Implementation Independent Architectural Comparison

Andrew S. Grimshaw
Dave Chisholm
Brad Segal
Ricky Benitez
Max Salinas
Peter Kester
Stepehn T. McCalla

Computer Science Report No. TR-90-12
June 20, 1990

This work was supported in part by the Defense Advanced Research Projects Agency (DARPA) under
contract number NOG014-89-71699.

Implementation Independent Architectural Comparison

Andrew S. Grimshaw
Bave Chisholm
Brad Segal
Ricky Benitez
Max Salinas
Peter Kester
Stephen T. McCalla

Department of Computer Science
University of Virginia, Charlottesville, VA

Abstract:

Users and designers of CPU architectures lack a solid means of comparing architectures,
both extant and proposed. The problem is that running benchmarks, the primary method used,
measures both the architecture and its implementation (CPU and enclosing system). This report
describes a method we have developed to compare architectures in an implementation indepen-
dent manner. Preliminary results suggest that if the same implementation techniques are used
architectures fall into performance classes with little difference between members of a class. We
identify those features that distinguish the classes. The benefit of adding features to an architec-
ture can now be analyzed: features that do not move the architecture to a better class are a waste
of resources and can be avoided. '

1. Introduction

Cémpan‘ng CPU architectures is a tricky business. The most common approach is.to run a
series of benchmark programs on existing instances or simulators of the architectures and com-
pare the raw performance. Thus we see the number of dhrystones, whetstones, and Livermore
loops bandied about as measures of architecture pefformance [DongwaS?,DongarraSS]. The
probiernl ié that benchmark performance depends on many factors, only one of which is the
architecture itself. These factors include (but are not limited to), 1) the implementation of the
CPU itself: the number of ALU’s, the number and width of the busses, whether pipelining is.

used, and the use of register scoreboarding, 2) the system in which the CPU is enclosed: memory

speed, bus width, cache size, and clock speed, and 3) the quality of the compiler. !

What is needed is a method to compare different architectures based on their architecturally
specified features, not based on their implementation and compilers. For the purposes of this
paper an architecture is defined by its instruction set, the number and type of registers specified,
and any explicitly specified (and exposed via the instruction set) separate functional units. This
is similar to the notion of an ISP [Bell71]. Implementation independent comparison has not often
been tried, and when it has been attempted, it has met limited success{Fuller77). This is due
both to the complexity of the task, and to the lack of a method that permits an unbiased com-

parison.

Qur initial motivation for this research was the desire .to meaningfully compare a proposed
architecture, the WM [Wﬁif903~b}, with several extant architectures. The lack of well-
established techniques to compare architectures quickly became apparent. We set out to develop
a technique that would permit us to compare architectures in an implementation independent
fashion, and to study the sensitivity of the architecture to system parameters su.ch as memory
latency. We then used the technique to compare five different architectures: the MIL-STD-
1750A[DoD], the Intel i860[Intel88], the Sun SPARC[Sun87], the MIPS R-3000[Kane89], and
the WM[Wulf90a-b]. This paper describes the method developed, and uses the five architéctures

as examples of how the method is used.

The technique consists of measuring the number of virtual clock cycles (ticks) required to
execute the inner loops of a sample set of applications. The method used to calculate the
number of virtual clock cycles is the heart of the technique. The basic idea is to determine the

number of ticks each instruction would take assuming the best reasonable implementation, i.e.,

lBem:hmanks can be usefui to compare systems though,

the time required if we throw hardware at the problem. This time includes (if applicable)
address calculation, memory references, operation execution, and pipeline and branch delays.
Reasonable implementations may have multiple ALU’s, have non-architecturally specified pipe-
lines, and perform register scoreboarding, Calculating the number of virtual clock cycles for the
inner loops proceeds in two steps once the best implementation has been defined. First, we deter-
mine the instruction equation for each instruction. This is the number of virtual clock cycles
required to execute the instruction. The instruction equation has several parameters: memory
latency, load distance (number of ticks that separate the generation of the address from the con-
sumption of the data), generation distance (number of ticks that separate the instruction that gen-
erates data in pipeline mode from the instruction that consumes the data), branch latency,
whether the memory system will support multiple outstanding loads, and basic operation times,

e.g., time for integer add, or floating point multiply.

Once the instruction equations have been determined, they are used to determine the
number of virtual clock cycles for the application inner loops. The cycle counts can be calcu-
lated using different values for the equation parameters, such as memory latency, to determine
scnsiti'vity to that parameter. Sensitivity to memory latency is particularly important. Consider
an application running on a 40 mHZ CPU. A clock cycle is 25 nano-seconds. While it is possi-
ble to build caches that can operate at that speed, main memories currently cannot. When the
application misses cache the observed memory latency will increase to the range of two to six
clock cycles, drastically impacting performance. This has already been observed on the Intel
1860; applications that exhibit high data locality perform very well, quite close to peak perfor-

mance, while those that operate largely outside of cache fall far short of peak performance.

After performing the above steps for each of the five architectures two points became clear.
First, in the limit, with the same implementation tricks being applied to each architecture, the
architectures were partitioned into three classes. Within each class the "performance” of each
architecture was very close. Two features separated the three classes, the separation of address
generation from data consumption/generation in the execution strearn, and the ability to asyn-
chronously generate addresses. Second, the main components of the performance difference
between RISC and CISC architectures are RISC pipelines and thé RISC load/store, not the

"instruction complexity”.

The first resﬁit is particularly intriguing: architectures can be partitioned into equivalence
: classeé. This tells the architecture designer that only certain features will improve the perfor-
mance of the machine, mainly those features that move the architecture from one eqﬁivalence
class to another. Any other feature only adds to implementation complexity, potentially increas-
ing cost. The important questions are then, what features distinguish classes, and what new

classes are still to be discovered?

The remainder of this paper is divided into five sections and an appendix. ‘Section 2 com-
pares our approach to other architectural comparisons. Section 3 describes the use of the method
in detail, how we determine the best reasonable implementation, how different architectural
features and system parameters are mapped into the fick equations, and how the code used is
generated. Scétion 4 presents preliminary resuits of our comparison on the five target architec-
tures. Section S presents our plans for a tool based on our technique. Section 6 summarizes the
results. The Appendix contains the source cod.c for the inner loops, the annotated assembly

language for each of the target architectures, and the raw performance numbers.

2. Related Work

Three differe_nt approaches to architectural comparison have been used in the past, system
quantitative (benchmarking), qualitative, and implementation independent. The first of these,
benchmarking, is the most widely used. The problems with this approach have already been dis-
cussed. Benchmark comparisons are primarily useful when one must select an existing system to
use for a particular application. For that purpose benchmarks are quite useful. Benchmark stu-

dies include [Dongarra88, Funk89], and to some extant the CFA study [Fuller77].

The second approach is to qualitatively examine the features of an architecture [Piepho89].
Architectural features are examined to determine their impact on performance, ease of compila-
tion, protection and security, operating systems support, and efficiency of procedure call. Issues
such as the orthogonality of the instruction set, and the number and type of addressi-‘ng modes,
dominate the discussion. These are important issues, but they provide little information on the

. architectural features that effect performance.

The third approach is to compare architectures in an implementation neutral manner. There
has been little success with this approach. There have been atternpts where two or three specific
architectures have been compared, and specific methods have been developed to compare those
architectures [Pleszkun88]. However, the techniques developed assumed implementation
features that were common to the architectures being studied. In [Colwell85] the authors show
that many of the differences observed between CISC’s and RISC’s were caused more by the dif;

ferent implementation techniques than by inherent differences between RISC’s and CISC.

3. Comparison Method

N
How can one separate the architecture itself from the implementation techniques used? The

basic problem is to find a way to put the architectures on equal footing with one another with

respect to implementation. Several issues present themselves when this is attempted.

Pipelines: how does one handle architecturally specified pipelines? What if they.are of dif-

ferent depth? What if there is no pipeline specified in the architecture?

Separate functional units: if they are not specified in the architecture, should they be

included in the best reasonable implementation?

Multiple functional units: how much hardware is on chip? Should multiple ALU’s that per-
form micro-operations in parallel whenever possible be permitted in the best reasonable
implementation? What about extant architectures that do not have multiple functional

units?

Register scoreboarding: if pipelines are "added" to an architecture how should data depen-

dence be controlled?

Memory: how is memory treated? Should the CPU wait for memory references? Should

register scoreboarding be used even if not architecturally specified? Should multiple out-

standing memory references be supported?

Code quality: how can we keep compiler/programmer quality constant? If we don’t, then

performance numbers could easily reflect code quality rather than the architecture.

Superscaler architectures: should we permit or perform multiple instruction issue whenever
possible? What exactly is meant by "multiple instruction issue" in the presence of multiple,

asynchronous, functional units?

Non-von-Neumnan architectures: How should we treat non-von-Neuman machines? Is it
possible, or reasonable, to compare them with more traditional machines? Where does one

draw the line?

¢ Should we make implementation independent comparisons? Designers of RISC architec-
tures would say "no" because they have already made the trade-off in the design of their

architectures. They have sacrificed features for speed.

. Unit of measure: What should the unit of measurement be? Should 1t be "time", clock

ticks, architectural complexity, or some cross product of these?

e Bottom line: The bottom line is performance on applications programs. But what applica-
ttons?

In order to do an architectural comparison one must answer each of the above questions. Often,

the answers take the form of assumptions that are made about the system environment. Others

can be dealt with by fiat, e.g., we will not attempt to compare non-von-Neuman machines.

We answered the above questions by first defining how we wanted to compare architec-
tures, using "time" as determined by scaling the number of virtual clock cycles . The process of
obtaining "timing" information for applications consists of four steps. First, the applications
must be chosen. We show three: string compare, vector dot product, and an infinite impulse
response filter (IIR). A larger number of applications, and more than just the inner loops, must be
used before definitive conclusions about the architectures can be made. 'Second, for each archi-
tecture, the instruction tick equations must be derived. The instruction equations tell us how
many virtual clock cycles each instruction takes. Third, code must be generated for each applica-
tion for the target architecture. Fourth, the time cost for the inner loops must be determined for
the application. This process can be likened to hand simulation, The result is a parameterized
equation for the number of cycles required to execute an iteration of the loop. Below each of
these steps is described in detail. Along the way we describe the decisions we made regarding

the appropriate bases for comparison.

3.1. Instruction Equations

In this section, we show how instruction eqquations are derived. We first define exactly
what we mean by an instruction equation, and by a virtual clock cycle. Then, we describe how
- we handle pipelines, separatc and multiple functional units, memory, and instruction issue

(superscaler).

A virtual clock cycle is our basic measure. It is the shortest amount of time that an opera-
tion can take. An instruction or Memory reference may take one Of more virtual clock cycles to

complete.

The instruction equation for an instruction teils us how many virtual clock cycles the
instruction takes to execute. The instruction equation is parameterized by memory latency,
pranch latency, and primitive operation times (integer add, floating point add, etc.). We have
found that for a particular architecture there are a small number of instruction classes. Instruc-
tions within an instruction class share the same instruction equation. Thus, a separaté instruction

equation for each instruction is not necessary.

Unfortunately a single instruction equation is not adequate for all instructions. Some
instruction equations also depend on the mode the processor is in (dual instruction mode, or

pipelined mode), and on where the instruction is used. These are handled on a case by case basis.

An instruction equation is of the form
T(instruction) = const + T(arguments) + (T(operation))*
Where T(arguments) represents the delay waiting for arguments, and T(operation} 18 the time {0
execute, OF begin execution, of operations. Because instructions frequently do not use all of the
architectural features, some ‘of the terms in the equation may be zero. The constant term reflects

the fact that an instruction takes a minimum of one clock cycle. If all of the other terms are zero,

then the constant time is one. Not all terms are closed form equations. T(arguments), for exam-
ple, usually includes functions such as MAX and MIN. In order to model the fact that different
terms of the equation may represent the critical‘ path during instruction execution, the entire
equation may use functions such as MAX. Further, when determining T{operations) one must
consider the internal data dependencies of instruction execution, €.g., the memory operation of
an indexed indirect address mode instruction cannot be performed until the address calculation

has completed_.

When determining the instruction equations the question of what on-chip hardware to
assume arises. We have chosen to assume the best reasonable implementation. For us this
means that if the implementation would benefit from having two (or more) on-Chip ALU’s, then
we assume that there are two on-chip ALU’s. This assumption extends to all non-architecturally
defined CPU features. It does not extend to features such as the number and type of registers, or

features such as floating point support.

The assumption of a "best reasonable” implementation also includes full/empty bits for each
register, and pipelined execution if it is not architecturally specified. The full/empty bit is used
to mask (as much as possible) memory latency and to synchronize with the pipe. Thus, when a
Joad Rn instruction is executed, the CPU does not block until the register is actually referenced.
If the load instruction is executed several instructions before the value is used, much of the

memory latency is overlapped. This extends to non-load/store architectures whenever possible.

The speed and capability of the memory shb-system have a major influence on application
performance in real systems. This is particularly true now that CPU speeds are increasing much
faster than memory speeds. One of our goals is to study the sensitivity of the target architectures

to memory system performance. There are two main variables that describe memory system

performance, bandwidth and latency. The first tells us the amount of data that can be moved
between the CPU and the memory sub-system, and the second tells us how many clock cycles >it
takes to complete a memory transaction.> Latency iS a more serious problem than raw
bandwidth, particularly in shared memory multiprocessors. One can add additional bus lines to

increase bandwidth, but the memory and interconnect are only so fast.

Wé have chosen to assume that the memory sub-systern can support as many memory
opcratiéns as the CPU can provide addresses, i.e., the memory sub-system can support multiple
outstanding requests. We have chosen to model latency directly as a variable available in the
instruction equations. In our examples below we have used two different values, latencies of two

and four virtual clock cycles. Other values can be used if desired.
Example 1

Consider the instruction equation for the 1750A FMBX (register indexed floating point
multiply) instruction in non-pipeline mode. The instruction equation consists of four terms, the
instruction fetch/decode term, the address calculation term, the memory latency term, and the
term for the multply itself. Since the 1750A does not have a load/store instruction, we must
always pay the full memory latency3. Further, since we are not using pipeline mode, the cost of

the floating point multiply must be paid immediately. The instruction equation is shown below.
T(FMBX R13,R8) = 1 + (T(Tadd) + T(MemLat)) + T(Fmul).
Pipelines introduce additional complexity to the instruction equations. If the instruction

may be pipelined, then the CPU need not necessarily wait for the results to become available.

Instead computation may proceed until either the operation completes (exits the pipeline), or

Z'The existence/non-exisience of a cache, and the cache size will influence the average latency. We consider the average case in order 1o
simplifg analysis. ‘
This is not strictly true. One could use move instructions to emulate load/store.

10

until another instruction that is data dependent on the result executes. If an instruction that is
data dependent on the result executes before the result is available, the CPU must wait.

We model this in the instruction equations by not "paying” the cost of the operation until
the result is used by another instruction. The cost that is paid at that point is a function of the
number of virtual clock cycles required to perform the primitive operation, (e.g., floating point
multiply), and the distance in virtual clock cycles between the instruction that produces the value
and the instruction that consumes the value. If the consumption is sufficiently separated, there is

no cost penalty. The general form of this subequation is

MAX((T(operation)-distance),0).

Example 2

Consider the following SPARC code fragment:

Assembly Instruction Instruction Equation
1 LY1:
2 idf [%o01],%12 1
3 1df [%02],%14 1
4 inc P05 1
5 cmp %o05,%00 1 :
6 fmuls %f2,%f4,%16 1 + MAX[T(MemLat)-2,T(Fadd)-5,0}
7 ing 4,%01 1
8 inc 4,%02 1
9 bl LY1 1
10 fadds %f130,%16,%130 1 + MAX[T(Fmul) - 4, 0]

This is the inner loop for dot product. Most of the instructions require a single virtual clock
cycle. There are two things to note though. First, the load instructions on lines 2 and 3 do not
incur a delay waiting for memory. Instead, the memory latency is factored into the cost of
instruction 6, i.e., Memliatr-2. The 2 is the load distance between the use of register f4 and the
load into f4. Second, the instruction equations of lines 6 and 10 refer to floating point operation

-

times minus a constant, e.g., T(Fmul) - 4. The constants are the number of instructions that

11

separate the start of the computation which generates a value in a parameter register, and the
instruction which requires the value. If T(Fmul) is less than four virtual clock cycles, then there

will be no delay.

To restrict the memory subsystem to a single outstanding memory transaction we must
change the instruction equations, adding a memory delay term to load and store operations. For
example, line 3 would be changed to:

3 1df [%02},%1t4 MAX{1,SMR*(MAX[Meml.at-0,0])].

SMR is a constant defined to be one if the memory system does not support multiple outstanding
memory requests, and zero if it does. Thus, the instruction equation models the fact that the pre-
vious instruction was also a memory operation, and that this instruction must wait until the pre-
vious memory operation has completed before it may issue another request. For the remainder

of this paper we will assume that SMR=0 in order 10 simplify the algebra in the examples.

Once the instruction equations have been derived for each instruction used in an inner loop,
the loop equ&n‘on may be determined. The loop equation is an expression that reflects the
number of virtual clock cycles required to execute the inner loop in steady state, i.e., once loop
startup costs have been paid and the loop is running. The loop equation is parameterized by the
same variables as the instruction equations, and is calculated by summing the instruction equa-

tions of the loop. For Example 2 above, the loop equation is:

12

Instruction Equation

+ 1

+ 1

+ 1

+ 1

+ 1 + MAX[T(MemLat)-2,T(Fadd)-5,0]
+ 1

+ 1

+ 1

+ 1 + MAX[T(Fmul) - 4, 0]

Loop Equation 9 + MAX[T(MemLat)-2,T(Fadd)-5,0} + MAX[T(Fmul)-4,0]

Thus, for the SPARC, using a memory latency of two, a floating point addition time of two, and

a floating point multiply time of four, the inner loop takes nine virtual clock cycles to execute.

- If the architecture specifies separate functional units we must calculate the instruction equa-
tion and loop equatién differently. In particular, consider the case where there are separate float-
ing point and integer units. The instruction and loop equations must have two separate com-
ponents, the fime required in the integer unit, and the time required of the floating point unit. An
additional consideration is the synchronization required between the units. This is included in

the equations as well, in a manner similar to the way memory latency and pipelines are handled.

When there are separate functional units the loop equation has multiple components as
well. For each functional unit we compute a separate functional unit loop equation. The loop

equation is the MAX of the functional unit loop equations.

Superscalar architectures present a challenge as well. We only consider an architecture
superscalar if it is specified in the architectural definition. A superscalar architecture makes
sense only if there are multiple functional units. We feel that we have accommodated this above.
The only remaining issue is the instruction fetch and decode time associated with multiple
instruction issue. Since we have assumed that instruction fetch/decode has been pipelined away,

this is not a problem.

13

3.2. Code Generation

’

Code generation is a critical step. The quality of the code generated for each target archi-
tecture must be the same or the results may refiect not the differences in the ‘architectures, but
differences in the compilers. This is called compiler bias. We avoid compiler bias by using the

same compiler technology for each target architecture.

We use the vpo compiler[Benitez88]. With vpo the same optimizations are performed on
each target architecture. Further, the instruction selection phase is automated, using high level
description of the target architecture. The generated code is more uniform, and of higher qual-

ity, than that generated by hand-written compilers.

Code generation proceeds in four phases. First, vpo is ported to the target architecture4.
Second, each of the three applications is compiled using vpo. If loop unrolling is called for it is
performed before compiling. Third, we examine the cbmpiler—gen‘erated code to determine if
there are any optimizations that can be performed to exploit particular architecturai features.
(vpo currently has no notion of memory latency, thus some code motion may be called for o
overlap memory access.) Finally, the (potentially) modified code is executed on the target archi-

tecture to ensure that the code is correct.

4, Analysis of Resuits

Using the above techniques we calculated the loop equations for each of the three applica-
tions on each of the target architectures. We then determined the cycle counts for each of the
loops while varying two parameters, the memory latency, and the operation times. We used two

different memory latencies, two virtual clock cycles, and four virtual clock cycles. Two dif-

4'I'his has already been done [Whalley90}.

14

ferent basic operation times where used, B.LT. times and Weitek timeés. The B.L.T. (Bipolar
Integrated Technology) times are always faster than the Weitek times, and reflect the_ use of a
more expensive technology. The two different sets of times are used to illustrate the effect of
changing technology, i.e., what is or is not gained by using faster and more expensive parts. The

virtual clock cycle times for each implementation technology are shown in Table 1 below.

Table 1
Operation - Weitek | B.LT.
Float divide 12 2
Integer divide 10 2
Float multiply 4 1
Other float 2 1
Loads, other 1 1

The results of "running” the three applications using the Weitek times are shown in Figure
1, and for the B.LT. times in Figure 2. We have provided timing information for both a pipe-
lined and non-pipelined 1750A to illustrate the impact of pipelining. The lower shaded portion
of each bar fcprcsenté ._'the time using a memory latency of two virtual clock cycles. The upper,

un-shaded portion represents the time using a memory latency of four virtual clock cycles.

A few comments are in order. First, the WM execution times do not reﬂect the use of
register scoreboardmg Since the arch:tecturai specification explicitly deals w1th the manage-
ment of data dependenc1es, we felt that it would be inappropriate to perform scoreboarding. In

any event, scoreboarding has no effect on WM execution times, except for the IIR.

Second, none of the available C compilers for the Intel 1860 would generate pipelined code
using the ﬂoating point unit’s pipeline. Thus we had to hand code the use of the pipeline. This

took quite a bit of effort! In particular coding the IIR was very difficult due to its non-regular

S’E'hese times were provided by Steller Computer as examples of relative operation times.

15

nature. We feel that the difficulty of generating pipelined code will spill over into the compiler,
complicating the generation of efficient code. Although we have not used ease of compiling as a -

comparison metric, it i$ an important factor to consider.

2220:: \
"I .
PN \
e .
.
N
8-— N
e
.
4:
CTN

Dot Product String Copy : IR
Figure 1. Weitek Times, memory latency of 2 and 4 ticks.

16

40 g

: X
36 .J]_ 1750 no pipe: &
- 1750 piped:
32 e MIPS:
- Sparc:
28 f
1860:
WM: \
- 24—
=
2 o
o
E 20 e
"
E T
=
o 16 —
L2
ok ——
=
g .
®» 12 T
=
8 i
4 -1 ':~§

lDot Product String Copy : . HR
Figure 2. B.LT. Times, memory latency of 2 and 4 ticks.

Third, note that the differences between the architectures are not as great as one might
expect. All of the RISC machines are much the same, the exception being pcrforrnancé on the
IIR when using the Weitek times. Fourth, when we pipeline the 1750A it performs much as a
RISC machine. The f?rimary difference is that it remains more sensitive to memory latency.
Fifth, the WM outperforms the other RISC machines in the address calculation—intengive appli-
cations, dot product and string copy. When the inner loop is floating point intcnsi;rc, and the
Weitek times are used, the WM’s advantage is eliminated. This is due largely to our decision

not to scoreboard the WM.

17

5. Future Work

To further test our method of comparing architectural performance will require the use of
more than three simple inner loop applications. Toward.this end we have begun the development
of VIRTICAL (VIRtual clock TIck CAlculator), a tool to automate the process of generating
loop and application equations. We will use the tool to compare architectures over a large

implementation space, varying primitive operation times and memory characteristics.

A complete description of VIRTICAL is the subject of a later paper. Briefly, VIRTICAL
works as in Figure 3. .For each architecture to be examined a YACC grammer defining the
assembly language will be written. The production actions of the YACC specification call VIRT-
ICAL library routines that perform the bulk of the work. These library routines build flow
graphs, keep track. of basic blocks, and build dependence graphs. The arcs of the dependence
graphs are labeled with resource depeiidencies,' data dcpen&cncieé, and architectural feature
dependé_ncieé.

The C file generated by YACC is compiled and linked with the VIRTICAL libraries to gen-
grate an executable called an architecturc. module (AM). Thus there is a separate AM for each
architecture, The AM takes two input files, a parameter definition file (PDF), and a source
assembly file. The user must annotate the assembly code branch statements with probabilities to
permit accurate calculation of the number of virtual clock cycles. The PDF contains resource
descriptions, as well as values for parameters such as the memory latency and the floating point

multiply time.

The AM parses the assembly file and generates the flow and dependence graphs. It then
uses these graphs and the parameter information to generate instruction, loop, and program equa-

tions for the assembly code program. The program execution time in virtual clock cycles is gen-

18

YACC input

Architecture A

YACC
¥
VIRTICAL
Libraries . »- cc
tick times
¥
PDF = AM.A
k Annotated
Listing
Annotated
Assembly

Figure 3. Structure of VIRTICAL.
erated, and, optionally, an annotated listing of the program is also generated. The annotations

are the instruction and loop equations.

6. Summary

We set out to develop a method to compare different architectures based on their architec-
turally specified features, not on their implementation and compilers. We have developed a
_ method based on virtual clock cycles, ins&uction equations, and best reasonable implementa-
tions. The instruction equations are a measure of how long (how many virtual clock cycles) it
takes to execute a particular instruction. &Thc instruction equations include several different

implementation parameters, such as memory latency and primitive operation times. The instruc-

19

tion equations are also used to model implementation features such as pipelines and register
scoreboarding. The instruction equations can be used to determine the run time, in virtual clock

cycles, of applications.

To illustrate the method we compared five architectures, the MIL-STD-1750A, the Intel
i860, the SPARC, the MIPS R-3000, and the WM. Three application inner loops were timed
using the method: dot product, string copy, and infinite impuise response filter. We found that
for the three applications the architectures examined fall into three basic classes, with little
difference between members of a class. The features that distinguish these classes are the use of
load/store as opposed to complex addressing modes, and the use of separate units to perform

address calculation.

This study has opened up the possibility of studying architectural performance in an imple-
mentation independent manner. We have begun construction of a tool to automate the géne‘ration
of instruction equations. We plan on applying our method, using VIRTICAL, to the recently
announced IBM RISC Systém/éOOO {IBM90], an architecture in which addresses are generated

asynchronously. We predict that the RISC System/6000 will fall into the same class as the WM.

20

References

Bell71
Bell, C. G., and A. Newell, Computer Structures: Readings and Examples, McGraw-Hill, 1971.

Benitez88 :
Benitez, M. E., and J. W. Davidson, "A Portable Global Optimizer and Linker”, Proceedings of the
SIGPLAN 88 Symposium on Programming Language Design and Implementation, Atlanta, GA,
June, 1988, 329-338,

Colwell85 ‘ '

Colwell, R. P, Hitchcock, C. Y., et. al., "Computers, Complexity, and Controversy”, [EEE Com-
puter, September, 1985, pp. 8-19.

DoD
MIL-STD I750A Programmer’s Manual.

Dongarra88)

Dongarra J,"Performance of various Computers Using Standard Linear Equations Software”, Com-
puter Architecture News, ACM Press, March, 1990, pp. 17-31.

Dongarra87
Dongarra J., Martin J. L., and J. Worlton, "Computer Benchmarking: paths and pitfalis", /IEEE
Spectrum, July, 1987, pp.38-43.

Fuller87
Fuller, S. H., and W. E. Burr, "Measurement and Evaluation of Alternative Computer Architec-
tures", IEEE Computer, October, 1977, pp. 24-35.

IBMS0
Special Issue on the RISC System/6000, IBM Journal of Research and Development, volume 34,
number 1, January, 1990.

Intei88
iB60 Programmer’s Reference Manual, Intel Corp., Santa Clara, CA., Feb. 1988,
Kane89 :
Kane, G.MIPS RISC Architecture, Prentice Hall, Englewood Cliffs, NJj., 1989,
Piepho89 '
Piepho, R. 8., and W. 8. Wu, "A Comparison of RISC Architectures", IEEE Micro, August, 1989,
pp. 51-62.
Pleszkun88

Pleszkun, A. R., and G. S. Sohi, "The Performance Potential of Multiple Functional Unit Proces-
sors”, Proceedings of the 15th Annual Symposium on Computer Architecture, 1988.

Sung7
The SPARC Architecture Manual, SUN Microsystems, Inc., Mountain View, CA,, 1987,

Whalley%0
Whalley, David B., "Ease: An Environment for Architecture Study and Experimentation”, PhD.
Dissertation, Department of Computer Science, University of Virginia, May, 1990.

Wulf90a
Wulf, Wm. A., "The WM Computer Architectures Principles of Operation", Computer Science
Technical Report No. TR-90-02, University of Virginia, January, 1990.

Wuifo0b
Wulf, Wm, A., and Charles Hitchcock, "The WM Family of Computer Architectures”, Computer
Science Technical Report No. TR-90-05, University of Virginia, March, 1990.

21

7. Appendix A
MIL-STD 1750A

;7 Dot product for the 1750

-~ NO Pipe ==
LOOP: DLBX R12,R8 1 + T{Iadd)} + T(MemLat)
FMBX R13,R8 1 + T(Iadd) + T (MemLat) + T(Fmul)
FAR R2, R0 1 + T(Fadd}
AISP R8,2 1 + T(Iadd)
S0J R5, LOCP 1 + T{Tadd) + 1

-~ Instruction Pipe / Multiple ALU’s --

LOQP: DLBX R12,R8 1 + T{(Xadd)

FMBX R13,R8 T{Iadd} + T{MemLat)

AISP R8,2 T (Iadd)

S0J RS, LOOP T(Iadd)

FAR RZ, RO 1+ MAX[T{(Fmul) -~ X, 0] + MAX[T(Fadd) - ¥, 0]
;1 where

;; X = T{Iadd) + 1
i Y = 2 + 4*T(Iadd) + T (MemLat) + MAX[T(Frul)-X,0}]

Not Piped : Piped
Memory _ Memory
Latency: 2 4 Latency: 2 4
B.I.T. 16 20 B.IL.T. 8 190
Weitek 20 24 Weitek 10 12

Appendix A 22

;; The ITR loop for the 1750

-~=- Not Piped -~
L R3,N
DL R8, ONEHALF
DL RG, K1
DL R4, K2
L R1Z,A
L R13,B

DLB R12,2
DLR R14,R0
DLB R12,4
DLR R10,R0

LISP R2,6
LOOP:

FMR R14,R4 _ 1 + T (Fmul)

FMR RO,R6 1 + T (Frul)

FAR RO,R14 1 + T(Fadd)

FABX RI13,R2 1 4 T(Iadd) + T(MemLat) + T (Fadd)

FMR RO, RS 1 + T(¥mul)

DSTX R12,R6 I+ T(Iadd) + T(MemLat}

DLR R14,R10 1+ 1

DLR Ri0,R0 1+

AISP RZ,2 1 + T{Iadd)

S0J R3,LOOP 1 + T{(Iadd) + 1
-— Piped --

L R3,N

DL R8, ONEHALF

DL RE, K1

DL, R4, K2

L R12,A

L RL3,B

DLB RiZ, 2

DLR R14,RC

DLB R1Z,4

DLR R10, R0

LISP RZ, 6
LOGP:

FMR R14,R4 1

FMR RO,R6 1

FAR RO, R14 T{Fmul)

FABX RI13,R2 T{Iadd) + MAX[T{(Fadd)-1, T (MemLat)}

FMR RO, R8 1 + T{fFadd) = 1

DSTX R1Z,R6 T{Iadd) + MAX[T(Fmul), T(Iadd)] - 1

DLR R14,R10 1

AISP R2,2 T (Tadd)

500 R3, LOOP T {Iadd)

DLR R10,R0 1

Not Piped Piped

Memory Memory
Latency: 2 4 Latency: 2 4
B.I.T. 26 30 B.I.T, 12 14
Weitek 37 41 Weitek 19 21

Appendix A 23

;3 String copy for the 1750

;3 R12 i3 address of 81

;; R13 is address of s2

;; R4 1s index

;; R7T = QxFEQ0, RB = 0x00FF

-= No Pipg -~

LOGCP: LBX R12,R4 1 +
LR R5,R2 1+ 1
ANDR RS, R7 1+ 1
BEZ UBQ 1+ i
STBX R13,R4 1+
ANDR R2,R8 1+ 1
BEZ DONE 1+ 1
AISP Rd, 1 1 + T{Iadd)
BR LoCP 1+ 1

UP0: XBR R2

SUBI RZ2,82,R4
DONE:

-— Instruction Pipe / Multiple ALU's -=-

LOCP: LBX Ri2,R4 T{Iadd)
LR R5,R2 T (MemLat) + 1
ANDR R5,R7 1 '
BEZ upo 1
NOP 1
STBX R13,R4 T (Zadd)
ANDR RZ,R8 1
BNZ LOOP 1
AISP R4,1 T {Tadd)
BR DONE 1

Upd: XBR R2
SUBI RZ,852,R4

DONE ;

Not Piped Piped
Memory Memory
Latency: 2 4 Latency: 2
B.I.T. 22 26 B.I.T. 12
Weltek 22 26 Weltek 12

Appendix A 24

T{(Iadd) + T{MemLat}

T{Iadd) + T (MemLat)

;7 Loads R2

;7 Stores R2

Data dependency on R2
Data dependency on RS

NOP to fill delay slot

T (MemLat)

has no effect on loop

;: Dot product for the MIPS

..
LA

{dp:9,
[dp: 9,
[dp:10,
[dp:10,
[dp:10,
[dp:10,

0x4001b0]

0x4001b4)
0x4001b8]
0x4001bci
0x4001¢c0}
0x4001cé4}

0x4001c8]
0x4001cc]
024001407
0x4001d4)
fdp:11, 0x4001d8]
{dp:11, 0x4001dc]
{dp:11, 0x4001e0]
[dp:11, 0x400led]
[dp:11, 0x4001e8]
[dp:11, 0x400lec)
[dp:11l, 0x4001£0)

fdp:1%,
{dp:11,
{dp:11,
fap:11,

[dp:12, 0x4001£4]
{dp:12, 0x4001£8]
[dp:5, 0x4C01fci

Memory
Latency: 2 4

B.I.T. 12 14
Weitek 12 14

Appendix A

mtcl
mtcl
blez
move
move
move

lwcl
lwel
Jwel
lwel
addiu
mul.d
slit
addiu
addiu
bne
add.d

ir
mov.d
nop

MIPS R-3000

rG, £2
rd,£3
r4,0x4001£4
r2,zC
r3,rh
r7,cé

Int Flg
£4,0(x3) 1 4+ MAX[T{add)~-4,0] 1
£5,4(r3) 1 1
£6,0(x7) 1 1
£7,4{r7) 1 1
r2,r2,1 1 1
. £8,f4,f6 1 1 + MAX[T {MemLat)-1,0]
rl,r2,r4 1+ MAX[T{add)-2,0] 1
r3, r3,8 1 1
r7,rc7,8 1 1
rl, z0,0x4001c8 1 1
£2,£8,f2 1 1 + MAX[T(Fmul)} -5, 0]
r3l
£0, £2

25

;: IIR leoop for the MIPS

(iir:5, 0x400200]
[iir:5, 0x400204]
[iir:5, 0x400208]
[Lir:12, 0x40020c]
[1ir:9, 0x400210]
[Lir:9, 0x400214]
[iir:10, 0x400218]
[1ir:10, 0x40021c]
{iir:12, 0x400220)
[ilr:12, 0x400224)
fiir:12, 0x400228]
[iir:12, Or40022c]
[iir:12, 0x400230]
[iir:12, 0x400234]
[iir:12, 0x400238)
[1iixr:12, 0x40023c¢]
(iir:12, 0x400240)]

[1ir:15, 0x400244}
[1ip:13, 0x400248]
fiir:;ls, 0x40024¢]
fiir:15, 0x400250]
{iir:16, 0x400254]
{iir:15, 0x4006258)
(iir:15, 0x40025c]
[iir:16, Ox400260]
[iir:14, (x400264]
[iir:16, (0x400268]
[iir:15, 0x40026c]
{iir:16, 0x400270]
[iir:15, 0x400274)
[Liz:15, 0x400278]
[1ix:16, 0x40027c¢]
[iir:15, 0x400280}

[1ir:17, 0x400284}
[iir:17, 0x400288}
[Lir:1l, 0x40028c]

Memory

Latency: 2 4
B.I.T. 16 18
Weitek 19 21

Appendix A

1w
mtcl
mtel
slei
lwei
lwcl
lwel
lwel
bne
11

1w
lwcl
lwcl
lwecl
lwecl
addiu
addiu

mul.d
mov.d
lwel
lwel
addiu
mul.d
add.d
sit
mov.d
addiu
add.d
addiu
mul.d
swecl
bne
swcl

jr
nop
nop

r3,24 (sp)
r6,£f14
r7,£15
ri,r4,3
£0,0(c3)
£1,4(23)
£2,8(z3)
£3,12(r3)

rl,r0,0x400284

2,2

r5,28 (sp)
£16,16(sp)
£17,20(sp)

£18, -32752 (gp)
£19,-32748 (gp}

ré6,r3,16
r%,r5,16

£f6,£2,f14
£12,£0
£4,0{r5)
£5,4{r5)
rZ2,r2,1

£10,£12,£16

£8,£4,f6
ri,r2,r4
£0,£2
r5,r5,8
£4,£8,£f10
ré,r6,8
f2,£f4,£18
£2,~8{(r6)

rl,r0,0x400244

£3,~-4 (6}

r3l

26

1

+

MA
1
1
1
1
1

1
1
1

t Fit

el e el

1
1 + MAX([T {MemLat)-2,0]
X[T{(add)-3,01 1
1
1
1 + MAX[T{(Fadd)-4,T(Fmul) =5, 0]
1
1 + MAX[T{Fadd)~2,0]
+ MAX[T (Fmul)-1,0]
1
1

.t
s

;: String copy for the

.
Fr

[strepy:
{strcpy:
[strcpy:
{strepy:
[strepy:
[strepy:

fstrepy:
[strepy:
[strepy:
[strepy:
{strepy:

[strcpy:

B,

0x4002a0]
0x4002a4]
Ox4002a8]
oxd4002ac]
0%4002b0]
0x4002b4]

0x4002b8]
0x4002be]
0x4002c0]
0x4002c4]
0x4002c8]

0x4002ccl

[strcpy: 8, 0x400240]

istrcpy:l4, 0x4002c4]

[SLICPYr

Memory
Latency:

0x4002d8]
[strépy, 0x4002dc]

Weitek

Appendix A

MIPS

ib
move
addiu
addiu
beq
shb

1k
addiu
addiu
bne
sb

jr
move

nop
nop

£2,0(r5)

r3,rd

rd,ré4,1
r5,r5,1
r2,r0,0x400200
r2,~1(r4)

r2,0(r3)
r4,rd,1
r5,r5,1

r2,r0,0x4002b8

rz2,-1(r4)
31

r2,r3
nop

27

Int

1
i
1
1+ MAX{T(MemLat)~2,0]
1+ MAX [T (add)-3,0]

SPARC

;i Dot product for the SPARC

1 .seg Frext"

2 .proc 7

3 .global _dp

_dp:

4 sethi %hi(L2000000), %03

5 ldf [303+%10{L2000000)],%£30

é mov 0, %05

7 cmp %05, %00

8 bge,a LY2

Int Float

LYl:

9 ldf [%01],5%f2 1 1
10 1idf {%02],%f4 1 1
11 inc %05 1 1
12 cmp %05, %00 1 1
13 frauls %f2,%f4, %f6 1 1 4+ MAX[T (MemLat)-2,T{(Fadd)-5,0]
14 inc 4, %01 1 1
1% ine 4,%02 1 1
16 bl LY: 1 1
17 fadds %£30,%£6,%£30 1 1 + MAX[T(Fmul) ~ 4, 0}
LYZ2:
18 retl

19 froovs %$£30,%£0

20 .seg "data"

21 .align 8

L2G00000:

22 word O

23 .word 0

Memory

Latency: 2 4

B.I.T. 9 11

Weltek 9 11

Appendix A 28

:; IIR for the SPARC

1 .seg "text”
2 .proc 16
3 .global _iir
Udir
4 save %sp,=-112,%sp
% st %14, [$fptB4]
6 st %12, [5£p+76]
7 st %i3, [$fp+80]
8 1dE {%fp+8B0],%£20
9 st 3i1, [3Fp+72]
10 14f [%i5+8],%£12 -
1 1df [%5i5],%£28
12 ldsg [(%£p+72],%f22
13 sethi %hi{1.2000000), %00
14 1dd [$00+%10(L2000C00GC)], %£0
15 fmovs %f1,%£25
16 fmovs %£0,%£24
17 mov 12,%12
18 add %12, %15,%13
19 id [$Fp+92],%i5
20 mov 2,%1i4
21 cmp %i4,%i0
22 bge L77005
23 add %12,%15,%15
Int Float
Lyl:
24 1af (%15, %f6 1 1
25 fuls %f12,%£22,%£4 1 1
26 fmuls %£26,%£20,%£2 1 1
27 inc %id 1 1
28 cmp %i4,%i0 1 1
29 fadds %f6,%f4,%f8 1 1 + MAXI[T(MemLat)-4,T (Fmul)-4,0]
30 ine 4,%15 1 1
31 fadds %£8,%£2,%f10 1 1 + MAX[T{(Fadd) - 2, 0]
32 fmovs %£12,%f26 1 1
33 fmuls %f£10,%£24,%£12 1 1 4+ MAX[T(Fadd) - 2, 9}
34 inc 4,%13 1 1
35 ' bl LYl 1 1
36 stf %£12, £%13] 1 1 4+ MAX[T(Frul) - 3, 0]
L77005:
37 ret
38 restore
39 .seg “data"
40 .align 8
L2000000:
41 .word 0x3fe00000
42 word 0
Memory
Latency: 2 4
B.I.T. 13 13
Weitek 14 14

Appendix A 29

.:: String copy for the SPARC

1 .seg Ytext®
2 .proc 66
3 .global _strcpy
_stropy:
4 mov %00, %04
5 ldsb [%o0l], %05
6 dec %00
LYL1:
7 inc %00
6 sth %05, {%00]
7 tst %05
8 inc %01
9 bne LY1
10 ldsb [%ol}, %05
11 retl
12 add %g0, %04, %500
13 .5eg "data®
Memory
Latency:
B.I.T
Weitek

Appendix A

1 + MAX[T (MemLat) -1,

39

1
1

1
1
1

Int

0]

B b g p et

Float

// Dot product for the i86C.

.file "dotprod.c"
// ccom =¥X22 -X74

// -X424 ~¥501
.text
.align

_Gotprod:

/7 .bf
fmov.dd

nov £0,r19
fld.d

fid.d

adds
pfmul . dd

fld.d
fld.d
adds
pfmul.dd

fld.d
fld.d
adds
pfmul _dd
pfadd.dd

fid.d
fid.d
adds
pfmul.dd
pfadd.dd

fid.d
fid.d
adds
pfrmul.dd
pfadd.dd

fld.d
fld.d
adds
pfmal.dd
pfadd.dd
br L7
nop

fid.d
fld.d

d. fmov.dd
pfmul.dd
adds
pfadd.dd

~-X8Q -¥K83 -X247

~X523 -X524

f£C,£16

8{rl8)++,£f26

8(rl7)++,£24

1,rl%, 1%
£26,£24,f0

8(rl8)++,£26
8{rl7)++,f24
1,rl1%,r19
£26,£24,£0

8{rl8)++,£2¢6
8{rlT)y++,£24
1,r19,r19
£26,£24,£20
£20,£16,£0

8({rl8)++,£26
B(r17)++,£24
1,r1%,rl0
f26,£24,£20
£20,£16,£0

8({ri8)++,£26
8(xrl7)++,£24
1,r1%,rl9
£f26,£24,£20
£20,f£16,£0

B{rl8)++,£26
Blri7)++,f24
1,rl%,rls
£26,£24,£20
£20,fC,f16

8(rl8)++, £26
8(rl7)++, £24
£16,£22
£26,£24, £20
1,719, rl9
£20,£22,£16

subs ri%,rlé,r0

bc L6

Appendix A

" Intel 864

~X525

1

1 4+ MAX[T (MemLat)

l .

1

1 + MAXIT (Fmul)

~X254 -X266 -X278 -¥325 -¥X350 -X383

T {(branch)}

31

-%422

/7 .ef

pfrmul.dd £0,£0,£20
fmov.dd fi16,£22
pfadd.dd £20,£22,£16
fmov.dd £16,£22
pfmul.dd £0,£0,£20
pfadd.dd £20,£22,£16
fmov.dd fl6,£22
pfadd.dd £0,£0,£16
pfadd.dd £0,£0,£18
pfadd.dd £0,£0,£20
pfadd.dd £0,£0,£24
fadd.dd f£22,£20,£22
fadd.dd £22,£24,£22
fadd.dd £18,£22,f22
fadd.dd £22,£16,£16
bri rl
nop
.align 4
.data

//_i rl9 local

//_sum f16 local

//_vecsize ri6é local

[/ a £l7 local

//_b rl8 local
Jtext
.data
.gliobkl _dotprod
.text

Memory

Latency: 2 4

B.I.T. 9 11

Weitek 12 14

Appendix A

32

// IIR loop for the 1860,

LEile "iir.c"

// ccom

/7 -X424 ~¥501 ~X523 -X524
.text
.align 4

dir:
shi 2,rl6,rl8
fmowv.dd £18,f16
mov rl9,ri?

7/ .Df
br L7
or 12,r0,rl6
adds -4,rl6,r27 1
adds r17,rx27,r27 1
£14.1 0{x27),£f28 1
adds rlé6,rl7,r28
fmowv.sd £28,£22
frmul . dd £16,£22,£22
adds rl16,r20,z27 1
£1d.1 0(r27),£28 1
fmov. sd £28,£18
fadd.dd £22,f18,f18
adds ~8,rl6,r27 1

adds «rl7,r27,r27 1
£fid.1 0{z27},f28 1
fmov.sd £28,£24
fmul.dd £20,£24,f24
fadd.dd £18,f24,£24
fmov.ds £24,£27

orh ha%.Lle6, 0, 30

£1d.1 1%.016(x30),£26

orh 16384,r0,r27

ixfr r27,£25

frep.ss £26,£24
fmul, ss £26,£24,£18
fsub.ss £25,£18,£18
fmul.ss f24,£18,£24
fmul.ss £26,f24,f18
d. fsub.ss £25,£18,f18

d.fmul.ss
d.fmul.ss

£27,£24,£25
£18,£25, £27

£st.1 £27,0(x28) 0

adds 4,rlé,rie6 0
subs rl8,r16,r0
bne LG
/ .ef
bri rl
nop
.align 4
.data
//_i rié local
//_n rl8 local
//_k1 £16 local

Appendix A

-X525

1
1 + Max ([T {MemLat) = 1, 0}
T{fmul)

1 + T (MemLat)
T (fadd)

1 4+ T{MemLat)
T{fmul)
T {fadd)

1

[I

T(frcp) + Max[T{Memlat) - 2,
T {fmzl)
T {fsub)
T{fmul)
T{fmual)
T {fsub)
T{fmul)

T{frmul)

(overlapped with fsub)
(overlapped with fmul)
0 {overlapped with fmul)
T (branch)

33

0}

-X22 -X74 ~X80 -X83 -X247 -X254 -X266 -X278 -X325 ~X350 -X383 -X422

{(floating divide)

//_x2 £20 local
//_a rl7 local
// b r2¢ local

.text
.data
.globl _iir
.text
Memory
Latency: 2
B.I.7T. 36 44

Appendix A

34

Weitek

71 79// STRING COPY for the 1860

// rll - address of source string

// rlé - address of destination string

1d.b
bte
adds
1ld.b
subs
loop:
st.b
adds
or
bnc.t
ld.b
done:
bri
st.b
Memory
Latency:
B.I.T.
Weitek

Appendix A

0(ri17),r26
0,r26,done
1,rl7,rl7

G{rl7),r27
ri7,rl6, 18

r26,0(ri6)}
1,rl6,r16
r0,r27,r26
loop
rl8{xi6), r27

rl

r26,0(rlé6)

2 4
5 7
5 7

1 + Max [T (MemLat}

1
1
T{branch)
1
3s

- 2,

01

i
;:; Dot product for the WM

4w
L)

_dp:
r3l ;= {x20 <= Q)
CVTID £22 := 0
' JumpIT Ll
$ind f£0,r21,:20,8
$inD f1,r22,r20,8
Jump L1
int
LZ2:
double £22 := {(£0 * £f1) + £22
Ll: JNIFC L2 0
double £20 := £22
Jumpl r4
Memory
Latency: 2 4
B.I.T. 1 1
Weitek 4 4

Appendix A

WM

36

Float

0
0

MAX [T (Fmul}, T (Fadd))

- INFINITE IMPULSE RESPONSE FILTER Nb. recurrences
i FOR i in 3 . N LOOP
-— afi) = (b{H) + a(i-1y* k1 + a{i-2)* k2) /2;
e END LOCP;
- or
e fori(i=3; i<=N; i++)y afil = (b{il + ali-11*kl + ali-27*k2) /23
LLH r2Q := N
LUH 20 = N
LW 20 - r% == N loob control
rs := xd
LLH r2C = k1l
LUH r20 := k1l
D r20
double €6 := 0 - 6 == k1
LLH r20 = kz
LUH r20 k2
1.D r20
LLH . rl2 = A
LUH riz := A
LLH rl3 = B
L.UH r13 := B
double £q4 := £0 e p4 == k2
rl?2 := (rl2 + 12y ~- address of A[3]
r13 1= (rl3 + 12y -- address of B[3]
LD r9 = (rl2 - 4} - load ai)
LD r9 (ri1z = 8) - load a(l)
LLH r20 := half
1.UH r2Q = half
LD r31 := £20
ginp 1r0, rl3, r5, 8 —— Stream in FIFO 0
soutDd r0, rlz, r5, 8 —— Stream out FIFO 0
double £10 := £0 —-—ali-l) = a{2}
double £11 := £0 e a(i-2) = a(l)
double £20 := O
—— Flecat
lp:
double £9 .= (£10 * £6y + £0 —— T {Fmul)
double 9 (F11 * £4) + £9 - MAX[Ti{Frul), v{Fadd) !
double £11 := £10 - T {Fadd)
double £10 := {£9 * £20) -~ T (Fmul}
double £0 = £10 ar 1
jnif0 lp e 0
-— loop if not done
.section data
N: .word 5 -- Loop control variable
k1: .double 1
k2: .double 1
a: .double 2,3,4,5,6,7,8,9,10 -~ A vector
B: double 2,3,4,5,6,7,8,9,10 ~-- B wvector
half: .double 0.5
Memory
Latency: 2 4
B.I.T 5 5
Weitek 15 15
Appendix A 37

.

String copy for the WM

we wh e e
e wa

~e

:: Hand generated code.

;; Unix string copy

i: strepy(sl,s2)

I char *s1, *s82;
;3 { char *s = 31;
P while (*sl++ = *82++);
P return {s):
H }
rll = (31 ~ 20} ;i get large count

LLH 5 := sl ; base address of sl
LUH r5 := sl base address of sl
LLH r6 := s2 ; base address of 352
LUH 6 := 82 ;7 base address of s2
S$inB r0, =5, rli, 1
SoutB r0, ¢6, rli, 1

AT T
~

Int ;
loop: 0 := {(x0 <> @) 1 /i copy and test for null terminator
JumpIT loop 1 ;: loop 1if
r0 =0 ;7 write the terminator
Stopall
SYNCH
.section data
sl: .byte 1,2,3,4,5,0 ;; each byte specification will be
;i word aligned; careful
s2; .word 0,G,0
Memory
Latency: 2 4
B.I.T. 2 2
Weitek 2 2

Appendix A 38

