The Design and Evaluation of an Off-Host
Communications Protocol Architecture

A Thesis
Presented to

the Faculty of the School of Engineering and Applied Science

University of Mrginia

In Partial Fulfillment

of the Requirements for the Degree

Master of Science (Computer Science)

by

Jefrey R. Michel

August 1993

APPROVAL SHEET

This thesis is submitted in partial fulfilment of the
requirements for the degree of
Master of Science (Computer Science)

Author

This thesis has been read and approved by the Examining Committee:

Thesis Advisor

Committee Chairman

Accepted for the School of Engineering and Applied Science:

Dean, School of Engineering and
Applied Science

August 1993

Abstract

The University of VWrginia Computer Networks Laboratory has developed an
implementation of the SAFENET lightweight suite of communication protocols using an
off-host implementation of the Xpressansfer Protocol (XTP). Wused an attached pro-
tocol processor to test the hypothesis that such an architecture could simultaneously opti-
mize protocol performance (by giving it a dedicated coprocessor) and user application
performance (by freeing the host from the burden of protocol processing). Our experience
indicates that the choice of implementation architecture has a profound impact upon the
overall system performance. This work surveys the design issues inherd+tdstaom-
munications architectures and discusses the design choices made in our own architecture.
Also presented are our performance results and the many lessons learned from the analysis
of our implementation architecture eVillso provide a survey of related work performed by
other researchersoBssist the designers of futuré&bbst architectures and to evaluate the
degree to which we exploited our particular architecture, we develop a simple analytic
model to predict the performance of aftludst architecture using readily-obtainable input
parameters. The predictions of the model as applied to our system are compared with the

systems observed performance.

Acknowledgments

Many deserve appreciation for helping to bring this work to fruition. First of al |
would like to thank our sponsor, SPAWAR, for funding this research. Further, | wish to
acknowledge my colleagues Robert Simoncic, Bert Dempsey, John Fenton, and Alex
Waterman for their invaluable assistance on our project. In particular, | wish to thank Alex
for generously providing preliminary results from his on-host X TP implementation. | am
also indebted to Craig Meyersfor his extensive cooperation and Bob Ross for his hardware
expertise. Thanks are especialy due to my advisor, Alfred Weaver, whose wisdom and
guidance have alowed me to make achievements here at the University of which | can be

proud. Above all, | wish to thank my parents for their endless support, which has made all

of this possible.

Table of Contents

Chapter 1
1.1.
1.2.
1.3.

1.4.

1.5

1.6.

Chapter 2

2.1
2.2.

2.3.

24.

2.5.

Chapter 3
3.1
3.2.
3.3.
3.4.
3.5.

INtrOdUCLION ... 1
BacKground..........ccoo oo 1
A General Model of CommUNICALiONccevvevereereeieseeseece e 2
Protocol Implementation Possibilities..........ccccovveeieececce e 5
1.3.1. On-Host Implementationcccceeereeienienieese e 6
1.3.2. Off-Host Implementation............ccoceeevererieeienene e 8
Possible Advantages of an Off-Host Protocol Implementation......... 9
1.4.1. HOSt BENEFItS.....coeeeiieie e 9
1.4.2. Protocol BENESILS.......cooveieeiiiecieecree e 10
Possible Pitfalls of Using an Off-Host Protocol Implementation......12
1.5.1. Incurring Operating System Overheadc.cccocerveinnnne 12
1.5.2. Overtaxing the HOSt PrOCESSOcccceeerieiienienesie e 12
1.5.3. Increased Data Path Complexity.........ccccovveieeienceeieciieeen 13
SUMIMBITY ..ottt e e e e be e ae e e ne e neeenreenneaennas 14
Design Issuesin Off-Host Communications
ATCNITECIUN € .. 16
OVEIVIBW ...ttt ettt et sr e e ae e e sbeeaesaeesneenneennenreas 16
The Host-Processor Interface to the Protocol Processor 16
2.2.1. Command SIrEAMcceeveeiriesie e 17
2.2.2. SEAUS SITEAIMoiiieiiiiii ettt 17
2.2.3. DalaSIrEaAM......cei e 18
2.2.4. OptioNS SIrEAMccueeeiiiieeriesie sttt 19
Hardware and Software Architectural Levels..........ccccccveeeveenecnee 19
2.3 L USEr LEVE ...ttt 20
2.3.2. Kemne LEVE ... 21
2.3.3. BUSLEVE ... 22
2.3.4. Protocol-Processor LEeVEcccoeeveieieeiine e 23
2.3.5. Network-Interface LevVEcoevveeevceieereee e 23
Communication Mechanisms Between Levels..........cccoveceeeeienee 24
2.4.1. Communication Between the User and Kernel Levels.......... 24
2.4.2. Communication Between Hardware Components................. 28
Architectural Integration ContinUUM...........cccevveieveeieceereee e 35
2.5.1. Continuum ChOICES.........cccueiiieiie e 36
252, Trade-OffS. ..o 36
Related WOrKcoooieeieece e 38
(@Y AV = Y SR 38
(@15 S0 o [38
Kanakiaand Cheritoncccevuiiiie i 40
COOPEN B Al ... 42
Netravali € @l........cccviieiieie e e 45

3.6.
3.7.
3.8.
3.9.
3.10.

Chapter 4

4.1.
4.2.
4.3.
4.4,
4.5.

Chapter 5
5.1.
5.2.

5.3.
5.4.
5.5.

Chapter 6
6.1.
6.2.
6.3.
6.4.

6.5.
6.6.
6.7.

BEACK ... s 47
MacLean and BarviCK.........cccoveeiineeiiee e 49
MItCheEll €t al. ..o e 50
SIEQE BL @i s 51
SUMIMBIY ..ottt b e e b e e s ae e e e e e sneesareenneeennas 52
An Off-Host Communications Ar chitecture for

SAFENET ... 54
OVEIVIBW ...ttt sttt ettt e s ae e s beenesaeenneenneeneenreas 54
SAFENET ...ttt 54
HOSt COMPULEr SYSEEIM ... e 56
Architectural CONSLraiNtS...........cooveveeieereieseere e 57
DeSIgN ChOICESc.eiiuieieeieeie ettt s 58
4.5.1. Hardware COMPONENLSooerueriereriereeeeeeseesee e seessessesneas 58
4.5.2. SOftWAIre LayerS......ccccciveeeieeeie et 60
45.3. Inter-Layer Communications Mechanisms............ccccceevuennne. 63
45.4. A DataFlow Example.........ccooooiviiininininieieee s 67
Performance ANalySiS.....ccccceveeiieeieene e 70
OVEIVIEW ...ttt ettt s et e s e s be e s be e s re e sreesareesreeennas 70
Performance Observed at Various Service Levels........cooeevveneneee 70
521, MACLEVE ..o 71
5.2.2. Transport LEVEcccoiiiiieeeeee e 71
5.2.3. USEN LEVE ..o 72
Performance Profile..........coo e 73
[[0S 0 7= o ISR 76
Performance Bottlenecks............cccoveeiieie e 77
5.5.1. ASDU Length-Independent Overhead............cccooerivreerennnnne 77
5.5.2. ASDU Length-Dependent Overhead..........ccccoovvvereneriennene 79
A Simple Model to Predict Performance........................ 84
M OLIVALION......cciieciee ettt e e e e b sareeeaeesnreenree s 84
BaCKground...........ccvoieieeie e 85
GOoalS Of the MOEcceoieiiiee e 85
MOAEl OVEIVIEW ..ot nre e 86
6.4.1. INPUt COMPONENLS.......eeiiiiieiiiee e 87
6.4.2. Determination Of OULPULScceverierreerierinneenesie e 87
6.4.3. Communication Operations Considered............ccocevcerereennene 88
Assumed Class of Architectural Designcccveveeveeveveeseece e 89
Input Parameters for our Architectural Class..........cccccevevineninennene 90
Performance DerValioNSccoveiereereee e see e 92
6.7.1. Period DeErvation..........cccceeveieeiieie e 92
6.7.2. Throughput Derivationc.ccooeerenienenneneeseee e 94
6.7.3. Host Load DeriVation..........cccceceereereneeseereseeseeee e 95

6.7.4. Delay Derivation..........ccccceeieieesieie e 96

6.8.

6.9.

6.10.

Chapter 7
7.1.
7.2.

7.3.

7.4.

7.5.
7.6.

References

Model Predictions for our ArchiteCture.........couveeeveeeeeiieeni 97.

6.8.1. Input Parameter Values...........ccccceeeiiiiiinieeeiiiieeeceeiiiiis 91..
6.8.2. Throughput and Latency Predictians..........cccccceeeeeeenn... 98
6.8.3. Host Load PrediCtions............cooocciiiviiiiiiiiiiiiiicieeeee e Q9..
Comparison with Empirical ReSUltS................ouuviiiiiiiiiiinnnnnnn. 100
6.9.1. Validation of Throughput and Latency Predictions........ 100
6.9.2. Validation of Host Load Predictions...........cccccccvvvvveen.n. 100
Possible Extensions to the Model..............oooiiiiiciiiie, 100
6.10.1.Support for Other Architectural Classes...............cc....... 101
6.10.2.Implementation-Dependent Components...................... 101
6.10.3.Consideration of More Communication Operations.......102
6.10.4.Use of Queueing Theory.........ccoouuieiiiiiiiiiiiiieeend 102
CONCIUSIONSoeiciieccee et 104
SUMIMBITY .ttt e e e e e s 104...
Evaluated Advantages of our Off-Host Architecture................. 106
7.2.1. HOSt BENETItS . ..uuiiiiiiii e 106.
7.2.2. Protocol Benefits........ccoovvviviiiiiiiiiiiiiie e 108.
Evaluated Pitfalls of our Off-Host Architecture......................... 109
7.3.1. Incurring Operating System Overhead.......................... 109
7.3.2. Overtaxing the Host CPU with Protocol Processor

3 1Y/ o S 110..
7.3.3. Increased Data Path Complexity.........ccccceeeviiiiieniiiinnnnne. 111
Critique of the Simple Performance Model..............cccceevvvnenes 112
Suggestions for Future WOrkK...........coooovveiiiiiiiiiiiiie e 115
The Suitability of Off-Host Communications Architectures.......117
.. 119

Appendix A: Time-Average Measurement of Architectural

A.l.
A.2.
A.3.

A4

INPUt Parameters.........ccoooieiiiiieeeee e 124
Rationale for Time-Average Measurement.................cccvvveneee. 124
TESEHAIMESS ... e 125...
Measurement of Specific Parameters..........ccccoeeeeevvviiiiiiieeennn, 126
A.3.1. System Call Overhead.........cccccccceviiiiiiiiiiiiiiie, 127
A.3.2. User-Level Interrupt Overhead...............ceeevvvviviiininnnnns 127
A.3.3. Bus Transfer Overhead.............ccovviiiiiiiiiiiiiie e 128
Elimination of “NOISE”.........ceeviiiiiiiiiiii e 128.

Appendix B: Extrapolation of Protocol Processor Input

B.1.
B.2.

Par AMELENS.... e 129
Rationale for Protocol Processor Performance Plots............... 129
Protocol Processor Input Parameter Calculatian..................... 129

List of Figures

Chapter 1 IntroducCtionccocceviiiieiieeee e s

Figure1.1: ThelSO/OS| Reference Model..........ccooeoviieiininnieeeeee,

Chapter 2 Design Issuesin Off-Host Communications

ATCNITECIUN € ..
Figure2.1: Architectural LEVEIS.......cccov e

Chapter 4 An Off-Host Communications Ar chitecture for

SAFENET ...
Figure4.1: SAFENET Protocol ArchiteCture.........c.cceceveeieneninenesenene
Figure 4.2: Communications Hardware Architecture...........ccccceeevecveenenee.
Figure4.3: Communications System ArchiteCture...........ccceeceveeenerceseenne.

Chapter 5 Performance ANalySIS......ccoovvieiiiniiennee e

Figure5.1: End-to-End Latency vs. MeSsage SIZecccovvvevveeneeeeeneeene.
Figure 5.2 Throughput vS. MeSSage SIZE........cccrerereeieeiesese e
Figure5.3: Data Copy Effects upon Throughput vs. ASDU Size...............
Figure5.4: APl Mode Effects upon Throughput vs. ASDU Size...............

Chapter 6 A Simple Model to Predict Performance........................

Figure6.1: Overview of the Performance Modél...........cccooevvieeieninncenen.
Figure 6.2: Delay Components of the User-Level Period for

TrANSMISSION ..ot
Figure 6.3: Delay Components of the User-Level Period for

RECEPLION ...
Figure6.4: Delay Components of the User-Level Délayccccveveneeee.
Figure 6.5: End-to-End Latency vs. ASDU SiZe........ccocevercnneenecienseene.
Figure 6.6: Synchronous Throughput vs. ASDU Size........ccccecvenvneniene.
Figure 6.7: Asynchronous Throughput vs. ASDU Size........ccccceeeveveenennee.

Appendix A: Time-Average M easurement of Architectural

INPUL Parameters.........ocoeviiiieeiee e
Figure A.L: TeSt HAMESS........coiiiiieieese e

Appendix B: Extrapolation of Protocol Processor Input

FigureB.1: Fitting aLineto aPlot of Protocol Processor Latency vs.
TSDU SIZE...eicieeee ettt

84

Vi

List of Tables

Chapter 5 Performance ANalySIS......ccoovvieeiiriiennee e 70
Table5.1: Profile of aOne-Byte SEND_MESSAGE........ccccooiiinienennnne 74
Table 5.2: Profile of aOne-Byte GET_MESSAGEcccooviiiinenenennns 74
Table5.3: Profileof a64-KB SEND_MESSAGEccccooovveiniieeeeine 75
Table 5.4: Profile of a64-KB GET_MESSAGEccccccoiviievieceecie e 76

Chapter 6 A Simple Model to Predict Performance........................ 84
Table 6.1: Architectural Input Parameters...........ccocceveeneeinnieneeseseeseeens 91
Table 6.2: Protocol Processor Input Parameters...........cooeveevenenenenenennens 92
Table 6.3: Input Parameter Values for our SAFENET Implementation.......98

Vi

1 Introduction

1.1. Background

Although modern local area networks (e.g., FDDI, deskiod Aand HiPPI) prom-
ise both high performance (100 Mbps or more of throughput) and new functionality (syn-
chronous bandwidth), traditional computer system and application designs—those that
have functioned well for older networks (e.g., Ethernet) operating asynchronously and at
lower data rates—have hadfatitilty delivering on such promises. Since the modern tech-
nology brings significantly-increased bandwidth into which computer systems may tap, one
might naively assume that similar improvements occur in throughput from the perspective
of application processes. Recent measurements, hqwbeer that this is not the case. For
example, although FDDI provides a transmission rate ten times higher than that of Ethernet,
the throughput available to an application process using FDDI is typically only double or
triple that available from Ethernet.

The reason for such problems becomes apparent when one recognizes that between
the high-speed network medium and an application process stands an architectural gauntlet
of computer system hardware, communication protocols, and operating system software.
As system designers have attempted to supply more of the growing network-media band-
width to application programs, they find that these architectural fixtures are becoming more
and more of a bottleneck. In particylathas been observed that the execution of commu-
nications protocols has played a major role in constraining user application throughput. The
research in this thesis is concerned with attacking the problem of protocol execution.

The recent criticism of protocols has prompted a rethinking of their implementation
architectures. Although many variations exist, there are onlypasic choices for where
to execute protocols; either application processes and protocols must share the host proces-
sor and contend for its cycles, or the protocols must rfunost on dedicated coprocessor

hardware and pay the penalty for the communication between their processor and the host

computer system. The former represents the classical approach (e.g., TCP/IP embedded in
aUNIX kernel) and has been well studied; the latter is novel and has not been the subject
of as much academic investigation. At least in theory, the off-host approach seemsto be a
route for improved performance. By off-loading the host of its communications processing
responsibilities, application processes will have more host processing cycles available, and
by giving communications protocols their own processor, their implementations may be
tuned to provide better performance to applications. In addition, the dedicated cycleswhich
the protocol processor providesto protocol processing may be essential for maintaining the
real-time communications processing deadlines inherent in continuous-media applications
that make use of synchronous bandwidth. It is reasonable to expect, however, some addi-
tional sources of overhead with the off-host approach due to the complexity of its architec-
ture. Theidentification of thisoverhead and its minimization through proper design choices
are principal subjects of thisthesis.

The goals of thisthesis are: (@) to identify the general design issuesinherent in off-
host communications protocol architectures, (b) to study an actual off-host protocol archi-
tecture, presenting its design, implementation, and performance, (c) to identify the perfor-
mance bottlenecks in the architecture, relating them to architectural considerations in its
design, (d) to develop an analytic model of the performance of off-host communications
architectures and to validate it through comparison with observed performance, and (€) to
make qualitative judgements about the suitability of off-host communications architec-

tures.

1.2. A General Modd of Communication

Before delving into theissues of off-host protocol implementations, we first present
an overview of our general model of computer communication, including the topics of
computer networking and communication protocols. This prepares us for the discussion of

communication architectures employing off-host protocol implementations. A computer

network consists of a set of geographically-distributed, autonomous computers, termed
hosts, that are connected via communications links. Physical links between the individual
hosts provide the basic ability to communicate through the modulation of fundamental
physical signals such as electrical potential differences and electromagnetic radiation. In
addition to this physical media, certain conventions are needed to provide a discipline for
the use of the media and to give meaning to the signals it carries. These conventions are
expressed in the form of protocols, sets of rules governing issues such as the physical links
themselves, the interaction between network hosts, and the syntax and semantics of the
information they transmit and receive.

These communications protocol s are quite numerous and have perform varying ser-
vices. To organize this complexity, they are structured into protocol hierarchies consisting
of multiplelayers of functionality. For the purposes of our discussion, we shall usethe hier-
archical organization of the 1ISO/OSI reference model [24] to refer to the protocol layers
and to imply the functionality supported at each. This seven layer model, illustrated in Fig-
ure 1.1, isstructured such that a protocol at layer nin the hierarchy employs the services of
the protocols at layer (n - 1) to provide communications services to the protocols at layer
(n+1). Below thefirst layer are the physical communications media, and above the seventh

layer are application processes.

Application Process

Application | layer 7
Presentation | layer 6
Session layer 5
Transport layer 4
Network layer 3
DataLink | layer2
Physical layer 1
I
Physical Medium

Figure 1.1: ThelSO/OSl Reference M odel

A brief summary of the functionality of the protocols present at each layer in the
OSl reference model is as follows.

» An application layer protocol is responsible for dictating the format of distributed
data structures and defining the sequence of data unit exchanges for a given type of
application. The protocol directly serves the application programs above it.

» A presentation layer protocol provides a standardized syntax for application layer
data which preserves the semantics of the information, even in the face of host sys-
tem heterogeneityOperations such as encryption may also be done at this layer

A session layer protocol exists to ganize and synchronize presentation layer data
units. Connection establishment and release may be done at this layer

* A transport layer protocol is responsible for the end-to-end transfer of data units
with certain reliability semantics from a session layer protocol in one host to a peer
protocol in anotherssues such as multiplexing data units from several user pro-
cesses onto a single network are often handled here. In addition, segmentation and
reassembly of data units and error and flow control are often performed at this
layer.

» A network layer protocol provides the means to route a transport layer data unit
across subnetworks and through intermediate hosts to its final destination host.
One of several access points to separate network links may be chosen at this layer
in order to forward a data unit to its proper destination.

» A datalink layer protocol enables the exchange of framed network layer data units
between adjacent hosts on a multi-access or point-to-point network &nkuy¥
reliability semantics and error detection are often supported here.

» A physical layer protocol provides the ability to transfer the bits of data link proto-
col data units on the underlying physical medium. It specifies the mechanical and
electrical standards of the medium as well as the signalling techniques involved.

Taken togetheithese protocols exist to provide communications services to appli-
cation programs. Thdata path of a data unit sent from one application process to another
starts at a sending process that submits data to the applicatianTlagetata descends
through all seven layers of the model and onto the physical medium. From there it propa-
gates through the network, possibly ascending and descending through the protocols at lay-
ers one through three of the reference model in intermediate hosts. The data eventually
reaches the receiving host, where it ascends all seven protocol layers before reaching the

receiving application process.

We refer to a collection of communications protocotgoized into a stack cover-
ing each layer of the reference model atavork protocol architecture. In practice, one
protocol may span multiple layers and some layers may be null. An example of a protocol
architecture is the SAFENET architecture, which is discussed further in chaptei four
subset of the protocols in a protocol architecture that still covers each layer of the reference
model is termed protocol suite. An example of a protocol suite is the lightweight suite of

SAFENET, which is also discussed in chapter four

1.3. Protocol | mplementation Possibilities

In this work we shall be concerned not with the details of the protocols residing at
the layers of the reference model, but rather with timgptementation. Particularly we
shall study the implementation of the transport and network layer protocols. When a proto-
col suite is to be realized in terms of an actual computer system and physical network hard-
ware, we must concern ourselves with the production of each of its protocol lagers. W
introduce the termmommunications architecture to refer to the realization of an entire suite
of protocols, serving a host computer system. Some components of the communications
architecture may be built in host software, while others may be construetexsbin addi-
tional hardware or firmware.

In the early history of computer networking, all but the physical layer communica-
tions protocols were implemented in the host computers, i.e., they were built in software
executed by the hosttentral processing unit (CPU). Since physical layer protocols must
modulate the physical medium and dictate mechanical standards, such protocols were nec-
essarily implemented using special hardware devices. As time progressed, much of the
functionality of the OSI data link layer has been implemented in additional VLSI hardware
circuitry complementary to the host CPU [4][19][42]. The goal of this hardware has been
twofold: (1) to perform protocol operations at generally higher rates of speed, and (2) to

lower the burden of protocol processing on the host CPU [28].

The trend has been for an increasing amount of higher-layer protocol functionality
to be performed in special -purpose hardware without the involvement of the host CPU. Fol -
lowing this trend, we investigate the implementation options for protocols at the network
and transport layers. For the remainder of this work we assume that the physical and data
link protocols are implemented on an integrated hardware device, hereby referred to as a
network interface. In addition, protocols present at or above the session layer of the refer-
ence model are assumed to be implemented in host software and are not considered in any
further detail. In the following sections we contrast the in-host versus off-host approaches

to protocol implementation.

1.3.1. On-Host Implementation

The traditional approach to transport and network layer protocol implementations
has been to place them in software on the host platform and execute all protocol operations
using the host CPU. Once the choi ce has been made to use an on-host implementation, there
are actually severa possibilities concerning where its software may reside within the host.
The choice of where to place the protocol implementation will likely be dictated by oper-
ating system architecture and security concerns.

In single-user or embedded computer systems, the secure use of shared resources
between multiple processes is not typically a concern. Furthermore, there is seldom any
address space partitioning between user processes and the operating system. In this envi-
ronment, a protocol implementation may acceptably be in the form of library code linked
with the code of an application program [41]. This approach has the benefit of avoiding
operating system security concerns and complex address space issues. As aresult, the pro-
tocol implementation is likely simpler and its performance is typically higher than that of
other approaches. For example, with this implementation architecture, protocol services
can beinvoked viathe relatively efficient mechanism of subprogram calls, thus promoting

alow end-to-end latency.

In systems with multiple processes or multiple users, shared resources often need to
be managed in a more secure fashion. This is typically accomplished through the use of an
operating system kernel residing in a protected address space. In such situations, transport
and network protocol implementations reside in the kernel. The provision of security is nec-
essary because such protocols may use special I/0 address spaces, shared network
resources, or shared data structures that must be kept with some degree of integrity

In this kernelized scenario, application programs typically request protocol services
from the kernel through system calls. The protocol software may be loosely integrated into
the kernel as a device driver accessed through the operating sylé@system calls [37],
or it may be tightly integrated into the kernel and accessed with its own set of networking
system calls [30]. Such calls are more sophisticated than subprogram calls; hence, they may
result in a significant overhead. In addition, if the kernel resides in a protected address
space, the cost of some means of accessing protocol data residing in the calling process’
address space must be incurred. An additional drawback to the kernelized approach is that
it complicates the software of the kernel.

A hybrid approach is to use a privileged server process, referred to hgnets a
col server, to contain the protocol implementation. In such a situation, an application pro-
cess desiring network service acts as a client, sending a request message for protocol
service to the server via interprocess communication. The server process later sends a reply
message to the client when it has completed the request [26]. Access to the shared resources
is restricted to the server process, which, like the kernel, has a protected address space. This
approach has the benefit of providing secure access to shared resources without adding to
the complexity of the operating system kernel. In addition, no special system calls are
required for network communication. It is not cldeoweveywhether the overhead of sys-
tem calls is reduced or increased by this scheme. Furthermore, a unique source of overhead
due to the protocol server approach is that process context swaps must occur between the

client and server processes.

No matter how the code of the protocol implementation is distributed in the host
software, the host CPU has the sole responsibility of performing all protocol operations.
The options mentioned vary only in the means in which higher layer protocols communi-
cate with the protocol implementation. The actual approach to developing protocol soft-

ware, once itsin-host placement is determined, has been well studied.

1.3.2. Off-Host Implementation

Recent efforts have resulted in the implementation of network and transport layer
protocols off-host. That is, such protocols are executed off-host by additional hardware
rather than by the host's CPU. We refer to this additional hardware as a protocol processor
device. Off-host protocol processor designs have been devel oped based on the use of acus-
tom VLSI chipset, a general-purpose single-board computer, or a hybrid solution using
both general-purpose microprocessor hardware and custom VLSI. This work is surveyed
in detail in chapter three.

VLSl implementation is performed through the design of a chipset consisting of
several application-specific integrated circuits. It has the advantage of (1) providing the
very fast implementation of protocol functions through the use of custom circuits and (2)
execution of protocol operationsin parallel. The major drawback to this approach isthat it
is difficult to design VLS circuits which perform complex tasks. As a result, the class of
protocols that can be implemented in VLSI may be only those designed to be ssimple
enough for that task [8][44].

With a general-purpose single-board computer (SBC), protocol operations may be
carried out by a RISC or CISC microprocessor. Such an approach has the advantage that it
is capable of handling even the most complex of protocols using software similar to that of
an on-host implementation. The microprocessor approach has several drawbacks, however,
with respect to performance. The speed of particular protocol operations performed on the

microprocessor will almost certainly be lower than that of such operations performed with

specialized VLSI circuits. In addition, the parallelism between individual protocol opera-
tions obtainable with VLSI circuits can simply not be achieved with a single microproces-
sor. The SBC approach may alsofsuffrom fact that most general-purpose SBCs are not
likely to feature an adequate combination of stock components, such ge ddak of
high-speed static RAM, DMA controllers, and an on-board network interface, which may
be necessary for a high-performance protocol implementation.

Hybrid solutions may be composed of a combination of custom VLSI circuitry and
perhaps several microprocessorsthlever design choices, it may be possible to achieve
much of the high performance and parallelism of a pure VLSI approach while still being
able to tractably implement complex network and transport layer protocols by taking

advantage of the flexibility of the SBC approach.

1.4. Possible Advantages of an Off-Host Brocol Implementation

Regardless of the specifics of hardware-assisted protocol implementation, the
approach dérs several potential advantages to network applications.fAmsf commu-
nications architecture can benefit both the host processor and the protocol implementation.
As a result, host applications can run faster and more predictably and the performance of

the protocol services provided to such applications can be optimized.

1.4.1. Host Benefits

When using an ¢dhost communications architecture, the host processor can poten-
tially receive the following advantages:

Reduced host load. Since all protocol processing activities are handled on the pro-
tocol processomno host processor cycles are consumed for protocol processing.

Predictable application processing. Since transport and network protocols perform
retransmissions, react to incoming tigfand sometimes block on network access, the exe-
cution times for protocol processing are nondeterministic. When usinélaosbirchitec-

ture, such nondeterministic activity occurs on the protocol processor and not on the host.

10

As aresult, the CPU demands of host processes become more deterministic, thus promoting
the predictable operation of such processes.

Reduced and bounded host interrupt arrivé@lgransport or network layer protocol
typically receives interrupts from its underlying data link service in order to indicate frame-
oriented activitySome minimum number of frames are necessary for each transport service
data unit (TSDU), and, in addition, an unbounded number of frames may arrive from other
hosts or result from retransmissions. Each frame can cause a processor interrupt. When
transport and network protocols run on a protocol processohost can be shielded from
these interruptions. In such a scenario, host interrupts need only be performed by the pro-
tocol processor; thus, they can occur on alf&DU, rather than a pdérame, basis. This
may result in substantially fewer host interrupts per TSDU. At the very least, these charac-
teristics enable application processes to place a bound on the amount of interrupt handling
in which the host will engage.

Reduction of incident TSDU traffi©ne feature of hardware implementations of
data link protocols in broadcast local area networks is that ridiner than the host CPU,
filter incident trafic that is not addressed the host. Similaalyransport and network pro-
tocol processor can deliver to the host only those TSDUs which the host desires to receive,
thus shielding it from an accidental or malicious barrage of TSDU arrivals. Such a feature

has been referred to as a “network firewall” [27].

1.4.2. Ppotocol Benefits

A communications protocol can receive the following benefits when run on proto-
col processor hardware:

Dedicated pocessing cyclesWhen run on the host, a communications protocol
must contend with application processes for processor cycles, thereby losing potential CPU
cycles and incurring overhead from scheduling and context swaps. Tleete&dn reduce

the amount of work the host processor can perform for its application, cause slow response

11

to protocol events, and lower protocol throughputthWdedicated protocol processing
hardware, all processing cycles are available to the protocol, thereby raising throughput,
and context swaps can be avoided, thereby lowering latency and preventing profecol buf
overflow Furthermore, such dedicated cycles, may be crucial in order for the protocol to
handle the real-time processing requirements of continuous-meélaguaeh as voice and
video.

Soecialized hardware. Network and transport protocols can benefit from special
hardware such as high-speed RAMicgEnt DMA controllers, and custom checksumming
circuitry. Such hardware may allow certain protocol operations to be accelerated or per-
formed in parallel. Components providing these services can be utilized on the protocol
processor device, providing performance not attainable with the general-purpose hardware
of the host system.

Optimized data path to the network interface. Modern transport and network layer
protocols make multiple accesses to the network interface for each TSDU passing through
the session layeDue to segmentation, protocol headers and trailers, and retransmissions,
the trafic across the boundary between the data link layer protocol and the network layer
protocol can be much heavier than that across the boundary between the session layer pro-
tocol and transport layer protocol. Thus the throughput of the former pathway should be
optimized. One method of optimizing this path is through the placement of the network
interface on the same circuit board as the protocol processor device.

Ideal operating system environment. It has been recognized that an operating sys-
tem environment can place severe restrictions on a pratgoetformance and proper
implementation [48]. The timgbuffer, and lightweight process management services pro-
vided by the host operating system may be relativelyianft for protocol tasks. In addi-
tion, the host operating system may impose security restrictions and other overhead which
can hinder protocol performanceitian attached protocol processor board, one is free to

choose the ideal operating system for the protocol implementation, including none at all.

12

1.5. Possible Pitfalls of Using an Off-Host Protocol | mplementation

Several pitfalls may be encountered when using an off-host protocol implementa-
tion. Thefirst set of pitfalls concerning operating system overhead are shared by both on-
host and off-host approaches; however, the other pitfalls, those of overtaxing the host CPU

and complicating the data path, are unique to off-host architectures.

1.5.1. Incurring Operating System Over head

Itisfallaciousto believe that the problems of operating system overhead discussed
in section 1.3.1 no longer exist when one uses an off-host protocol architecture. In secure,
multitasking operating system environments the protocol processor hardware becomes a
shared resource which must be managed by a trusted server process or the kernel. As a
result, much or al of the system call and context swap overhead experienced in-host imple-
mentations can still occur in the off-host case. Address space complicationsimposed by the

operating system may also pose a problem.

1.5.2. Overtaxing the Host Processor

The benefits of off-loading the host by partitioning protocol processing onto an
attached processor may be eroded due to several sources of overhead:

Control, Satus, and Data Transfer. When using an off-host architecture, the host
processor has to perform a certain amount of communication with the protocol processor
device. The host processor must, to some extent, drive the protocol processor by sending it
control information and reading its status. Such overhead can not be avoided; however, care
should be taken to minimizeit, lest the host processor become overburdened. The transfer
of TSDUs to and from the protocol processor is a prime concern. If the host processor is
burdened with this task, the data transfer may consume a significant number of processor
cycles. This overhead may be amplified if the protocol processor resides on a separate
board on the host’s I/O bus. This bus may have relatively low bandwidth and high latency

in comparison to the data paths on the CPU board. The designers of an off-host protocol

13

architecture should seek to minimize the bus transfers required by the host CPU to use the
services of the communication processor.

Management of Shed Data Structues The host may also be made to allocate
shared data structures such as buffers for communication between itself and the protocol
processor. Similarly, designers may wish for the host to manage various protocol processor
resources such as open connections. These tasks should ideally be performed only by the
protocol processor device. If not, they should at |east be avoided in the common case of data
transfer.

Multiplexing and Demultiplexing Command Requests and Status Respoisges
uations where multiple application processes may use the protocol processor, the host may
also be required to multiplex protocol commands descending from multiple processes and
demultiplex protocol status ascending toward one of many processes. This may require the
protocol processor device driver to manage a state vector mapping protocol processor
response data to a particular process. The management of such a data structure results in
another source of host processing overhead.

Notification of Command Completidsince the protocol processor executes asyn-
chronously with the host processor, there must be away for the host to discover when pro-
tocol processor status responses have arrived for it to receive. This results in the need for
either an asynchronous natification mechanism such as hardware interrupts or the use of
periodic polling of the protocol processor response stream. The host must expend some pro-
cessor cyclesto perform these tasks and also to act upon the such responses when they are

present.

1.5.3. Increased Data Path Complexity
Another set of pitfallsresults from the complexity introduced by the addition of the
protocol processing hardware into the network data path. These pitfalls may significantly

affect protocol performance.

14

Low Bandwidth Connection to the Protocol Processor. The protocol processor may
communicate with the host processor and host memory over a data path having relatively
low performance. For example, the protocol processor may reside on a separate circuit
board which resides on the host computer’s 1/0O bus. Such a bus typically has lower
throughput and higher latency than the host’s CPU-memory bus. As a result, the off-host
architecture may cause a performance drop on accesses to memory. Similarly the off-host
architecture may force the data path between the protocol and the network interface to be
over alow-performance medium; this may further degrade performance.

Additional Data Copies. Data from the higher-layer protocols may reside in the
host’s on-board memory, and addressing restrictions may require that this data be copied to
local memory on the protocol processor device for processing. This copy occursin addition
to one that must eventually be performed to the network interface device. The effect of this
additional copy may be a profound increase in latency. Furthermore, if the two copies are
not performed in parallel, they may also have a serious effect upon protocol throughput.

Additional Bus Contention. If the protocol processor resides on the host’s 1/0 bus,
communication between it and the host may result in contention with other bus mastering
devices such the network interface. This contention may erode system parallelism or may
cause unpredictable protocol throughput or response times. Even if simultaneous requests
for the use of the bus are not present, there may be an increased cost in the overhead of bus

arbitration time due to alternating requests for bus mastership.

1.6. Summary

In this chapter we have motivated the study of off-host communications protocol
architectures and discussed the possible benefits and pitfalls of employing such designs. In
chapter two we cover the design issues inherent in off-host protocol architectures. Related
work on off-host communications architectures from the literature is summarized in chap-

ter three. Chapter four presents the design and implementation of an actual off-host com-

15

munications architecture, and chapter five summarizes and profiles its performance,
identifying system bottlenecks. In chapter six we develop an analytic model to predict the
performance of off-host communications architectures, apply it to our own design, and val-
idate its predictions against the observations in chapter five. In chapter seven we conclude,
evaluating our off-host communications architecture and analytic model and making sug-
gestions for future work. Methods of obtaining input parameters for the analytic model are

presented in the appendices.

2 Design Issuesin Off-Host Communications
Architecture

2.1. Overview

In this chapter we present the issues intrinsic to the desigftlodsifcommunica-
tions protocol architectures. These center around the components of such architectures,
their placement, and the communication between theenfiidt consider the interface
between the host and protocol proceskater we discuss the architectural levels spanned
by an of-host communications architecture, followed by the hardware and software mech-
anisms used to communicate between the components at each level. In conclusion we dis-

cuss the philosophical extremes dilebst communications architecture design.

2.2. TheHost-Processor I nterfaceto the Protocol Processor

We restrict our discussion to communications protocol architectures in which the
transport and network layer protocols run on drhost protocol processothe higher
layer protocols reside in the host, and the data link layer and below are on a network inter-
face devicé. Given this situation, we must have the ability to send and receive a transport
service data units between the host CPU and the protocol prodassddition, we must
have a way to command transport layer services from the protocol processor and receive an
indication of protocol processor status. Some architectures may employ additional mecha-
nisms to provide options with the command and status information. In this section we dis-
cuss the attributes of the various streams over which this information must Hese
streams may span several architectural layers, and several communications mechanisms
may be employed to implement their interlayer flow of information. These issues will be

covered below in sections 2.3 and 2.4.

1. The issues involved in the protocol processoommunication with the network interface are
similar to those of the host CRLEommunication with the protocol proces$arrthermore, the net-
work interface may be integrated into the protocol procesdioninating these communication
issues altogethetTherefore such issues will not be covered in this work.

16

17

2.2.1. Command Stream

The session layer must be able to request various services from the transport layer.
When using an off-host protocol implementation, the session layer must request these ser-
vices through the use of a well-defined set of protocol processor commands issued by the
session layer to the protocol processor devicedriver, which is charged with submitting them
to the transport layer on the protocol processor hardware via the command stream. As a
result, some host processing overhead for executing protocol processor device driver soft-
ware is unavoidable when using an off-host communi cations architecture. Since the proto-
col processor executes asynchronoudly, there must be a mechanism for the protocol
processor to recognize that a command is pending for it to process. This may be accom-
plished through hardware interrupts or through polling as discussed in section 2.4. An addi-
tional concern isthat the interarrival time of commands from the host CPU may be shorter
than the protocol processor servicetime for such commands. As aresult, queuing of proto-
col processor commands may be necessary, and a stochastic queueing delay may become a
component of the overal latency of the off-host communications architecture. The queue
may utilize one of several queueing disciplines such as first-in-first-out or priority-driven.
Inaddition, such aqueueislikely to be of finitelength, or there may be alimit to the number
of commands which can be pending for a given transport service access point. As aresult,
the session layer may have to block on submitting a command to the protocol processor

device.

2.2.2. Status Stream

The protocol processor device driver must somehow become aware of the status of
commands submitted to the protocol processor. This can be done using two styles of inter-
action and a status stream. One form of interaction is that the session layer may query the
status of a command issued to the protocol processor. Another is that the transport layer

may indicate to the session layer asynchronously that an event has occurred. These styles

18

of interaction are similar to the use of interrupts and periodic polling. The protocol proces-
sor and itsdevicedriver may interrupt the session layer to indicate asynchronously the pres-
ence of pending status information from the transport layer, or the session layer may poll
to synchronously read the status of the transport protocol as provided by the protocol pro-
cessor. Interrupts and polling are discussed further in section 2.4. As with the command
stream, the interarrival time of status information from the protocol processor may be
shorter than the time for the host CPU to consume such information. As a result, queuing
of protocol processor status may be necessary, and another source of stochastic queueing
delay may be introduced into the aggregate latency of the off-host communications archi-
tecture. As is the case with a command queue, a status queue may employ one of many
gueuing disciplines. Note also that if thereisalimit on the length of the queue used to sup-
ply statusto the host CPU, the protocol processor may be forced to block on providing sta-

tus to the host.

2.2.3. Data Stream

Each command or item of status information passed to or from the protocol proces-
sor may have a Transport Service Data Unit (TSDU) associated with it. This TSDU must
be carried over some data stream between the two processors. It is important to point out
that this data stream need only logically carry the data; that is, the data need not be physi-
cally copied between the protocol processor and host. In fact, copies of protocol data should
be avoided since significant latencies and loss of throughput for large messages can result
from introduction of extradata copiesin acommunications architecture. Architectural con-
Siderations and the nature of particular transport and network layer protocols may conceiv-
ably dictate the need for a physical data copy, however. Note that all data must undergo at
least one physical copy in the communications architecture; such acopy iseither to or from
the network interface hardware. The data may pass either physically or logically through

the data stream between the host and protocol processor, but it must always move physi-

19

cally through the network interface. In contrast with the command and status streams,
gueueing of datain the data stream may not be physically necessary since pointersto such
data may be part of the command or status information which already undergo any neces-
sary queuing. If queueing is required, however, it introduces issues similar to those dis-

cussed above.

2.2.4. Options Stream

An options stream, similar to the data stream, may also be employed to pass options
associated with commands and status between the host and protocol processor. Commands
which require these options will incur additional overhead on both the host and protocol
processor since additional processing is required to transfer and process this information.
The benefit of an options stream is that it can minimize the amount of information present
in the command and status streams. Information that need not flow in the common case of
protocol processor activity can be left out of the command and status stream and included
in the seldom-used options stream. The end result is that a minimum amount of command

and status traffic occurs in the common case.

2.3. Hardware and Software Architectural Levels

An off-host communications architecture consists of severa levels of software and
hardware architecture. These levels are the user level, kernel level, buslevel, protocol-pro-
cessor level, and network-interface level; the user, kernel, protocol-processor, and network-
interfacelevelsare structured such that they lay atop one another. The user and kernel levels
are simply subdivisions of host software, whereas the protocol-processor and network-
interface are hardware level s separated from each other and the host levelsby the buslevel.
The relationship between the levelsisillustrated in Figure 2.1. In some architectures, the
kernel level is not present, or the protocol-processor and network-interface levels are uni-
fied. As discussed below, the nature of these levelsis somewhat dictated by the operating

system environment and hardware organization of the host computer system.

20

User Level

Kernel Level

Bus Leve

Protocol-Processor Level

Bus Leve

Network-Interface Level

Figure2.1: Architectural Levels

The components of the communications architecture, including the application pro-
gram interface and specific protocol layers of the ISO OS| reference model, are distributed
over each of the architectural levels. In this work we consider communications architec-
turesinwhich the transport and network layer are implemented off-host on adedicated pro-
tocol processor, the session layer and above areimplemented in-host, and the datalink layer
and below are implemented on a network interface device. Our concern hereis chiefly with
the details of the protocol processor and its interconnection to other architectural compo-
nents; however, we briefly sketch certain details of the implementation of surrounding pro-
tocol layers in order to explain how they fit into the complete off-host communications

protocol architecture.

2.3.1. User Leve

The user level refersto that at which application processes run in the host operating
system. Such processes may send and receive application service data units (ASDUS)
located in the memory of their address space. Applicationstransfer these ASDUs by invok-
ing communication primitives from an Application Program Interface (API). An example

of such an API isthe socket interface of BSD UNIX [30]. At least part of the APl imple-

21

mentation must reside at the user level so that it may be accessed by applications; however,
much of the API implementation may also occur at the kernel level.

Another component of the communications architecture which may reside at the
user level isthe protocol processor device driver. For host operating systems such asMS-
DOS[18] in which secure access to shared resources is not a concern, the protocol proces-
sor device driver may safely run at the user level. In such cases, the driver may be in the
form of library code linked with an application program or it may beinstalled asaoperating
system device driver where its code still resides in the user-level address space.

In host computer systemswith multiple processes or users, secure accessto the pro-
tocol processor device may be aconcern. In such casesit may be necessary to place the pro-
tocol processor device driver in a protected operating system kernel. An alternative to this
approach, employed in operating systems such as Mach [1], allows device drivers to run
securely at the user level. Such drivers run as privileged server processes as discussed in
section 1.3.1. In these scenarios a small amount of kernel software may be required to per-
form privileged hardware operations that manage processor interrupts or to map hardware
registersinto the server process' address space. Note that in order to provide protection for
shared resources, the server process address space, albeit at the user level, must still be
somewhat digoint from that of the client processes requesting protocol processor service.

Program code for implementations of protocols at and above the session layer may
also reside at the user layer. Such protocols may bein the form of library code linked with

the code of an application, or the protocols may run as server processes.

2.3.2. Kernd Levd

In operating systems such as UNIX [30] which provide the secure management of
shared resources for multiple user processes, host memory isdivided into protected address
spaces. Each process has a private address space which it is separated from that of other

processes and especially the operating system kernel 2 the process may only accessitsown

22

address space. This protects kernel data structures and hardware devices from unsafe or
malicious use. To ensure the secure use of an off-host protocol implementation in such an
environment, the protocol processor device driver may be run in the operating system ker-
nel. (A secure alternative employing a protocol server isdiscussed in the previous section.)
When at the kernel level, the device driver executesin its own distinct address space. User-
level applications may request secure services from the device driver through a restricted
set of system calls. Software executing in the kernel layer typically executesin aprivileged
CPU mode that enables certain processor instructions useful in device drivers which are
unavailableto user-layer software. For example, only kernel-level code may be ableto exe-
cute privileged 1/0 machine instructions or enable, disable, and handle hardware interrupts.
The software implementation of protocols at or above the session layer may also reside at

this layer as may portions of the APl implementation.

2.3.3. BusLeve

The hardware components of an off-host communi cations architecture must be con-
nected with some variety of buses. Such hardware components are the host CPU, protocol
processor, network interface, and memory. All communication between these components
must occur over abus as discussed in section 2.4.2.3. Note that there may be several buses
within the host computer system and that some buses may allow multiple masters and some
may not. Theindividual buses may have varying performance characteristics. One special-
ized type of busis designed to have high performance, and is used to connect only a few
high-speed components such as a processor and memory; such abusis often termed amem-
ory bus. Another type of busis designed to be versatile; it typically connects I/O devices
with varying response times and is termed an I/O bus. An 1/0O bus typically has slots to

alow the insertion of severa modules which are simply circuit boards that may contain

2. Note that in many operating systems, the term kernel refers only to the software which provides
core system services and encapsulates the hardware; security features such as a protected address
space and privileged instructions are not implied by this term. It should be recognized that in this
work we use the term kernel in a stronger sense, implying the presence of these security features.

23

memory, a processor, or an |/O device. Some rare memory bus designs may also support
the insertion of asmall number of high-performance modules. Due to their flexible design,

I/O buses typically have lower performance than memory buses.

2.3.4. Protocol-Processor L evel

Asdiscussed in section 1.3.2, the protocol processor may take the form of acustom
VLSl application specific integrated circuit (ASIC) chipset, a general-purpose SBC, or a
hybrid of the two. In this thesis we consider the case where the protocol processor imple-
ments both the transport layer protocol and the network layer protocol. Such a processor
may reside either directly on the host CPU circuit board or as a module on a bus connected
toit. The protocol processor may useitsown local memory which may alow afaster access
time than that of the memory used by the host processor. In fact, it may even be difficult or
impossible for the protocol processor to address specific regions of host memory. This can
be particularly true when the host uses virtual memory. The protocol processor makes use

of anetwork interface device supporting the data link layer and below.

2.3.5. Network-Interface L evel

In chapter one, we refer to the device supporting the data link layer and below as
the network interface. This deviceisused by the protocol processor to transmit and receive
datalink layer SDUs, hereafter referred to asframes, to and from the network. The network
interface may reside on the same board as the protocol processor, or it may be on aseparate
bus module. The network interface is uniquein that it has some specia datainterface such
as FIFO memory buffers which temporarily hold incoming and outgoing frames. It is at
some point necessary for frames to be copied to these buffersin order to reach the network,
regardless of the protocol or communications architecture in use. Similarly, it is necessary
for incoming frames to be copied from these buffers. Hence, all communications architec-

tureswill require at least one copy of the data contained in application service data units.

24

2.4. Communication M echanisms Between Levels

A critical issue determining the performance of a communications architecture is
the set of communication mechanisms employed between its components. This section
describes the possible mechanisms which may be used between the components at each
layer of acommunications architecture. We first examine communication between the soft-
ware components of the host computer system, followed by that between the hardware
components of the communications architecture.

Before we examine how datatransfer can occur between the layers of the commu-
nications architecture, wefirst review what sort of information will be transferred. We take
as an example the interlayer communication necessary for transmission of an ASDU onto
the network mediafrom an application process. The ASDU exists as adata structure phys-
ically located in the host computer’s memory and logically in the user-level address space
of the application process. It passes through the protocol suite enroute to the network. Asit
does, protocol control information is appended to the message as it becomes an SDU for
the various protocol layers. This data migrates through each of the architectural levelsdis-
cussed in the previous section. In addition to this data transfer, control, status, synchroni-
zation information, and perhaps options must pass between certain layers of the
communications architecture. For example, aprotocol processor device driver at the kernel
level must write control information to the protocol-processor device at the protocol-pro-
cessor level and read the device's status. In addition, the host CPU may need to synchronize
with the protocol processor in order to notify it that a command is pending. Likewise, the

protocol processor may need to notify the host of the completion of a command.

2.4.1. Communication Between the User and Kernel Levels
In off-host communications architectures where the protocol processor device
driver residesin the host operating system’skernel, it is necessary to communicate between

the kernel level and the user level. Even if the device driver resides in a protocol server, a

25

limited amount of communication with the kernel may still be necessary to perform privi-
leged instructions. The mechanisms described bel ow facilitate the exchange of information

between the user and kernel levels.

24.1.1. System Calls

For off-host communications architectures in which the protocol processor device
driver residesin the host operating system’s kernel, a system call mechanismislikely to be
necessary for communication between the user and kernel levels. System calls allow user-
level programs to obtain operating system services. In the case of off-host protocol imple-
mentations, we are concerned with the control of the protocol processor device; hence, we
shall limit our scope to the class of device management system calls. In our case, these calls
are ultimately supported by the protocol processor device driver. We shall be most con-
cerned with system calls which allow a user process to write information to a device or to
read information from a device.

A system call providesaservice similar to asubprogram call inthat it invokesaspe-
cific software routine (in our case, a device driver routine); however, it provides this func-
tionality in a unique way since the routine resides at the kernel layer. To ensure security,
system calls only allow access to a restricted set of operating system routines at well-
defined entry points. Furthermore, the system call mechanism switchesthe mode of the pro-
cessor so that it may access the kernel-level address space. It is also quite likely that the
system call will also place the processor in aprivileged state in which it may accessalarger
set of machine instructions such as those which alow the manipulation of 1/0 devices.

A system call is further similar to a subprogram call in that it may pass a set of
parameters and possibly return avalue. However, the fact that the kernel may executein a
distinct address space complicates this metaphor. Like subprograms, parameters may be
passed to system calls on the user process’ stack or in itsregisters; thisis analogous to the

call-by-value parameter passing mechanism for procedures. If the kernel executesin adif-

26

ferent address space, it may have to incur some stack or register mapping overhead to be
able to manipulate these parameters. Similar efforts are likely when pointers to memory
regions in the calling process address space are passed to the kernel; this is analogous to
the use of the call-by-reference parameter passing mechanism in procedure calls. In this
case, the region referred to by the pointer must be made visible in the kernel-level address
gpace. Thisissueis discussed in the next section.

Like asubprogram call, asystem call requires acertain amount of overhead to mod-
ify, save, and restore the state of host CPU registers. However, the system call will require
additional machine statusto be saved and restored (possibly the entire process context). As

aresult, its overhead is typically much larger than that of a procedure call.

2.4.1.2. Shared User- and Kernel-Level Memory Regions

Recall that the user and kernel levels typicaly have protected address spaces. In
some systems, an address-range or apage- or segment-tabl e protection scheme may be used
to prevent user processes from accessing memory allotted to other processes or the operat-
ing system kernel. Systems with virtual addressing typically protect private memory by
providing user processes and the kernel with digoint virtual address spaces. In either of
these scenarios, a method of communication between these layersisto selectively remove
this protection over certain memory regions, thus allowing them to be shared. First we shall
review how such schemes may be achieved, and then we shall discusstheir utility in an off-
host communications architecture.

For host operating system environments in which an address-range protection or a
page- or segment-table protection schemeisused, it isusually the case that user-level pro-
cesses are prohibited from reading or writing the memory regions of other processes or the
kernel. In some cases these restrictions may also apply to the kernel. In such systems, how-
ever, the kernel may modify the protection range over a region of kernel- or user-level

memory or it may enable read or write protection on a range of page or segment table

27

entries. This allows unrestricted, shared access by the kernel-level-taves@entities to
each otheés memory

In host systems with virtual addressing, ts®el processes are typically given a
disjoint virtual address space from other processes and the kernel. This preveetgeliser
and kernel-level entities from addressing each &dheemoryand, therefore, sharing it.

To remedy this situation, the kernel may access regions of théeuskaddress space by
mapping them into its own address space. In systems employing a protocol server architec-
ture it may be desirable for the privileged protocol server to map regions of the kernel-level
address space into its udevel address space. Such mappings may also be employed
between the server and its client processes. The protocol server may need to invoke the ker-
nel in order to perform such mappings. An issue unique to virtual-addressing systems is that
a pointer to an object passed between two virtual address spaces is not valid if interpreted
in the foreign address space. Some means of translating such a foreign pointer (so that it
refers to the local, mapped version of the object) must be employed for the mapped version
to be accessible.

A similar use of mapping between a host virtual address space and a physical I/O
address space may be required to allow a protocol processor in the 1/0 address space to
address usdevel or kernel level memonA unique issue here is that, in host systems with
virtual memory it may be necessary to “lock down” pages of dseel memory such that
they will be physically resident when accessed by a protocol processor in I/0 address space.
Communication with the protocol processor is discussed further in section 2.4.2.

The point of creating shared memory regions of-lsexl and kernel-level memory
is to allow protocol data units to cross the barrier between the user and kernel level without
being physically copied. The minimization of protocol data copies typically helps to ensure
high performance. This is likely the case fogdata units, where the overhead of the cre-
ation of shared memory for each message is low compared to passing the information by

value on a system call parameter list. For short messages, hpaewerhanism employ-

28

ing the call-by-value mechanism may prove to have higher performance since such a

method avoids the overhead of shared memory creation.

2.4.1.3. User-Level Interrupts

Some operating systems such as UNIX [30] alow kernel softwareto interrupt auser
process in order to notify it of the occurrence of an asynchronous event such as the arrival
of protocol processor status. This information may be sent by a kernel-level device driver
to an application process or a protocol server. Within the user level, a protocol server may
also use such a mechanism to notify its clients of pending responses. These interrupts
require processor context to be saved and possibly may change the mode of the processor.
As aresult, they can have arelatively high overhead. Further problems with interrupts are

discussed below in section 2.4.2.6.

2.4.2. Communication Between Hardware Components

We assume an off-host communications architecture that consists of the following
principal hardware components: ahost CPU, a protocol processor, a network interface, and
memory. This section is concerned with the communications mechanisms used between
these components. The memory component is unique in that it may be distributed within
each component or exist as a peer component. We shall focus primarily on communication
between the host and protocol processor, although many of the mechanisms discussed may
also be used to communicate with the network interface. Furthermore, we recognize that
the protocol processor and network interface may be integrated into a single unit; in this
case, communication between these componentsis a non-issue.

We first consider the high-level mechanisms which may be used by processors to
convey information to other processors or devices. These mechanisms are shared memory
and 1/O registers. At alower level, we consider the issues involved in physically transfer-
ring data over the bus connecting circuit boards on which the processors, memory, and

devicesreside. We then examine two approachesto driving the transfer of information over

29

the bus: programmed 1/0O and direct memory access. Finally we consider interrupts and
periodic polling, methods of communication which simply act to synchronize the other-

wise-asynchronous components of the architecture.

2.4.2.1. Shared Memory

One mechanism for communication between the host processor and protocol pro-
cessor is the use of shared memory. With this method, a common region of memory is
shared between the two processors. Once such a memory region is prepared, its naive use
IS quite straightforward; one processor simply writes information to this memory for the
other to read and vice versa.

Thisnaive approach isnot adequate, however, because the two processors accessing
the memory execute asynchronously. As aresult, some form of reader/writer synchroniza-
tion isrequired, lest the reader read invalid data or the writer overwrite valid data. Various
synchronization protocols may be used as discussed in [22][29][40]. The protocol proces-
sor and the host must also agree on where itemsin the shared memory arelocated, and they
may also need to be able to allocate subregions of the memory for specific uses. One
approach to ensuring that no two memory subregions allocated by the host or protocol pro-
cessor overlap due to alack of processor synchronization is to charge one processor with
the allocation duties. Ideally the protocol processor shall be charged with most of the syn-
chronization protocol tasks in order to off-load the host (a major goal of off-host protocol
processing); however, in many cases it may be more straightforward to have the host per-
form these duties.

In addition, the very feasibility of the creation of a shared memory region is an
issue. For both the host CPU and protocol processor to be able to access shared memory
they must both be able to address it. Thus, to create aregion of shared memory, there must
be aregion of memory common to the address spaces of both processors. In some computer

systems, certain memories may not have this property. In others, such aregion may exist,

30

but it may be quite small and may be divided for use with other I/O processing devices. As
a result, there may be severe restrictions on its use, including constraints on the size and
location of the subregions that may be used.

The access time of the shared memory in use by the host and protocol processor
may have a significant effect on the performance of the off-host protocol processing archi-
tecture. Specia high-speed memory may be employed on the protocol processor devicein
order to optimize protocol processing and achieve higher performance. It could therefore
be a good design choice to use this high-speed memory as the shared memory region if it
ismutually addressable. However, if the use of such memory resultsin additional copies of
protocol dataunits, the benefits of its short accesstimes may belost, and lower performance

may resullt.

24.2.2. 1/0 Registers

An alternative to the use of shared memory for communication between the proto-
col processor and the host CPU isthe use of 1/0 registers on the protocol processor device.
I/O registers are addressed by the host in either its physical memory address space or adis-
tinct 1/0 address space depending on whether the CPU supports memory-mapped 1/0 or
isolated 1/0. These registers are command registers, status registers, and data registers.
Some registers have access restrictions; a CPU may only write to command registers, and
it may only read from status registers. Data registers may be read-only, write-only or unre-
stricted. The host’s device driver would use command registers to send commands and
optionsto the protocol processor deviceindicating that it perform one of awell-defined set
of transport protocol tasks. Later, thedriver may query astatusregister to determinethe sta-
tus of the device or the commands issued to it. Data registers (likely FIFOs) may be used
totransfer protocol datato and fromthedevice. 1/O registers may haverelatively fast access
times relative to shared memory; however, they may also have strange address alignment

and data size restrictions which complicate their access. Due to their simple nature, 1/0

31

devices without a microprocessor often use |/O registers rather than shared memory for

communication with their driver.

2.4.2.3. Bus Transactions

Whether they use shared memory or 1/O registers, separate components connected
viaabus communicate with one another via bus transactions such as reads and writes. Spe-
cific components may act in bus transactions as masters, slaves, or both. A component
behaving asabus master isan active entity which may initiate bustransactions which trans-
fer data to and from slaves on the bus. A component in the role of abus slave is a passive
entity which typically may only respond to requests from a master or generate hardware
interrupts. Some components on the bus are capabl e of handling interrupts. Hardware inter-
rupts are discussed further below in section 2.4.2.6. For buses on which more than one
module may become a master, a medium access control scheme is required to prevent two
masters from driving the bus at once. Access control is done through an arbitration scheme
which chooses from possibly severa requests originating from different bus masters and
then grants control of the bus to one specific master. One of many arbitration policies (e.g.,
fixed priority or round-robin) may be adopted. An advantage to having only one possible
master on a busisthat arbitration becomes unnecessary.

A processor (either the host CPU or the protocol processor) performsthe transfer of
protocol data units or control information over the bus through the use of multiple bus
transactions. To perform a bus transaction, the master must have exclusive access to the
bus. Thus, with multiple master buses, a master wishing to utilize the bus must first request
the bus. This request may have to undergo arbitration with the pending requests of other
requesting masters. Arbitration results in overhead in addition to that of the transaction
itself. The choice of a bus release policy is another issue. A master may adopt a release-
when-done (RWD) policy in which exclusive access to the busis relinquished at the end of

each transaction or group of transactions; otherwise, it may adopt a more greedy release-

32

on-request (ROR) policy in which exclusive access to the bus is held until other masters
have pending requests. Bus arbitration overhead may therefore be minimized if the master
employs a ROR policy.

Another source of overhead that may be particularly significant for bus read trans-
actionsisthat the address of datato be read must initially be asserted on the bus by the mas-
ter; after atime interval, data asserted by the responding bus slave becomes available for
reading. For writes the master may assert the address and data simultaneously on the bus.
As aresult, bus writes often have lower latency than bus reads, and the off-host protocol
processor can contrive to take advantage of this fact.

As another solution, two techniques may be used to improve the performance of
reads. For some buses, read transactions may be pipelined such that while the datafrom the
previous transaction is being asserted by a dave, the address for the next read transaction
can be asserted by the master. This parallelism removes some of the overhead of the read
transactions. Another technique which may be used in transfers of contiguous memory is
the use of block mode transactions. With such a transaction, the master asserts only the
starting address of the memory to be transferred; the data are asserted without any further
addressing overhead while the slave reads it from or writes it to successive memory words
or a FIFO register. In addition to lowering the overhead of read transactions, this scheme
may also be used to improve the performance of writes.

In order to facilitate system expansion and support a wide class of 1/0 devices,
backplane buses are typically designed to have many slots and support various device
speeds. As aresult, eectrical considerations usually require the bandwidth of a backplane
bus to be lower than that of a memory bus.

In addition to the problems of arbitration overhead in multiple-master buses, con-
tention for the bus can force requesting mastersto wait for the transactions of other masters
to complete. Various arbitration policies may resolve this contention in different ways

including preemptive policies which cause the wait times of high-priority requests to be

33

short; however, significant aggregate delays can result which may hurt the overall latency
of the communications architecture. Even more significant may be the effect of bus conten-
tion on overall throughput. If the protocol processor and the host CPU share a common bus
it may removethe possibility of performing datatransmissionin parallel. Asaresult, copies
that would otherwise occur in parallel may degenerate into serial copies, and aggregate

throughput may suffer greatly as aresult.

2.4.2.4. Programmed |/O Transfers

When dataistransferred between components with amultiple-master bus, adistinct
issue is determining which entity drives the transfer. We refer to atransfer in which a CPU
performsthe data copy as aprogrammed I/O transfer. In an off-host communications archi-
tecture this CPU may be the host CPU or that of a microprocessor-based protocol processor.
In such atransfer, the memory movement or 1/0O instructions of the CPU are used to read
or write data over the bus under program control. Programmed 1/O transfers are quite
straightforward in that they do not inherently require any set up or synchronization between
the endpoints of the transfer. The maor drawback to programmed I/O is that it consumes
CPU cycles which may be put to better uses. Furthermore, the efficiency of burst mode bus
transactions may be unavailable when using programmed I/O. It is clear that the use of pro-
grammed 1/O by the host CPU in an off-host communications architecture erodes the ben-

efit of the architecture with respect to off-loading the host.

2.4.2.5. Direct Memory Access Transfers

An aternative to programmed 1/O for the transfer of contiguous memory regionsis
the use of direct memory access (DMA) transfers. With a DMA transfer, a processor pro-
grams a special circuit known as a DMA controller to perform the data copy. A CPU must
prepare the controller for the transfer by providing it with the base addresses of source and
target memory buffers involved in the copy (one of which may be implicit) and the length

of the transfer. Then the processor commands the DMA controller to start the transfer. The

34

chief advantage of DMA transfersisthat the processor does not drive the copy and isthere-
fore free to continue processing in parallel. One drawback of the use of DMA transfersis
the overhead of setting up the transfer. Another isthat the DMA transfer is performed asyn-
chronously with the processor, and as a result some synchronization overhead must be
incurred in order to inform the processor of the completion of aDMA transfer. Thus, apro-
cessor may spend more cyclesusing DMA for short buffersthan if it had simply employed

programmed 1/0.

2.4.2.6. Hardware Interrupts

Note that the host CPU, protocol processor, and network interface hardware are
three autonomous components in the host computer system. Each executes its own set of
tasks asynchronously with respect to the other components. A wholly different problem
from that of transferring data between the components of an off-host communications
architecture is that of synchronizing these hardware components. Hardware interrupts are
one mechanism with which to perform thistask. A processor or device may asynchronously
inform a processor of an event by sending it a hardware interrupt. Thisinterrupt causes the
processor to postpone further processing of instructionsin order to execute aninterrupt ser-
viceroutine (ISR) containing software which has been set up to handle the event. For oper-
ating systems which provide security between multiple processes, interrupts often change
the processor mode of the host to provide it with kernel privileges or change its address
space. This may allow the processor to perform privileged operations necessary to handle
theinterrupt. Theinterrupt mechanism isadvantageousin that it provides atimely response
to the event and incurs overhead only when events occur.

Hardware interrupts may also introduce a number of problems. Since they require
a processor to postpone the further processing of its instructions and return later, the pro-
cessor context must be saved before the ISR begins to run, and it must be restored after-

ward, otherwise unpredictable operation would result. The overhead of this context switch

35

may be significant, especialy if the processor mode, address protection, or virtual address
space must be changed. Another issueisthat since interrupts postpone the execution of pro-
cessor instructions, they change the timing behavior of the code and thereby detract from
the predictability of real-time processing tasks. Furthermore, if the processor instructions
interrupted and the I SR routine invoked use shared resources or data structures, some form
of concurrency control may be required in order to avoid software bugs. To combat these
problems, interrupts may often be prioritized and the mode of the processor may be set such
that interrupts below a certain priority level are postponed or ignored. The use of thisfea
ture also allows pending interrupts of higher priority to be serviced before those of lower
priority. The drawback to disabling interrupts at a particular priority level isthat it delays

the response to the event which generated the interrupt.

2.4.2.7. Periodic Palling

An alternative to the use of interrupts is periodic polling. With this mechanism, a
processor periodically checksfor the occurrence of asynchronous events. These events may
be indicated in status registers on adevice or they may be encoded in data structures stored
in shared memory between the processor and the device. The mgor drawback to periodic
polling isthat it absorbs host cycles even when there are no pending events. This approach
is attractive, however, in that the problems inherent in interrupting processor instructions
are avoided. Particularly, the predictability of real-time processing may be much easier to
ensure with apolling approach. Furthermore, with polling, the use of shared data structures

by event handling code and other software is readily serialized.

2.5. Architectural Integration Continuum
The previous sections introduced a wide variety of design options for the use of
architectural levels and methods of communication between those levels. In this section we

present the two extremes of a continuum of design choices aimed at pursuing the benefits

36

of an off-host protocol processing architecture. We also discuss the trade-offs inherent in

venturing toward each end of the continuum.

2.5.1. Continuum Choices

There are two fundamental design directions open to the devel opers of an off-host
communications architecture in their attempt to provide the benefits of off-host protocol
processing to host applications. Developers may choose a tightly-integrated design or a
loosely-integrated one. In atightly-integrated design, there are aminimum of software and
hardware architectural levels and the data path between them is of minimal complexity. At
the extreme, thereisno kernel level and the architecture supports only independent, single-
master buses. Thereisonly one memory and it is shared symmetrically among all hardware
components and resides in a common address space. The protocol processor and the net-
work interface areintegrated into asingle unit and each isacustom ASIC. Finally, all com-
ponents are connected via direct bus pathways and some addressing logic.

In aloosely-integrated design, all hardware and software layers are present, the host
CPU, protocol processor, and network interface are each on a separate circuit board resid-
ing on amultiple-master bus, and memory is distributed asymmetrically on several boards.
There are separate user-level, kernel-level, and 1/0 address spaces. In addition, the protocol

processor is constructed using a single microprocessor.

2.5.2. Trade-Offs

There areanumber of trade-offswhich the designers of an off-host communications
architecture make in moving toward a tightly-integrated or a loosely-integrated extreme.
These trade-offs may represent factors such as the development or production cost of the
architecture, the modularity of its design, and its overall performance.

Since each of its components is on a separate circuit board, a loosely-integrated
design may be fashioned from widely-available products. Asaresult the development costs

may be relatively low; however, the production costs may be high since there are many

37

components. A tightly-integrated design requires the development of custom circuitry
which may be an expensive development endeavor; however, the production costs may be
low since aminimum of circuitry can be employed. A tightly-integrated architecture suffers
from the drawback that it may only function with one type of host, one set of transport and
network protocols, and with one data link layer protocol, physical layer protocol and net-
work medium. In contrast, a loosely-integrated approach is modular; it may be integrated
into a variety of configurations by substituting certain components. A loosely-integrated
approach may require the host to have a common type of 1/O bus into which a variety of
compatible modules may be inserted. Due to the fact that it has a more straightforward data
path than one designed from a loosely-integrated approach, a tightly-integrated design is
likely to result in lower protocol latency. In aloosely-integrated design, the host CPU, pro-
tocol processor, and network interface are on separate circuit boards so they are likely to
contend for the single 1/0 bus. This would hinder the parallel data flow among them. A
tightly-integrated approach with multiple, single-master buses and a protocol processor and
network interface on the same circuit board is likely to avoid bus contention; hence, it is
morelikely to achieve ahigh degree of parallelism than aloosely-integrated approach. This
should yield relatively higher throughput.

Thedilemmaof the system architect isthat all these design choicesinteract with one
another such that no single set of choices guarantees an optimal design, i.e., there are trade-
offs. The remainder of this thesis illustrates the subtle interactions encountered in various

approaches to off-host protocol processing.

3 Redated Work

3.1. Overview

Several efforts to develop communications protocol architectures that place the
transport and network layer protocols off-host have been documented in the literature. This
chapter surveys the related work, paying close attention to how each resolves the design
issues presented in chapter two. We examine how each implementation is structured in
terms of itsuser, kernel, bus, protocol processor, and network interface, and we observe the
communications mechanisms between such components. Protocols present at and above
the session layer are ignored.

In an attempt to evaluate architectural design choices, we also quote the perfor-
mance results or estimates for each architecture when they are available. Some communi-
cations architectures resulted in the production of a prototype; in these cases, empirical
performance results are available. Other projects only went through initial design and unit
testing phases; such work provides only estimates of performance.

Off-host communications architectures have many similarities to parallel protocol
implementations. To this end we wish to recognize the fine body of work on parallel imple-
mentations of network and transport protocols [6][7][16][17][20][23][25][49][50][51]
[52]. Thisresearch is not surveyed here becauseit islargely concerned with issuesintrinsic
to parallel host computers rather than with the off-host design issues presented in chapter

two.

3.2. Chesson

A pioneering effort in the development of off-host protocol architectures was Greg
Chesson’s Protocol Engine project [9]. The goal of this project was to devel op the Protocol
Engine, a custom VLS| protocol processor for the Xpress Transfer Protocol (XTP). XTP

possesses two unique architectural features relevant to off-host protocol processing. First,

38

39

it is atransfer Iayer1 protocol spanning both the transport and network layers of the ISO
OSl reference model. Second, X TP was designed as part of the Protocol Engine project to
readily facilitate its VLS| implementation.

The design of the protocol processor is discussed in [10] and [44]. The most distin-
guishing feature of the Protocol Engine is its VLSI-intensive approach; in choosing an
ASIC chipset implementation for the common-case processing of X TP, the Protocol Engine
designers hoped to maximize the parallelism possible in protocol processing. For example,
they designed the engine to overlap such operations as header parsing and address process-
ing, and to pipeline the processing of back-to-back X TP TPDUSs. Furthermore, the engine
architects planned to take advantage of the high speed of custom VLSI circuits in order to
process incoming MAC frames at the full bandwidth of a 100 Mbps local area network.

Severa custom RISC sub-processors (engines), some with support for fast context
switching, act in concert to support the parallel and efficient processing of protocol tasks.
At the heart of the Protocol Engine are separate transmit and receive engines which handle
protocol-specific processing for the outgoing and incoming TPDU streams, respectively.
Checksums are calculated in hardware as TPDUSs stream to and from the network. The
other processorsin the Protocol Engine are less protocol-specific. A special buffer-control-
ler processor manages data buffers stored in two banks of DRAM, interleaved for fast
access. In order to communicate with a variety of network interfaces (e.g., Ethernet or
FDDI), the protocol processor uses a generalized MAC port which connects the protocol
processor to the bit stream of an on-board network interface. A more general-purpose con-
trol processor handles complex X TP processing tasks such as network level route manage-
ment and connection setup. Such are operations that do not occur in the common case of

protocol processing.

1. Theterm transfer layer originateswith the protocol hierarchy of the GAM-T-103 reference model
[12].

40

To communicate with the host, the Protocol Engineincludesahost port. Itscircuitry
transfers data buffers between host and protocol processor memory using high-speed DMA
(its transfer rate was projected to be 200 Mbps). A host port connects the Protocol Engine
to the host computer viathe host’s system bus, which may be one of various 1/0 backplanes
such asthe VMEbus or Sbus. The literature provides no details of the command and status

streams between the protocol processor and a user-level application.

3.3. Kanakiaand Cheriton

Convinced that conventional transport protocols were too slow without hardware
implementation, Kanakiaand Cheriton designed the VM P2 Network Adapter Board (NAB)
[27]. The NAB is an off-host protocol processor board designed to implement Cheriton’s
VMTP transport protocol [8]. In their design, VMTP runs directly above the raw datalink,
i.e., thenetwork layer of their protocol architectureisnull. Like XTR, VMTPisasimplified,
lightweight protocol, designed to allow VLSI support.

The primary goal of the NAB prototype isto alow high speed operation of VM TP
over an underlying 100 Mbps network. Thisisto be accomplished on the protocol proces-
sor through the use of custom hardware consisting of five major components, al function-
ing in paralel: an on-board network interface, a TPDU pipeline, a buffer memory, a host
block copier, and a general-purpose, on-board processor. The block copier is essentially a
DMA controller and is used for transferring commands, status, and data between NAB
memory and host memory. The TPDU pipeline has the effect of hiding the overhead of cer-
tain protocol-specific processing operations (e.g., checksumming and encryption) for each
32-bit dataword passing through the network interface. The pipelineis designed to operate
at thefull network datarate. It should be noted that such pipelining mandates the fixed-field
encoding of VMTP TPDUs.

2. VMP isthe name of the multiprocessor computer with which the NAB was to be used. The NAB
design, however, is general enough to be used with other host computers as well.

41

Kanakia and Cheriton felt that the memory architecture performance of networking
hardware was an issue of increasing importance, citing future gains in bus and network
bandwidth. They also wanted a design that would not prohibit concurrent access from the
parallel components of the NAB. it these issues in mind, they gave the NAB a novel
memory architecture consisting of dual-ported, high-speed, static-column RAM (40-ns
VRAM). One port is optimized for high-bandwidth (800 Mbps) sequential access during
transfers by the block copjeand the other is made to support random access by the on-
board processofio avoid contention, these ports may be accessed independedtizl-
port DRAM controller chip arbitrates the use of the RAM by the TPDU pipeline, the host’
VME system bus, and the on-board processor

The on-board processor is a 16-Mhz Motorola MC68020. It orchestrates the opera-
tion of the bufer memory block copierand TPDU pipeline and performs a small amount
of complex protocol processing required in the case of-&erprotocol operation. In
addition, the queueing of command and status information is handled by the on-board pro-
cessor All “special-case” protocol processing such as handling acknowledgments and
retransmissions, is relegated to the host. Thus, this communications architecture is not
purely of-host.

In addition to the goal of fast protocol processing, the NAB designers stressed the
importance of dfloading the multiprocessor host by removing overhead in the form of
host CPU cycles, system bus bandwidth, and host interrupts. The designers felt that the reg-
isteroriented RISC cycles of their hastiigh-performance CPU would be poorly utilized
if burdened with the memory-intensive task of protocol processing. In addition, they
desired minimal transfer of protocol data over the system bus since it is a critical multipro-
cessor resource, connecting the VMP processor nodes. Finally the VMP architects felt that
without a NAB, excessive host interrupts from the high-speed network interface for each
data link frame would result in poor cache performance due to the cache invalidations that

must occur in order to swap in the interrupt handler context. Therefore they designed the

42

NAB to issue a minimum of host interrupts and to handle all interrupts from the network
interface, providing a “network firewall.” Such a firewall would be particularly useful if an
accidental or malicious barrage of frafvere to arrive at the host.

The NAB literature also details some of the issues of the command and status
streams to and from the protocol proces€mmmand blocks are sent from the host to the
NAB via a 1024-byte command and status regidi®o such blocks are described in the
literature; a Tansmit Authorization Record AR) block commands the protocol processor
to transmit a TSDU from host daf space, and a Receive Authorization Record (RAR)
block commands the processor to receive a TSDU into hdsr lspface. After being writ-
ten to the 1/O registeeach command is copied by the NAB into a queue in ifetuiem-
ory. The data stream may be carried in one of two ways. Short TSDUs are embedded inside
the blocks; long TSDUs are memory-mapped and referenced by pointers in the blocks.
Without the authorization of a RAR, incoming TSDUs may not enter or interrupt the host;
this helps to provide the firewallfe€t. After the operation of a command block completes,
the NAB leaves status information in the status register and interrupts the host.

The literature provides performance estimates for the architecture derived from var-
ious architectural parameters such as the system bus transfer rate and the T&DHg buf
latency These estimates predict NAB throughput to be 44.3 Mbps for a 16 Kbyte transfer
The time between the start of a one-byte transmission request and the status indication of
its completion is estimated at 1.6 ms. In the analysis, most of this latency is dominated by
host processing time. Unfortunatgi§anakia and Cheriton provide no details on what spe-

cific host processing contributes to such latency

3.4. Cooper et al.
Cooper et al. developed the Nectar Communications Accelerator Board (CAB), a
flexible communications architecture in which various transport and network layer proto-

cols may execute Bhost on a general-purpose RISC processquported by some proto-

43

col-independent custom hardware [11][43]. This protocol processor is but one component
in the Nectar project, which aims to construct a local area network that can function as a
multiprocessor composed of workstation nodes. In this scenario, the designer’s primary
goal was to achieve low host-to-host message latency. The main benefit of employing a
general-purpose processor rather than custom VL S| to execute protocolsisthat avariety of
protocols may be implemented in software on the CAB, regardless of their complexity. To
illustrate this, the CAB architects devel oped support for several network and transport pro-
tocols, including the ubiquitous TCP, UDP and IP protocols, as well as their own Nectar-
specific Reliable Message Protocol (RMP).

For the system configuration discussed in the literature, the CAB resides on the
VME backplane of a Sun-4 host running an unspecified flavor of UNIX. The protocol pro-
cessor taps into Nectar’s 100-Mbps fiber-optic media via an on-board network interface.
All protocol-specific processing is performed using a general-purpose 16-Mhz SPARC
CPU which runs alightweight multitasking runtime system. In other respects, however, the
CAB features a customized, yet protocol-independent, design. To avoid memory band-
width bottlenecks, a specialized memory architectureis used. The architecture employs 35-
ns static RAM divided into 512 Kbytes of program memory and 1 Mbyte of data memory.
Aswith the VMP NAB, data memory and program memory are optimized for access by a
DMA controller and a CPU, respectively. The custom DMA controller supports data trans-
fer among CAB memory and the network interface and among CAB memory and host
memory.

Application processes in the host communicate with the CAB using the Nectarine
API. Nectarine provides low-latency access to the CAB through the use of a mapped
shared-memory scheme that enables direct communication between the user and protocol-
processor levels, bypassing the kernel level entirely. As part of the API initialization code,
an application process at the user level maps CAB datamemory into its address space using

the mmap() UNIX system call. This system call, performed only once, invokes a kernel

devicedriver routine which facilitates the mapping. The application process may thereafter
directly communicate with the CAB through Nectarine subprogram calls and the shared
memory region. The primary advantage of this scheme is that it avoids the overhead of
making system calls for each CAB request. It is not likely, however, that this approach can
still provide security among application processes since they must share a common mem-
ory region. The library routines of the Nectarine interface do support synchronization for
the shared region, so conforming processes may safely communicate with the protocol pro-
cessor through the Nectarine API.

Due to the use of shared-memory, synchronization is necessary between host pro-
cesses and the CAB. This is done via condition variables and signal and wait operations.
Another form of synchronization is the indication of pending protocol processor status. To
this end, an application process may receive notification of a condition via polling at the
cost of busy waiting. Alternatively, the process may choose to sleep on the condition and
receive an application interrupt when the condition changes; however, this approach
requires kernel support and therefore incurs the cost of a system call.

The Nectarine API supports command, status, and data streams between the proto-
col processor and application process. The command stream to the protocol processor isthe
CAB signal queue, and the status stream to the host isthe host signal queue. A host process
can notify the CAB of pending commands via an interrupt. Similarly the CAB may inter-
rupt processes sleeping on the arrival of status; otherwise, such applications poll as dis-
cussed above. The data stream between an application process and the CAB is via
mailboxes, shared memory regions accessed through a synchronization protocol. Mailbox
writers must delimit their writes to mailbox memory with Begi n_Put and End_Put
operations; similarly, readers must delimit their reads with Begi n_Get and End_ CGet
operations. Some undefined scheme maps commands and status to the appropriate mail-

boxes containing their associated data, if any.

45

Cooper et al. built a complete prototype and therefore provide actual performance
measurements of its use. These were observed at both the protocol processor (CAB) and
user (host) levels using several of their protocols. For a short message ovet ABA®-

CAB latency is 241us and host-to-host latency is 4{i4. For lage messages over RMP
CAB-to-CAB throughput is around 90 Mbps and host-to-host throughput is 30 Mbps. For
the same message size, TCP gets about 35 Mbps from CAB-to-CAB and 24 Mbps from
host-to-host. TCR’lower throughput is lgely due to its checksum, which, in contrast to
the Protocol Engine and VMP NAB, receives no custom VLSI support with the CAB. RMP
does not include checksums; rathteis optimized for the Nectar LAN, relying on its data-

link error detection. The Ige performance drop between the host-to-host and CAB-to-

CAB observations is blamed on the overhead of transfers across tlseviMEbDUS.

3.5. Netravali et al.

Netravali et al. developed an communications architecture in which their “SNR”
protocol runs dfhost and in parallel on a set of loosely-integrated, dedicated processing
nodes [35]. They use a protocol architecture with a null network. lAyeovel aspect of
their architecture is that, to minimize bus contention, their planned design connects proto-
col processing nodes via a hierarchy of buses, each of which may be mastered indepen-
dently A “transmitter” sub-bus contains transmitting processor boards and a shared
memory board; similarlya “receiver” sub-bus contains receiving processor boards and
another shared memory board. The two sub-buses are connected to another bus which acts
as a backbone and allows access to a Network Interface Board (NIB) and the host computer
system. The transmitting and receiving processors are general-purpose, single-board com-
puters, but the NIB requires SNR-specific custom circuitry

The NIB is a separate circuit board which not only transmits and receives TPDU
frames to and from the network, but also has the ability to distinguish those which are for

data or control. In addition, it manages queues for free TPDfdrbutiata and control

46

TPDUSs enroute to the network, and received data and control TPDUs. The NIB performs
TPDU checksums as well.

The command, status, and data streams from the host computer to the protocol pro-
cessor nodes are via two separate command and status FIFOs for each simplex connection.
Theimpression from the literature is that the host must perform segmentation and reassem-
bly of TSDUs and TPDUSs, respectively. In this scenario, the host sends TPDUs to the pro-
tocol processor by acquiring a free buffer for its connection (apparently resident in host
memory) and copying its data to the buffer (presumably with programmed 1/O). It then
commands the processor to send the TPDU by placing a pointer to its buffer in the connec-
tion’s own transmit FIFO. A separate host transmitter process drains each connection’s
FIFO by transmitting its TPDUs using the NIB. TPDU reception is handled similarly. The
host reads protocol processor status via a FIFO providing pointers to sent TPDUs and
received TPDUs for the connection. The received TPDUs are queued in the proper
sequence of a TSDU. The host apparently polls the status queue, since thereis no mention
of the use of interruptsin the literature. A host receive process copiesincoming TPDUsto
host memory.

Protocol processing is divided into the work of transmitter and receiver processes,
each of which may execute on its own processor board or as a scheduled task on a single
processor. Each transmitter or receiver process manages only one connection. All connec-
tion state residesin the shared memory board on the transmit sub-bus, and other global state
information is stored in the shared memory board on the receive sub-bus. One transmitter
process manages TPDUSs for the connection, another handles retransmissions, and another
gueues status for the host. One receiver process ensures proper ordering and error control,
another frees completed TPDUs and advances the flow control window, and another peri-
odically sends transport protocol control frames indicating receiver status to the transmit-

ting end of the connection.

47

In contrast to the eventual plansfor ahierarchy of buses, the prototype discussed in
the literature places all nodes on asingle VME backplane. Each protocol processor node as
well asthe host, is a genera -purpose Single-Board Computer (SBC) containing a 20-Mhz
Motorola MC68030 and 4 Mbytes of local RAM. Each SBC runs a simple real-time mul-
titasking operating system. In the prototype, one SBC was used to simulate a NIB, and a
shared memory board was used to hold the NIB FIFOs and TPDU buffer memory.

The best performance results were received when two SBCs were used for all
receiving processes and one SBC was used for all transmitting processes. To factor out the
contention overhead inherent in their single-bus prototype, all measurements were per-
formed by transmitting only TPDU headers and no data. As aresult, estimates of the per-
TPDU processing throughput of the architecture are highly speculative. According to the
literature, the protocol processor prototype can handle a rate of about 10,000-15,000
TPDUSs per second. They expect a higher rate with afull hierarchical-bus implementation

of their architecture.

3.6. Beach

Beach presents the design of UltraNet, acommercia architecture aimed at provid-
ing near-gigabit data transfer between supercomputers over gigabit links [3]. To achieve
such high performance, UltraNet architects use an off-host firmware implementation of a
modified TP4 and employ up to two general-purpose processors and asmall amount of cus-
tom VLSI support. The network layer of this architecture is null. In addition to linking
supercomputers, their architecture also connects workstations, albeit with lower-speed
links (250 Mbps). To meet these varying demands, they provide two models of their proto-
col processor, one for supercomputers and another for UNIX workstations.

The designers chose TP4 as their transport protocol for its ssimplicity. Beach makes
apoint that the protocol processor’s high performance (discussed below) with TP4 shows

that lightweight transport protocols are not necessary for high-speed protocol processing.

48

Thisisinconsistent with the fact that his architects made radical lightweight modifications
to TP4, such asasimplified TPDU format, reduced options, placement of checksumsin the
TPDU trailer rather than the header, expanded maximum TPDU size (32 KB), and the addi-
tion of selective acknowledgments. Thus, such a conclusion is simply not warranted.

TP4 processing is handled by two general-purpose microprocessors on the super-
computer model of the protocol processor, the Control Processor (CP), an 8-Mhz AMD
29300 and the Data Acknowledgment and Command Block Processor (DACP), a 12-Mhz
Intel 80386. For the workstation model, asingle 16-Mhz 80386 acts asthe CP and al so per-
formsthe processing of aVirtual DACP (VDACP). The DA CP performs common case pro-
cessing such as the handling of data and acknowledgment TPDUs and the processing of
commands from the host. Its software is highly optimized; for the supercomputer model,
the DACP is programmed with hand-written microcode, and for the workstation model, the
VDACP executes hand-coded assembly language. The CP handles complex and/or rare
protocol processing tasks such as connection setup and error control, and is programmed in
a high-level language. The CP and DACP communicate via the shared memory of a con-
nection database. A very lightweight multitasking operating system is run on the two pro-
cessors. TP4 checksums are performed “ on-the-fly” in custom hardware asthe TPDU flows
through the on-board network interface. Thisis facilitated by the movement of the check-
sum field into the TPDU trailer.

The model of the protocol processor for UNIX workstations resides on the host’s
VMEbus, over which inter-processor communication occurs. The command and status
streams between the protocol processor and the host are constructed as two queues of com-
mand blocks resident in host memory. Notification of pending commands and statusis per-
formed via hardware interrupts. The architecture is carefully designed to require only one
copy of each TSDU inthe common case. This ensures higher throughput and eliminatesthe
need for the large pool of high-speed buffer RAM that would be required to sustain near-

gigabit transfer rates. The copy is performed using a DMA controller on the protocol pro-

49

cessor. Application processes running at the user level use a Berkeley socket API to per-
form communication. The API code then invokes protocol processor device driver routines
at the kernel level through system calls.

Throughput results are presented in the literature for both supercomputers and
workstations. When sending very large messages (on the order of a megabyte) between a
Cray X/MP and a Cray 2, presumably over a 1 Gbps link, a throughput of 384 Mbpsis
achieved. Between two Sun-3 workstations, their results show a peak rate of 31 Mbps.
Counter to intuition, the peak Sun-3 performance is higher than that between Sun-4 work-

stations, even though the Sun-4 machines have faster CPUs and VMEDbus transfer rates.

3.7. MacLean and Barvick

MacLean and Barvick developed an off-host Protocol Accelerator (PA) board
whose goal is to eliminate the bottlenecks in transport protocol processing. The PA
approach isto use two general-purpose microprocessors and additional custom hardware to
execute amodified TCP [31]. Their communications architecture has a null network layer
and serves a UNIX host computer containing a 25-Mhz Motorola MC68030 CPU.

A VME backplane contains the PA board along with the host processor board and
a 4-Mbyte host memory board. The protocol processor contains two 25-Mhz Motorola
MC68020 microprocessors, oneisfor receive processing, and the other isfor transmit pro-
cessing. To avoid microprocessor bottlenecks, no operating system is used, and each pro-
cessor has its own supporting 128 KB of RAM, 1/O ports, and interrupt circuitry. An
additional 128 KB pool of 40-ns static RAM is used to contain TCP Transmission Control
Blocks and is shared, facilitating communication between the two processors and the host.

The data stream is carefully designed to avoid bottlenecks. The network interface
resides on the PA board, and there is a direct data path between host memory and the net-
work interface which prevents intermediate buffering of transmitted application data units.

In addition, transfers between host memory and the protocol processor are performed by

50

one of two DMA controllers, one for sending and one for receiving. These controllers sup-
port scatter-gather DM A and, according to the literature, provide atransfer rate of up to 264
Mbps. Two hardware checksum components operating with the DMA are provided for
sending and receiving. To use the components efficiently, the TCP checksum field was
moved to form a TPDU trailer. For unspecified reasons, certain | P header information was
also added to the TCP header. MacL ean and Barvick claim that all the hardware compo-
nents can operate in parallel.

Application processes use the PA through a BSD socket APl which, in turn, makes
system callsto routinesin two UNIX kernel device drivers, one for the transmit processor
and one for the receive processor. The command and status streams between the protocol
processor and host are presumably implemented viathe fast, shared memory, and hardware
interrupts are used to inform the host of command compl etion.

The host-to-host throughput for 20-KB TPDUs is quoted in the literature as 11,000
TPDUSs per second, and the PA-to-PA performance is 15,000 TPDUSs per second. These
results are with 252-byte frames over a loopback network interface which has a 320 Mbps
transfer rate. Since the interface is loopback, a single host must both send and receive
TSDUs. To minimize the effect of this double duty on bus contention, received datais not
copied over the busin their tests. The architects blame the host-to-host performance loss on
UNIX overhead, which increases with TSDU size. They claim that this overhead is due to

the scheduling of other host processes.

3.8. Mitchdll et al.

Mitchell et al. discuss their plans to develop an off-host communications architec-
ture for embedded systems by executing the transfer layer protocol, XTPR, on an attached
processor board [38][33][34]. Their design goal is to ensure high throughput for both the
protocol and the application tasks on the host. The host system has a Motorola M C68030

microprocessor, runs areal-time operating system, and resides, along with the protocol pro-

51

cessor, in a VME-like proprietary backplane bus. At the time the documents on the archi-
tecture were written, not all design issueswere fully resolved. The discussion below briefly
reviews the tentative design described in the literature. No host-to-host performance esti-
mates were available.

The protocol processor board is designed to be made up of a custom integration of
stock microprocessor, memory, and network interface components. An Intel 80960CA was
chosen as the microprocessor. It executes a commercial version of X TP, modified to exe-
cute off-host and on the 80960. To maximize the performance of datatransfer, the designers
hoped to utilize some form of high-speed static RAM. An on-board network interface
chipset implements an FDDI-like proprietary MAC protocol.

Plans for the command and status streams were tentative. Application processes
command the processor through a socket-like API. The command and status streams are
implemented as queues in shared memory containing control blocks. To signa pending
commands, the host interrupts the protocol processor, and to signal pending status, the pro-
tocol processor interrupts the host. Data are transferred between the host and protocol pro-

cessor using a DMA controller built into the 80960 microprocessor.

3.9. Siegd et al.

Siegel et a. develop an architecture which seeks to overcome the bottlenecks in
transport protocol processing [39]. They approach the problem at two ends by employing
(1) asimplified version of TP4 and (2) an off-host architecturein which TP4 runsin parallel
on a set of general-purpose processors aided by custom VLS.

First, we briefly discuss the changes to TP4 because they facilitate the use of the
custom VLSI support. The modifications eliminate segmenting TPDUs and multiplexing
TP4 connections over a single network connection. In addition, the flow control is simpli-

fied and the extended PDU numbering format is mandated.

52

The protocol processor consists of a tight integration of several general-purpose
RISC microprocessors and custom VLS| circuits. There are separate processors for the
sending and receiving data streams, each with its own local memory. In addition, a custom
VLS| processor coupling device allows synchronized processor access to shared memory,
promoting inter-processor communication. Other custom circuits support timer and buffer
management and perform checksums. An “on-the-fly processor” detects the end of TPDU
headers streamed in from the network interface in order to route the header and datato sep-
arate buffers. These buffers are separated in order to optimize the use of the memory. Head-
ers are stored in high-speed 30-ns static RAM since they will be critically manipulated by
the protocol processor. Datais stored in high-capacity 70-ns DRAM sinceit arrivesin large
guantity and need only be accessed in asingle copy.

With respect to host and protocol processor communication, only the data stream
and processor synchronization mechanisms are described in the literature. For the data
stream, copies are performed with a special DMA controller that automatically allocates a
destination buffer from a pool as part of the transfer. In addition, the architectureisflexible
with respect to the notification of the host of pending status. Interrupts are recommended
for hosts with fast interrupt handler context swap times. If interrupts are inefficient on the

host, an alternate scheme involving a pollable, shared status memory can be chosen.

3.10. Summary

We have surveyed several effortsto devel op off-host communications architectures.
The designs share several common characteristics:

» Use of lightweight protocols, or common protocols (e.g., TCP) modified to be
more efficient

 Attempts to harness the inherent parallelism in protocol processing
* Optimized common-case protocol processing
* High-speed data movement hardware

» Minimized buffering and data copies

53

» Optimized memory architecture for fast accessto protocol data

The protocol processors tend to differ in the degree to which they use custom com-
ponents. Chesson’s Protocol Engine represents a highly-custom and tightly-integrated
approach using several custom VLSI circuits. At the other extreme, Mitchell et al. integrate
stock hardware of ageneral nature (e.g., processor, memory, DMA controller, and network
interface). In the next chapter, we will describe our architecture, which is even more gen-
eral-purpose and loosely integrated. It combines commercially-available hardware boards

to produce a custom system and, for the most part, executes previously-available software.

4 An Off-Host Communications Architecture for
SAFENET

4.1. Overview

This chapter presents the design of an off-host communications architecture that
executes atransfer layer protocol, X TP, on asingle-board computer attached to ahost com-
puter system. As awhole, the communications architecture is designed to implement the
SAFENET lightweight protocol suite. The design of this system illustrates our efforts to
resolve the design issues presented in chapter two. It is this system that will be studied

throughout the remaining chapters of thisthesis.

4.2. SAFENET

The United States Department of Defense has adopted SAFENET (Survivable
Adaptable Fiber Optic Embedded Network) asits protocol architecture for mission-critical
computer systems [21][36][32]. SAFENET is unique in that it specifies a dual-protocol
stack. A suite of 1SO protocolsis specified for use in non-real-time systems (e.g., file trans-
fer and electronic mail), and a so-called Lightweight Profile defines the protocol sto be used
for latency-sensitive applications. With the SO suite, the goal is to maximize interopera-
bility, whereas with the “lightweight” suite, the goal is to optimize performance. In the
lightweight stack, the presentation and session layers are null, and transport services are
provided by XTP running over LLC, SNAP, and FDDI-based MAC and physical layers.
The application layer provides very general communication services that map closely to
XTP functionality. Figure 4.1 illustrates the SAFENET architecture.

It isimportant to note that due to the design of the Lightweight Application Services
(particularly its null presentation and session layers), an ASDU has the same format as a

TSDU. As a result, we often shift terminology when describing the flow of such data

55

through our architecture. The reader should not be concerned with this, as the distinction
between such data unitsis not particularly important in our case.

SAFENET is a part of the Next Generation Computing Resources (NGCR) pro-
gram, an effort which attempts to break from the former practice of developing highly cus-
tom government systems at great cost. Rather, the NGCR ideaisto set standards specifying
minimal requirements and then employ commercially-availably technology meeting such
standards whenever possible. Thisnew way of devel oping government systems cuts design
time and allowswide market support, thereby promoting higher quality and lower cost. The

NGCR philosophy had an impact on the design of our architecture asis discussed below.

SAFENET User
Application Interface
oSl Layer Application | Lightweight
7 Layer Application
Services Services SAFENET
User
Sl Layer OSI Presentation Servi ces
6 Null
Layers
sl 'gayer 0S! Session
Transfer Services Interface %
ol Layer OSl Transport XTP SAFENET
4 Transfer Transfer
Servi ces
sl Iéayer 0S| Network | Protocol
oSl Layer | ISO/EEE Logical Link Control %
2 SAFENET
ol | oavm FDDI Token Ri LAN
oken king Servi ces
sl Iiayer Local Area Network
SAFENET Physical Medium

Figure4.1: SAFENET Protocol Architecture

56

The Computer Networks Laboratory at the University of Virginia was awarded a
Navy contract to develop an implementation of the SAFENET lightweight protocol suite
for the Desktop Tactical Computer (DTC-2) host, including XTP, an FDDI MAC interface,
an Ada API, and directory services. The resulting hardware architecture, Ada API, and
XTP implementation are described in detail in [13][14][15]. Thetechnical design decisions
that resulted in our architecture are discussed below.

The fundamental design choice that drove the rest our implementation efforts was
to use an off-host communications architecture. This decision was motivated by the char-
acteristics of the applications served by the lightweight stack. The mission-critical applica-
tions using the Lightweight Application Services have real-time requirements, i.e., they
need minimal execution time penalty from the service primitives aswell as high throughput
and low latency from the protocol. With the aim of providing such performance-critical ser-
vice, we chose to use an off-host architecture. This approach offered the opportunity to gain
some of the potential benefits of off-host protocol processing outlined in chapter one; how-
ever, the actual effects of off-host implementation were not at al clear from the outset.
Thus, the determination of what benefits our off-host architecture would actually deliver

was a fundamental research question.

4.3. Host Computer System

The host computer system served by our off-host communications architecture is
the C3 Computer Systems Desktop Tactical Computer 2 (DTC-2). The machine is based
upon a Sun 4300 motherboard including a25-Mhz SPARC CPU and 32 Mbytes of DRAM.
The motherboard resides in the first slot of a VME backplane bus into which additional
hardware device modules may beinserted. Our DTC-2 runsthe SunOS 4.1.1 operating sys-

tem, avariant of BSD UNIX.

57

4.4. Architectural Constraints

The host hardware and operating system placed several constraints upon the design
of our communications architecture. Thelayout of the host system’s motherboard was fixed
in that no modificationsto it were possible. Thisforced a more |oosely-coupled design for
our communications architecture than could have been the case if we had the opportunity
to architect the motherboard; with the DTC-2, any additional off-host communications
hardware would have to be connected to the host system viaits 1/0 backplane.

The bus and motherboard architecture also forced certain other design constraints.
Since the host motherboard resides in thefirst ot of the VME backplane, it isrequired by
the VMEbus specification to act as the bus arbiter [2]. This constrained our bus arbitration
policy since the Sun 4300 motherboard supports only a fixed-priority arbitration policy
[45]. In addition, the board supports only a Release On Request (ROR) busrel ease strategy.
A very significant restriction imposed by the motherboard is that only arestricted region of
itsvirtual address space is addressable on the VMEbus. The effect of thisrestriction isdis-
cussed in section 4.5.3.2.

The SunOS 4.1 operating system’s use of a privileged kernel with a protected
address space acted as an obstacle in our architecture. SunOS provides security between
application processes running at the user level, the operating system running at the kernel
level, and hardware devices at the backplane bus level through the use of digoint virtual
address spaces. To ensure security, user processes do not normally have the ability to
address the memory of other processes and the kernel. Likewise, they are also barred from
direct access to shared hardware resources such as |/O device registers; rather, they must
invoke the kernel to access such resources. Referenceto I/0O devices on the SPARC proces-
sor ispossible only in the following manner. All SPARC access to 1/0 devices must be via
memory-mapped 1/O; therefore, to communicate with a device, its registers or memory
must be properly mapped into avirtual address space. With SunOS, only the kernel hasthe

ability to create virtual address mappings, so it alone may enable the use of hardware

58

devices. These constraints implied that our architecture would be forced to have a kernel

level, and that such alevel would play akey rolein our architecture.

4.5. Design Choices

Within the bounds of the constraints discussed above, we were otherwise free to
design our off-host communications architecture aswe saw fit. Our choicesareinitialy dis-
cussed in terms of hardware and software layers. Since the hardware choices dictate the
software choices, we discuss the hardware first. The most important design issues are those

of the inter-layer communication mechanisms; these are discussed last.

4.5.1. Hardware Components

As mentioned above, any additional hardware in our system would have to reside
in modules on the DTC-2's VMEDbus. This till left us with many options. We could have
attempted an architecture that was as tightly integrated as possible while still using an I/0
bus. With such an architecture we could have used a single additional module containing
custom VLS| to implement XTP functionality and an on-board network interface. Such a
highly-integrated approach, however, would require great development cost in terms of
both time and money. Unfortunately, such devel opment-intensive design was inconsi stent
with the philosophy of the NGCR program from which SAFENET was spawned. In accord
with the NGCR philosophy we were forced to seek a more economical solution. Our aim
was to integrate a set of commercially-available hardware components which could meet
our needs. A single module containing a more loosely-coupled organization of hardware
was considered. This hardware contained such components as a high-performance, yet gen-
eral-purpose, microprocessor and an on-board network interface. However, at thetime, the
development cost for this approach was deemed too high.

We finally opted for a very loosely-integrated hardware architecture in which we
would employ two additional VM Ebus modules, one containing a single-board computer

(SBC) that would act as the protocol processor, and another containing an FDDI network

59

interface. For the SBC we chose a Motorola MVME-167A (167). Although the 167 is a
general-purpose SBC, it still comes moderately well suited for protocol processing; the
board features a 25-Mhz Motorola MC68040 microprocessor, 8 MB of on-board 70-ns
DRAM, and a DMA controller. The on-board memory is addressable in the local address
space of the SBC and may also be mapped into VM Ebus address space. The 167 is capable
of mastering the VMEbus and may employ either a Release On Request (ROR) or Release
When Done (RWD) bus release policy. For the 167 we chose the pSOS+ lightweight mul-
titasking operating system. With pSOS+, multiple tasks may run on the processor, al shar-
ing asingle address space.

The network interface supportsthe MAC layer and below of FDDI and is manufac-
tured by Network Peripherals (NP). This board is controlled by a device driver using I/0O
registers. It also featuresaDMA controller, which allowsit to master the VMEbus and han-
dle data transfers without incurring device driver CPU cycles. The controller is capable of
using the block transfer mode of the VMEbus to achieve higher throughput. The network
interface and its device driver exchange data frames through a pair of separate send and
receive hardware FIFO registers.

The necessary low-level mechanisms exist to allow communication between each
board on the VMEbus. The host, protocol processor, and network interface are all capable
of mastering the bus and addressing memory or registers in VMEbus address space. Fur-
thermore, each board may act asaslavein order to respond to read or write bustransactions.
In addition, each board may issue VMEbus interrupt requests. Only the host and protocol
processor, however, may handle such interrupts. Figure 4.2 depicts our communications

hardware architecture.

60

e DTC-2
)
>
a - VME-addressable
s memory/registers
> - 167

L
o NP

|
N FDDI

Figure4.2: Communications Hardware Architecture

4.5.2. Software Layers

As aresult of our hardware and operating system environment, our architecture
consists of several levels. Those at which software may reside are the user and kernel levels
of the host, and the protocol processor level. Each level has its own address space, which
serves to complicate our design. Our remaining design choices deal with how to distribute
the software implementing SAFENET functionality at each level and achieve the inter-
level communication for our command, status, data, and options streams. This section dis-
cusses the distribution of our software, and the following section discusses the communi-

cation streams. Figure 4.3 illustrates our overall system architecture.

61

AdaApplication
Ada Packages
BUES C Library DTC-2
%)
a - VME-addressable
i memory/registers
s A A - Buffer pool
> B - To network queue
<> B XTP 167 C - From network queue
C MAC D - NPregisters
[o |
> NP
v FDDI

Figure 4.3: Communications System Architecture

Our user-level software design was largely dictated by Ada and our operating sys-
tem. Asrequired by the API specification for the SAFENET Lightweight Application Ser-
vices, our software architecture must provide communications services to Ada application
programs. Given our Ada compiler, these applications must run at the user level as SUnOS
processes. Furthermore, the Lightweight Applications Services APl was given as a set of
Ada package specifications. Therefore, at least part of our software was constrained to be
written in Ada. However, due to the fact that we were developing systems software for
UNIX (a system with a large bias toward the C programming language) we felt that the
majority of the API implementation would be most practically written in C. We therefore
chose a software architecture in which the API is implemented with a thin layer of Ada
package bodies that employ lower-level software in alibrary of C code linked with each
application.

At the kernel level, we developed a UNIX character device driver. Asmentioned in

section 4.4, we wereforced to have akernel level in order to handle at | east some hardware-

62

intensive functions. Specifically, akernel-level driver hastwo unique characteristics which
allow it to effectively operate the protocol processor. First, it has accessto the system'’s pag-
ing hardware and therefore has the ability to map virtual memory regions. Thisalowsit to
access both the user-level address space and the VM Ebus address space. Second, it usesthe
privileged supervisor mode of the SPARC CPU. As a result, it may carry out privileged
hardware-oriented instructions. For example, only the kernel can set the interrupt priority
level of the processor, and only kernel-level 1ISRs may handle hardware interrupts.

Beyond the use of the kernel for these hardware-intensive operations, we made the
choiceto have the kernel manage all protocol processor operations. That is, although it was
possible through the use of user-level memory mapping to allow user processes to control
the protocol processor directly, we choseto only placethisresponsibility onthe kernel. The
drawback to thisisthat it requires user processesto issue system callsfor each protocol pro-
cessor request. The advantage is that the device driver may act as an honest broker, provid-
ing secure access to the protocol processor. In addition to providing security, it also
provides synchronization in that, sinceit aloneinteracts with the protocol processor, all user
accesses to protocol processor are serialized.

As aresult of these design choices, the kernel level device driver isresponsible for
handling every operation on the protocol processor device. Such operationsinclude writing
to and reading from it its memory or registers and handling its interrupts.

The protocol processor level contains the remainder of our software. This consists
of a commercially-available, multi-threaded implementation of XTP and a MAC level
device driver for the FDDI network interface. The X TP protocol and MAC driver run asa
set of pSOS+ tasks sharing the single address space of the 167. There were no real software
choiceswith respect to X TP since no other commercially-available implementation of X TP
was suitable for the pSOS+ environment. The decision to havethe MAC driver run asasep-

arate task was dictated by the X TP implementation.

63

4.5.3. Inter-Layer Communications M echanisms

Given our hardware and choices of software placement, the issue of how to pass
command, status, synchronization, and data information between the user, kernel, and pro-
tocol processor levels was left open. Our approach to this problem revolves around the
design of the command and status streams. We chose to encapsulate command and status
information into two separate data structures. A control block indicates a user process
command, and an acknowledgment block (so named because it usually acknowledges com-
mand completion) indicates the protocol processor’s status. Both of these data structures
contain pointersto associated TSDU data, if any.

The API features several command options which are used in protocol initialization
or connection setup calls; however, such information is not required in the common case of
datatransfer. Rather than pass thisinformation in each control and acknowledgment block,
we chose to include it in a separate options stream. With this scheme, control blocks and
acknowledgment blocks contain pointersto their options, if any; thus, such blocks are kept

smaller in size, decreasing their overhead in copies.

45.3.1. User-Kernel Communication

As mentioned above, in order to ensure secure access to the protocol processor, we
allow only the kernel to manipulate the protocol processor device. Thus, only the device
driver may issue control blocks to the device and read acknowledgment blocks from it. As
aresult of thisdecision, the C library code of a user-level application must invoke the ker-
nel-level devicedriver in order to perform its communications operations. This user-kernel
communication is performed through use of a combination of system calls and shared user-
and kernel-level memory. In order to issue acommand, the C library code constructs a con-
trol block indicating such information as the command code, the connection on whichitis
to be performed, and any associated options or data. The user-level library code then per-

formsawri t e() system call containing apointer to the control block as avalue parame-

64

ter. Similarly, to read status the processissuesar ead() system call specifying a pointer
to an acknowledgment block. Whenther ead() completes, the C library code may exam-
ine the contents of the block. Only the pointers to such blocks are actually copied to kernel
address space; the information in the blocks is ssmply mapped into kernel address space.
The data and options streams cross the user- and kernel-level boundary through a similar
shared memory mapping scheme.

Another issue isthe notification of an application processin order to indicate pend-
ing status from the kernel level. For this, we chose to use a combination of both polling and
user-level interrupts (UNIX signals). The reason for such complexity is that the Ada API
supports two modes of primitive calls, synchronous and asynchronous. A synchronous API
primitive call issues a command and blocks on the arrival of status before returning to its
caller. On the other hand, an asynchronous call simply issues acommand and does not wait
on its status. The asynchronous call does, however, return a handle on its execution status
known as an activity index. A user-level interrupt is used to indicate the completion of a
command to the APl implementation. Its arrival causes the new execution status of the
primitive call to be indicated in an internal APl data structure referenced by the activity
index. To discover when an asynchronous call has completed, an application must poll the
state of the call using itsindex. For a synchronous call, the situation is similar, except that
the polling is performed automatically within the call so no activity index is necessary.

More efficient and elaborate methods of implementing synchronous and asynchro-
nous primitive calls were considered. For example, rather than forcing an Adatask to busy
wait on the completion of a synchronous command, we considered blocking the task until
aninterrupt for the command arrived; however, our Ada compiler did not support low-level
scheduling operations on tasks, prohibiting this approach. For the notification of the com-
pletion of an asynchronous call, we considered tying the arrival of a user-level interrupt to
the execution of a application-specified interrupt handler. This scheme was prohibited by

Adalimitations on using subprograms and task entries asfirst-class programming language

65

type entities and by the inherent problems of calling Ada subprograms from a C-based

interrupt stack.

45.3.2. Kernd-Protocol Processor Communication

We chose to perform communication between the kernel and protocol processor
levelsthrough shared memory and interrupts. At system boot time, the kernel device driver
mapsin alarge region of the local memory on the protocol processor board into its virtua
address space. This shared memory region is used to contain two data structures, the To
Network (TN) and From Network (FN) queues. These act as the command and status
streams. The host CPU and protocol processor access these queues following a discipline
which promotes synchronized access to their shared memory. The kernel level device
driver writes control blocks to the TN queue and reads acknowledgment blocks from the
FN queue. In contrast, the protocol processor reads control blocks from the TN queue and
writes acknowledgment blocks to the FN queue. In addition to the use of the two queues,
the protocol processor uses interrupts to indicate to the host that is has a pending acknowl-
edgment block.

Incoming status at the kernel level causes a user-level interrupt (aSI G Osignal) as
discussed above. The following demultiplexing mechanism ensures this. The kernel-level
hardware | SR that runs as a result of a protocol processor interrupt must issue asignal to
the application for which the acknowledgment is bound. In order to route the signal to the
proper destination process, the device driver maintains connection state information which
relates the connection identifier in a field of the incoming acknowledgment block to its
owning process. Thisdemultiplexing operation incurs some degree of overhead, asdoesthe
maintenance of connection status.

In order to avoid bottlenecks, the design of the data stream (more so than the other
streams) should avoid copies. With thisin mind, we wished to avoid buffering TSDUs on

the protocol processor. In order to accomplish this, we would need to provide the protocol

66

processor with direct access to host memory. Since the protocol processor may only access
external memory that is addressable on the VMEbus, we would have to make host TSDU
memory regions addressable in VM Ebus address space to avoid buffering them. Unfortu-
nately, the design of the Sun 4300 motherboard places unwieldy restrictions on what region
of itsmemory is addressable in VMEbus address space. Thereisonly one such region; itis
called Direct Virtual Memory Access (DVMA) space, and it functions as follows. The
motherboard maps the highest megabyte of kernel virtual address space into the lowest
megabyte of VMEbus address space. This shared region of memory acts as a window for
VM Ebus masters to access the virtual memory of the host. In addition to being addressable
by masters on the VMEbus, DVMA space may be accessed by devices on the motherboard
that are capable of DMA transfers, e.g., the on-board Ethernet interface. Due to its unique
status, DVMA spaceisaprecious resource that must be carefully shared with other devices.
In addition, user-level memory must be carefully mapped or even copied in order to place
itin DVMA space.

Rather than deal with these restrictions, we opted to abandon our attemptsto allow
the protocol processor to address host memory. This decision had a dual impact on our
design. First, it forced usto buffer all TSDUsin the protocol processor’s on-board memory.
Second, we could not use the DMA controller on the protocol processor board to copy the
TSDUSs because, in order for the controller to transfer such data structures, it must be able
to addressthem. Asaresult, we were forced to use the host CPU for programmed I/O trans-
fers of TSDUs between host memory and buffers on the protocol processor board. These
same restrictions also implied that the control blocks, acknowledgment blocks, and options
must be transferred between the host and protocol processor using such a programmed /O
mechanism.

The choice of which processor should allocate buffers was another design decision.
Data buffers for the data stream are allocated by the kernel-level device driver in the host

from a4 MB buffer pool stored on the protocol processor. We found it much easier to have

67

the driver allocate this memory since synchronization would be required in order to have
the allocation performed by the protocol processor. TSDUs enroute to the network are cop-
ied to these buffers from the user-level memory on the host as discussed above. Similarly,
TSDUSs enroute to user-level memory on the host are al so copied from the protocol proces-
sor’sbuffer pool. Buffersfor protocol options are allocated in the same fashion as data buff-
ers.

Theimplementation of X TP placesalimit on how many commands may be concur-
rently outstanding on a single connection. In our implementation, up to four sending oper-
ations may be performed on a connection, along with up to four receiving operations. In
order to avoid exceeding these limits, the APl implementation keeps a count for each con-

nection and blocks the progress of any API primitive that attempts to exceed this limit.

4.5.3.3. Protocol Processor-Network I nterface Communication

As mentioned above, the protocol processor contains an FDDI MAC device driver.
Thisdriver issues commands to the network interface viaVVMEbus write transactionsto its
control registers. Likewise, the protocol processor reads network interface status thorough
the use of read transactions with the interface’s status registers. TPDU frames are sent from
the local buffer memory on the protocol processor to atransmit FIFO register on the net-
work interface. The transfer of aframe is performed using the block transfer mode of the
VMEbus by the DMA controller on the network interface. The DMA controller interrupts
the protocol processor to informit of transfer completion. Thearrival of aframeisindicated
to the protocol processor viaan interrupt. The transfer of the frame from areceive FIFO on
the interface to a buffer on the protocol processor is also done with block mode DMA, and

an interrupt indicates DMA completion here as well.

45.4. A Data Flow Example

In order toillustrate how our design operates, we trace the dataflow dueto asingle

synchronous API call through our architecture. To start the data flowing, an Adaapplication

68

makes a call to an API primitive such as SEND MESSAGE from one of our Ada packages
in order to perform atransmitting operation. The Ada SEND MESSAGE procedureinvokes
aroutinecalledc_send_nessage() inthelibrary of C code, which beginsthe Cimple-
mentation of the API primitive. Aside from the management of some user-level resources
and state information, the function of this C code is to build a control block for the com-
mand including the connection with which it is associated and a pointer to the ASDU
referred to in the SEND _MESSAGCE call. The library code then issues the control block to
the kernel-level device driver withawr i t e() system call.

The device driver begins execution at itswri t e() entry point. It examines the
control block to verify the user’s right to issue commands on the connection. Then the
driver acts upon the command, maintaining asmall amount of state information. The driver
allocates a buffer to hold the TSDU and copies it, via programmed 1/0O, to the buffer pool
on the protocol processor using the kernel’s copyi n() utility function. It then enqueues
the control block on the TN queue with copyi n() and returns control to the calling pro-
cess. Since the API call is synchronous, the user process busy waits on the arrival of an
acknowledgment block for its command. Meanwhile, the protocol processor dequeues the
command and performs the appropriate protocol operations to send its associated TSDU.
The protocol processor transmits the TPDUs of the packet over the VMEbus and through
the FDDI network interface using the network interface’'s DMA capabilities.

Onceit discovers (viaan acknowledgment) that the TSDU arrived at its destination,
the protocol processor queues an acknowledgment block for the aforementioned
SEND MESSACE control block on the FN queue and interrupts the host. This interrupt
invokes adevicedriver interrupt routine which in turn signalswith SI G Othe user process
owning the connection identified in the acknowledgment block. A signal handling routine
for SI A OintheClibrary code of the user process performsar ead() inorder to dequeue
the acknowledgment on the FN queue. The kernel then transfers the acknowledgment

block into user-level memory withthecopyout () kernel utility function. The signal han-

69

dling function uses the acknowledgment block information to cease the busy wait of the
process. The signal handler also performs another r ead() to check for additional
acknowledgment blocks and, finding none, returns from the interrupt. When the user pro-
cess resumes execution, it discovers the completed status of the SEND MESSACE call,

thereby finishing its execution.

5 Performance Analysis

5.1. Overview

In this chapter we study the overall performance of our off-host communications
architecture, profile it in detail, and identify the bottlenecks in its design. In order to illus-
trate the effects of our design’s multilevel architecture, we provide throughput and latency
measurements at several of its levels. To understand the reasons for our user-level perfor-
mance, we include a profile of host processing time for the SEND_MESSAGE and
GET_MESSAGE operations. We a so include an assessment of the host processing required
to perform such operations. From the performance measurements, profiles, and some other

experimental results we identify the bottlenecks present in our architecture.

5.2. Performance Observed at Various Service Levels

Our architecture is built upon several layered levels of service, each of which has
an effect on the performance of the service level above it. Note that the service levels we
speak of here are not the same as the architectural levels discussed in chapter four. These
service levels are aimed at describing the performance of the fundamental communications
services accessible at the user and protocol-processor architectural levels. The following
sections describe the communi cation performance of our architecture observed at three ser-
vice levels, the FDDI MAC devicedriver level, transport protocol level, and the user level,
for the full range of message sizes available at each. Using our terminology, a MAC-level
message is a frame, a transport-level message is a TSDU, and a user-level message is an
ASDUL. All results were obtained usi ng time-average measurement techniques, i.e., the
timefor several iterations of an operation was measured, and the resulting average time for

asingle such operation is reported.

1. The user level would perhaps be more aptly termed the application level.

70

71

52.1. MAC Leve

The MAC level providesthetransport protocol with araw, frame-oriented, datalink
service over the 100-Mbps FDDI network. These results were obtained using apair of Net-
work PeripheralsFDDI boardsdriven by apair of MotorolaMVME 167A processor boards
in two stand-alone VME card cages. During these tests, no operating system ran on the pro-
cessors, and VMEDbus transfers between the NP board and 167 were performed with block
mode DMA.. Figure 5.1 shows end-to-end latency, and Figure 5.2 shows throughput. Here,
latency is half of the round-trip time of aframe, and throughput measures the rate at which
the MAC driver can transmit frameswith no receiver. A minimum latency of 91.5 nsoccurs
for aframe with no payload, and the maximum throughput of 56.6 Mbps occurs for frames
carrying a payload of 4487 bytes (4500-byte maximum FDDI frame less LLC and SNAP
headers).

60 user
transport -+---
MAC o

0 10 20 30 40 50 60 70
Message Size (KB)

Figure5.1: End-to-End Latency vs. Message Size

5.2.2. Transport Level

In our architecture, the transport protocol (X TP) provides reliable end-to-end deliv-

ery of memory buffers from the local memory of one protocol processor board to another.

72

The performance of this service was measured at the top-level interface to XTP, which is
the interface used by our protocol processor device driver. The host system was in no way
involved with these measurements; rather, they were performed by the protocol processor
itself. For the throughput measurements, the data transfer operations were pipelined on a
single connection using the streaming features of our protocol implementation, i.e., several
TSDUSs could be submitted to a connection at once. For all measurements, checksums were
disabled with the X TP NOCHECK option, but rate control was unused. End-to-end latency
and throughput are shown in Figures 5.1 and 5.2, respectively. Here, end-to-end latency
measures half the round-trip time of an entire TSDU, and throughput is for reliable trans-
mission. The minimum latency of the protocol is2.7 msfor aone-byte message, and a max-

imum throughput of 23.8 Mbps occurs for a 64-KB message.

60

&
e
50 s user
i transport -+
@ MAC &
& 40 F
Q. H
o :
= i
2 30 f
=
2
LB T T S B
F 20 | O B
/*/
A
10 7“/)//f/ﬁ‘<
s
P2
0
0 10 20 30 40 50 60 70

Message Size (KB)

Figure5.2: Throughput vs. Message Size

5.2.3. User Level

All user-level performance measurements were obtained using two Ada programs
running on separate DTC-2 hosts using the connection-oriented SEND MESSAGE and
GET_MESSAGE primitives. Figures 5.1 and 5.2 show end-to-end latency and throughput

73

for the full range of ASDU sizes. End-to-end latency measures half the round-trip time of
an entire ASDU sent between two Ada applications. For the throughput measurements, the
communication primitives were performed asynchronously, and XTP's rate control fea-
tures and NOCHECK option [44] were used to provide maximum performance. RATE was
set to 1.5 MB/s and BURST was set to 10 KB/burst. For the latency measurements,
NOCHECK was set, but rate control was unused. The minimum latency occurred at a mes-
sage size of one byte and was 5.1 ms. The maximum throughput was 12.1 Mbps at a mes-

sage size of 64 KB.

5.3. Performance Pofile

To study why we observe the user-level results above, we profile the host CPU’s
execution of the SEND_MESSAGE and GET_ MESSAGE primitives used in our user-level
performance tests. In the next section, the analysis of the of this profile information will
help to expose the bottlenecksin our design. The profile datawas compiled using two meth-
ods. The user-level components of the profiles were measured with the UNIX pr of utility.
Since we had no tool which supported the simultaneous profiling of both the C and Ada
code, we profiled only the C code. This choice essentially omits from our profile only afew
Ada procedure calls, having no appreciable impact on our performance. For simplicity, all
runs use the synchronous API calls. The performance results are derived from statistical
measurements resulting from several thousand iterations of calls to the SEND MESSAGE
and GET_ MESSAGE primitives. The kernel measurements were obtained differently. Since
we had no profiling tools available for the kernel, measurements for its components were
gathered using separate test programs employing the time-average measurement tech-
niques discussed in Appendix A.

First, we concern ourselves with the processing of short ASDUs. Table 5.1 lists
where the host processor spends its time during a SEND MESSAGE call for a one-byte

ASDU. The “other” category accounts for accumulated measurement error and operations

74

which consume less than 10 ps. The profile for a one-byte GET _MESSAGE operation is
listed in Table 5.2; it is similar to that of a SEND MESSAGE.

Operation pg/cal | Calls | total ps
wait for completion 3,881 1| 3881
physi o() & i odone() 301 3 903
read() systemcal 81 2 162
signa delivery 143 1 143
write() systemcall 83 1 83
disable signals 25 3 75
enable signals 22 3 66
control block copyi n() 29 1 29
ack block copyout () 23 1 23
other 732
total 6,097

Table 5.1: Profile of a One-ByteSEND MESSAGE

Thewait for completion isthe amount of timethat the host awaits an indication that
the operation is complete. Although it accounts for most of the total time, the wait does not
require host processor cycles; rather, it isafunction of the transport protocol’s performance.
All other times in the table are incurred by various UNIX services; this overhead will be
discussed in the next section. For now, it suffices to state that UNIX overhead dominates

the host processing time when the ASDU sizeis small.

Operation pgcal | Cals | total ps
wait for completion 4,045 1| 4,045
physi o() & i odone() 301 3 903
read() systemcal 81 2 162
signa delivery 143 1 143
write() systemcal 83 1 83
disable signals 25 3 75
enable signals 22 3 66
control block copyi n() 29 1 29
ack block copyout () 23 1 23
other 568
total 6,097

Table 5.2: Profile of a One-ByteGET _MESSAGE

Note that the totals for sending and receiving are the same due to the interdepen-

dency of the SEND _MESSAGE and GET_ MESSAGE operations and the fact that their exe-

75

cution is repeated in the tests. (Such repetition is necessary for our profiling technique.)
These effects do not alter the quantities of interest to us.

To study the processing overhead of long ASDUSs, we profile a SEND _MESSAGE
of 64 KB in Table 5.3. As before, the total time is dominated by the wait for compl etion.
However, with the long ASDU size, length-dependent operations such as the cost of allo-
cating and deallocating a buffer on the local memory of the protocol processor become
notable. Furthermore, a startling result is the time required to perform thecopyi n() of a
TSDU acrossthe VMEbus. Such overhead is discussed further in the next section. Itisclear

that, for long ASDUSs, the time to perform the bus transfer dwarfs all UNIX overhead.

Operation pg/cal | Calls | total ps
wait for completion 23,455 1| 23,455
datacopyi n() 18,164 1| 18,164
physi o() & i odone() 301 3 903
read() systemcal 81 2 162
signal delivery 143 1 143
get and return data buffer 109 1 109
write() systemcal 83 1 83
disable signals 25 3 75
enable signals 22 3 66
control block copyi n() 29 1 29
ack block copyout () 23 1 23
other 1,636
total 44,848

Table5.3: Profile of a 64-KB SEND NMESSAGE

The profile for a 64-KB GET_MESSACE is listed in Table 5.4. It is similar to that
of the SEND _MESSAGE except that the time for the datacopyi n() from host memory to
protocol-processor memory is replaced with that for a data copyout () from protocol-
processor memory to host memory. Note here the counterintuitive result that the host
spends more time copying the received TSDU over the VMEbus than it does waiting for

that processor to receive the TSDU from the network.

76

Operation pg/cal | Calls | total ps
datacopyout () 23,712 1| 23712
wait for completion 17,525 1| 17,525
physi o() & i odone() 301 3 903
read() systemcal 81 2 162
signal delivery 143 1 143
get and return data buffer 109 1 109
write() systemcal 83 1 83
disable signals 25 3 75
enable signals 22 3 66
control block copyi n() 29 1 29
ack block copyout () 23 1 23
other 2,018
total 44,847

Table5.4: Profile of a64-KB GET_MESSAGE

5.4. Host Load

The above profiles can be used to show how much host load isincurred by commu-
nication processing tasks. The total time necessary for a SEND MESSAGE call is 6.1 ms
for a one-byte ASDU and 44.8 ms for a 64-KB ASDU. However, 3.9 ms of the one-byte
operation and 23.5 ms of the 64-KB operation are spent waiting on command completion
and are therefore free for other host processing. Thus the one-byte call effectively con-
sumes only 2.2 ms, and the 64-KB call consumes only 21 ms of actual host processor time.
Similarly, thetotal time necessary for aGET_MESSAGE call is6.1 msfor aone-byte ASDU
and 44.8 ms for a64-KB ASDU. However, 4.0 ms of the one-byte operation and 17.5 ms
of the 64-KB operation are spent waiting on command completion and are therefore free
for other host processing. Thusthe one-byte call effectively consumes only 2.1 ms, and the
64-K B call consumesonly 27.3 msof host CPU time. Furthermore, only one host-processor
interrupt isgenerated for aeither aSEND MESSACGE or GET _MESSACE call of any ASDU

size.

7

5.5. Performance Bottlenecks

As can be seen from the profile information above, different components dominate
the execution time for a short ASDUs and long ASDUSs. Thisis due to the fact that some
sources of overhead are constant for any sending or receiving operation, regardless of
ASDU size, whereas other components of execution overhead are dependent upon ASDU
size. In this section we identify and describe these sources of overhead, indicating to what

degree they act as bottlenecksin our design.

5.5.1. ASDU Length-Independent Overhead

Our most significant ASDU |ength-independent overhead resultsfrom the operating
system kernel architecture of the DTC-2 host. Our UNIX character device driver invokes
two standard device driver utility routines called physi o() andi odone() asapart of
the execution of ther ead() andw it e() driver entry point routines. The physi o()
routine performs several services for the device driver. It locks into physical memory the
virtual pages of the memory buffer (in our case a control or acknowledgment block)
referred to by the pointerinthewr i t e() orr ead() , segmentsthe buffer into fragments
that do not violate the size constraints of the underlying device or consume too many sys-
tem resources, and ensures that the driver has exclusive access to the memory of the buffer.
Thei odone() routine acts to release the exclusive access to the block acquired by the
physi o() operation [46]. These two routines, as can be seen from the profiles, form the
largest proportion of the host’s execution time spent on processing sending and receiving
operations on short ASDUS.

In an effort to ensure security for multiple user processes, UNIX provides protec-
tion at the cost of performance through the use of the kernel. We chose to embrace this phi-
losophy in our design as well. As discussed in chapter four, to perform any hardware-
dependent operation, our APl software must do a system call. Such calls are the second

most significant contributors to ASDU-length independent overhead. The raw system call

78

mechanism itself is only somewhat expensive, i.e., some calls take as little as 22 ps; how-
everther ead() andw it e() callsalso passthrough the UNIX I/O system. Asaresult,
they incur overhead from such operations as mapping their UNIX file descriptor to the
appropriate device driver entry point and managing buffer-oriented kernel data structures.

Asstated in chapter four, our architecture makes use of UNIX signalsasauser-level
interrupt mechanism indicating the presence of pending acknowledgment blocks. The
arrival of such a signal preempts the execution of the application process’ next CPU
instruction and initiates asignal handling routine. When the signal handler returns, the sys-
tem resumes the process normal execution at the next instruction. This mechanism
requires processor context to be both saved and restored and therefore takes an appreciable
amount of time.

At the user level, a notable amount of time is spent disabling and enabling signals.
The reason for such operationsisto allow reenttrancy; we disable signals to provide exclu-
sive access to certain global data structures used in the API implementation. There are two
basic sources of contention for global API data structures. One is from other Adatasksin
the application process, sincethey may be preemptively scheduled viasignalsand may then
invoke API primitives. The other source of contention issignal handling routines since they
run asynchronously and may contain code that makes API calls. In particular, the SI G O
handler, which handles user-notification of pending statusis a source of contention for glo-
bal data structures. This handler is an integral part of the API implementation; it does not
make API calls, but it does manipulate many global API data structures. Disabling signals
during the use of such data structures wards off theill effects of other tasks and signal han-
dlers. Once exclusive access to the data structures is no longer needed, a call to re-enable
signals becomes necessary. The relatively long duration of these otherwise simple signal-
oriented operationsis due to the fact that they require the invocation of thesi gbl ock()

or si gset mask() systemcalls.

79

Two minor sources of notable length-independent host overhead are the time
required to write a control block to the TN gueue and to read an acknowledgment block
from the FN gueue as discussed in section 4.5.3.2. In our architecture, thecopyi n() ker-
nel utility function is utilized for the write of a control block. It copies, with programmed
1/O, aregion of memory residing in user virtual address space into kernel virtual address
space. In the case of thiscopyi n() , thekernel regionisasdlot inthe TN queue located in
protocol processor’s on-board memory. Thus the copy occurs over the DTC-2's VMEbus.
In asimilar fashion, the copyout () function copies an acknowledgment block out of a
dlot in the FN queue, which is mapped into kernel virtual address space, to memory in the
user-level address space. The duration of these copies are dependent upon the length of the

control and acknowledgment blocks, which, in our case, are 104 and 64 bytes, respectively.

5.5.2. ASDU L ength-Dependent Over head

The uniquely significant components of host execution time for large ASDUs are
those required to manage the large quantities of data. The overhead of such operations
growswith ASDU length and is expectedly evident in the data buffer allocation and the data
copyi n() andcopyout () componentsof the profilesfor large-ASDU operations. First
we note that the time spent on the alocation of buffer space on the protocol processor board
becomes noticeable when the data buffers are large. However, this time is insignificant
when compared with that of the data copies.

The host-driven data copies are worthy of much investigation. Thedatacopyi n()
transfers an ASDU into aregion of kernel virtual address space from user virtual address
gpace. The kernel region refers to protocol processor buffer, and the copy is performed by
the host CPU using write transactions on the VMEbus. Similarly, adatacopyout () cop-
iesan ASDU out of aprotocol processor buffer in kernel virtual address space into memory
in user address space. Here the copy is performed by the host CPU using VMEDbus read

transactions.

80

In order to further understand the effect of these data copies on the performance our
architecture, we present amore detailed analysis. As one would expect, time average mea-
surement of copyi n() andcopyout () indicatesthat theincreaseinthelatency of these
operations scaleslinearly with the transfer size. In addition to adding latency to our off-host
communications architecture, the copyi n() and copyout () operations also constrain
our throughput. In measurements of the peak transfer rates of copyi n() and copy-
out () over the VMEbus and between host and protocol processor memory, the
copyi n() operation has athroughput of 28.6 Mbps and thecopyout () hasathrough-
put of 21.9 Mbps. We believe that the reason the copyi n() throughput is the higher of
the two isthat bus read transactions are often inherently faster than bus writes as discussed
in section 2.4.2.3.

To illustrate the throughput-limiting effects of the data copyi n() and copy-
out () operationson our communications architecture, we operated our system with them
removed from the code. The copies of control and acknowledgment blocks between the
host and protocol processor were left intact, however. As shown in Figure 5.3, the resulting
user-level throughput was over twice as high in some cases. The user-level throughput
shown here was measured in the same manner as the other user-level measurementsin sec-

tion 5.2.3.

81

30

//,e/é
’g 20
e}
=
3 15
<
=
< T -
= i
= 10 et
A
A
»
[Z/ without copy ——
5 With copy =+
0
0 10 20 30 40 50 60 70

Message Size (KB)

Figure5.3: Data Copy Effectsupon Throughput vs. ASDU Size

Given these measurements, one might hastily blame the VMEDbus for the relatively
poor throughput performance of our architecture. While this is partialy true, it is not the
case that the VMEDbus is alone responsible for the cap on throughput. Although our pro-
grammed I/O VMEbus copies have alow throughput, other VM Ebus transfersin our archi-
tecture are much more respectable. For example, as shown in section 5.2, in spite of the
VMEbuswe have achieved MAC throughput far higher than the 21.9 Mbps|limit of the data
copyout () . Infact, we have observed block mode DMA transfers of 64 Mbps from our
protocol processor’s 70-ns DRAM to the transmit FIFO register on the network interface.
Hence thereis more overhead in the copyi n() and copyout () than simply that of the
VMEbusitself.

The performance of the VMEDbus can be affected by several factors. These include
whether the transfer is performed using programmed /O or a DMA controller. With pro-
grammed |/O, the speed of the CPU may affect the speed of datatransfer. In addition, it may

be the case that the CPU can not employ block mode transfers, but the DMA controller on

82

the network interface can. Another important issue affecting the bus transfer rate is the
access or cycle time of the memory or registers on the slave side of the bus transaction.
Some measurements of VMEbus throughput [5] have indicated that, for block mode trans-
fers involving infinitely fast memory, the VMEbus can support a throughput of 223.2
Mbps; however, with block mode and a memory having a 150-ns access time, peak VME-
bus throughput drops to only 108.8 Mbps. When using the same memory, but no block
mode, throughput drops further to 103.2. Mbps. Hence, our low throughput rates argue for
more than simply afaster bus; they also argue for a combination of such features as burst
mode bus transactions, a high-speed DMA controller, and memory and registers with alow
access time.

Finally weturnto theissue of the bus contention resulting from datatransfers across
the VMEDbus. In our architecture, such transfers occur between the host and protocol pro-
cessor and the protocol processor and network interface; however, only asingle such device
can master the bus at once. The bus contention dueto this restriction actsto block the trans-
fers of such devices, thus hindering their parallel operation. If full parallelism between the
host and protocol processor were achieved, one would imagine that our user-level through-
put would be somewhere around the minimum of the transport protocol throughput and
programmed I/O transfer rate of the host. Unfortunately this is not the case. For example,
the peak throughput of our transport protocol is about 24 M bps, and the peak throughput of
our programmed 1/O transfers is about 22 Mbps; however, our peak throughput in asyn-
chronous mode is only about 12 Mbps. In fact, we observe in Figure 5.4 that our user-level
throughput using synchronous API calls (those exhibiting essentially no host and protocol -
processor paralelism by definition) is not particularly lower than the throughput in the
asynchronous APl mode (where host and protocol-processor paralelism should be
present). This suggests that we obtain little parallelism between the host and the protocol
processor. These results point to problems of bus contention and thus argue for placing the

network interface on the same board as the protocol processor.

83

[y
EN

[uy
N

[y
o

Throughput (Mbps)
(0] [o0]

I 4
asyncnronous

i synchronous --+---
£
2 g
¥
0
0 10 20 30 40 50 60 70
Message Size (KB)

Figure5.4: APl Mode Effectsupon Throughput vs. ASDU Size

6 A Simple Model to Predict Performance

6.1. Motivation

In light of the off-host communications architecture discussed in chapter four and
its performance presented in chapter five, a fundamental gquestion about our implementa-
tion is“How well did we exploit our hardware and software architecture in order to maxi-
mize user-level performance and minimize host load?’ To answer this question, we wish to
evaluate the performance intrinsic to architectural design itself to measure the limits of its
performance independent of our implementation of the design. With this knowledge we
might discover that the process of making optimizations to the implementation within the
framework of our basic architectural design could provide fruitful performance gains. On
the other hand, the evaluation may show that we have essentially reached the inherent con-
straints of our chosen hardware and software architecture. In this case, no amount of opti-
mization within the framework of the architecture would expand its performance beyond
these constraints. In such asituation, anew set of fundamental architectural design choices
would be in order if we desire to obtain better performance.

In addition to questions which evaluate the performance of an implemented archi-
tecture, we may also desireto predict the possible performance of a proposed design. Thus,
aquestion for developers of off-host communications architecturesis“How can we predict
the possible performance of a proposed off-host architecture before its implementation has
begun?’ The answer to such a question would be of great interest during the design stages
of asystem and before the procurement or production of its hardware and operating system.

In this chapter we develop an architecture-based performance model for off-host
communications architectures which can be used to provide answersto the above questions
of performance evaluation and prediction. This model is based on the general architectural
design decisions discussed in chapter two; thus, it can be applied during the design stages

of a system before its implementation has begun.

85

6.2. Background

Performance estimations have been used by others to predict the performance of
their designs. In a previous work on off-host protocol processing, Kanakia and Cheriton
estimate the performance of their proposed Network Adapter Board [27]. Their analysis
takes into account such factors as bus transfer time, network transfer time, and memory
accesstime in order to predict the request-response delay of their device. The approach is
quiteinformal, and it takes into account factors above and below the level of their transport
protocol (VMTP).

Our approach differsfrom Kanakiaand Cheriton’sin two main areas. First, our per-
formance predictions result from the evaluation of simple, yet formal, mathematical
expressions. Second, the transport protocol is treated as a “black box,” making its perfor-
mance characteristics parameters of the model 1 Thatis, the transport protocol processor is
analyzed in isolation, outside the context of the host CPU. Its performance parameters are
determined and then used in the model to predict the performance that will be visible at the
user level inthe completed system. Rather than concerning itself with the modelling of pro-
tocol performance, our model deals mostly with the overhead introduced by the means of
communication between the components of a particular off-host communications architec-

ture.

6.3. Goalsof the Model

Our performance model has asits goals simplicity and practicality. With our model
there is no need to acquire the probability distributions of any input parameters, as would
be required of a queueing theory model. Rather, one need only use readily-available, time-
average measurements or vendor-provided specificati ons. With minimal effort, one can

predict the end-to-end latency and throughput seen by application processes at the user

1. Since the transport protocol performance encapsulates that of lower-layer protocols, the perfor-
mance of such protocolsis not considered explicitly in the model.
2. Theissue of obtaining these quantities is dealt with in the appendices.

86

level of an off-host communications architecture. In addition, one may also obtain an esti-
mate of the amount of host processing time required for data transfer operations.

Such predictions are practical in that they are of interest to the developers of sys-
tems making use of off-host protocol processing. System architects wish to know to what
degree they either will capitalize or have capitalized on the possible benefits of off-host
architectures presented in chapter one. If users of the model find it lacking in a particular
area, they may extend it to meet their needs using the general methodology of the model;

however, such extension occurs at the cost of increased complexity.

6.4. Model Overview

Without going into the analysis of a specific architecture, this section presents an
overview of the input components of the model and how they are formulated into output
predictions. In addition, we describe the types of communications operations considered in
our model.

Figure 6.1 presents a very general illustration of the functions of the model. Input
parameters based upon a specific architectural design and the performance of the chosen
protocol processor are supplied to the model. In return, the model predicts the user-level

performance of the architecture including end-to-end latency, throughput, and host load.

inputs outputs
architectural end-to-end
components latency
performance
throughput
model ap
s
P load
components

Figure6.1: Overview of the Performance Model

87

6.4.1. Input Components

Here we provide a general overview of the inputs to the architecture-based perfor-
mance model. Regardless of the specific input parameters used, the input components of
the model can be divided into two general classes. architectural components and protocol
processor components. The architectural components represent those performance factors
which are strictly afunction of the host computer system and the mechanisms which allow
it to communicate and synchronize with the protocol processor. They represent the effects
of the system designer’s decisions on the issues discussed in chapter two, except for the
design of the protocol processor itself. Essentialy, these architectural parameters charac-
terize the performance of the data and control paths through the communications architec-
ture.

Other inputs to the model characterize the performance of the particular protocol
processor used in the off-host communications architecture. In our model, the protocol pro-
cessor performance is deliberately distinguished from that of the surrounding architectural
components. Due to the complex nature of transport protocols, e.g., their flow and error
control, it is difficult to analytically predict transport performance. To keep our perfor-
mance model simple, we choose to avoid such complexity by treating the protocol proces-
sor as a black box described by a set of readily-obtainable performance parameters. These
parameters may be easily determined from the specifications of the protocol processor ven-

dor or from the empirical study of the device.

6.4.2. Determination of Outputs

The general methodol ogy of the performance model isasfollows. Theanalysisinte-
gratestheinput parametersto provide sumsof termswhich account for the delay introduced
by components of the architecture’s data path. In addition, the model takesinto account the
processor parallelism which causes overlap in components of host and protocol processor

execution. This parallelism causes certain termsto drop out of the analysis.

88

Before we explain the model’s outputs, we first introduce some terminology for two
guantities used in the analysis, delay and period. In our model, delay measures the time
between the initiation of atransmitting operation at one endpoint and the completion of the
corresponding receiving operation at apeer endpoint. In contrast, the period of an operation
is the time between the beginning of the operation and the local indication of its comple-
tion. The period is so named because it represents the minimum time between two consec-
utive operations such that there is no overlap in their execution. This basic quantity can
subsequently be scaled to take any parallelism in operation execution into account.

The model includes formulas for several quantities; some values are intermediate
results used to predict outputs, and others are the output predictions themselves. First we
must note that all of the model’s predicted outputs, as well as many terms, are dependent
upon the ASDU length, represented here by the symbol |. The three most fundamental
guantities of the model are the user-level delay, &(1), the user-level period for atransmitting
operation, Ty(I), and the user-level period for areceiving operation, T,(l). Thedelay isafina
output, predicting the user-level end-to-end latency of the off-host communications archi-
tecture (in units of seconds). The periods are intermediate quantities used to predict two
more output quantities (in units of bytes per second), the user-level throughput for synchro-
nous transfers, t4(l), and the user-level throughput for asynchronous transfers, 14(1). In
addition, one may predict the two final output quantities, the host processing time (in units

of seconds) required to transmit an ASDU, Hy(l), and to receive an ASDU, H(l).

6.4.3. Communication Operations Considered

Since weintend to describe only the throughput, latency and host load of an off-host
communications protocol architecture, we consider only aminimal set of communications
primitives, those for connection-oriented data transmission and reception. Therationale for
thisdecision isasfollows. Foremost, the decision to limit the number of operations studied

keeps our model simple. With thisin mind, we chose to model the communications opera-

89

tions of greatest interest to the devel opers of off-host architectures. We think that connec-
tion-oriented data transmission and reception operations meet this criterion.

Other communications operations could be studied. For example, it is usually the
case that communications operations exist for such tasks as connection management and
option manipulation. While these operations are very important, they largely serve to test
the performance of a specific transport protocol rather than that of an off-host communica-
tions architecture. In addition, transmitting and receiving operations are often present in
two forms, connection-oriented and connectionless. To model both types of operations
would needlessly complicate our model. For this reason we choose only to model the con-
nection-oriented transmitting and receiving operations.

It is recognized that, at the cost of greater complexity, the modeling of the other
operations mentioned above could be useful. With thisin mind, the analysis of alarger set

of communications operations is considered in section 6.10.3.

6.5. Assumed Class of Architectural Design

Now that we have described our model in general, we target it toward a specific
class of off-host communications protocol architectures. The protocol processor parame-
ters of the model are quite general, and are treated independently of the surrounding off-
host communications architecture. As a result, they are independent of the architectural
design class, so they are not considered here. Thisis not the case, however, with the archi-
tectural parameters.

Given aparticular architectural design, several specific components act asthe mem-
bers of the general class of architectural componentsin our model. In contrast with the pro-
tocol processor parameters, these specific components of an architecture are somewhat
dependent upon the fundamental design choices discussed in chapter two. That is, within
the genera class of architectural component parameters, we must choose specific compo-

nents which target the model to aparticular design class of off-host communications archi-

90

tecture. For this reason, the resulting analysis is somewhat architecture-specific; however,
the methodology employed in arriving at theresultsis quite general. To thiseffect, we argue
that, although here we target our model toward a specific architecture, the general frame-
work of the model can be applied to other architectural classes as well. This is discussed
further in section 6.10.1.

The specific class of architecture we consider here is that which follows the design
of the off-host communications architecture for SAFENET described in chapter four. To
review, thisarchitecture hasauser level, aprotected kernel level, aprotocol processor level,
and a network interface level. The user and kernel levels reside on the host CPU board, a
module which resides on a backplane bus along with separate protocol processor and net-
work interface modules.

Between the architectural levels, we employ several communication and synchro-
nization mechanisms. The interface between the user and kernel levels is essentialy via
system calls for command and status, shared memory for data, and interrupts for notifica-
tion. Between the kernel and protocol processor layers, communication is via command
and status queues and buffersresiding in shared memory. Thisinformation istransferred to
and from these data structures through the use of host-driven programmed 1/O over the bus.
The protocol processor interrupts the host CPU for notification of pending status. Using
these mechanisms, three types of information flow between the host and protocol proces-
sor; these are TSDU data, commands, and status. The only facet of the communication
between the protocol processor and network interface that is relevant to our model is the
fact that such communication occurs over the backplane, thereby generating bus traffic and

possibly causing contention.

6.6. Input Parametersfor our Architectural Class

Recall that all of our input parameters may be classified into two groups, those spe-

cific to a particular architectural class and those that characterize the protocol processor.

91

The architectural parameters of the model and their symbols are listed in Table 6.1. The
choice of the particular parameters was determined in part by the profiles in chapter five.
Only those delay components that were found to be significant are included in the table.
Thisiswhy the time for the protocol processor to interrupt the host is not included, while

the time for the user-level interrupt of the application processisincluded.

Symbol Meaning

O, |round-trip delay of thewri t e() driver entry point
[round-trip delay of ther ead() driver entry point
9, round-trip user-level interrupt delivery time

le length in bytes of a control block

I length in bytes of an acknowledgment block

pw | per-bytetime required for the host to write data or
control information to the protocol processor

o per-byte time required for the host to read data or
acknowledgments from the protocol processor

Table6.1: Architectural Input Parameters

For the model to be useful during the development stage of an architecture, it is
important not to include any components which are dependent upon a specific software
implementation. For this reason there are no parametersin the table for operations such as
the operation to disable signals, even though it is significant in the profile. The inclusion of
such components is discussed in the context of evaluating the existing implementations of
architecturesin section 6.10.2.

The protocol processor parameters of the model are given in Table 6.2. In contrast
to the architecture-dependent set of parameters, those that characterize the surrounding
architecture, the same set of protocol processor parameters may be used for any particular
protocol processor. Furthermore, such parameters are not in any way dependent upon the
architectural class. The specific choice of parameters was not determined by examining the
profiles; rather, the relevant quantities were chosen because they are easy to obtain and fit

simply into the model’s derivations.

92

Symbol Meaning

O time required for the protocol processor to transmit a
minimum-length TSDU end-to-end

ps | per-bytetime required for the protocol processor to
transmit a TSDU end-to-end

Ty period of the protocol processor in transmitting a
minimum-length TSDU

pr | per-byte addition to the period of the protocol proces-
sor in transmitting a TSDU

Table 6.2: Protocol Processor Input Parameters

6.7. Performance Derivations

Derivations for user-level period, throughput, and delay, as well as host load are
presented below. All derivations are based on summations of time values; therefore, in the
following analysis, the p-quantities (in units of seconds/byte) are multiplied by the I-quan-

tities (in units of bytes) to produce elapsed times.

6.7.1. Period Derivation

The calculation of the user-level periods for transmission and reception proceedsin
this section. These results will later be used to calculate throughput and, to some extent,
host load. To estimate the user-level period for transmission, we undergo the following
analysis. Processor execution time linesfor atransmitting operation aregivenin Figure 6.2.
Note that &, o, and o; are defined above as round-trip times rather than one-way times
because round-trip times are easier to measure in practice. The one-way time of each isthen
estimated as simply half the round-trip time. The &, term at location J is subtle. Because
interrupts do not queue, asingle interrupt may signal the arrival of more than one protocol-
processor acknowledgment. The &, term represents a second read of the protocol proces-
sor’s statusto determineif another acknowledgment is pending. Given these timelines, we
may sum their serial componentsto obtain the user-level period for atransmitting operation

as follows.

93

B p,le [R eﬁ % Prla & 5 %
host 2 2j ? ? ? ’
A B C D | F G H I J K
protocol S Torpl 7
processor .

timeto enter the device driver wr i t e() routine

time to copy the transmit command to the protocol processor
time to copy the user data to the protocol processor

time to return from the device driver wr i t e() routine
protocol processing time required to service the request
timeto initiate the user-level interrupt handler routine
timeto enter the device driver r ead(') routine

time to read the acknowledgment from the protocol processor
time to return from the device driver r ead() routine
timeto enter and return from the device driver r ead() routine
time to return from the user-level interrupt routine

AR>IOMMUOUOW>

Figure 6.2: Delay Components of the User-Level Period for Transmission

) o 0.

= 6W 6W 6| r r i
Ti) = 5 +Plc+ P+ MaX (5 To+p) + 5 + 5 +pl+ 5 +8 + 5

0
= (PP I+ 5 +To+8+258 +p,lc+pl,

We base the second step of the derivation on the assumption that 8, /2 < T, + pl,
i.e., D isdominated by E, which should typically be the case. Thisis an example of where
processor parallelism causes a serial delay term to drop out.

The analysis of the user-level period for reception is similar and proceeds asillus-
trated in Figure 6.3. As with the transmitting operation, we make the assumption that
0,/ 2= Ty+ p4l; therefore, the C term drops out of the analysis, justifying the second step
of the derivation. The period for areceiving operation is derived as follows:

W 6W 6i r r 6i
T.() = 7+pW|C+max(7,T0+pT|)+§+§+pr|a+pr| +§+5r+§

0
= (pr+pT)I+?""+T0+6i+26r+pwlc+prla

94

(e}
(o}
(o4

N

| <
o)
=
>
o
—
o

N| O

o
| ¢
v

W <!
j 2

| E

host

T N>

>~
vs)
Ol

< + e
protocol To* Pyl

Processor

D

time to enter the device driver wr i t e() routine

time to copy the receive command to the protocol processor
time to return from the device driver wr i t e(') routine
protocol processing time required to service the request
timeto initiate the user-level interrupt handler routine

time to enter the device driver r ead() routine

time to read the acknowledgment from the protocol processor
time to copy the user data from the protocol processor

time to return from the device driver r ead() routine

time to enter and return from the device driver r ead() routine
time to return from the user-level interrupt routine

Figure 6.3: Delay Components of the User-Level Period for Reception

AGTIGIMIMOO®>

6.7.2. Throughput Derivation

In this section we calculate the user-level throughput for both synchronous and
asynchronous data transfers. To calculate the throughput of the individual transmitting or
receiving components of our architecture, we may ssimply divide their periods into I, the
ASDU length. The calculation of the synchronous user-level throughput isafunction of the
throughputs of the individual transmitting and receiving components. To derive it we must
note that, in steady-state operation, the throughput of the communications architecture can
be no greater than that of its slowest component; therefore, from Ty(l) and T,(I) we obtain
the synchronous user-level throughput as follows:

B |
O), 0

The derivation of the asynchronous user-level throughput, t,(I), is more complex
due to the fact that we must take into account both the parallelism of the host and protocol

processor and the shared resource of the backplane bus. This derivation is based upon the

95

following assumptions about the steady-state operation of the communications architecture
when asynchronous API calls are continuously performed:

» The host keeps the command queue to the protocol processor full.
» The protocol processor is aways either busy or blocking on bus access.

» Aninsignificant portion of Tg, the protocol processor period of a minimum-length
TSDU, is spent on bus accesses.

» The TSDU-length-dependent portion of the protocol processor period, ptl, is dom-
inated by the time for bus transactions.

For the architecture described in chapter four, these assumptions have been verified
to hold for large ASDUs through the direct examination of VM Ebus traffic. Taken together
with the processor parallelism due to asynchronous operation, the assumptions imply that
all terms of Ty(l) and T,(I) that do not reguire access to the backplane bus drop out of the
analysis. Thesetermsare o /2, T, &, and 2&;; therefore, for sufficiently large | we have:

T () = |

5 .
max (T,(1), T, (1)) - (?W +To+ 8 +28)

6.7.3. Host Load Derivation

In order to characterize the host load incurred when using an off-host communica-
tion architecture we provide estimates of the amount of host CPU time required to perform
transmitting and receiving operations. The minimum host processing time required to
transmit an ASDU can be derived from Figure 6.2. By summing the delay components on
the host time ling, i.e., components A-D and F-K, we arrive at the following.

o o, O O 0 0.

7""+pwlc+pwl+7W+§'+§r+pr|a+§r+6r+§I

H.(l)

(|c+|)pw+6w+6i +26r+pr|a

96

The minimum host processing time required to transmit an ASDU can be derived
inasimilar fashion from Figure 6.3. Summing the delay components on the host timeline,
i.e., components A-C and E-K, we arrive at the following.

5 5, 8 B r 5

H.(I) = ?W+pwlc+?+§+§'r+pr|a+prl+§+6r+§i

(I,+Dp, +0,+p,lc+0 +20,

6.7.4. Delay Derivation

The expression for &(l) isbased on the analysisillustrated in Figure 6.4. In thisanal-
ysis, we cal culate the user-level delay by studying the parallel execution of the transmitting
host, receiving host, and their protocol processors. We arbitrarily assume that the transmit-
ting and receiving operations start simultaneously. Before the protocol processors can per-
form component G successfully, both the transmitter and receiver must issue their requests
to their local protocol processors; thus, components A-E must all complete execution in
order to begin component G. Thusthey are, in effect, in series with the execution of G.

Because components A, B, and C on the transmitter and D and E on the receiver
share no resources, their execution proceeds in parallel. Furthermore, the execution of A
and B coincides exactly with that of D and E; thus, we need only include delay terms for
the A and B componentsin our expression for o(1).

We also choose to exclude the F component from our sum since this component is
in paralel with components C and G, and it is amost certainly the case that
Pl + 9yt Psl 20,/2,1.e, the combined execution of components C and G takes longer
than that of F. Based on these arguments, the resulting expression is calculated as follows.

o o O e} 0.

w i r r
7+pW|C+pW|+ (60+p6|) +§+§+pr|a+pr|+§+5r+§

(1)

0
(pw+p6+pr)|+7W+60+5i+26r+pwlc+pr|a

97

(o}

=

N

transmitting
host

S S pwlc74 pwl j
|

N

receiving
host i

O, + Pl =
protocol f 0" Ps
processor s i

G

time to enter the device driver wr i t e() routine
time to copy the transmit command to the local protocol processor
time to copy the user data to the protocol processor
time to enter the device driver wr i t e() routine
time to copy the receive command to the local protocol processor
time to return from the device driver wr i t e() routine
protocol processing time required to service the request
time to initiate the user-level interrupt handler routine
time to enter the device driver r ead() routine
time to read the acknowledgment from the protocol processor
time to read the copy the user data from the local protocol processor
time to return from the device driver r ead() routine

. timeto enter and return from the device driver r ead() routine
time to return from the user-level interrupt routine

Flgure64 Delay Components of the User-L evel Delay

Z.Z!_.F-“-'TEQT'T'!'UQO.U.U??

6.8. Model Predictionsfor our Architecture

In this section we apply the model to our communications architecture for
SAFENET, producing estimates based on itsinput parameter values. These predictions are

later validated in section 6.9.

6.8.1. Input Parameter Values

For our architecture, the inputs to the model have the values listed in Table 6.3.
Thosefor the architectural components were gathered using the time average measurement
techniques described in Appendix A. The protocol processor parameters were determined
from the performance plots of transport protocol performance given in chapter five. The

method of their extrapolation from such plotsis described in Appendix B.

98

Parameter Value
Oy 392 pus
o, 382 us
5 143 ps
I 104 bytes
I 64 bytes
Pw 279.45 ngbyte
o 364.8 ngbyte
9 3.112ms
Ps 363.97 ngbyte
To 2.062 ms
Pt 295.82 ngdbyte

Table 6.3: Input Parameter Valuesfor our SAFENET I mplementation

6.8.2. Throughput and Latency Predictions
Given thisinput, the model predictsthe end-to-end latency shown in Figure 6.5, the
synchronous throughput shown in Figure 6.6, and the asynchronous throughput shown in

Figure 6.7. Each prediction is as afunction of ASDU length.

70

60 - predict
observed -+---

30 f’f
20 g
e
10 Fout
e £,
0
0 10 20 30 40 50 60 70

Message Size (KB)

Figure 6.5: End-to-End Latency vs. ASDU Size

99

12
o+
e
%W’@ees“
W«'

) //ﬂ .
g °
a
s ,
3 6
K=
D #
>
9 f
E 4 s predict

i observed —+—
/
2 Z’f
0
0 10 20 30 40 50 60 70

Message Size (KB)

Figure 6.6: Synchronous Throughput vs. ASDU Size

14

= =
))
4

o) /
s 8 .
= ¥
£ i
2 6 [
2
=
4 i predict
/ observed -+---
£
2 F
i
0
0 10 20 30 40 50 60 70
Message Size (KB)

Figure6.7: Asynchronous Throughput vs. ASDU Size

6.8.3. Host Load Predictions

Using the host load formulas derived in section 6.7.3, the model predicts the mini-
mum host processing timeto transmit an ASDU to be 1.4 msfor aone-byte ASDU and 19.5
msfor a64-KB ASDU. To receivean ASDU, the model predictsatime of 1.4 msfor aone-
byte ASDU and 25.1 msfor a64-KB ASDU.

100

6.9. Comparison with Empirical Results

In order to validate the predictions of our model, we compare them below with

actual performance observations from chapter five.

6.9.1. Validation of Throughput and L atency Predictions

From examination of Figure 6.5 we can see that the end-to-end latency prediction
isagood estimate of the observed user-level end-to-end latency. Figure 6.6 shows that the
synchronous user-level throughput predictions of the model arerelatively accuratefor large
ASDUs, but overestimate the throughput for short ASDUSs. This discrepancy indicates that
there is more delay overhead in the data path than the terms of Tg(l) and T,(l) take into
account. As show in Figure 6.7, the asynchronous user-level throughput predictions are
quite good for large ASDU sizes; however they are totally inadequate for short messages.
This was to be expected, given the fact that our analysis was predicated on assumptions

which hold only for large ASDUs.

6.9.2. Validation of Host Load Predictions

In chapter five we observe that the host processing time required for transmission is
2.2 msfor aone-byte ASDU and 21 msfor a64-KB ASDU. A comparison of the observed
host processing time to perform atransmission with the predictionsin the previous section
indicate a 36% difference for a one-byte ASDU and a 7.1% difference for a64-KB ASDU.
We also observe in chapter five that the host load for a reception is 2.1 ms for a one-byte
ASDU and 27.3 ms for a 64-KB ASDU. In comparison with the host load predictions for
reception in the previous section, there is a 33% difference for a one-byte ASDU and a

8.1% difference for a64-KB ASDU.

6.10. Possible Extensionsto the M odel

The formulae presented above are limited in application to designs which belong to

our specific architectural class. In addition we made many simplifying assumptionsin order

101

to make our analysistractable. For example, we avoided a queuing theory approach in order
to simplify the mathematics. In spite of these decisions, our general model may be extended
in various ways to handle other architectures or to provide greater accuracy at the cost of

higher complexity. This section outlines several possible avenues of model extension.

6.10.1. Support for Other Architectural Classes

Althoughiitis applied above to the class of architectural design discussed in section
6.5, the general methodol ogy of our model can be used with other architectures aswell. For
example, given an architecture in which device driver does not reside in a protected kernel
or in which user processes memory map the protocol processor, system calls may not be
necessary. In such cases, the system call components of our model, 8, and &,, may simply
be set to zero. In another design, suppose that DMA transfers are used to transfer TSDUs
to the protocol processor; in this case, the bus transfer times (those termsinvolving ap,, or
pr) may be omitted from the derivations of host load. As yet another example, suppose the
buffering of data on the protocol processor is omitted. With this scenario, the cost of data
copies to and from the protocol processor can be dropped from the entire analysis. Of
course, the datais still copied at some point; however, the cost of such a copy is subsumed

within the protocol processor parameters.

6.10.2. Implementation-Dependent Components

The accuracy of the model can be increased by taking into account implementation-
dependent input parameter components. During or after the implementation of the design
of a particular off-host communications protocol architecture, knowledge of the overhead
of specific implementation components can be added to the model. These components sup-
plement those that describe the performance of the specific architectural class and protocol
processor. This approach adds complexity to the model; however, it should also provide

more accurate predictions of the performance of the final implementation.

102

As an example, we consider the profilesin chapter five of our SAFENET architec-
ture. These profiles indicate that the act of disabling and enabling signalsis significant. In
addition they indicate that, for large messages, the time to allocate buffers becomes appre-
ciable. Noting the significance of these artifacts of our implementation, we could incorpo-
rate them into our model as additional parameters in order to obtain greater accuracy,

particularly for short ASDUSs.

6.10.3. Consideration of More Communication Operations

In order to keep our analysis as simple as possible, we restricted our model to con-
nection-oriented transmit and receive operations. It may be of interest to designersto pre-
dict the performance of other communication operationsaswell. Thisis possible, using the
general methodology of the model; however, it could introduce many new input parame-
ters. For example, if we wereto extend our model to predict the user-level end-to-end delay
of connection establishment, we would need a new parameter to characterize the delay of
the protocol processor for this operation. Thisis essential for accuracy because connection

setup is arelatively expensive operation for many transport protocols.

6.10.4. Use of Queueing Theory

The use of queuing theory was absent from our analysisin order to avoid complex,
possibly even intractable, mathematicsin the derivation of the model’s outputs. In addition,
we wished to avoid the difficult task of finding probability distributions for the model’s
inputs. To avoid such complexity, we chose to use time-average measurements of input
parameters and made simplifying assumptions in the model’s analysis.

At the cost of complexity, there are certain components of our model which may be
much more accurately represented by probability distributions. Thus the additional com-
plexity of a queuing theory approach may provide more accurate results. For example,
since protocol processing is a nondeterministic activity, itsinput parameters would proba-

bly be better represented by probability distributions. In addition, the shared use of the

103

backplane bus depends on statistical utilization factors and various arbitration and release
policies. The consideration of these factors may mandate a queuing theory model. Such a
model may also be necessary in order to relax certain other assumptions. For example, we
assume the use of unloaded hosts in our analysis and do not consider the effects of queuing
in the command and status queues to the protocol processor, nor do we consider the effects

of masking interrupts on interrupt response time.

7 Conclusions

7.1. Summary

This work has concerned itself with communications architectures in which the
transport and network layers of the OSl reference model execute off-host on a protocol pro-
cessor. In chapter one we pointed out the renaissance in communications architecture
design brought about by high-performance LAN technology. We noted that, although these
new networks offer both high-performance and new services, acomputer system’s commu-
nications architecture (including hardware, an operating system, and communications pro-
tocols) that stands between the network and its ultimate user can mask the benefits of such
networks from the user’s point of view. In searching for a new architectural approach we
explored the issue of protocol placement. We pointed out that there were two fundamental
choices concerning where protocols execute, on-host and off-host, and we proceeded to
contrast these choices. We then postul ated that off-host communi cations architectures were
a promising approach worthy of study. To this end, we identified several possible advan-
tages that off-host architectures could offer both the host computer system and the proto-
cols; however, we also warned of the possible pitfalls of off-host protocol implementation.

In chapter two we outlined the many design issues inherent in off-host communica-
tions protocol architectures. These mandated many choices with respect to the channels of
communication present in an off-host architecture. Such choices were with respect to the
placement of the components implementing the off-host architecture and the mechanisms
necessary for communication between components at each level. We a so pointed out two
philosophical extremes in design, a tightly-integrated design and a loosely-integrated
design, and discussed the trade-offs inherent to each.

In chapter three we surveyed the literature containing related work on off-host com-
munications protocol architectures. Some work only resulted in an architectural design and

performance estimates, while other work included both a design and actual performance

104

105

results. The approaches ranged from tightly-integrated to loosely-integrated designs and
thus illustrated the resolution of the many design issues outlined in chapter two.

We presented the design of our own communications protocol architecturein chap-
ter four. To some extent, our design choices were constrained by our host computer and its
operating system; still, several design options were still left open to us. Throughout the
chapter we illustrated how we resolved such issues. The resulting architecture is very
loosely-integrated relative to those discussed in chapter three. It implementsthe SAFENET
lightweight suite of protocols using three VMEbus modules, a DTC-2 host running appli-
cation processes, a single-board computer acting as an X TP protocol processor, and a net-
work interface. In order to provide multiprogramming security our design makes use of
system calls, and, in order to avoid DVMA space restrictions, it uses host-driven pro-
grammed 1/0O and shared TSDU buffers.

In chapter five we analyzed the performance of our implementation of the architec-
ture designed in chapter four. We presented the performance of our implementation at sev-
eral service levels. In addition we profiled our performance at the user and kernel levelsin
the host and analyzed the profiles. Using such information and some related work on back-
plane bus performance, we identified the ASDU length-dependent and length-independent
performance bottlenecks in our architecture.

In chapter six we gave the motivation for an architecture-based performance model
of off-host communications protocol architectures. We presented the general design of such
a performance model having the twin goals of simplicity and practicality. Within this gen-
eral framework, we targeted the model to the specific class of off-host communications
architectures to which our SAFENET architecture belongs. Based on this specific architec-
turewe choseinput parameters and derived formulasto predict overall architectural perfor-
mance. In order to illustrate the use of our model, we applied it to our architecture for

SAFENET, displaying the model’s performance predictions. Furthermore, we illustrated

106

the model’s validity by comparing these predictions to the performance measured in chap-
ter five.

In this chapter we make conclusions about our off-host communications architec-
tureinlight of the resultsin the previous chapters. First we eval uate the extent to which we
achieved the benefits of an off-host communications architecture that were claimed possi-
blein chapter one. Second, we eval uate the extent to which we committed the possible pit-
falls of an off-host approach, which are also discussed in chapter one. We then evaluate the
simple performance model of chapter six in light of its development, application, and val-
idation. Finaly, we identify areas for future work and present general conclusions on the

suitability of off-host architectures.

7.2. Evaluated Advantages of our Off-Host Architecture

In this section we evaluate to what extent the architecture described in chapter four
provides the possible benefits off-host communications architectures. Some facets of this
evaluation require comparison with the behavior an in-host architecture. For this purpose
we compare our work with an in-kernel implementation of XTP [47]. This in-kernel
approach featuresasomewhat different API, but the X TP layer and bel ow consists of essen-
tially the same protocol software. Other evaluations consider aspects of our off-host com-
muni cations architecture which are readily observable from the design presented in chapter

four or its analysis covered in chapter five.

7.2.1. Host Benefits

An off-host architecture promises the following host benefits: decreased host CPU
load, predictable application processing, reduced and bounded host interrupts, and reduced
incident TSDU traffic. Here we consider the extent to which our design provided such ben-
efits. By design, the number of incident TSDUs on our host isequal to the number of receiv-
ing operations performed; thus, we can indeed reduce and, in fact, precisely bound incident

TSDU traffic by limiting the number of receive operations that the host performs. Similar

107

benefits also occur with respect to interrupts; each sending or receiving operation incurs
exactly one host interrupt. Results from [47] show that 26 interrupts can result for asingle
64-KB receiving operation. Thus the off-host architecture incurs 96% fewer interrupts in
such cases. Obviously our design is quite successful in acting as a firewall.

The CPU load for transmitting and receiving operations can be characterized (1)
relative to the overall timeto carry out these operations using our off-host architecture and
(2) relative to the host load for the in-kernel implementation. We shall present both such
forms of analysis. With respect the total execution time for communication, the host load
has been recorded as high at 60.9% of total processing time; thisisin the case of a 64-KB
GET_MESSAGE. The proportion of overall time incurring host load is much smaller for a
one-byte GET_MESSAGE; the host load due to such a call consists of only 30.4% of total
processing time. These results show that the role of the host in an off-host communications
architecture can be much larger than one might expect.

To compare the host load of our off-host architecture with that of the in-kernel
approach, we compare the load for transmitting operations of both short and long ASDUSs.
Estimates in [47] show that a 64-KB sending operation takes 66 ms of host CPU time for
the in-kernel approach, whereas chapter five shows that a similar call using the off-host
architecture requires only 21 ms. Relative to in-kernel operation, the off-host approach
reduces host load by afactor of 68%. For aone-byte ASDU, an in-kernel transmitting oper-
ation consumes 4.7 ms of host CPU time, whereas asimilar call in the off-host architecture
consumes 2.2 ms. Here the off-host approach reduces load by only 53%. Clearly we
received amajor benefit in the reduction to host load provided by our off-host architecture.

We manage to provide another benefit in that the amount of host CPU load in our
off-host architecture is deterministic. By design, the host CPU time incurred for communi-
cations operations is constant. On the other hand, the host load in-kernel approach can be

guite nondeterministic, especialy in the face of error or flow control.

108

7.2.2. Protocol Benefits

Here we discuss the protocol benefits provided by our off-host architecture. The
benefits deemed possible are dedicated processing cycles, specialized hardware, an opti-
mized data path to network hardware, and an ideal operating system environment. With our
design we gave our protocol, XTR, its own processor; therefore one would trivially con-
clude that the protocol has dedicated processor cycles. To some extent, however, one could
argue that this is not the case since XTP has to share the processor with the FDDI MAC
devicedriver. We refute this by claiming that such processing is actually apart of X TP pro-
tocol processing. The MAC driver software includes the fundamental operations necessary
to send and receive TPDUS; all true MAC processing isdone on the network interfaceitself.

Essentially, our protocol processor contains no specialized hardware support for
protocol processing. The protocol processor is based upon a genera-purpose single-board
computer. Thisdevicewas not explicitly designed for protocol processing; however, it does
have a few features useful for such processing. These features include an on-board DMA
controller and burst mode capability. The DRAMS are in no way specialized for protocol
processing; they have only a 70-ns access time, which is approximately the same speed as
the host’s own memory. In addition the protocol processor’'s CPU is not specialized. It is
clocked at the same rate as the host CPU, but is a CISC processor rather than a RISC pro-
cessor. It is not clear which type of instruction set design is better for protocol processing.

Another cited advantage of off-host architecturesis the possibility of an optimized
data path between the protocol processor and network interface; however, our architecture
contains no hardware support for such an optimization. To the extent possible, we attempt
to optimize this path in software. Our network interface is programmed to employ block
mode DMA transfers across the VMEbus between itself and the protocol processor. More
traffic crosses the channel between the protocol processor and network interface than that
between the host and protocol processor. In our design, the latter path crosses the bus via

programmed 1/0O and without using block mode DMA. Furthermore, such programmed I/

109

O has been found to have about half the throughput as the DMA between protocol proces-
sor and network interface. One can see that we are fortunate to have optimized the path
which carries more traffic.

Our choice of operating system for the protocol processor seemsto have been awise
one. In measurements of the in-kernel implementation, the UNIX kernel architecture has
been shown to severely impact the performance of the protocol through high timer, buffer,
tasking, and network interface management overhead. The choice of the lightweight mul-
titasking operating system, pSOS+, and our own custom buffer and network interface man-
agement alowed us to perform XTP processing with lower overhead and thus higher
performance. As aresult, the peak user-level throughput for our off-host architecture was
12.1 Mbps, whereas the peak user-level throughput for the in-kernel approach was only
7.70 Mbps.

7.3. Evaluated Pitfalls of our Off-Host Architecture

In chapter one, we warned of several possible pitfalls which could counter the abil-
ity of an off-host protocol implementation to deliver its possible benefits. In this section we
evaluate our architecture with respect to these pitfalls. Wefirst consider the pitfallsinherent

in both on-host and off-host architectures.

7.3.1. Incurring Operating System Overhead

Aswith anin-kernel protocol implementation, oursincurs some degree of operating
system overhead. Asdiscussed in chapter five, our overhead is dueto system callsfor writ-
ing commands, reading status, and handling, disabling, and enabling signals. The cost of
these operations is quite significant for relatively short ASDUS; however, it is quiteirrele-
vant with respect to long ASDUSs.

In contrast, the Nectarine API discussed in section 3.4 avoids system call overhead
at the cost of providing system security. Our design, on the other hand, chose to incur such

overhead in exchange for security from malicious or accidental corruption of the system by

110

user processes. It issurprising, however, that the vast majority of system call overhead does
not occur in the system call mechanismitself, but rather inthephysi o() andi odone()
kernel utility routines. This suggests that the system call mechanism itself may be less of a

factor than one might otherwise believe.

7.3.2. Overtaxing the Host CPU with Protocol Processor Driving

Here we evaluate the extent to which our off-host communications architecture
overtaxes the host CPU with tasks associated with operating the protocol processor device.
These tasks include the transfer of control, status, and data, the management of shared data
structures, the multiplexing and demultiplexing of outgoing commands and incoming sta-
tus, and the user-level notification of pending status. Any device requires some degree host
overhead in order to driveit; our goal wasto minimize thisoverhead so that the host would
be off-loaded as much as possible.

Asshown in the profiles, the cost of the transfer of control blocks and status blocks
to the protocol processor isrelatively insignificant, even for short ASDUS, when compared
with UNIX overhead. In contrast, datatransfer can be quite taxing on the host. For example,
with a 64-KB GET_MESSAGE operation, the majority of overall processing time (includ-
ing that of both the host and protocol processor) is spent by the host performing the data
copyout () . We, as designers, were shocked to find that the programmed 1/0O transfer
across the VMEbus was so time consuming. The throughput of the bus for copyout ()
operationsisactually lower than that of the protocol processor; hence, the host spends more
time transferring TSDUSs than does the protocol processor.

Other pitfalls of protocol processor driving are relatively insignificant in our archi-
tecture. From the profiles of chapter five, we can see that the overhead due to the manage-
ment of shared data structuresisonly visiblein the buffer allocation of large ASDUSs. Even
in this case, the overhead of 109 us is insignificant given the fact that the large ASDUs

causing such buffer overhead incur avastly greater cost in their backplane copies. In addi-

111

tion, some device driver code exists to manage connection state; however, its overhead is
also not significant, regardless of ASDU size. Similarly, the effect of multiplexing and
demultiplexing command and status information was never observed to be a significant
contributor to host processing time. The only ill effects of such multiplexing are the code
complexity it introduces into the kernel device driver. The notification of command com-
pletion through UNIX signals did incur a visible amount of overhead (143 us); however,

such overhead was not particularly significant, even for API primitives with short ASDUSs.

7.3.3. Increased Data Path Complexity

Another pitfall unique to off-host communication architectures is the increase in
data path complexity due to addition of the protocol processor device. Our architecture
commits these faults, much to the detriment of its user-level throughput and end-to-end
latency performance. The concerns here are the use of alow bandwidth connection to the
protocol processor, additional data copies, and additional bus contention.

The pathway to our protocol processor isindeed low bandwidth. First of all itisvia
an |/O backplane. Thisimpliesthat it isnot optimized for high speed as opposed to memory
buses on amotherboard. Furthermore, we perform programmed I/O copies of the data, and,
because of this, we cannot use the block transfer mode of the VMEbus. As a result, we
achieverdatively poor VM Ebus throughput for our architecture. Note aswell from chapter
five that the VMEbus is not alone responsible for the low throughput; factors such as the
CPU speed and memory access time aso play arole here.

Due to the fact that we buffer our TSDU data on the local memory of the protocol
processor board, we incur an extra copy than would otherwise be the case if the protocol
processor handled TSDUSs resident in host memory. This additional copy causes an extra
step in common-case communication processing. Worse yet, its overhead isincurred by the
host CPU, thus contributing to host load. Such added overhead has an inescapabl e effect on

user-level end-to-end latency and is quite significant for large ASDUSs. If performed in par-

112

allel with protocol processor data transfer, the ill effects of the extra copies on user-level
throughput could be hidden; however, such cannot be the case in our architecture for rea-
sons discussed below.

Since our architecture uses two separate VM Ebus modules for the protocol proces-
sor and network interface, the architecture suffers bus contention. The detrimental effects
of this contention are graphically illustrated in Figure 5.4 of section 5.5.2. One can see that
much of the possible parallelism between the host and protocol processor is prevented for
large ASDUs due to the fact that both processors wish to perform bus transfers simulta-
neousdly. This contention ultimately results from a combination of two factors: (1) the buff-
ering of TSDUs in the protocol processor’s loca memory, requiring VMEDbus transfers
between the host and protocol processor, and (2) the placement of the network interface on
a separate VME module, requiring VMEDbus transfers between and the protocol processor.
If either factor were not the case, this contention would be severely decreased, if not elim-
inated altogether.

These results argue strongly for integrating the network interface on the protocol
processor device or eliminating TSDU buffering on the protocol processor. Taken together
with observations of the low bandwidth data path and problems of the extra copy, our
results argue most strongly for eliminating the extra buffering. Ideally one would eliminate
both the buffering and the separation of the protocol processor and network interface in to

different bus modules.

7.4. Critique of the Simple Performance M odel

The architecture-based performance model developed in chapter six was designed
to easily allow both performance evaluation of existing off-host communications architec-
tures and performance predictions for off-host architectures undergoing their design. To
provide such services, the model takes a set of input parameters and predicts a set of output

guantities. The guiding design principlesfor the model were simplicity and practicality. For

113

the model to be judged as simple, its input parameters must be easily obtainable by the
model’s user. Furthermore, the mathematical analysis of the model must be simple enough
for the user to apply. Due to the use of time-average measurement of architectural inputs
and the simple mathematical analysis of protocol performance plots, the model’sinputs are
relatively easy to obtain. The greatest difficulty in parameter gathering isthat, to gain some
of the architectural parameters, knowledge of UNIX character device driversis required.
However, we argue that such knowledge is mandatory for UNIX communications system
designersin any case. What ismost important isthat the input parameter gathering requires
No precise measurement equipment and no probability distributions of input quantities.

Our model is also quite easy to apply. Due to the avoidance of probability distribu-
tions for input parameters, we sidestep the complex and often intractable mathematics of
gueueing theory. Rather, through the use of averages quantities, our mathematics is quite
simple, involving only algebraic expressions. Although our analysis is based upon the
assumption of a specific class of architecture, the methodology isso general that it is appli-
cable to other classes as well. Several examples were given in section 6.10.1 to illustrate
this.

The practicality of the model must be judged based upon both the performance
guantities it predicts and how accurately it predicts them. Clearly, user-level end-to-end
latency and throughput are quantities of interest to the users of the model. Thus, in predict-
ing these quantities, the model isindeed performing avaluable service. In addition, the pre-
diction of host load is of particular interest to the designers off-host communication
architectures since the reduction of host load is one of the unique benefits of such architec-
tures. A possible criticism, however, of our host load prediction is the choice of its defini-
tion. One may argue that another metric besides seconds of CPU time is more appropriate
for characterizing host load. For example, one may prefer the metric of the percentage of
host CPU utilization or a percentage of host cycles out of the overall processing time of the

communications architecture. In defense of our load prediction metric, we argue that such

114

aprediction is quite fundamental and may therefore be used to derive the many other met-
rics, which others may suggest.

One may also argue that other predictions, such as interrupts per ASDU, should be
included as model outputs; however, such quantities are more likely to be intrinsic to the
design of an off-host architecture than derived from such adesign. Similarly, the bound on
incident ASDUs is a quantity inherent in a particular off-host design.

One may also argue that our model should predict the benefits to the transport pro-
tocol due to off-host implementation. However, the complexity of transport protocol anal-
ysis may likely result in a complex model that is prohibitively difficult for users to apply.
If asimple approach could be adopted, perhaps a separate model predicting the benefits of
dedicated cycles, custom hardware, and a specialized operating system could be con-
structed.

The accuracy of the model is acceptable when one appreciates the fact that it
requires no specific details of the implementation of an architectural design. Admittedly,
the model predictionsfor short ASDUsare not particularly accurate. At itsworst, the model
under-predicts the host load due to a one-byte SEND MESSAGE primitive by 36%. The
latency and host load predictions for short ASDUs are lower than observed results due to
the fact that, as applied, the model only takes into account the inherent overhead of the
architectural components and protocol processor. Since we do not consider the additional
delay effects introduced by the software that operates within the architectural framework,
it isclear that our model predictions should indeed be low.

Our model over-predicts the synchronous throughput short ASDUSs. Thisis due to
the fact that the ASDU length-independent overhead is under-predicted. A discussed
above, this discrepancy is present because ours are a priori predictions. Such estimates do
not assume knowledge of software overhead of the implementation of our architecture.

For other reasons, the asynchronous throughput prediction is poor for short ASDUSs.

This is due to the assumptions on which the formula providing the predictions is based.

115

Such assumptions assume the presence of bus contention and are claimed to be valid only
for sufficiently large ASDUs that result in the saturation of the backplane from large
amounts of traffic.

On the other hand, our model predicts rather well for large ASDUs. The graphic
comparisons in section 6.8.2 show that synchronous and asynchronous user level through-
put and end-to-end latency predictions are much more accurate in the large-ASDU case.
Likewise, the accuracy of our host load prediction for a64-KB SEND MESSAGE primitive
is within 7.1%. The reason why such predictions are more accurate is that, for large
ASDUSs, the overhead of softwareimplementation isdwarfed by the backplane transfer and
protocol processing times, quantities which are indeed taken into account in the model.

If the user of the model wishes increased accuracy for short ASDUs he may apply
his knowledge of the overhead of the software implementation of the modelled architecture
as it becomes known. This approach was in section 6.10.2.

It isnot clear that the use of queuing theory would significantly improve the predic-
tions for short ASDUSs. It is our belief that these predictions were largely affected by the
fact that we ignored implementation-dependent parameters in our analysis, rather than by

our use of simple mathematical analysis.

7.5. Suggestionsfor Future Work

There are many avenues for future work in both the area of off-host communication
architectures and the area of the performance modelling of such architectures. It isour opin-
ion that more fruitful work can be done viathe redesign of our architecture for SAFENET.
The top three areas in which our architecture could be improved are in: (1) the avoidance
of buffering ASDUSs, (2) the integration of the protocol processor and network interface on
the same circuit board, and (3) the avoidance of system calls. To pursue these modifica-
tions, some new hardware choices would be necessary. In addition, one would have to

either (a) give up the goal of secure access (in the sense of multiprogramming) to the pro-

116

tocol processor, or (b) find away to provide security without using system callsin the com-
mon case of communication. The latter solution could perhaps be achieved though the use
of mutually-private yet protocol-processor-shared memory regions for each process using
the protocol processor.

Additional work on the performance model is aso possible. There are many exten-
sions presented in section 6.10 which await pursuit. In particular, it would be of great inter-
est to see if the use of implementation-dependent knowledge can significantly improve the
model predictions for short ASDUs. With such results in hand, we may decide whether a
more complex model is necessary in order to accurately predict performance for short
ASDUs.

If queueing theory were employed in amodel of off-host communications architec-
tures, it would be possible to characterize the facets of the architecture exhibiting stochastic
behavior. The following areas of architecture would benefit most greatly from queueing
theory analysis and probabilistic description:

» The delay introduced in the FN and TN queues between the host and protocol pro-
cessor

» The effect of limits on the length of the FN and TN queues

* The effect of limits on the maximum number of operations outstanding on a con-
nection

* The stochastic behavior of the protocol processor, accounting for the variance in
both latency and throughput

» The stochastic behavior of the backplane bus, including the probability and dura-
tion of blocking due to contention or the variance in arbitration times

* The effects of bus arbitration and release policy on the stochastic behavior of the
bus

* The effects of other processes on the host

We welcome any further attempts to model off-host communications architectures
in hopes that they reveal more insight in to the impact of design choices and alow better

evaluation and prediction of off host architectures.

117

7.6. The Suitability of Off-Host Communications Architectures

Taking into account both our research in off-host communi cations architectures and
the work of others, we make afew general comments about the suitability of off-host archi-
tectures. Our results suggest that such architectures are useful in two general scenarios: (1)
when the host CPU cannot sustain the burden of protocol processing and still meet the
needs of its application processes, and (2) when the protocol must provide ahigher level of
service than can be achieved by the host computer and operating system. There are, how-
ever, some caveats for the designers of off-host architectures which, if left unheeded, can
erode the benefits of such architectures.

In some situations the host CPU may execute a set of processes which have real-
time requirements. In such cases the addition of more load on the CPU or the presence of
host processing with a nondeterministic execution time could result in the unacceptable
performance of other host tasks. Our architecture shows that off-host architectures avoid
such problems and are therefore suitable in these real-time scenarios. Although our off-host
architecture occasionally suffers significant host load due to programmed 1/0O, other archi-
tectures(e.g., that of Beach in section 3.6) which avoid such load are possible. Furthermore,
we have established that our architecture has both deterministic host execution times and
bounded interrupt arrivals, thereby providing bounded host processing times. Thus it is
clear that off-host architectures are suitable for meeting several real-time host processing
demands.

In many cases, protocols which execute on-host are incapable of meeting the mini-
mum service requirements of applications due to the constraints imposed by the host sys-
tem hardware, its operating system, or other host processing. Our work indicates that the
use of an off-host communications architecture can solve some of these problems. The
comparison of our off-host architecture with an in-kernel architecture shows that the host
computer’s hardware and operating system architecture greatly constrained transport pro-

tocol throughput. Our off-host architecture’s use of alightweight operating system allowed

118

the off-host approach to achieve higher user-level throughput. Such results suggest that off-
host architectures are more suitable for modern, high-throughput LANS. In addition, our
protocol processor isaways prepared to process protocol traffic through the use of its ded-
icated cycles. Asaresult, wethink that it is better able than the host to handle the real-time
and/or continuous-media traffic carried by modern LANS.

Our results also indicate that the designers of an off-host communications architec-
ture must watch out for various pitfalls. In our work we found the most significant of these
to be system call overhead and bus transfer time. These results along with the body of
related work on off-host architectures suggest that, in the design of such architectures, one
should seek to minimize (1) the number of architectural layersin the design, (2) the over-
head at each layer, and (3) the overhead of inter-layer communication. Our experience sug-
geststhat the overhead of inter-layer communication isthe most significant detriment to the
suitability of off-host communications architectures. One must also be willing to incur the
monetary cost of the additional protocol processing hardware and grapple with the com-
plexity such hardware introduces.

In short, off-host communications architectures can be used to the practical advan-
tage of both a host computer system and its communications protocols. When built for the
performance-critical types of systems described above and with the proper architectural

design choices, such architectures are beneficial to all host applications.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]
[10]

[11]

[12]

M. J. Accetta, R. VBaron, W Bolosky D. B. Golub, R. FRashid, A. &vanian Jr
and M. W Young, “Mach: A New Kernel Foundation of UNIX Developmemrb-
ceedings of the Summer 1985 USENIX Cemnfeg July 1986, pp. 931B.

American National Standards Institute/Institute of Electrical and Electronics Engi-
neers VMEbus Specification ManyéTD 1014-1987, VMEbus Internationakitie
Association, Scottsdale, Arizona, 1987.

B. Beach, “UltraNet: An Architecture for Gigabit Networking?foceedings of the
15th Confeence on Local Computer Networkdinneapolis, Minnesota, September
30-October 3, 1990, pp. 232-248.

A. G. Bell and G. Borriello, “A Single Chip NMOS Ethernet Contrgllétroceed-
ings of the IEEE International Solid-State €iits Confeence February 1983, pp.
70-71.

P. L. Borrill, “32-Bit Buses—An Objective ComparisonProceedings, BUSCON
1986 Vést San Jose, California, 1986, pp. 138-145.

T. Braun and M. Zitterbart, “A Parallel Implementation of XTP oariEputers,Pro-
ceedings of the 16th Conégrce on Local Computer Networkdinneapolis, Minne-
sota, October 1991, pp. 321-329.

T. Braun, B. Stillerand M. Zitterbart, “XTP and VMTP on Multiprocessor Architec-
tures,”Proceedings of the Internationalb¢shop on Advanced Communications and
Applications for High-Speed Networkdunich, GermanyMarch 1992, pp. 67-76.

D. R. Cheriton, “VMTP: A \rsatile Messageransaction Protocol,” &chnical
Report RFC 1045, Defense Advanced Research Projects Adeatryary 1988.

G. Chesson, “The Protocol Engine Projetitiix ReviewSeptember 1987.

G. Chesson, “XTP/PE Design Considerations,” H. Rudin and iRaiWson, Ed.,
Protocols for High-Speed Networkslsevier Science Publishers B, Morth Hol-
land, 1989, pp. 27-33.

E. C. CooperP A. Steenkiste, R. D. Sansom, and B. D. Zill, “Protocol Implementa-
tion on the Nectar Communication ProcegsBroceedings, SIGCOMM ‘9@hila-
delphia, R, September 1990, pp. 135-144.

P. Coquet, “GAM-T103 Reference Model for Military Realfiie Local-Area Net-
works (MRT-LAN),” Proceedings of the IFIP @kshop on Protocols for High-Speed
Networks, Zirich, May 1989.

119

120

[13] B.J. Dempsey, J. C. Fenton, J. R. Michel, A. S. Waterman, and A. C. Weaver, “ Tuto-
rial on UVA SAFENET Lightweight Communications Architecture,” Computer Sci-
ence Technical Report Number TR-93-01, University of Virginia, January 1993.

[14] B.J. Dempsey, J. C. Fenton, J. R. Michel, A. S. Waterman, and A. C. Weaver, “Ada
Binding Reference Manual—SAFENET Lightweight Application Services,” Com-
puter Science Technical Report TR-93-02, University of Virginia, January 1993.

[15] B. J. Dempsey, J. C. Fenton, J. R. Michel, A. S. Waterman, and A. C. Weaver,
“SAFENET Internals,” Computer Science Technical Report Number TR-93-05, Uni-
versity of Virginia, January 1993.

[16] C. Diot and M. N. X. Dang, “A High-Performance Implementation of OS| Transport
Protocol Class 4; Evaluation and Perspectives,” Proceedings of the 15th Conéaice
on Local Computer Network®linneapolis, Minnesota, October 1990, pp. 223-230.

[17] C. Diot and V. Roca, “XTP/KRM Implementation on a Transputer Network,” Pro-
ceedings of the 16th Conégrce on Local Computer Networkéinneapolis, Minne-
sota, October 1991, pp. 310-320.

[18] R.Duncan, Ed.,“TheMS-DOS Encyclopedia,” Microsoft Press, Redmond, Washing-
ton, 1988.

[19] 1. Erickson, “Protocol Controller Chip Manages X.25 Interface,” Computer Design
Vol. 24, September 1, 1985, pp. 78-81.

[20] D.Giarrizzo, M. Kaiserswerth, T. Wicki, and R. C. Williamson, “High-Speed Parallel
Protocol Implementation,” H. Rudin and R. Williamson, Ed., Protocols for High-
Speed NetworkE&lsevier Science PublishersB. V., North Holland, 1989, pp.165-180.

[21] D. T. Green and D. T. Marlow, “SAFENET - LAN for Navy Mission Critical Sys-
tems,” Proceedings of the 14th Condéeice on Local Computer Netwoykéinneap-
olis, Minnesota, October 1989, pp. 340-346.

[22] A. N. Habermann, “Synchronization of Communicating Processes,” Communica-
tions of the ACIMVal. 15, No. 3, March 1972, pp. 171-176.

[23] B. Heinrichs, “XTP Specification and Parallel Implementation,” Proceedings of the
International Vdrkshop on Advanced Communications and Applications for High-
Speed Network#Aunich, Germany, March 1992, pp. 77-84.

[24] International Organization for Standardization, “Information Processing Systems—
Open Systems Interconnection—Basic Reference Model,” Draft International Stan-
dard 7498, October 1984.

[25] N. Jain, M. Schwartz, and T. R. Bashkow, “Transport Protocol Processing at BGPS
Rates,” Proceedings, SIGCOMM ‘9@ CM, New York, 1990, pp. 188-199.

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

121

D. Julin, MACH Networking Group, “Network Server Design,” Technical Report,
Carnegie Mellon University, September 1989.

H. Kanakia, D. R. Cheriton, “The VMP Network Adapter Board (NAB): High-Per-
formance Network Communication for Multiprocessors,” Proceedings of the SIG-
COMM ‘88 Symposium on Communicationgectues and Potocols August
1988, pp. 175-187.

A. S. Krishnakumar and K. Sabnani, “VLSI Implementations of Communication Pro-
tocols—A Survey,” IEEE Journal on Selected éas in Communication¥ol. 7, No.
7, September 1989, pp. 1082-1090.

L. Lamport, “ Synchronization of Independent Processes,” Acta InformaticaVol. 7,
No. 1, 1976, pp. 15-34.

S. J. Leffler, M. K. McKusick, M. J. Karels, and J. S. Quarterman, The Design and
Implementation of the 4.3BSD UNIX Operating Sys#eddison-Wesley Publishing
Company, Reading, Massachusetts, 19809.

R. A. MacClean and S. E. Barvick, “An Outboard Processor for High Performance
Implementation of Transport Layer Protocols,” Proceedings, GLOBECOM ‘91
1991, pp. 1728-1732.

MIL-STD-2204: Survivable Adaptable Fiber Optic Embedded Network (SAFENET)
United States Department of Defense, September, 1992.

R. J. Mitchell, E. T. Saulnier, and M. C. Orlovsky, “A Partitioned |mplementation of
the Xpress Transfer Protocol (Part 1),” Proceedings of the 16th Conéaice on Local
Computer NetworkdMinneapolis, Minnesota, October 1991, pp. 301-3009.

R. J. Mitchell, E. T. Saulnier, “Experience with an X TP Implementation for Embed-
ded Systems,” Proceedings of the 17th Condece on Local Computer Netwoyks
Minneapolis, Minnesota, September 1992, pp. 586-592.

A. N. Netravali, W. D. Roome, K. Sabnani, “Design and Implementation of a High-
Speed Transport Protocol,” IEEE Transactions on Communicatigngol. 38, No. 11,
November 1990, pp. 2010-2024.

J. L. Paige, “SAFENET - A Navy Approach to Computer Networking,” Proceedings
of the 15th Conf@nce on Local Computer Netwoyrkéinneapolis, Minnesota, Sep-
tember 30-October 3, 1990, pp. 268-273.

D. M. Ritchie, “A Stream Input-Output System,” AT&T Bell Laboratories &chnical
Journal Vol. 63, No. 8, October 1984, pp. 1897-1910.

E. T. Saulnier and R. J. Mitchell, “ A Multi-Processor Partitioning of XTR” Proceed-
ings of the International Wkshop on Advanced Communications and Applications
for High-Speed NetworkMunich, Germany, March 1992, pp. 85-92.

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

122

M. Siegel, M. Wliams, and G. RdBler*Overcoming Bottlenecks in High-Speed
Transport SystemsProceedings of the 16th Conference on Local Computer Net-
works, Minneapolis, Minnesota, October 1991, pp. 399-407.

A. Silberschatz, “Communications and Synchronization in Distributed Programs,”
|EEE Transactions on Software Engineering, Vol. SE-5, No. 6, November 1979, pp.
542-546.

R. Simoncic, A. C. Waverand M. A. Colvin, “Experience with the Xpressamsfer
Protocol,”Proceedings of the 15th Conference on Local Computer Networks, Minne-
apolis, Minnesota, September 30-October 3, 1990, pp. 123-131.

M. Stark, A. Kornhauserand D. \an-Mierop, “A High Functionality VLSI LAN
Controller for CSMA/CD Networks, Proceedings of the IEEE Compcon Spring,
February 28-March 3, 1983, pp. 510-517.

P. Steenkiste, “Analyzing Communication Latency Using the Nectar Communication
Processqt Proceedings of SGCOMM ‘92, 1992, pp. 199-209.

W. T. StrayerB. J. Dempseyand A. C. Véaver XTP: The Xpress Transfer Protocol,
Addison-Wesley Reading, Massachusetts, 1992.

Sun Microsystems, Inc. “Sun 4300 CPU Board Hardware Reference Manual,” Part
No: 800-3081-05, Mountaini®w, California, April 1989.

Sun Microsystems, Inc., “YWing Device Drivers,” Part No: 800-3851-10, Mountain
View, California, March 1990.

A. S. Waterman, “A Comparison of ®Host vs. In-Kernel Communications Archi-
tecture,” M.S. Thesis, Department of Computer Science, Universityrgin\a (in
preparation).

R. W Watson and S. A. Mamrak, “GainingflEfency in Transport Services by
Appropriate Design and Implementation Choic#$;M Transactions on Computer
Systems, Vol. 5, No. 2, May 1987, pp. 97-120.

C. M. Woodside and R. G. Franks, “Alternative Software Architectures for Parallel
Protocol Execution with Synchronous IPC,” IEEE/ACNMaiisactions on Network-
ing, Vol. 1, No. 2, April 1993, pp. 178-186.

M. Zitterbart, “A Multiprocessor Architecture for High-Speed Network Interconnec-
tions,” Proceedings, IEEE INFOCOM ‘89, 1989, pp. 212-218.

M. Zitterbart, “High-Speed Protocol Implementations Based on a Multiprocessor
Architecture,” H. Rudin and R. Wlamson, Ed. Protocols for High-Speed Networks,
Elsevier Science Publishers B, Morth Holland, 1989, pp. 151-163.

123

[52] M. Zitterbart, “High-Speed Transport Components,” |EEE Network Magazine, Vol.
5, No. 1, January 1991, pp. 54-63.

Appendix A: Time-Average M easurement of
Architectural Input Parameters

A.l. Rationalefor Time-Average M easurement

This appendix discusses a simple method for obtaining the values of architectural
input parameters through time-average measurement. We first explain what is meant by a
time-average measurement. A time-average quantity is one which results from a measure-
ment of the total time to perform several samples of identical operations. The time-average
quantity is smply a statistic measuring the ratio of this total time to the number of sam-
ples—it represents the average time to perform a single operation.

In the simple performance model presented in chapter six, we make use of several
input parameters (3, &, 9, Py, and py) to characterize the performance of the components
of our specific class of off-host architecture. In order to make our performance model easy
to apply, we must allow its users to obtain the small but descriptive set of architectural
parametersin asimple manner. We feel that the use of the technique of time-average mea-
surement is best for this purpose.

The reasons for using time-average measurement are due to its smplicity and prac-
ticality relative to the alternative method of direct measurement. Direct measurement of the
execution time of an operation is an inadequate choice for our model for two reasons. First,
the granularity of the measurement devices present in most computer laboratory environ-
ments is on the order of tens of milliseconds; however, the quantities we wish to measure
are on the order of microseconds and even nanoseconds. Thus it is typically impossible to
measure such quantities without obtaining more powerful (and often expensive) timing
devices.

The second reason is as follows. Even if precise measurements were possible, they
would either indicate: (1) adeterministic time value for the measured operation or (2) adis-

tribution of severa time values. In the first case, time-average measurement would yield

124

125

the same value as the directly-measured value; hence, the direct measurement would pro-
vide no practical advantage other than imparting the knowledge that the time of the opera-
tion is deterministic. In the second case, the analysis of a model using probability
distributions would require advanced mathematics (e.g., queuing theory). Such difficult

analysisis contrary to our stated goal of simplicity.

A.2. Test Harness

To perform time-average measurement of the model parametersin chapter six, we
used thetest harnesslisted in Figure A.1. The test harnessis simply an example of aC pro-
gram which measures the total time required to perform several samples of an operation,
and reports the measured total time and the calculated time-average for a single operation.
The operation under consideration in our test harness is represented by the symbol
operation(). In an actua test, we would substitute the particular operation that we wish to
measure for thissymbol. The gettimeofday() system call employed inthe codealows
it to read the current time in seconds (tv_sec) and microseconds (tv_usec). The mea-

surement of specific model parametersis discussed in the next section.

#include <sys/time.h>
#include <stdio.h>

#def ine SAMPLES 1000000

void main()
{
struct timeval start, f inish;

double total_sec;
int i;

gettimeofday(&start, NULL);
for (i=0; i < SAMPLES; i++) operation();
gettimeofday(&f inish, NULL);

total_sec = ((double)f inish.tv_sec + (double)f inish.tv_usec/1.0e6) -
((double)start.tv_sec + (double)start.tv_usec/1.0e6);

printf(“total sampling time = %f sec\n”, total_sec);

printf(“average sample time = %f sec\n”, total_sec/(double)SAMPLES);

FigureA.1l: Test Harness

126

In order to acquire a time-average measurement with a desired number of signifi-
cant digits, the number of samples performed by the test harness must be chosen properly.
This number is represented in our test harness by the symbol SAMPLES. If we desire that
our time-average measurement have n valid digits, the number of samples must be chosen
such that the measured total sampling time contains at least n valid digits. Such digitsresult
from updates of the system clock through clock ticks; thus we must ensure a minimum
number of clock ticksto reach agiven degree of accuracy. For example, our system updates
one digit of the clock on every tick; thus, if we desire three digits of precision we must
ensure that our test runs for at least 10° clock ticks. Since our clock granularity is 10 ms
(10_2 seconds/tick) we must make certain that the total amount of time taken to perform

our time-average measurement is at | east (103 ticks) (10_2 seconds/tick) = 10 seconds.

A.3. Measurement of Specific Parameters

In this section we describe how to use the time average measurement technique dis-
cussed above to cal cul ate the specific architectural parameters presented in chapter six. The
measurement of such parameters requires some knowledge of the organization and config-
uration of UNIX character device drivers. It is not unreasonable to expect the users of our
model to have such knowledge since such sophistication is mandatory for the developers
of an off-host communications architecture in a UNIX environment. The device driver we
refer to isthe one which shall be eventually be used to communicate with the protocol pro-
cessor. It needn’t be completely implemented; however, it must be configured into the oper-
ating system kernel.

We also refer below to thel and | ; parameters. These parameters are not measured,
rather, they areimplied by the choice of data structuresfor the control and acknowledgment
blocks. When using the C programming language for implementation, the values of | and
I, may be determined by applying the si zeof operator to the types of these data struc-

tures.

127

A.3.1. System Call Overhead

In order to calculate the round-trip times for thewri t e() and r ead() system
cals, d,, and d,, we start by simply using such operationsin our test harness. Thewr i t e()
must be to the protocol processor devicedriver, and it must pass an | -byte buffer. Similarly
ther ead() must passan |4 -bytebuffer to the protocol processor devicedriver. In addition,
some initial work must be performed so that the system calls reach the character device
driver routines used for their implementation and then immediately return from the call.
Such work is quite straightforward and is far short of what is required to implement an
entire architectural design. To measure d,,, we place an abrupt return from the device driver
at thefirst line of the routine which isto implement thewr i t e() operation. In our imple-
mentation, thisisthest r at egy() routine, whichiscaled by physi o() . Sincewe also
implement the r ead() operation in str at egy(), we use this same abrupt return to

measure o, as well.

A.3.2. User-Level Interrupt Overhead

It isrelatively complicated to measure the round-trip time of aUNIX signal. Thisis
because we must have the device driver, which resides in the kernel, send the signal to the
user process performing the measurements. To do thiswe chosetouseawr i t e() system
call asthe operation in the test harness. This call isused ssmply to initiate the device driver
so that it may send signals to the process. At the first line of the device driver’simplemen-
tationof wi t e(),weusethepsi gnal () kernel library functionto sendaSI A Osig-
nal to the calling process (i.e., the test harness). The test harness features a simple signal
handling routine which returns immediately. This test harness has the effect of measuring
the round-trip signal handing time and theround-trip timeforawr i t e() systemcall; thus,

to arrive at §;, the round-trip time for the signal, we need only subtract &,

128

A.3.3. Bus Tansfer Overhead

To measurethe p,, and p, parameters, those which characterize the cost of bustrans-
fers, we placed our entire test harness in the kernel device driver. In this context we could
not issue any system calls; hence, we could not usetheget t i neof day() systemcal to
read thetime. Instead we used the kernel’st i e variable, aglobal datastructure that stores
the current time of day in both seconds and microseconds. In order to enter kernel mode,
we have auser processissueawr i t e() of nbytesto the device driver, which containsthe
test harness code initswri t e() routine. To measure p,,, we use the copyi n() kernel
utility function as the operation in our test harness. Thecopyi n() function copiesthe n-
byte user-level buffer specified in the system call to the shared memory on the protocol pro-
cessor board. The test harness gives us the average time in seconds to perform the n-byte
copy; hence, we obtain p,, by dividing the total time by n. The measurement of p, proceeds
in asimilar manner except that we use the copyout () function as our measured opera-
tion; copyout () copiesfrom the on-board protocol processor memory to the n-byte user-

specified buffer provided inthewr i t e() system call.

A.4. Elimination of “Noise”

When performing the measurements described above, one must be careful to avoid
interference from other factors which could confound the measurements. These factors
include the execution of other processes or hardware interrupts. To avoid such problemswe
recommend that the time average measurements be performed with an unloaded system. In
addition, any periodic system daemons which are not critical to short-term system opera-
tion (such as updat e on SunOS) should be eliminated. Furthermore, on systems such as
ourswherethe clock isupdated viatick timer interrupts, we one must ensure that such inter-

rupts are never disabled at any point during the measurements.

Appendix B: Extrapolation of Protocol Processor | nput
Parameters

B.1. Rationalefor Protocol Processor Performance Plots

This appendix discusses a simple method for obtaining the values of the protocol
processor input parameters presented in chapter six through the use of protocol processor
performance plots. Thetypes of plots we are concerned with are those that both occur com-
monly in performance studies and serve to illustrate the end-to-end latency or throughput
of the protocol processor versus TSDU size. The end-to-end latency graph is used directly;
in contrast, the protocol processor throughput graph is used indirectly to derive a protocol
processor period graph.We choose to use only the latency and period plots because such
plots exhibit a nearly linear shape. We may then fit linear equations to these plots and use
the coefficients of the equations to characterize protocol processor performance.

The main advantage of thisapproach isthat protocol performance plots (1) are often
provided with protocol implementations and (2) are otherwise derivable from other
descriptions of protocol performance (e.g., tables). We choseto fit linesto these plotsrather
than more complicated curves because the curves themselves are quite linear in the first
place. The resulting protocol parameters represent the aspects of protocol processor perfor-

mance that are most useful for our simple model.

B.2. Protocol Processor Input Parameter Calculation

In this section we cal cul ate the protocol processor input parameters. These param-
eters are quite simple to calculate; one need only fit lines to the given and derived protocol
processor performance plots and then find the equations of these lines. The protocol param-
eters we seek are simply the slopes and vertical-axis intercepts of the equations.

In order to calculate the protocol processor delay parameters, 8y and pg, we obtain

a plot of the end-to-end latency of the protocol processor, represented here by d, versus

129

130

TSDU length, represented here by |. Figure B.1 contains an example of such aplot. Given
such aplot, we simply fit alineto it as shown in the figure. The coefficients of the equation

of theline, & = p;l +8,, are simply our desired delay parameters.

Ad

Ad

Al

FigureB.1: FittingaLinetoaPlot of Protocol Processor Latency vs. TSDU Size

To calculate the protocol processor period parameters, Tp and pt, we must first
derive aplot of the protocol processor period versus TSDU length from agiven plot of pro-
tocol processor throughput versus TSDU length. To do this we start by taking a subset S of
points (l;, T;) from the protocol processor throughput graph. Herel; isthe TSDU length for
the ith such point and T; is the throughput corresponding to |;. From Swe calculate the set
S of points (I;, T;) which will make up the protocol processor period graph. Here, T; repre-
sents the protocol processor period corresponding to l;. We then derive each point (I;, T;) in
S from a corresponding point (l;, Tj) in the set Susing the relationT; = |;/T,. Now the
points of S may be plotted in a graph illustrating protocol processor period, represented
here by T, versus TSDU size, represented by |. The equation of the linefitting this curve has

theform T = p.l + T, yielding the period parameters pt and To.

