSDU over the VMEbus than it does waiting for

that processor to receive the TSDU from the network.

Operation µs/call Calls total µs

wait for completion 23,455 1 23,455

data copyin() 18,164 1 18,164

physio() & iodone() 301 3 903

read() system call 81 2 162

signal delivery 143 1 143

get and return data buffer 109 1 109

write() system call 83 1 83

disable signals 25 3 75

enable signals 22 3 66

control block copyin() 29 1 29

ack block copyout() 23 1 23

other 1,636

total 44,848

Table 5.3: Profile of a 64-KB SEND_MESSAGE
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5.4.  Host Load

The above profiles can be used to show how much host load is incurred by commu-

nication processing tasks. The total time necessary for a SEND_MESSAGE call is 6.1 ms

for a one-byte ASDU and 44.8 ms for a 64-KB ASDU. However, 3.9 ms of the one-byte

operation and 23.5 ms of the 64-KB operation are spent waiting on command completion

and are therefore free for other host processing. Thus the one-byte call effectively con-

sumes only 2.2 ms, and the 64-KB call consumes only 21 ms of actual host processor time.

Similarly, the total time necessary for a GET_MESSAGE call is 6.1 ms for a one-byte ASDU

and 44.8 ms for a 64-KB ASDU. However, 4.0 ms of the one-byte operation and 17.5 ms

of the 64-KB operation are spent waiting on command completion and are therefore free

for other host processing. Thus the one-byte call effectively consumes only 2.1 ms, and the

64-KB call consumes only 27.3 ms of host CPU time. Furthermore, only one host-processor

interrupt is generated for a either a SEND_MESSAGE or GET_MESSAGE call of any ASDU

size.

Operation µs/call Calls total µs

data copyout() 23,712 1 23,712

wait for completion 17,525 1 17,525

physio() & iodone() 301 3 903

read() system call 81 2 162

signal delivery 143 1 143

get and return data buffer 109 1 109

write() system call 83 1 83

disable signals 25 3 75

enable signals 22 3 66

control block copyin() 29 1 29

ack block copyout() 23 1 23

other 2,018

total 44,847

Table 5.4: Profile of a 64-KB GET_MESSAGE
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5.5.  Performance Bottlenecks

As can be seen from the profile information above, different components dominate

the execution time for a short ASDUs and long ASDUs. This is due to the fact that some

sources of overhead are constant for any sending or receiving operation, regardless of

ASDU size, whereas other components of execution overhead are dependent upon ASDU

size. In this section we identify and describe these sources of overhead, indicating to what

degree they act as bottlenecks in our design.

5.5.1.  ASDU Length-Independent Overhead

Our most significant ASDU length-independent overhead results from the operating

system kernel architecture of the DTC-2 host. Our UNIX character device driver invokes

two standard device driver utility routines called physio() and iodone() as a part of

the execution of the read() and write() driver entry point routines. The physio()

routine performs several services for the device driver. It locks into physical memory the

virtual pages of the memory buffer (in our case a control or acknowledgment block)

referred to by the pointer in the write() or read(), segments the buffer into fragments

that do not violate the size constraints of the underlying device or consume too many sys-

tem resources, and ensures that the driver has exclusive access to the memory of the buffer.

The iodone() routine acts to release the exclusive access to the block acquired by the

physio() operation [46]. These two routines, as can be seen from the profiles, form the

largest proportion of the host’s execution time spent on processing sending and receiving

operations on short ASDUs.

In an effort to ensure security for multiple user processes, UNIX provides protec-

tion at the cost of performance through the use of the kernel. We chose to embrace this phi-

losophy in our design as well. As discussed in chapter four, to perform any hardware-

dependent operation, our API software must do a system call. Such calls are the second

most significant contributors to ASDU-length independent overhead. The raw system call
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mechanism itself is only somewhat expensive, i.e., some calls take as little as 22 µs; how-

ever the read() and write() calls also pass through the UNIX I/O system. As a result,

they incur overhead from such operations as mapping their UNIX file descriptor to the

appropriate device driver entry point and managing buffer-oriented kernel data structures.

As stated in chapter four, our architecture makes use of UNIX signals as a user-level

interrupt mechanism indicating the presence of pending acknowledgment blocks. The

arrival of such a signal preempts the execution of the application process’ next CPU

instruction and initiates a signal handling routine. When the signal handler returns, the sys-

tem resumes the process’ normal execution at the next instruction. This mechanism

requires processor context to be both saved and restored and therefore takes an appreciable

amount of time.

At the user level, a notable amount of time is spent disabling and enabling signals.

The reason for such operations is to allow reenttrancy; we disable signals to provide exclu-

sive access to certain global data structures used in the API implementation. There are two

basic sources of contention for global API data structures. One is from other Ada tasks in

the application process, since they may be preemptively scheduled via signals and may then

invoke API primitives. The other source of contention is signal handling routines since they

run asynchronously and may contain code that makes API calls. In particular, the SIGIO

handler, which handles user-notification of pending status is a source of contention for glo-

bal data structures. This handler is an integral part of the API implementation; it does not

make API calls, but it does manipulate many global API data structures. Disabling signals

during the use of such data structures wards off the ill effects of other tasks and signal han-

dlers. Once exclusive access to the data structures is no longer needed, a call to re-enable

signals becomes necessary. The relatively long duration of these otherwise simple signal-

oriented operations is due to the fact that they require the invocation of the sigblock()

or sigsetmask() system calls.
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Two minor sources of notable length-independent host overhead are the time

required to write a control block to the TN queue and to read an acknowledgment block

from the FN queue as discussed in section 4.5.3.2. In our architecture, the copyin() ker-

nel utility function is utilized for the write of a control block. It copies, with programmed

I/O, a region of memory residing in user virtual address space into kernel virtual address

space. In the case of this copyin(), the kernel region is a slot in the TN queue located in

protocol processor’s on-board memory. Thus the copy occurs over the DTC-2’s VMEbus.

In a similar fashion, the copyout() function copies an acknowledgment block out of a

slot in the FN queue, which is mapped into kernel virtual address space, to memory in the

user-level address space. The duration of these copies are dependent upon the length of the

control and acknowledgment blocks, which, in our case, are 104 and 64 bytes, respectively.

5.5.2.  ASDU Length-Dependent Overhead

The uniquely significant components of host execution time for large ASDUs are

those required to manage the large quantities of data. The overhead of such operations

grows with ASDU length and is expectedly evident in the data buffer allocation and the data

copyin() and copyout() components of the profiles for large-ASDU operations. First

we note that the time spent on the allocation of buffer space on the protocol processor board

becomes noticeable when the data buffers are large. However, this time is insignificant

when compared with that of the data copies.

The host-driven data copies are worthy of much investigation. The data copyin()

transfers an ASDU into a region of kernel virtual address space from user virtual address

space. The kernel region refers to protocol processor buffer, and the copy is performed by

the host CPU using write transactions on the VMEbus. Similarly, a data copyout() cop-

ies an ASDU out of a protocol processor buffer in kernel virtual address space into memory

in user address space. Here the copy is performed by the host CPU using VMEbus read

transactions.
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In order to further understand the effect of these data copies on the performance our

architecture, we present a more detailed analysis. As one would expect, time average mea-

surement of copyin() and copyout() indicates that the increase in the latency of these

operations scales linearly with the transfer size. In addition to adding latency to our off-host

communications architecture, the copyin() and copyout() operations also constrain

our throughput. In measurements of the peak transfer rates of copyin() and copy-

out() over the VMEbus and between host and protocol processor memory, the

copyin() operation has a throughput of 28.6 Mbps and the copyout() has a through-

put of 21.9 Mbps. We believe that the reason the copyin() throughput is the higher of

the two is that bus read transactions are often inherently faster than bus writes as discussed

in section 2.4.2.3.

To illustrate the throughput-limiting effects of the data copyin() and copy-

out() operations on our communications architecture, we operated our system with them

removed from the code. The copies of control and acknowledgment blocks between the

host and protocol processor were left intact, however. As shown in Figure 5.3, the resulting

user-level throughput was over twice as high in some cases. The user-level throughput

shown here was measured in the same manner as the other user-level measurements in sec-

tion 5.2.3.
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Given these measurements, one might hastily blame the VMEbus for the relatively

poor throughput performance of our architecture. While this is partially true, it is not the

case that the VMEbus is alone responsible for the cap on throughput. Although our pro-

grammed I/O VMEbus copies have a low throughput, other VMEbus transfers in our archi-

tecture are much more respectable. For example, as shown in section 5.2, in spite of the

VMEbus we have achieved MAC throughput far higher than the 21.9 Mbps limit of the data

copyout(). In fact, we have observed block mode DMA transfers of 64 Mbps from our

protocol processor’s 70-ns DRAM to the transmit FIFO register on the network interface.

Hence there is more overhead in the copyin() and copyout() than simply that of the

VMEbus itself.

The performance of the VMEbus can be affected by several factors. These include

whether the transfer is performed using programmed I/O or a DMA controller. With pro-

grammed I/O, the speed of the CPU may affect the speed of data transfer. In addition, it may

be the case that the CPU can not employ block mode transfers, but the DMA controller on
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the network interface can. Another important issue affecting the bus transfer rate is the

access or cycle time of the memory or registers on the slave side of the bus transaction.

Some measurements of VMEbus throughput [5] have indicated that, for block mode trans-

fers involving infinitely fast memory, the VMEbus can support a throughput of 223.2

Mbps; however, with block mode and a memory having a 150-ns access time, peak VME-

bus throughput drops to only 108.8 Mbps. When using the same memory, but no block

mode, throughput drops further to 103.2. Mbps. Hence, our low throughput rates argue for

more than simply a faster bus; they also argue for a combination of such features as burst

mode bus transactions, a high-speed DMA controller, and memory and registers with a low

access time.

Finally we turn to the issue of the bus contention resulting from data transfers across

the VMEbus. In our architecture, such transfers occur between the host and protocol pro-

cessor and the protocol processor and network interface; however, only a single such device

can master the bus at once. The bus contention due to this restriction acts to block the trans-

fers of such devices, thus hindering their parallel operation. If full parallelism between the

host and protocol processor were achieved, one would imagine that our user-level through-

put would be somewhere around the minimum of the transport protocol throughput and

programmed I/O transfer rate of the host. Unfortunately this is not the case. For example,

the peak throughput of our transport protocol is about 24 Mbps, and the peak throughput of

our programmed I/O transfers is about 22 Mbps; however, our peak throughput in asyn-

chronous mode is only about 12 Mbps. In fact, we observe in Figure 5.4 that our user-level

throughput using synchronous API calls (those exhibiting essentially no host and protocol-

processor parallelism by definition) is not particularly lower than the throughput in the

asynchronous API mode (where host and protocol-processor parallelism should be

present). This suggests that we obtain little parallelism between the host and the protocol

processor. These results point to problems of bus contention and thus argue for placing the

network interface on the same board as the protocol processor.
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6 A Simple Model to Predict Performance

6.1.  Motivation

In light of the off-host communications architecture discussed in chapter four and

its performance presented in chapter five, a fundamental question about our implementa-

tion is “How well did we exploit our hardware and software architecture in order to maxi-

mize user-level performance and minimize host load?” To answer this question, we wish to

evaluate the performance intrinsic to architectural design itself to measure the limits of its

performance independent of our implementation of the design. With this knowledge we

might discover that the process of making optimizations to the implementation within the

framework of our basic architectural design could provide fruitful performance gains. On

the other hand, the evaluation may show that we have essentially reached the inherent con-

straints of our chosen hardware and software architecture. In this case, no amount of opti-

mization within the framework of the architecture would expand its performance beyond

these constraints. In such a situation, a new set of fundamental architectural design choices

would be in order if we desire to obtain better performance.

In addition to questions which evaluate the performance of an implemented archi-

tecture, we may also desire to predict the possible performance of a proposed design. Thus,

a question for developers of off-host communications architectures is “How can we predict

the possible performance of a proposed off-host architecture before its implementation has

begun?” The answer to such a question would be of great interest during the design stages

of a system and before the procurement or production of its hardware and operating system.

 In this chapter we develop an architecture-based performance model for off-host

communications architectures which can be used to provide answers to the above questions

of performance evaluation and prediction. This model is based on the general architectural

design decisions discussed in chapter two; thus, it can be applied during the design stages

of a system before its implementation has begun.



85

6.2.  Background

Performance estimations have been used by others to predict the performance of

their designs. In a previous work on off-host protocol processing, Kanakia and Cheriton

estimate the performance of their proposed Network Adapter Board [27]. Their analysis

takes into account such factors as bus transfer time, network transfer time, and memory

access time in order to predict the request-response delay of their device. The approach is

quite informal, and it takes into account factors above and below the level of their transport

protocol (VMTP).

Our approach differs from Kanakia and Cheriton’s in two main areas. First, our per-

formance predictions result from the evaluation of simple, yet formal, mathematical

expressions. Second, the transport protocol is treated as a “black box,” making its perfor-

mance characteristics parameters of the model1. That is, the transport protocol processor is

analyzed in isolation, outside the context of the host CPU. Its performance parameters are

determined and then used in the model to predict the performance that will be visible at the

user level in the completed system. Rather than concerning itself with the modelling of pro-

tocol performance, our model deals mostly with the overhead introduced by the means of

communication between the components of a particular off-host communications architec-

ture.

6.3.  Goals of the Model

Our performance model has as its goals simplicity and practicality. With our model

there is no need to acquire the probability distributions of any input parameters, as would

be required of a queueing theory model. Rather, one need only use readily-available, time-

average measurements or vendor-provided specifications2. With minimal effort, one can

predict the end-to-end latency and throughput seen by application processes at the user

1. Since the transport protocol performance encapsulates that of lower-layer protocols, the perfor-
mance of such protocols is not considered explicitly in the model.
2. The issue of obtaining these quantities is dealt with in the appendices.
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level of an off-host communications architecture. In addition, one may also obtain an esti-

mate of the amount of host processing time required for data transfer operations.

Such predictions are practical in that they are of interest to the developers of sys-

tems making use of off-host protocol processing. System architects wish to know to what

degree they either will capitalize or have capitalized on the possible benefits of off-host

architectures presented in chapter one. If users of the model find it lacking in a particular

area, they may extend it to meet their needs using the general methodology of the model;

however, such extension occurs at the cost of increased complexity.

6.4.  Model Overview

Without going into the analysis of a specific architecture, this section presents an

overview of the input components of the model and how they are formulated into output

predictions. In addition, we describe the types of communications operations considered in

our model.

Figure 6.1 presents a very general illustration of the functions of the model. Input

parameters based upon a specific architectural design and the performance of the chosen

protocol processor are supplied to the model. In return, the model predicts the user-level

performance of the architecture including end-to-end latency, throughput, and host load.

model
performance

architectural
components

protocol
processor

components

end-to-end
latency

throughput

host
load

Figure 6.1: Overview of the Performance Model

inputs outputs



87

6.4.1.  Input Components

Here we provide a general overview of the inputs to the architecture-based perfor-

mance model. Regardless of the specific input parameters used, the input components of

the model can be divided into two general classes: architectural components and protocol

processor components. The architectural components represent those performance factors

which are strictly a function of the host computer system and the mechanisms which allow

it to communicate and synchronize with the protocol processor. They represent the effects

of the system designer’s decisions on the issues discussed in chapter two, except for the

design of the protocol processor itself. Essentially, these architectural parameters charac-

terize the performance of the data and control paths through the communications architec-

ture.

Other inputs to the model characterize the performance of the particular protocol

processor used in the off-host communications architecture. In our model, the protocol pro-

cessor performance is deliberately distinguished from that of the surrounding architectural

components. Due to the complex nature of transport protocols, e.g., their flow and error

control, it is difficult to analytically predict transport performance. To keep our perfor-

mance model simple, we choose to avoid such complexity by treating the protocol proces-

sor as a black box described by a set of readily-obtainable performance parameters. These

parameters may be easily determined from the specifications of the protocol processor ven-

dor or from the empirical study of the device.

6.4.2.  Determination of Outputs

The general methodology of the performance model is as follows. The analysis inte-

grates the input parameters to provide sums of terms which account for the delay introduced

by components of the architecture’s data path. In addition, the model takes into account the

processor parallelism which causes overlap in components of host and protocol processor

execution. This parallelism causes certain terms to drop out of the analysis.
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Before we explain the model’s outputs, we first introduce some terminology for two

quantities used in the analysis, delay and period. In our model, delay measures the time

between the initiation of a transmitting operation at one endpoint and the completion of the

corresponding receiving operation at a peer endpoint. In contrast, the period of an operation

is the time between the beginning of the operation and the local indication of its comple-

tion. The period is so named because it represents the minimum time between two consec-

utive operations such that there is no overlap in their execution. This basic quantity can

subsequently be scaled to take any parallelism in operation execution into account.

The model includes formulas for several quantities; some values are intermediate

results used to predict outputs, and others are the output predictions themselves. First we

must note that all of the model’s predicted outputs, as well as many terms, are dependent

upon the ASDU length, represented here by the symbol l. The three most fundamental

quantities of the model are the user-level delay, δ(l), the user-level period for a transmitting

operation, Tt(l), and the user-level period for a receiving operation, Tr(l). The delay is a final

output, predicting the user-level end-to-end latency of the off-host communications archi-

tecture (in units of seconds). The periods are intermediate quantities used to predict two

more output quantities (in units of bytes per second), the user-level throughput for synchro-

nous transfers, τs(l), and the user-level throughput for asynchronous transfers, τa(l). In

addition, one may predict the two final output quantities, the host processing time (in units

of seconds) required to transmit an ASDU, Ht(l), and to receive an ASDU, Hr(l).

6.4.3.  Communication Operations Considered

Since we intend to describe only the throughput, latency and host load of an off-host

communications protocol architecture, we consider only a minimal set of communications

primitives, those for connection-oriented data transmission and reception. The rationale for

this decision is as follows. Foremost, the decision to limit the number of operations studied

keeps our model simple. With this in mind, we chose to model the communications opera-
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tions of greatest interest to the developers of off-host architectures. We think that connec-

tion-oriented data transmission and reception operations meet this criterion.

Other communications operations could be studied. For example, it is usually the

case that communications operations exist for such tasks as connection management and

option manipulation. While these operations are very important, they largely serve to test

the performance of a specific transport protocol rather than that of an off-host communica-

tions architecture. In addition, transmitting and receiving operations are often present in

two forms, connection-oriented and connectionless. To model both types of operations

would needlessly complicate our model. For this reason we choose only to model the con-

nection-oriented transmitting and receiving operations.

It is recognized that, at the cost of greater complexity, the modeling of the other

operations mentioned above could be useful. With this in mind, the analysis of a larger set

of communications operations is considered in section 6.10.3.

6.5.  Assumed Class of Architectural Design

Now that we have described our model in general, we target it toward a specific

class of off-host communications protocol architectures. The protocol processor parame-

ters of the model are quite general, and are treated independently of the surrounding off-

host communications architecture. As a result, they are independent of the architectural

design class, so they are not considered here. This is not the case, however, with the archi-

tectural parameters.

Given a particular architectural design, several specific components act as the mem-

bers of the general class of architectural components in our model. In contrast with the pro-

tocol processor parameters, these specific components of an architecture are somewhat

dependent upon the fundamental design choices discussed in chapter two. That is, within

the general class of architectural component parameters, we must choose specific compo-

nents which target the model to a particular design class of off-host communications archi-
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tecture. For this reason, the resulting analysis is somewhat architecture-specific; however,

the methodology employed in arriving at the results is quite general. To this effect, we argue

that, although here we target our model toward a specific architecture, the general frame-

work of the model can be applied to other architectural classes as well. This is discussed

further in section 6.10.1.

The specific class of architecture we consider here is that which follows the design

of the off-host communications architecture for SAFENET described in chapter four. To

review, this architecture has a user level, a protected kernel level, a protocol processor level,

and a network interface level. The user and kernel levels reside on the host CPU board, a

module which resides on a backplane bus along with separate protocol processor and net-

work interface modules.

Between the architectural levels, we employ several communication and synchro-

nization mechanisms. The interface between the user and kernel levels is essentially via

system calls for command and status, shared memory for data, and interrupts for notifica-

tion. Between the kernel and protocol processor layers, communication is via command

and status queues and buffers residing in shared memory. This information is transferred to

and from these data structures through the use of host-driven programmed I/O over the bus.

The protocol processor interrupts the host CPU for notification of pending status. Using

these mechanisms, three types of information flow between the host and protocol proces-

sor; these are TSDU data, commands, and status. The only facet of the communication

between the protocol processor and network interface that is relevant to our model is the

fact that such communication occurs over the backplane, thereby generating bus traffic and

possibly causing contention.

6.6.  Input Parameters for our Architectural Class

Recall that all of our input parameters may be classified into two groups, those spe-

cific to a particular architectural class and those that characterize the protocol processor.
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The architectural parameters of the model and their symbols are listed in Table 6.1. The

choice of the particular parameters was determined in part by the profiles in chapter five.

Only those delay components that were found to be significant are included in the table.

This is why the time for the protocol processor to interrupt the host is not included, while

the time for the user-level interrupt of the application process is included.

For the model to be useful during the development stage of an architecture, it is

important not to include any components which are dependent upon a specific software

implementation. For this reason there are no parameters in the table for operations such as

the operation to disable signals, even though it is significant in the profile. The inclusion of

such components is discussed in the context of evaluating the existing implementations of

architectures in section 6.10.2.

The protocol processor parameters of the model are given in Table 6.2. In contrast

to the architecture-dependent set of parameters, those that characterize the surrounding

architecture, the same set of protocol processor parameters may be used for any particular

protocol processor. Furthermore, such parameters are not in any way dependent upon the

architectural class. The specific choice of parameters was not determined by examining the

profiles; rather, the relevant quantities were chosen because they are easy to obtain and fit

simply into the model’s derivations.

Symbol Meaning

δw round-trip delay of the write() driver entry point

δr round-trip delay of the read() driver entry point

δi round-trip user-level interrupt delivery time

lc length in bytes of a control block

la length in bytes of an acknowledgment block

ρw per-byte time required for the host to write data or
control information to the protocol processor

ρr per-byte time required for the host to read data or
acknowledgments from the protocol processor

Table 6.1: Architectural Input Parameters
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6.7.  Performance Derivations

Derivations for user-level period, throughput, and delay, as well as host load are

presented below. All derivations are based on summations of time values; therefore, in the

following analysis, the ρ-quantities (in units of seconds/byte) are multiplied by the l-quan-

tities (in units of bytes) to produce elapsed times.

6.7.1.  Period Derivation

The calculation of the user-level periods for transmission and reception proceeds in

this section. These results will later be used to calculate throughput and, to some extent,

host load. To estimate the user-level period for transmission, we undergo the following

analysis. Processor execution time lines for a transmitting operation are given in Figure 6.2.

Note that δw, δr, and δi are defined above as round-trip times rather than one-way times

because round-trip times are easier to measure in practice. The one-way time of each is then

estimated as simply half the round-trip time. The δr term at location J is subtle. Because

interrupts do not queue, a single interrupt may signal the arrival of more than one protocol-

processor acknowledgment. The δr term represents a second read of the protocol proces-

sor’s status to determine if another acknowledgment is pending. Given these time lines, we

may sum their serial components to obtain the user-level period for a transmitting operation

as follows.

Symbol Meaning

δ0 time required for the protocol processor to transmit a
minimum-length TSDU end-to-end

ρδ per-byte time required for the protocol processor to
transmit a TSDU end-to-end

T0 period of the protocol processor in transmitting a
minimum-length TSDU

ρT per-byte addition to the period of the protocol proces-
sor in transmitting a TSDU

Table 6.2: Protocol Processor Input Parameters
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We base the second step of the derivation on the assumption that ,

i.e., D is dominated by E, which should typically be the case. This is an example of where

processor parallelism causes a serial delay term to drop out.

The analysis of the user-level period for reception is similar and proceeds as illus-

trated in Figure 6.3. As with the transmitting operation, we make the assumption that

; therefore, the C term drops out of the analysis, justifying the second step

of the derivation. The period for a receiving operation is derived as follows:
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Figure 6.2: Delay Components of the User-Level Period for Transmission
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6.7.2.  Throughput Derivation

In this section we calculate the user-level throughput for both synchronous and

asynchronous data transfers. To calculate the throughput of the individual transmitting or

receiving components of our architecture, we may simply divide their periods into l, the

ASDU length. The calculation of the synchronous user-level throughput is a function of the

throughputs of the individual transmitting and receiving components. To derive it we must

note that, in steady-state operation, the throughput of the communications architecture can

be no greater than that of its slowest component; therefore, from Tt(l) and Tr(l) we obtain

the synchronous user-level throughput as follows:

.

The derivation of the asynchronous user-level throughput, τa(l), is more complex

due to the fact that we must take into account both the parallelism of the host and protocol

processor and the shared resource of the backplane bus. This derivation is based upon the
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following assumptions about the steady-state operation of the communications architecture

when asynchronous API calls are continuously performed:

• The host keeps the command queue to the protocol processor full.

• The protocol processor is always either busy or blocking on bus access.

• An insignificant portion of T0, the protocol processor period of a minimum-length
TSDU, is spent on bus accesses.

• The TSDU-length-dependent portion of the protocol processor period, ρTl, is dom-
inated by the time for bus transactions.

For the architecture described in chapter four, these assumptions have been verified

to hold for large ASDUs through the direct examination of VMEbus traffic. Taken together

with the processor parallelism due to asynchronous operation, the assumptions imply that

all terms of Tt(l) and Tr(l) that do not require access to the backplane bus drop out of the

analysis. These terms are , T0, δi, and 2δr; therefore, for sufficiently large l we have:

.

6.7.3.  Host Load Derivation

In order to characterize the host load incurred when using an off-host communica-

tion architecture we provide estimates of the amount of host CPU time required to perform

transmitting and receiving operations. The minimum host processing time required to

transmit an ASDU can be derived from Figure 6.2. By summing the delay components on

the host time line, i.e., components A-D and F-K, we arrive at the following.
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The minimum host processing time required to transmit an ASDU can be derived

in a similar fashion from Figure 6.3. Summing the delay components on the host time line,

i.e., components A-C and E-K, we arrive at the following.

6.7.4.  Delay Derivation

The expression for δ(l) is based on the analysis illustrated in Figure 6.4. In this anal-

ysis, we calculate the user-level delay by studying the parallel execution of the transmitting

host, receiving host, and their protocol processors. We arbitrarily assume that the transmit-

ting and receiving operations start simultaneously. Before the protocol processors can per-

form component G successfully, both the transmitter and receiver must issue their requests

to their local protocol processors; thus, components A-E must all complete execution in

order to begin component G. Thus they are, in effect, in series with the execution of G.

Because components A, B, and C on the transmitter and D and E on the receiver

share no resources, their execution proceeds in parallel. Furthermore, the execution of A

and B coincides exactly with that of D and E; thus, we need only include delay terms for

the A and B components in our expression for δ(l).

We also choose to exclude the F component from our sum since this component is

in parallel with components C and G, and it is almost certainly the case that

, i.e., the combined execution of components C and G takes longer

than that of F. Based on these arguments, the resulting expression is calculated as follows.
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6.8.  Model Predictions for our Architecture

In this section we apply the model to our communications architecture for

SAFENET, producing estimates based on its input parameter values. These predictions are

later validated in section 6.9.

6.8.1.  Input Parameter Values

For our architecture, the inputs to the model have the values listed in Table 6.3.

Those for the architectural components were gathered using the time average measurement

techniques described in Appendix A. The protocol processor parameters were determined

from the performance plots of transport protocol performance given in chapter five. The

method of their extrapolation from such plots is described in Appendix B.
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6.8.2.  Throughput and Latency Predictions

Given this input, the model predicts the end-to-end latency shown in Figure 6.5, the

synchronous throughput shown in Figure 6.6, and the asynchronous throughput shown in

Figure 6.7. Each prediction is as a function of ASDU length.

Parameter Value

δw 392 µs

δr 382 µs

δi 143 µs

lc 104 bytes

la 64 bytes

ρw 279.45 ns/byte

ρr 364.8 ns/byte

δ0 3.112 ms

ρδ 363.97 ns/byte

T0 2.062 ms

ρT 295.82 ns/byte

Table 6.3: Input Parameter Values for our SAFENET Implementation
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Figure 6.5: End-to-End Latency vs. ASDU Size
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6.8.3.  Host Load Predictions

Using the host load formulas derived in section 6.7.3, the model predicts the mini-

mum host processing time to transmit an ASDU to be 1.4 ms for a one-byte ASDU and 19.5

ms for a 64-KB ASDU. To receive an ASDU, the model predicts a time of 1.4 ms for a one-

byte ASDU and 25.1 ms for a 64-KB ASDU.
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6.9.  Comparison with Empirical Results

In order to validate the predictions of our model, we compare them below with

actual performance observations from chapter five.

6.9.1.  Validation of Throughput and Latency Predictions

From examination of Figure 6.5 we can see that the end-to-end latency prediction

is a good estimate of the observed user-level end-to-end latency. Figure 6.6 shows that the

synchronous user-level throughput predictions of the model are relatively accurate for large

ASDUs, but overestimate the throughput for short ASDUs. This discrepancy indicates that

there is more delay overhead in the data path than the terms of Ts(l) and Tr(l) take into

account. As show in Figure 6.7, the asynchronous user-level throughput predictions are

quite good for large ASDU sizes; however they are totally inadequate for short messages.

This was to be expected, given the fact that our analysis was predicated on assumptions

which hold only for large ASDUs.

6.9.2.  Validation of Host Load Predictions

In chapter five we observe that the host processing time required for transmission is

2.2 ms for a one-byte ASDU and 21 ms for a 64-KB ASDU. A comparison of the observed

host processing time to perform a transmission with the predictions in the previous section

indicate a 36% difference for a one-byte ASDU and a 7.1% difference for a 64-KB ASDU.

We also observe in chapter five that the host load for a reception is 2.1 ms for a one-byte

ASDU and 27.3 ms for a 64-KB ASDU. In comparison with the host load predictions for

reception in the previous section, there is a 33% difference for a one-byte ASDU and a

8.1% difference for a 64-KB ASDU.

6.10.  Possible Extensions to the Model

The formulae presented above are limited in application to designs which belong to

our specific architectural class. In addition we made many simplifying assumptions in order
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to make our analysis tractable. For example, we avoided a queuing theory approach in order

to simplify the mathematics. In spite of these decisions, our general model may be extended

in various ways to handle other architectures or to provide greater accuracy at the cost of

higher complexity. This section outlines several possible avenues of model extension.

6.10.1.  Support for Other Architectural Classes

Although it is applied above to the class of architectural design discussed in section

6.5, the general methodology of our model can be used with other architectures as well. For

example, given an architecture in which device driver does not reside in a protected kernel

or in which user processes memory map the protocol processor, system calls may not be

necessary. In such cases, the system call components of our model, δw and δr, may simply

be set to zero. In another design, suppose that DMA transfers are used to transfer TSDUs

to the protocol processor; in this case, the bus transfer times (those terms involving a ρw or

ρr) may be omitted from the derivations of host load. As yet another example, suppose the

buffering of data on the protocol processor is omitted. With this scenario, the cost of data

copies to and from the protocol processor can be dropped from the entire analysis. Of

course, the data is still copied at some point; however, the cost of such a copy is subsumed

within the protocol processor parameters.

6.10.2.  Implementation-Dependent Components

The accuracy of the model can be increased by taking into account implementation-

dependent input parameter components. During or after the implementation of the design

of a particular off-host communications protocol architecture, knowledge of the overhead

of specific implementation components can be added to the model. These components sup-

plement those that describe the performance of the specific architectural class and protocol

processor. This approach adds complexity to the model; however, it should also provide

more accurate predictions of the performance of the final implementation.
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As an example, we consider the profiles in chapter five of our SAFENET architec-

ture. These profiles indicate that the act of disabling and enabling signals is significant. In

addition they indicate that, for large messages, the time to allocate buffers becomes appre-

ciable. Noting the significance of these artifacts of our implementation, we could incorpo-

rate them into our model as additional parameters in order to obtain greater accuracy,

particularly for short ASDUs.

6.10.3.  Consideration of More Communication Operations

In order to keep our analysis as simple as possible, we restricted our model to con-

nection-oriented transmit and receive operations. It may be of interest to designers to pre-

dict the performance of other communication operations as well. This is possible, using the

general methodology of the model; however, it could introduce many new input parame-

ters. For example, if we were to extend our model to predict the user-level end-to-end delay

of connection establishment, we would need a new parameter to characterize the delay of

the protocol processor for this operation. This is essential for accuracy because connection

setup is a relatively expensive operation for many transport protocols.

6.10.4.  Use of Queueing Theory

The use of queuing theory was absent from our analysis in order to avoid complex,

possibly even intractable, mathematics in the derivation of the model’s outputs. In addition,

we wished to avoid the difficult task of finding probability distributions for the model’s

inputs. To avoid such complexity, we chose to use time-average measurements of input

parameters and made simplifying assumptions in the model’s analysis.

At the cost of complexity, there are certain components of our model which may be

much more accurately represented by probability distributions. Thus the additional com-

plexity of a queuing theory approach may provide more accurate results. For example,

since protocol processing is a nondeterministic activity, its input parameters would proba-

bly be better represented by probability distributions. In addition, the shared use of the
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backplane bus depends on statistical utilization factors and various arbitration and release

policies. The consideration of these factors may mandate a queuing theory model. Such a

model may also be necessary in order to relax certain other assumptions. For example, we

assume the use of unloaded hosts in our analysis and do not consider the effects of queuing

in the command and status queues to the protocol processor, nor do we consider the effects

of masking interrupts on interrupt response time.
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7 Conclusions

7.1.  Summary

This work has concerned itself with communications architectures in which the

transport and network layers of the OSI reference model execute off-host on a protocol pro-

cessor. In chapter one we pointed out the renaissance in communications architecture

design brought about by high-performance LAN technology. We noted that, although these

new networks offer both high-performance and new services, a computer system’s commu-

nications architecture (including hardware, an operating system, and communications pro-

tocols) that stands between the network and its ultimate user can mask the benefits of such

networks from the user’s point of view. In searching for a new architectural approach we

explored the issue of protocol placement. We pointed out that there were two fundamental

choices concerning where protocols execute, on-host and off-host, and we proceeded to

contrast these choices. We then postulated that off-host communications architectures were

a promising approach worthy of study. To this end, we identified several possible advan-

tages that off-host architectures could offer both the host computer system and the proto-

cols; however, we also warned of the possible pitfalls of off-host protocol implementation.

In chapter two we outlined the many design issues inherent in off-host communica-

tions protocol architectures. These mandated many choices with respect to the channels of

communication present in an off-host architecture. Such choices were with respect to the

placement of the components implementing the off-host architecture and the mechanisms

necessary for communication between components at each level. We also pointed out two

philosophical extremes in design, a tightly-integrated design and a loosely-integrated

design, and discussed the trade-offs inherent to each.

In chapter three we surveyed the literature containing related work on off-host com-

munications protocol architectures. Some work only resulted in an architectural design and

performance estimates, while other work included both a design and actual performance
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results. The approaches ranged from tightly-integrated to loosely-integrated designs and

thus illustrated the resolution of the many design issues outlined in chapter two.

We presented the design of our own communications protocol architecture in chap-

ter four. To some extent, our design choices were constrained by our host computer and its

operating system; still, several design options were still left open to us. Throughout the

chapter we illustrated how we resolved such issues. The resulting architecture is very

loosely-integrated relative to those discussed in chapter three. It implements the SAFENET

lightweight suite of protocols using three VMEbus modules, a DTC-2 host running appli-

cation processes, a single-board computer acting as an XTP protocol processor, and a net-

work interface. In order to provide multiprogramming security our design makes use of

system calls, and, in order to avoid DVMA space restrictions, it uses host-driven pro-

grammed I/O and shared TSDU buffers.

In chapter five we analyzed the performance of our implementation of the architec-

ture designed in chapter four. We presented the performance of our implementation at sev-

eral service levels. In addition we profiled our performance at the user and kernel levels in

the host and analyzed the profiles. Using such information and some related work on back-

plane bus performance, we identified the ASDU length-dependent and length-independent

performance bottlenecks in our architecture.

In chapter six we gave the motivation for an architecture-based performance model

of off-host communications protocol architectures. We presented the general design of such

a performance model having the twin goals of simplicity and practicality. Within this gen-

eral framework, we targeted the model to the specific class of off-host communications

architectures to which our SAFENET architecture belongs. Based on this specific architec-

ture we chose input parameters and derived formulas to predict overall architectural perfor-

mance. In order to illustrate the use of our model, we applied it to our architecture for

SAFENET, displaying the model’s performance predictions. Furthermore, we illustrated
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the model’s validity by comparing these predictions to the performance measured in chap-

ter five.

In this chapter we make conclusions about our off-host communications architec-

ture in light of the results in the previous chapters. First we evaluate the extent to which we

achieved the benefits of an off-host communications architecture that were claimed possi-

ble in chapter one. Second, we evaluate the extent to which we committed the possible pit-

falls of an off-host approach, which are also discussed in chapter one. We then evaluate the

simple performance model of chapter six in light of its development, application, and val-

idation. Finally, we identify areas for future work and present general conclusions on the

suitability of off-host architectures.

7.2.  Evaluated Advantages of our Off-Host Architecture

In this section we evaluate to what extent the architecture described in chapter four

provides the possible benefits off-host communications architectures. Some facets of this

evaluation require comparison with the behavior an in-host architecture. For this purpose

we compare our work with an in-kernel implementation of XTP [47]. This in-kernel

approach features a somewhat different API, but the XTP layer and below consists of essen-

tially the same protocol software. Other evaluations consider aspects of our off-host com-

munications architecture which are readily observable from the design presented in chapter

four or its analysis covered in chapter five.

7.2.1.  Host Benefits

An off-host architecture promises the following host benefits: decreased host CPU

load, predictable application processing, reduced and bounded host interrupts, and reduced

incident TSDU traffic. Here we consider the extent to which our design provided such ben-

efits. By design, the number of incident TSDUs on our host is equal to the number of receiv-

ing operations performed; thus, we can indeed reduce and, in fact, precisely bound incident

TSDU traffic by limiting the number of receive operations that the host performs. Similar
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benefits also occur with respect to interrupts; each sending or receiving operation incurs

exactly one host interrupt. Results from [47] show that 26 interrupts can result for a single

64-KB receiving operation. Thus the off-host architecture incurs 96% fewer interrupts in

such cases. Obviously our design is quite successful in acting as a firewall.

The CPU load for transmitting and receiving operations can be characterized (1)

relative to the overall time to carry out these operations using our off-host architecture and

(2) relative to the host load for the in-kernel implementation. We shall present both such

forms of analysis. With respect the total execution time for communication, the host load

has been recorded as high at 60.9% of total processing time; this is in the case of a 64-KB

GET_MESSAGE. The proportion of overall time incurring host load is much smaller for a

one-byte GET_MESSAGE; the host load due to such a call consists of only 30.4% of total

processing time. These results show that the role of the host in an off-host communications

architecture can be much larger than one might expect.

To compare the host load of our off-host architecture with that of the in-kernel

approach, we compare the load for transmitting operations of both short and long ASDUs.

Estimates in [47] show that a 64-KB sending operation takes 66 ms of host CPU time for

the in-kernel approach, whereas chapter five shows that a similar call using the off-host

architecture requires only 21 ms. Relative to in-kernel operation, the off-host approach

reduces host load by a factor of 68%. For a one-byte ASDU, an in-kernel transmitting oper-

ation consumes 4.7 ms of host CPU time, whereas a similar call in the off-host architecture

consumes 2.2 ms. Here the off-host approach reduces load by only 53%. Clearly we

received a major benefit in the reduction to host load provided by our off-host architecture.

We manage to provide another benefit in that the amount of host CPU load in our

off-host architecture is deterministic. By design, the host CPU time incurred for communi-

cations operations is constant. On the other hand, the host load in-kernel approach can be

quite nondeterministic, especially in the face of error or flow control.
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7.2.2.  Protocol Benefits

Here we discuss the protocol benefits provided by our off-host architecture. The

benefits deemed possible are dedicated processing cycles, specialized hardware, an opti-

mized data path to network hardware, and an ideal operating system environment. With our

design we gave our protocol, XTP, its own processor; therefore one would trivially con-

clude that the protocol has dedicated processor cycles. To some extent, however, one could

argue that this is not the case since XTP has to share the processor with the FDDI MAC

device driver. We refute this by claiming that such processing is actually a part of XTP pro-

tocol processing. The MAC driver software includes the fundamental operations necessary

to send and receive TPDUs; all true MAC processing is done on the network interface itself.

Essentially, our protocol processor contains no specialized hardware support for

protocol processing. The protocol processor is based upon a general-purpose single-board

computer. This device was not explicitly designed for protocol processing; however, it does

have a few features useful for such processing. These features include an on-board DMA

controller and burst mode capability. The DRAMs are in no way specialized for protocol

processing; they have only a 70-ns access time, which is approximately the same speed as

the host’s own memory. In addition the protocol processor’s CPU is not specialized. It is

clocked at the same rate as the host CPU, but is a CISC processor rather than a RISC pro-

cessor. It is not clear which type of instruction set design is better for protocol processing.

Another cited advantage of off-host architectures is the possibility of an optimized

data path between the protocol processor and network interface; however, our architecture

contains no hardware support for such an optimization. To the extent possible, we attempt

to optimize this path in software. Our network interface is programmed to employ block

mode DMA transfers across the VMEbus between itself and the protocol processor. More

traffic crosses the channel between the protocol processor and network interface than that

between the host and protocol processor. In our design, the latter path crosses the bus via

programmed I/O and without using block mode DMA. Furthermore, such programmed I/
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O has been found to have about half the throughput as the DMA between protocol proces-

sor and network interface. One can see that we are fortunate to have optimized the path

which carries more traffic.

Our choice of operating system for the protocol processor seems to have been a wise

one. In measurements of the in-kernel implementation, the UNIX kernel architecture has

been shown to severely impact the performance of the protocol through high timer, buffer,

tasking, and network interface management overhead. The choice of the lightweight mul-

titasking operating system, pSOS+, and our own custom buffer and network interface man-

agement allowed us to perform XTP processing with lower overhead and thus higher

performance. As a result, the peak user-level throughput for our off-host architecture was

12.1 Mbps, whereas the peak user-level throughput for the in-kernel approach was only

7.70 Mbps.

7.3.  Evaluated Pitfalls of our Off-Host Architecture

In chapter one, we warned of several possible pitfalls which could counter the abil-

ity of an off-host protocol implementation to deliver its possible benefits. In this section we

evaluate our architecture with respect to these pitfalls. We first consider the pitfalls inherent

in both on-host and off-host architectures.

7.3.1.  Incurring Operating System Overhead

As with an in-kernel protocol implementation, ours incurs some degree of operating

system overhead. As discussed in chapter five, our overhead is due to system calls for writ-

ing commands, reading status, and handling, disabling, and enabling signals. The cost of

these operations is quite significant for relatively short ASDUs; however, it is quite irrele-

vant with respect to long ASDUs.

In contrast, the Nectarine API discussed in section 3.4 avoids system call overhead

at the cost of providing system security. Our design, on the other hand, chose to incur such

overhead in exchange for security from malicious or accidental corruption of the system by
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user processes. It is surprising, however, that the vast majority of system call overhead does

not occur in the system call mechanism itself, but rather in the physio() and iodone()

kernel utility routines. This suggests that the system call mechanism itself may be less of a

factor than one might otherwise believe.

7.3.2.  Overtaxing the Host CPU with Protocol Processor Driving

Here we evaluate the extent to which our off-host communications architecture

overtaxes the host CPU with tasks associated with operating the protocol processor device.

These tasks include the transfer of control, status, and data, the management of shared data

structures, the multiplexing and demultiplexing of outgoing commands and incoming sta-

tus, and the user-level notification of pending status. Any device requires some degree host

overhead in order to drive it; our goal was to minimize this overhead so that the host would

be off-loaded as much as possible.

As shown in the profiles, the cost of the transfer of control blocks and status blocks

to the protocol processor is relatively insignificant, even for short ASDUs, when compared

with UNIX overhead. In contrast, data transfer can be quite taxing on the host. For example,

with a 64-KB GET_MESSAGE operation, the majority of overall processing time (includ-

ing that of both the host and protocol processor) is spent by the host performing the data

copyout(). We, as designers, were shocked to find that the programmed I/O transfer

across the VMEbus was so time consuming. The throughput of the bus for copyout()

operations is actually lower than that of the protocol processor; hence, the host spends more

time transferring TSDUs than does the protocol processor.

Other pitfalls of protocol processor driving are relatively insignificant in our archi-

tecture. From the profiles of chapter five, we can see that the overhead due to the manage-

ment of shared data structures is only visible in the buffer allocation of large ASDUs. Even

in this case, the overhead of 109 µs is insignificant given the fact that the large ASDUs

causing such buffer overhead incur a vastly greater cost in their backplane copies. In addi-
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tion, some device driver code exists to manage connection state; however, its overhead is

also not significant, regardless of ASDU size. Similarly, the effect of multiplexing and

demultiplexing command and status information was never observed to be a significant

contributor to host processing time. The only ill effects of such multiplexing are the code

complexity it introduces into the kernel device driver. The notification of command com-

pletion through UNIX signals did incur a visible amount of overhead (143 µs); however,

such overhead was not particularly significant, even for API primitives with short ASDUs.

7.3.3.  Increased Data Path Complexity

Another pitfall unique to off-host communication architectures is the increase in

data path complexity due to addition of the protocol processor device. Our architecture

commits these faults, much to the detriment of its user-level throughput and end-to-end

latency performance. The concerns here are the use of a low bandwidth connection to the

protocol processor, additional data copies, and additional bus contention.

The pathway to our protocol processor is indeed low bandwidth. First of all it is via

an I/O backplane. This implies that it is not optimized for high speed as opposed to memory

buses on a motherboard. Furthermore, we perform programmed I/O copies of the data, and,

because of this, we cannot use the block transfer mode of the VMEbus. As a result, we

achieve relatively poor VMEbus throughput for our architecture. Note as well from chapter

five that the VMEbus is not alone responsible for the low throughput; factors such as the

CPU speed and memory access time also play a role here.

Due to the fact that we buffer our TSDU data on the local memory of the protocol

processor board, we incur an extra copy than would otherwise be the case if the protocol

processor handled TSDUs resident in host memory. This additional copy causes an extra

step in common-case communication processing. Worse yet, its overhead is incurred by the

host CPU, thus contributing to host load. Such added overhead has an inescapable effect on

user-level end-to-end latency and is quite significant for large ASDUs. If performed in par-
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allel with protocol processor data transfer, the ill effects of the extra copies on user-level

throughput could be hidden; however, such cannot be the case in our architecture for rea-

sons discussed below.

Since our architecture uses two separate VMEbus modules for the protocol proces-

sor and network interface, the architecture suffers bus contention. The detrimental effects

of this contention are graphically illustrated in Figure 5.4 of section 5.5.2. One can see that

much of the possible parallelism between the host and protocol processor is prevented for

large ASDUs due to the fact that both processors wish to perform bus transfers simulta-

neously. This contention ultimately results from a combination of two factors: (1) the buff-

ering of TSDUs in the protocol processor’s local memory, requiring VMEbus transfers

between the host and protocol processor, and (2) the placement of the network interface on

a separate VME module, requiring VMEbus transfers between and the protocol processor.

If either factor were not the case, this contention would be severely decreased, if not elim-

inated altogether.

These results argue strongly for integrating the network interface on the protocol

processor device or eliminating TSDU buffering on the protocol processor. Taken together

with observations of the low bandwidth data path and problems of the extra copy, our

results argue most strongly for eliminating the extra buffering. Ideally one would eliminate

both the buffering and the separation of the protocol processor and network interface in to

different bus modules.

7.4.  Critique of the Simple Performance Model

The architecture-based performance model developed in chapter six was designed

to easily allow both performance evaluation of existing off-host communications architec-

tures and performance predictions for off-host architectures undergoing their design. To

provide such services, the model takes a set of input parameters and predicts a set of output

quantities. The guiding design principles for the model were simplicity and practicality. For
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the model to be judged as simple, its input parameters must be easily obtainable by the

model’s user. Furthermore, the mathematical analysis of the model must be simple enough

for the user to apply. Due to the use of time-average measurement of architectural inputs

and the simple mathematical analysis of protocol performance plots, the model’s inputs are

relatively easy to obtain. The greatest difficulty in parameter gathering is that, to gain some

of the architectural parameters, knowledge of UNIX character device drivers is required.

However, we argue that such knowledge is mandatory for UNIX communications system

designers in any case. What is most important is that the input parameter gathering requires

no precise measurement equipment and no probability distributions of input quantities.

Our model is also quite easy to apply. Due to the avoidance of probability distribu-

tions for input parameters, we sidestep the complex and often intractable mathematics of

queueing theory. Rather, through the use of averages quantities, our mathematics is quite

simple, involving only algebraic expressions. Although our analysis is based upon the

assumption of a specific class of architecture, the methodology is so general that it is appli-

cable to other classes as well. Several examples were given in section 6.10.1 to illustrate

this.

The practicality of the model must be judged based upon both the performance

quantities it predicts and how accurately it predicts them. Clearly, user-level end-to-end

latency and throughput are quantities of interest to the users of the model. Thus, in predict-

ing these quantities, the model is indeed performing a valuable service. In addition, the pre-

diction of host load is of particular interest to the designers off-host communication

architectures since the reduction of host load is one of the unique benefits of such architec-

tures. A possible criticism, however, of our host load prediction is the choice of its defini-

tion. One may argue that another metric besides seconds of CPU time is more appropriate

for characterizing host load. For example, one may prefer the metric of the percentage of

host CPU utilization or a percentage of host cycles out of the overall processing time of the

communications architecture. In defense of our load prediction metric, we argue that such
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a prediction is quite fundamental and may therefore be used to derive the many other met-

rics, which others may suggest.

One may also argue that other predictions, such as interrupts per ASDU, should be

included as model outputs; however, such quantities are more likely to be intrinsic to the

design of an off-host architecture than derived from such a design. Similarly, the bound on

incident ASDUs is a quantity inherent in a particular off-host design.

One may also argue that our model should predict the benefits to the transport pro-

tocol due to off-host implementation. However, the complexity of transport protocol anal-

ysis may likely result in a complex model that is prohibitively difficult for users to apply.

If a simple approach could be adopted, perhaps a separate model predicting the benefits of

dedicated cycles, custom hardware, and a specialized operating system could be con-

structed.

The accuracy of the model is acceptable when one appreciates the fact that it

requires no specific details of the implementation of an architectural design. Admittedly,

the model predictions for short ASDUs are not particularly accurate. At its worst, the model

under-predicts the host load due to a one-byte SEND_MESSAGE primitive by 36%. The

latency and host load predictions for short ASDUs are lower than observed results due to

the fact that, as applied, the model only takes into account the inherent overhead of the

architectural components and protocol processor. Since we do not consider the additional

delay effects introduced by the software that operates within the architectural framework,

it is clear that our model predictions should indeed be low.

Our model over-predicts the synchronous throughput short ASDUs. This is due to

the fact that the ASDU length-independent overhead is under-predicted. A discussed

above, this discrepancy is present because ours are a priori predictions. Such estimates do

not assume knowledge of software overhead of the implementation of our architecture.

For other reasons, the asynchronous throughput prediction is poor for short ASDUs.

This is due to the assumptions on which the formula providing the predictions is based.
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Such assumptions assume the presence of bus contention and are claimed to be valid only

for sufficiently large ASDUs that result in the saturation of the backplane from large

amounts of traffic.

On the other hand, our model predicts rather well for large ASDUs. The graphic

comparisons in section 6.8.2 show that synchronous and asynchronous user level through-

put and end-to-end latency predictions are much more accurate in the large-ASDU case.

Likewise, the accuracy of our host load prediction for a 64-KB SEND_MESSAGE primitive

is within 7.1%. The reason why such predictions are more accurate is that, for large

ASDUs, the overhead of software implementation is dwarfed by the backplane transfer and

protocol processing times, quantities which are indeed taken into account in the model.

If the user of the model wishes increased accuracy for short ASDUs he may apply

his knowledge of the overhead of the software implementation of the modelled architecture

as it becomes known. This approach was in section 6.10.2.

It is not clear that the use of queuing theory would significantly improve the predic-

tions for short ASDUs. It is our belief that these predictions were largely affected by the

fact that we ignored implementation-dependent parameters in our analysis, rather than by

our use of simple mathematical analysis.

7.5.  Suggestions for Future Work

There are many avenues for future work in both the area of off-host communication

architectures and the area of the performance modelling of such architectures. It is our opin-

ion that more fruitful work can be done via the redesign of our architecture for SAFENET.

The top three areas in which our architecture could be improved are in: (1) the avoidance

of buffering ASDUs, (2) the integration of the protocol processor and network interface on

the same circuit board, and (3) the avoidance of system calls. To pursue these modifica-

tions, some new hardware choices would be necessary. In addition, one would have to

either (a) give up the goal of secure access (in the sense of multiprogramming) to the pro-
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tocol processor, or (b) find a way to provide security without using system calls in the com-

mon case of communication. The latter solution could perhaps be achieved though the use

of mutually-private yet protocol-processor-shared memory regions for each process using

the protocol processor.

Additional work on the performance model is also possible. There are many exten-

sions presented in section 6.10 which await pursuit. In particular, it would be of great inter-

est to see if the use of implementation-dependent knowledge can significantly improve the

model predictions for short ASDUs. With such results in hand, we may decide whether a

more complex model is necessary in order to accurately predict performance for short

ASDUs.

If queueing theory were employed in a model of off-host communications architec-

tures, it would be possible to characterize the facets of the architecture exhibiting stochastic

behavior. The following areas of architecture would benefit most greatly from queueing

theory analysis and probabilistic description:

• The delay introduced in the FN and TN queues between the host and protocol pro-
cessor

• The effect of limits on the length of the FN and TN queues

• The effect of limits on the maximum number of operations outstanding on a con-
nection

• The stochastic behavior of the protocol processor, accounting for the variance in
both latency and throughput

• The stochastic behavior of the backplane bus, including the probability and dura-
tion of blocking due to contention or the variance in arbitration times

• The effects of bus arbitration and release policy on the stochastic behavior of the
bus

• The effects of other processes on the host

We welcome any further attempts to model off-host communications architectures

in hopes that they reveal more insight in to the impact of design choices and allow better

evaluation and prediction of off host architectures.
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7.6.  The Suitability of Off-Host Communications Architectures

Taking into account both our research in off-host communications architectures and

the work of others, we make a few general comments about the suitability of off-host archi-

tectures. Our results suggest that such architectures are useful in two general scenarios: (1)

when the host CPU cannot sustain the burden of protocol processing and still meet the

needs of its application processes, and (2) when the protocol must provide a higher level of

service than can be achieved by the host computer and operating system. There are, how-

ever, some caveats for the designers of off-host architectures which, if left unheeded, can

erode the benefits of such architectures.

In some situations the host CPU may execute a set of processes which have real-

time requirements. In such cases the addition of more load on the CPU or the presence of

host processing with a nondeterministic execution time could result in the unacceptable

performance of other host tasks. Our architecture shows that off-host architectures avoid

such problems and are therefore suitable in these real-time scenarios. Although our off-host

architecture occasionally suffers significant host load due to programmed I/O, other archi-

tectures (e.g., that of Beach in section 3.6) which avoid such load are possible. Furthermore,

we have established that our architecture has both deterministic host execution times and

bounded interrupt arrivals, thereby providing bounded host processing times. Thus it is

clear that off-host architectures are suitable for meeting several real-time host processing

demands.

In many cases, protocols which execute on-host are incapable of meeting the mini-

mum service requirements of applications due to the constraints imposed by the host sys-

tem hardware, its operating system, or other host processing. Our work indicates that the

use of an off-host communications architecture can solve some of these problems. The

comparison of our off-host architecture with an in-kernel architecture shows that the host

computer’s hardware and operating system architecture greatly constrained transport pro-

tocol throughput. Our off-host architecture’s use of a lightweight operating system allowed
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the off-host approach to achieve higher user-level throughput. Such results suggest that off-

host architectures are more suitable for modern, high-throughput LANs. In addition, our

protocol processor is always prepared to process protocol traffic through the use of its ded-

icated cycles. As a result, we think that it is better able than the host to handle the real-time

and/or continuous-media traffic carried by modern LANs.

Our results also indicate that the designers of an off-host communications architec-

ture must watch out for various pitfalls. In our work we found the most significant of these

to be system call overhead and bus transfer time. These results along with the body of

related work on off-host architectures suggest that, in the design of such architectures, one

should seek to minimize (1) the number of architectural layers in the design, (2) the over-

head at each layer, and (3) the overhead of inter-layer communication. Our experience sug-

gests that the overhead of inter-layer communication is the most significant detriment to the

suitability of off-host communications architectures. One must also be willing to incur the

monetary cost of the additional protocol processing hardware and grapple with the com-

plexity such hardware introduces.

In short, off-host communications architectures can be used to the practical advan-

tage of both a host computer system and its communications protocols. When built for the

performance-critical types of systems described above and with the proper architectural

design choices, such architectures are beneficial to all host applications.
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Appendix A: Time-Average Measurement of
Architectural Input Parameters

A.1.  Rationale for Time-Average Measurement

This appendix discusses a simple method for obtaining the values of architectural

input parameters through time-average measurement. We first explain what is meant by a

time-average measurement. A time-average quantity is one which results from a measure-

ment of the total time to perform several samples of identical operations. The time-average

quantity is simply a statistic measuring the ratio of this total time to the number of sam-

ples—it represents the average time to perform a single operation.

In the simple performance model presented in chapter six, we make use of several

input parameters (δw, δr, δi, ρw, and ρr) to characterize the performance of the components

of our specific class of off-host architecture. In order to make our performance model easy

to apply, we must allow its users to obtain the small but descriptive set of architectural

parameters in a simple manner. We feel that the use of the technique of time-average mea-

surement is best for this purpose.

The reasons for using time-average measurement are due to its simplicity and prac-

ticality relative to the alternative method of direct measurement. Direct measurement of the

execution time of an operation is an inadequate choice for our model for two reasons. First,

the granularity of the measurement devices present in most computer laboratory environ-

ments is on the order of tens of milliseconds; however, the quantities we wish to measure

are on the order of microseconds and even nanoseconds. Thus it is typically impossible to

measure such quantities without obtaining more powerful (and often expensive) timing

devices.

The second reason is as follows. Even if precise measurements were possible, they

would either indicate: (1) a deterministic time value for the measured operation or (2) a dis-

tribution of several time values. In the first case, time-average measurement would yield
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the same value as the directly-measured value; hence, the direct measurement would pro-

vide no practical advantage other than imparting the knowledge that the time of the opera-

tion is deterministic. In the second case, the analysis of a model using probability

distributions would require advanced mathematics (e.g., queuing theory). Such difficult

analysis is contrary to our stated goal of simplicity.

A.2.  Test Harness

To perform time-average measurement of the model parameters in chapter six, we

used the test harness listed in Figure A.1. The test harness is simply an example of a C pro-

gram which measures the total time required to perform several samples of an operation,

and reports the measured total time and the calculated time-average for a single operation.

The operation under consideration in our test harness is represented by the symbol

operation(). In an actual test, we would substitute the particular operation that we wish to

measure for this symbol. The gettimeofday()  system call employed in the code allows

it to read the current time in seconds (tv_sec ) and microseconds (tv_usec ). The mea-

surement of specific model parameters is discussed in the next section.

Figure A.1: Test Harness

#include <sys/time.h>
#include <stdio.h>

#def ine SAMPLES 1000000

void main()
{

struct timeval start, f inish;
double total_sec;
int i;

gettimeofday(&start, NULL);
for (i = 0; i < SAMPLES; i++) operation();
gettimeofday(&f inish, NULL);

total_sec = ((double)f inish.tv_sec + (double)f inish.tv_usec/1.0e6) -
((double)start.tv_sec + (double)start.tv_usec/1.0e6);

printf(“total sampling time = %f sec\n”, total_sec);
printf(“average sample time = %f sec\n”, total_sec/(double)SAMPLES);

}
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In order to acquire a time-average measurement with a desired number of signifi-

cant digits, the number of samples performed by the test harness must be chosen properly.

This number is represented in our test harness by the symbol SAMPLES. If we desire that

our time-average measurement have n valid digits, the number of samples must be chosen

such that the measured total sampling time contains at least n valid digits. Such digits result

from updates of the system clock through clock ticks; thus we must ensure a minimum

number of clock ticks to reach a given degree of accuracy. For example, our system updates

one digit of the clock on every tick; thus, if we desire three digits of precision we must

ensure that our test runs for at least  clock ticks. Since our clock granularity is 10 ms

(  seconds/tick) we must make certain that the total amount of time taken to perform

our time-average measurement is at least .

A.3.  Measurement of Specific Parameters

In this section we describe how to use the time average measurement technique dis-

cussed above to calculate the specific architectural parameters presented in chapter six. The

measurement of such parameters requires some knowledge of the organization and config-

uration of UNIX character device drivers. It is not unreasonable to expect the users of our

model to have such knowledge since such sophistication is mandatory for the developers

of an off-host communications architecture in a UNIX environment. The device driver we

refer to is the one which shall be eventually be used to communicate with the protocol pro-

cessor. It needn’t be completely implemented; however, it must be configured into the oper-

ating system kernel.

We also refer below to the lc and la parameters. These parameters are not measured;

rather, they are implied by the choice of data structures for the control and acknowledgment

blocks. When using the C programming language for implementation, the values of lc and

la may be determined by applying the sizeof operator to the types of these data struc-

tures.
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A.3.1.  System Call Overhead

In order to calculate the round-trip times for the write() and read() system

calls, δw and δr, we start by simply using such operations in our test harness. The write()

must be to the protocol processor device driver, and it must pass an lc-byte buffer. Similarly

the read() must pass an la-byte buffer to the protocol processor device driver. In addition,

some initial work must be performed so that the system calls reach the character device

driver routines used for their implementation and then immediately return from the call.

Such work is quite straightforward and is far short of what is required to implement an

entire architectural design. To measure δw, we place an abrupt return from the device driver

at the first line of the routine which is to implement the write() operation. In our imple-

mentation, this is the strategy() routine, which is called by physio(). Since we also

implement the read() operation in strategy(), we use this same abrupt return to

measure δr as well.

A.3.2.  User-Level Interrupt Overhead

It is relatively complicated to measure the round-trip time of a UNIX signal. This is

because we must have the device driver, which resides in the kernel, send the signal to the

user process performing the measurements. To do this we chose to use a write() system

call as the operation in the test harness. This call is used simply to initiate the device driver

so that it may send signals to the process. At the first line of the device driver’s implemen-

tation of write(), we use the psignal() kernel library function to send a SIGIO sig-

nal to the calling process (i.e., the test harness). The test harness features a simple signal

handling routine which returns immediately. This test harness has the effect of measuring

the round-trip signal handing time and the round-trip time for awrite() system call; thus,

to arrive at δi, the round-trip time for the signal, we need only subtract δw.
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A.3.3.  Bus Transfer Overhead

To measure the ρw and ρr parameters, those which characterize the cost of bus trans-

fers, we placed our entire test harness in the kernel device driver. In this context we could

not issue any system calls; hence, we could not use the gettimeofday() system call to

read the time. Instead we used the kernel’s time variable, a global data structure that stores

the current time of day in both seconds and microseconds. In order to enter kernel mode,

we have a user process issue a write() of n bytes to the device driver, which contains the

test harness code in its write() routine. To measure ρw, we use the copyin() kernel

utility function as the operation in our test harness. The copyin() function copies the n-

byte user-level buffer specified in the system call to the shared memory on the protocol pro-

cessor board. The test harness gives us the average time in seconds to perform the n-byte

copy; hence, we obtain ρw by dividing the total time by n. The measurement of ρr proceeds

in a similar manner except that we use the copyout() function as our measured opera-

tion; copyout() copies from the on-board protocol processor memory to the n-byte user-

specified buffer provided in the write() system call.

A.4.  Elimination of “Noise”

When performing the measurements described above, one must be careful to avoid

interference from other factors which could confound the measurements. These factors

include the execution of other processes or hardware interrupts. To avoid such problems we

recommend that the time average measurements be performed with an unloaded system. In

addition, any periodic system daemons which are not critical to short-term system opera-

tion (such as update on SunOS) should be eliminated. Furthermore, on systems such as

ours where the clock is updated via tick timer interrupts, we one must ensure that such inter-

rupts are never disabled at any point during the measurements.
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Appendix B: Extrapolation of Protocol Processor Input
Parameters

B.1.  Rationale for Protocol Processor Performance Plots

This appendix discusses a simple method for obtaining the values of the protocol

processor input parameters presented in chapter six through the use of protocol processor

performance plots. The types of plots we are concerned with are those that both occur com-

monly in performance studies and serve to illustrate the end-to-end latency or throughput

of the protocol processor versus TSDU size. The end-to-end latency graph is used directly;

in contrast, the protocol processor throughput graph is used indirectly to derive a protocol

processor period graph.We choose to use only the latency and period plots because such

plots exhibit a nearly linear shape. We may then fit linear equations to these plots and use

the coefficients of the equations to characterize protocol processor performance.

The main advantage of this approach is that protocol performance plots (1) are often

provided with protocol implementations and (2) are otherwise derivable from other

descriptions of protocol performance (e.g., tables). We chose to fit lines to these plots rather

than more complicated curves because the curves themselves are quite linear in the first

place. The resulting protocol parameters represent the aspects of protocol processor perfor-

mance that are most useful for our simple model.

B.2.  Protocol Processor Input Parameter Calculation

In this section we calculate the protocol processor input parameters. These param-

eters are quite simple to calculate; one need only fit lines to the given and derived protocol

processor performance plots and then find the equations of these lines. The protocol param-

eters we seek are simply the slopes and vertical-axis intercepts of the equations.

In order to calculate the protocol processor delay parameters, δ0 and ρδ, we obtain

a plot of the end-to-end latency of the protocol processor, represented here by δ, versus
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TSDU length, represented here by l. Figure B.1 contains an example of such a plot. Given

such a plot, we simply fit a line to it as shown in the figure. The coefficients of the equation

of the line, , are simply our desired delay parameters.

To calculate the protocol processor period parameters, T0 and ρT, we must first

derive a plot of the protocol processor period versus TSDU length from a given plot of pro-

tocol processor throughput versus TSDU length. To do this we start by taking a subset S of

points (li, τi) from the protocol processor throughput graph. Here li is the TSDU length for

the ith such point and τi is the throughput corresponding to li. From S we calculate the set

 of points (li, Ti) which will make up the protocol processor period graph. Here, Ti repre-

sents the protocol processor period corresponding to li. We then derive each point (li, Ti) in

 from a corresponding point (li, τi) in the set S using the relation . Now the

points of  may be plotted in a graph illustrating protocol processor period, represented

here by T, versus TSDU size, represented by l. The equation of the line fitting this curve has

the form , yielding the period parameters ρT and T0.
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Figure B.1: Fitting a Line to a Plot of Protocol Processor Latency vs. TSDU Size
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