
A Survey of Tools
for Model Checking

and Model-Based Development

Elisabeth A. Strunk, M. Anthony Aiello, John C. Knight, Eds.

Technical Report CS-2006-17
Department of Computer Science

University of Virginia
June 2006

Preface

Model checkers and model-based development tools are becoming increasingly prominent in
industrial practice. There are a wide variety of these tools available, with a number of different capabilities
suited to different kinds of problems. We felt that the variety poses two problems, however. First, it is
difficult for researchers outside of these specific domains to understand what capabilities exist in practice,
and so to avoid duplicating theory that is already embodied in a tool. Second, while the variety is of great
benefit to practitioners, it is intimidating to know which tool to choose for a particular problem when no
comprehensive discussion comparing and contrasting the different tools is available. We felt that to help
with the technology transfer of the state of the art in software engineering, a better characterization of the
different tools and the problems they can help solve is necessary.

In the Spring of 2006, we led a graduate seminar attempting to study some of these tools,
characterizing their capabilities and comparing them with other tools in their class. Each student in the
class studied one tool in depth, reported back to the class on what they found, and created a set of simple
exercises that the class completed to get a feel for the tool. Also, the group of students working on model
checkers and the group working on model-based development tools each met to compare and contrast the
tools they studied.

This report is the collection of final reports the students wrote for the class. It is by no means
comprehensive: it covers only the tools the students studied. We hope, however, that it will provide a
helpful starting point for the interested reader to learn more about what these tools can provide.

Elisabeth Strunk
Tony Aiello
John Knight
 Charlottesville, VA 2006

- 2 -

Table of Contents

Model Checking Tools

SLAM and BLAST ..5
Vibha Prasad

An Introduction to the SPIN Model Checker ...20
Xiang Yin

KRONOS: A Verification Tool for Real-Time Systems ...30
Na Zhang

Model-Based Development Tools

Model-Based Development Using Simulink ..40
Ben Taitelbaum

Safety Critical Application Development Environment...45
Kendra N. Schmid

Perfect Developer Tool Suite..53
Michael Spiegel

SCRTool and the SCR Specification Language ..58
Patrick John Graydon

- 3 -

Model Checking Tools

- 4 -

 SLAM and BLAST
Vibha Prasad

I. INTRODUCTION

SLAM and BLAST are both software verification tools that perform static analysis of C programs to
find if the program satisfies a certain property. Both these tools are relatively new. SLAM was developed
by Microsoft Research around 2000 and BLAST was developed by the University of California, Berkeley
around 2002. Figure 1 shows the overview for SLAM/BLAST. These tools work on a C program and
take the specification of the property to be checked as its input. This specification is written in the
specification language specified by the tool. SLAM and BLAST either verify that the system is safe, i.e.
the program satisfies the specified property or give an error trace that violates that property. The error
trace can be directly mapped to the original C program.

Fig. 1. Overview of SLAM and BLAST (from slides of [3])

This section covers the basic concepts that are a part of both SLAM and BLAST. Both the tools use
the concepts of predicate abstraction, model checking, automated theorem proving and program analysis.
The main objective behind using all these techniques together is to fully utilize the strengths of each of
these techniques and to use their individual strengths to counter each others weaknesses.

A. Motivation
As the size of software increases, it becomes very hard to build and test. Large scale software is

generally written by different groups of programmers, and integration testing becomes a major problem.
This is of more concern in systems where the reliability of the software cannot be compromised. Such
concerns have motivated the software industry to consider alternative techniques for software verification,
especially those based on formal proofs. The recent success of SLAM particularly, has led the industry to
recognize that formal methods may be just right for the job.

B. Property Checking
The property checking problem is: given a program P and a specific property, does the program P

satisfy the given property? This problem has been found to be undecidable. The reason is as follows. A
program can be represented with an infinite state space. The problem then translates to finding a finite set
of predicates that support the specified property over the infinite state-space of the program. This problem
is undecidable and the complete proof is given in [13]. The important thing to remember here is that any

- 5 -

algorithm which tries to find the solution of an undecidable problem is potentially non-terminating.
In algorithms for property checking, the programmer generally provides a partial specification of the

software. This specification consists of only the property of interest. The code is then automatically
checked for consistency with the specification. This is different from proving the “correctness” of the
entire program, as the specifications are not complete and are only concerned with a specific property of
the program.

There are some trade-offs in performing automatic property checking. The main one is between the
soundness and completeness. An analysis is sound “if every true error is reported by the analysis [1]”.
The analysis is complete “if every reported error is a true error [1]”. If the mechanism for property
checking is too coarse, some errors will not be reported. Hence, the analysis is not sound. Conversely, if
the approach is too conservative, false alarms may be reported. Then the technique is not complete. There
are other trade-offs associated with the complexity of the analysis. For example, for the analysis to be
precise, more computation has to be done and efficiency is compromised. This is usually unacceptable and
some degree of precision is compromised for efficiency.

C. Predicate Abstraction
Predicate abstraction is a method for incrementally constructing conservative abstractions of the

software. Predicates are used to abstract the data (variables in the program). Each predicate is
represented by a boolean variable in the abstract program. A boolean variable represents an expression
that evaluates to either true or false. At any point in the program (or program state), the set of predicates
tell us about the relationship between the variables in the program in scope at that point. Typically,
implementations use CEGAR (Counter-example guided abstraction refinement), (which is used by both
SLAM and BLAST), to find predicates. The initial set of predicates is empty (or inferred from the
specification of the property) and new predicates are added at each iteration. When the model checker
finds an error in the abstraction, it has to be verified that the error is not a spurious error. Spurious traces
may be present if the set of predicates is insufficient to prove the property as the abstraction is too coarse.
At this point, new predicates are needed for further analysis. Thus, predicates are iteratively added to
refine the abstraction until the given property is found to be true or a genuine error trace is found. The
final set of predicates must be discovered iteratively.

D. Model Checking
Model checking is an automatic technique for verifying behavioral properties of a model of a system by

exhaustively enumerating its states. The program (which can have an infinite number of states) is
converted to a finite-state machine representation through abstraction. Then the problem reduces to the
reachability analysis of an error state in this state graph.

The main advantage of using model checking is that it is fully automatic. Ideally, by proper selection of
the model (abstraction), the properties of interest can be verified in one pass. Practically, the model is
refined in many iterations as new predicates are added. Furthermore, model checking tools give an error
trace for each error path in the program. This helps in locating and correcting the error in the program.
Model checking tools can also compute invariants in the program.

The main drawback of model checking is that it is not scalable to very large systems unless the model is
very abstract. The number of states in the finite state representation increases exponentially with the
number of variables (“the state explosion problem”). Another drawback of model checking is that it
operates only on models. Thus, deriving a model from the program becomes one of the key problems in
model checking. A coarse abstraction may not be precise enough to prove the property, and the analysis
of a detailed abstraction could be very time consuming.

- 6 -

The traditional approach to model checking has been to build a model of the system and verify it. The
actual implementation is done after the model has been successfully verified. In the modern approach
(followed by tools like SLAM and BLAST), the model is built from the implementation. That is, the
implementation is done first. The software is then used to infer the model and check for properties. The
main drawback of using the traditional approach is that the actual implementation might “stray” from the
correct implementation of the model. In that case, the verified model is not equivalent to the actual
implementation.

E. Automated Theorem Proving
Automated theorem proving deals with the development of computer programs to prove mathematical

theorems. The main objective is to show that some statement (the conjecture) is a logical consequence of
a set of statements (the axioms and hypotheses). Initially, a set of axioms and hypotheses are given and
new inference steps are produced by following some rules of inference.

The advantages of automatic theorem proving is that it can handle unbounded domains naturally and it is
a good implementation for certain problems (equality with uninterpreted functions, linear inequalities,
combination of theories etc.). There are some disadvantages of using automatic theorem proving.
Automatic theorem proving generally requires invariants for the analysis. This usually means that some
human interaction is needed with the theorem prover. Also, automated theorem proving is very expensive
in terms of computational complexity. By combining it with other techniques like predicate abstraction, a
considerable difference can be achieved in terms of space and time requirements.

There are some issues raised by [19, 20] regarding the theorem provers used by symbolic software
verification engines like SLAM and BLAST. Theorem provers are targeted for efficiency in mathematical
reasoning. Some of these features may not be needed in program verification frequently. Similarly,
programming language constructs like pointers, structures and unions are not supported by theorem
provers. The verification tool encodes these constructs into axioms over some symbols to approximate the
semantics of these features. This may interfere with the performance heuristics of the theorem prover
often used during axiom-instantiation. Additionally, theorem provers do not support bit vectors and arrays,
so operations like equality between bit vectors and integers are not supported. Another problem mentioned
in [19, 20] is that when a query is not valid, the theorem provers do not provide concrete counterexamples.
This means that the error trace does not contain concrete valuations to the variables in the program and
only partial information is provided.

F. Program Analysis
Program analysis offers techniques for statically predicting the dynamic (run-time) behavior of a

program at compile-time. Program analysis techniques make approximations about the program, i.e. a
model of the program, automatically and operate on these approximations. As constructing a model is one
of the key problems faced by model checking, program analysis can be used to overcome this.

Program analysis originated in optimizing compilers for analyzing things like constant propagation, live
variable analysis, dead code elimination, loop index optimization etc. The main strengths of program
analysis is that it works directly on code, is pointer-aware and the precision-efficiency trade-off is well
studied. In spite of these advantages, program analysis is traditionally not targeted for checking temporal
properties. However, using it with techniques like model checking and automated theorem proving can
provide a powerful tool for software verification. For example, program analysis techniques can detect
invariants in a program, which can be used by the automated theorem prover.

- 7 -

II. SLAM

A. Introduction
Model checking tools have been studied in academia for some time, but they were not considered a

feasible solution by the software industry. SLAM has generated a lot of interest in the software industry
as it successfully applied these concepts to industrial projects. Moreover, since SLAM has been developed
by Microsoft Research, which is a part of the industry, and is now a part of a commercial product (SDV
(Static Driver Verifier) in Windows), people in the industry have begun to show some confidence in formal
verification techniques for software. However, as it is a part of SDV, SLAM is not publicly available at
this point in time. Thus all the analysis done here is based on the available literature.

The main goal of SLAM is to check C programs (system software) for temporal safety properties using
model checking. Its main application domain has been device drivers in Windows. SLAM has three main
components: c2bp (which evaluates a boolean abstraction of the program), bebop (which performs the
reachability analysis of boolean programs) and newton (which verifies the feasibility of error paths).
SLAM uses zapato as its theorem prover.

Fig. 2. Working of SLAM ([5])

The specification language used for SLAM is SLIC (Specification Language for Interface Checking).
The safety properties to be checked are specified in SLIC. Specifications are described as state machines
with a static set of state variables and a set of events and state transitions on the events. The SLIC
instrument merges the program P and the C code for the SLIC specification to form a single program P’.
This is shown in figure 2. The analysis is then done on the instrumented program P’. Any error path
reachable in P’ is also reachable in P.

Figure 2 shows the different components of SLAM and how they interact. c2bp takes an input C
program (the instrumented program P’) and a set of predicates (the SLIC specifications for the first
iteration) and converts them to a boolean program. A boolean program is a program in which all the
variables are of the type boolean. Next, bebop performs a reachability analysis on the boolean program
created by c2bp to check if the label error is reachable in P’. If such a path is found, newton checks to
see if this path is feasible in the original C program. If newton finds that the path is feasible, an error has
been found and SLAM gives the error trace as the output. Otherwise, newton finds additional predicates

- 8 -

that explain the infeasibility. Newton uses the same interfaces to the theorem provers as c2bp for its
analysis.

Computing a precise boolean expression (c2bp) is very expensive. It depends on the number of calls to
the theorem prover and is linear in the size of the program P and exponential in the size of the set of
predicates E. The c2bp algorithm performs modula r abstraction of the program when it creates a boolean
program. It abstracts each procedure in isolation. Then, within each procedure, it abstracts each statement
in isolation. Thus there is no need for c2bp to do any control-flow analysis or find loop invariants.

Bebop is the model checker for boolean programs. It is the most time consuming component of the
SLAM toolkit. The states are represented as bit vectors, thus the set of reachable states are represented
as a set of bit vectors. This set of bit vectors is computed for every state. States are implicitly represented
via BDDs. The complexity of the bebop algorithm is O(E2n) where E is the size of interprocedural control
flow graph and n is the maximum number of variables in the scope of any label. It tries to compute a
fixpoint by iterating over the set of facts associated with each statement.

Fig. 3. Components of SLAM (from slides of [3])

When an error path p is provided by bebop, SLAM first uses newton to symbolically simulate the entire
trace and determine whether it is spurious. If the trace is spurious, then newton searches for additional
predicates which could eliminate the trace in a refined abstraction. If no new predicates are found, SLAM
concludes that the spurious trace is caused by the imprecise abstraction done by c2bp. It then invokes
another refinement method, called constrain. Constrain symbolically examines each step of the trace in
isolation and attempts to refine the abstract transition relation in order to improve the accuracy of the
abstraction using the predicates that are available. By default, both newton and constrain use the theorem
prover zapato.

B. Capabilities
Currently, SLAM faces two major problems: 1) dealing with pointers, and 2) dealing with imprecision of

alias analysis (as it does not consider data flow). Moreover, SLAM does not scale to very large programs
currently.

- 9 -

The main problem encountered by SLAM is with pointers. Abstracting from a language with pointers
(C) to one without pointers (boolean programs) is hard. Strictly speaking, C supports only call by value, but
with pointers and the address-of operator, call-by-reference can be simulated. This creates a problem, as
boolean programs support only call-by-value results. SLAM mimics call-by-reference with call-by-value-
result.

SLAM has been shown to successfully check control-dominated properties. It successfully handles
recursive and mutually recursive procedures.

[1] states three properties for a good model checker – soundness, completeness and usefulness. The
analysis is sound “if every true error is reported by the analysis [1]”. SLAM is considered to be sound
with respect to the initial assumptions it made (regarding the logical model of memory, aliasing etc.). The
analysis is complete “if every reported error is a true error [1]”, that is, there are no false positives. This
has not been found to be true for SLAM and SLAM is currently incomplete. The analysis is useful “if it
finds error someone cares about [1]”. As SLAM has been successfully used in device drivers and is a
part of SDV now, it is definitely useful.

SLAM claims to be very precise in detecting bugs. SLAM gives out an error trace which can be
mapped to the original program directly. Although there is an error trace for each error cause, SLAM may
overlook some error causes or report spurious error causes.

The results for SLAM have been encouraging. The largest driver processed by SLAM has
approximately 60K lines of code. The largest abstraction analyzed by SLAM has several hundred boolean
variables. SLAM claims to get results after 20-30 iterations. Based on this, SLAM also claims that
counterexample-driven refinement terminates in practice, as SLAM has always terminated. Out of 672
runs in one set, 607 terminate within 20 minutes.

C. Problem Domain
SLAM was originally developed for addressing temporal safety properties in C programs. It has now

been customized for the Windows product, SDV. Thus, it works well for specific domain problems like
device drivers. Although the SLAM toolkit has also been tested for multi-threaded software libraries ([3]),
the analysis done by the SLAM toolkit has been focused on the application domain of device drivers.
Hence, not much is known about its capabilities in other domains. Since the SLAM toolkit is publicly
unavailable, its evaluation and comparisons with other tools has only been studied by the Microsoft
Research group.

III. BLAST

A. Introduction
BLAST (Berkeley Lazy Abstraction Software verification Tool) was developed at the University of

California, Berkeley. The basic concept behind BLAST is the abstract-check-refine approach which is
also followed in SLAM. Additionally, BLAST uses concepts of Lazy Abstraction ([13]) and
interpolation-based predicate discovery ([9]) which will be discussed later in this section.

The overall methodology is similar to SLAM as shown in figure 4. The inputs to BLAST are a C
program and the specification of the property to be checked. spec.opt merges these together and forms
the instrumented program which contains the label for the error state. This instrumented program is then
fed to pblast.opt which is the model checker for BLAST. If there are no paths to the specified error label,
BLAST considers the system to be safe and generates a proof. Otherwise, it checks if this path is feasible
using symbolic execution of the program. If the path is feasible, it generates an output trace. Otherwise,
the model is refined further.

- 10 -

Fig. 4. Working of BLAST ([15])

The BLAST specification language has a very C-like syntax. This makes it easier to learn, especially for
C programmers, compared to learning a new specification language. Figure 5 shows an example of the
specification for the correct usage of the locking protocol. The specification essentially looks for certain
patterns in the original program and inserts some checks and actions to be performed when these patterns
are matched. In the example given in figure 5, whenever a function call to FSMInit() is detected, the
statement lockStatus = 0 will be inserted.

Fig. 5. An example of Specification in BLAST ([14])

The architecture of BLAST is given in figure 6. The tool is written in OCaml. It uses CIL(CCured) as
the front-end to check for type safety of the C program. CCured inserts run-time checksneccessary to
prevent all memory safety violations. The program is internally represented as control-flow automata
(CFA). A CFA is a directed graph; its vertices correspond to the control points of the program and its
edges correspond to program operations. Each edge is labeled either by a block of instructions that are
executed along that edge, or by an assume predicate. The assume predicate represents the condition that
must hold for the transition to take place. The abstraction is constructed during execution and is
represented as the Abstract Reachability Tree (ART). BDDs are used for the internal representations.
BLAST uses Simplify and vampyre as theorem provers.

 1 global int lockStatus = 0;
 2
 3 event {
 4 pattern { FSMInit(); }
 5 action { lockStatus = 0; }
 6 }
 7
 8 event {
 9 pattern { FSMLock(); }
 10 guard { lockStatus == 0 }
 11 action { lockStatus = 1; }
 12 }
 13
 14 event {
 15 pattern { FSMUnlock(); }
 16 guard { lockStatus == 1 }
 17 action { lockStatus = 0; }
 18 }

- 11 -

Fig. 6. The BLAST architecture (from slides of [16])

The abstract-check-refine approach (also used in SLAM) has three phases. In the “abstract” phase, a
set of predicates is chosen to create an abstraction of the program. Each abstracted state can be
represented by the set of truth assignments of the predicates. In the “check” phase, this abstraction is
used to check the safety property. If the abstracted model is safe, the original program is considered to be
safe. Otherwise, an error path is generated and it is checked whether this path is feasible in the original
program. If the error trace corresponds to a spurious error, in the “refine” phase, the abstracted model is
refined further by adding more predicates. In BLAST the abstract-check-refine loop is short-circuited
([13]) and the three phases are integrated tightly using lazy abstraction as shown in figure 7. The check
phase drives the abstract phase, and hence only the abstract phase is shown.

Fig. 7. Working of BLAST (from [15])

There are two principles involved in lazy abstraction: on-the-fly abstraction and on-demand
refinement. On-the-fly abstraction is based on the observation that having the same level of precision may
not be advisable for all the regions in the state space as some regions may be unreachable. In lazy
abstraction, instead of abstracting the entire abstract model in the abstract phase, regions are abstracted
only when they are needed by the check phase. On-demand refinement is based on the observation that
after refinement, the model used in the previous iteration may be re-used. In SLAM, the entire model is
built from scratch after refinement. In lazy abstraction, the regions in the state space that have been
already proved to be safe are not refined again. In the refine phase, refinement is done starting at the
earliest state at which the control point in the error path (based on the abstraction) does not have a
corresponding point in the original program. This state is called the pivot state.

The lazy abstraction algorithm is composed of two phases: the forward-search phase and the backwards
counterexample analysis. An abstract reachability tree (ART) is built during execution. It represents a
portion of the reachable, abstract state space of the program. Each control point in the program can be

- 12 -

represented as a state. A set of states can be abstracted as a region. If a path to the error region is found,
it might be the case that the region has some error states but those are not reachable in the original
program. The abstraction is then refined for that region to find out whether the error trace is feasible in the
original program.

In the forward-search phase, the abstract reachability tree (ART) is built incrementally. Each path in the
tree corresponds to a path in the CFA. Each node of the tree is labeled by a vertex of the CFA and a
formula, called the reachable region. Each edge is labeled either by a block of instructions or by an
assume predicate. The reachable region is a boolean combination of the abstraction predicates. It
represents what is known about the state of the program in terms of the predicates under consideration,
after executing the instructions from the root node to the current node. The reachable region of a node is
obtained from the reachable region of the parent node and the instructions on the edge from the parent
node to the current node. If an error node is reachable in the tree, then the next step is the backwards
counterexample analysis.

In backwards counterexample analysis, a theorem prover is called, to check whether the error is real or
results from the abstraction being too coarse. If it is a spurious error, the theorem prover suggests new
abstraction predicates which rule out that particular spurious counterexample. The program is then refined
locally by adding the new abstraction predicates only in the smallest subtree containing the spurious error.
The search then continues from the point that is refined (the pivot state), without touching the part of the
reachability tree outside that subtree. By iterating over the two phases of forwards search and backwards
counterexample analysis, different portions of the reachability tree will use different sets of abstraction
predicates.

There are many advantages of the lazy abstraction approach. First, only the reachable part of the state
space is abstracted, which is typically much smaller than the entire abstract state space. Secondly,
different parts of the state space have different precisions. Thus, fewer predicates have to be processed
at every point. Lastly, model checking is not repeated for those parts of the state space that are known to
be error-free (from some coarser abstraction).

When an error trace is generated, it is simulated to check if the path is feasible in the original program.
BLAST uses Interpolation-based predicate discovery for discovering new predicates. The predicates at
any node (control point in CFA), can be computed by interpolating between the predicates at the previous
node and the next node in the CFA. Interpolation-based predicate discovery finds the minimum set of
predicates needed at a node (control point in CFA) to go from the previous node to the next node. Suppose
A and B are two sets of predicates, and A → B. Craig interpolant is a (minimum) set of predicates C,
such that A → C and C → B. The advantage of using this method is that just recording the interpolants
along an execution path is enough. This reduces the storage requirement as less number of predicates are
stored at every node.

- 13 -

Fig. 8. Error Trace in BLAST

B. Capabilities
BLAST is used for statically analyzing a C program. It uses lazy abstraction to reduce unnecessary

abstraction refinement. This reduces the space and time requirements considerably. BLAST separates the
internal data structures of the symbolic abstraction from the model checking algorithm. One of the reasons
for this was to facilitate reuse of code to build model checkers for different front-ends (for other
languages like java).

Currently, BLAST claims to handle all syntactic constructs of C, including pointers, structures, and
procedures. However, integer arithmetic is modeled as infinite-precision arithmetic (no wrap-around), and
a logical model of the memory is assumed. In particular, BLAST disallows casting that changes the layout
pattern of the memory, disallows partially overlapped objects, and assumes that pointer arithmetic in arrays
respects the array bound. Also, procedure calls are handled using an explicit stack and recursive functions
are not supported.

- 14 -

Fig. 9. BLAST unable to detect all the predicates

BLAST is sound with respect to the assumptions made. Soundness here means that every true error is
reported by the analysis. If the initial assumptions made by BLAST are considered (about alias analysis,
no recursive functions etc.) then it is definitely sound. Figure 8 shows an example error trace from
BLAST. Since the problem addressed here in BLAST is undecidable, it is possible that the algorithm may
not terminate. However, BLAST claims to have terminated every time, sometimes after the addition of
predicates by the user. However, the problem of finding enough predicates remains. There may be
instances when BLAST fails to find enough predicates to prove the property. This is shown in figure 9.
This happens because the BLAST predicate discovery engine may not be “smart” enough to discover
enough predicates to prove the property and hence might fail. This situation can be corrected by human
intervention by adding the predicates through a .pred file. However, in large programs, the predicates may
not be intuitive for the user. There may be a certain class of programs where the predicate discovery
engine fails to discover enough predicates and reports an error (false positives). Similarly, programs which
manipulate their variables through aliasing of pointers might satisfy the given property, but since BLAST
ignores those statements, a false acceptance (false negative) may be produced. Here also, new predicates
may be added to specifically target the aliasing. In both these cases, adding new predicates may help.
However, when manually adding predicates, the user should have some knowledge of the internal working
of the tool and a thorough understanding of the program. All this is not desirable if it is expected that the
tool be used in an industry setting by a junior software engineer.

Like SLAM. ZBLAST is targeted at the general programmers in the software industry. In order to
encourage programmers to use BLAST for verification, an eclipse plug-in has been developed for BLAST

- 15 -

([8]). Thus software verification and software development can be done side by side. This is definitely
aimed at boosting the popularity of BLAST among general programmers.

A Thread-modular Abstraction Refinement (TAR) algorithm ([10]) has been developed for extending
BLAST for multithreaded programs. Also, an algorithm for race checking called CIRC has been
developed and tested on nesC code ([7]). The current version of BLAST has options to check for race
conditions.

C. Problem Domain
BLAST was developed for checking safety properties in C programs. BLAST has been used to verify

several large C programs. It has also been used successfully in the domain of device drivers to check
temporal safety properties. Most of these device drivers are from the Microsoft Windows DDK or from
the Linux distribution ([12]). Blast has successfully verified and found violations of safety properties of
large device driver programs up to 60,000 lines of code. The properties checked are similar to those
studied in SLAM, mainly locking mechanisms and checking that a driver conforms to Windows NT rules
for handling I/O requests. BLAST has found bugs in several drivers. They also claim to have proved that
the other drivers correctly implement the specification.

IV. COMPARISON OF SLAM AND BLAST

SLAM and BLAST are based on similar concepts and have many characteristics in common. As has
been already mentioned, both the tools perform static analysis and counter-example guided abstraction
refinement (CEGAR) to extract a finite state model from a C program. Thus, both these tools face the
problem faced by static analysis and property checking, i.e. the possibility of false alarms and non-
termination. Both the tools verify safety properties in sequential C programs that are specified by the user.
Both have been tested on device drivers and SLAM has been integrated in the product SDV(Static Driver
Verifier) with Windows. [17] states that “BLAST is comparable to SLAM in scalability and precision”. It
further mentions that there are other tools like MOPS which are much more scalable, but they trade
precision for scalability.

Both SLAM and BLAST handle C language constructs (like pointers, structures, and procedures) and
assume a logical model of the memory. Both the tools have options for including nondeterministic choices
for calls to library functions.

Although both the tools were initially designed for sequential C programs, BLAST is being extended for
multithreaded programs (TAR and CIRC). The concept behind SLAM has been used for a tool called
Beacon, which checks for interface usage rules in multithreaded software libraries.

There are some differences between SLAM and BLAST. One key difference is the use of lazy
abstraction in BLAST. Lazy abstraction allows predicate discovery to be done locally and on-demand and
thus saves a lot of space and time. With respect to the specification language, BLAST has an advantage
over SLAM. SLIC does not support type-state properties. It monitors only function calls and returns and
so, is limited to the specification of interfaces. BLAST, however, considers type-state properties (CIL).
Moreover, the BLAST specification language claims to have a C-like syntax which is easier to learn for
programmers than learning a new specification language. However, there seem to be only minor
differences in both the specification languages. In fact, both the specification languages have a look and
feel of aspect-oriented languages.

The abstraction used in SLAM is a boolean program which is constructed before the execution,
whereas, BLAST constructs the abstract reachability tree on-the-fly during execution from the CFA.
However, internally both SLAM and BLAST use binary decision diagrams for their analysis.

- 16 -

Moreover, SLAM claims that it handles recursive and mutually recursive functions, whereas BLAST
does not handle recursive functions as it maintains a stack for procedure calls.

V. COMPARISON WITH OTHER MODEL CHECKING TOOLS

There are many ways in which SLAM and BLAST are different from other model checking tools. In
this seminar, we had the opportunity to look at SPIN and KRONOS, in addition to SLAM and BLAST.
The comparison in this section will cover the key points in which these model checking tools differ.

First of all, the traditional approach to model-checking (followed by SPIN and KRONOS) has been to
first create a model of a system, and once the model has been verified, move on to the actual
implementation. SLAM and BLAST fall in the category of the “modern” approach in model checking. The
user has already completed the implementation and wishes to verify the software. The objective then is to
create a model from the existing program and apply model checking principles, such that the original
program is verified. Although, SPIN now has support for abstracting the model automatically from C or
java programs, originally, the model for both SPIN and KRONOS had to be specified manually by the
user.

The traditional approach has its own drawbacks. Since the implementation is done after the model is
verified, there may be a gap in the model that was verified and the actual implementation. This becomes a
major problem as the abstraction becomes coarser. KRONOS works on a relatively high-level abstraction
of the system. Hence there is no way of actually knowing if the model was correctly followed in the
implementation of the system. Although, having a higher-level abstraction is necessary in KRONOS as it
works on a timed automaton, and a finer abstraction would mean a very large number of states.

Also, the errors traced in SLAM and BLAST can be directly traced to the program, which is not the
case in other model checking tools, SPIN and KRONOS. Errors detected by these tools can be traced to
the model, but since the model may not have been implemented yet, nothing can be said about the actual
program. This also raises the point of “visibility” of the model. In BLAST, the abstraction is stored as an
internal symbolic representation, and hence cannot be directly manipulated by the user. Contrary to this,
models in SPIN and KRONOS can be modified by the user directly. Again, if the model has been
abstracted by the tool automatically and the user is allowed to make changes to the model directly, the
model may no longer be a correct representation of the program.

Secondly, both SPIN and KRONOS have an associated specification language which is used to specify
the model. This is different from the specification language in SLAM or BLAST, which is used to specify
only the property to be checked. In this sense, SLIC and the BLAST specification language are “partial”
specifications that specify the correct behavior of the program.

Thirdly, SLAM and BLAST are used for sequential C programs. This is a very important difference as
compared to SPIN and KRONOS. SPIN focuses on interaction between processes, whereas KRONOS
aims to verify real-time systems. Since the target systems are different for each of these tools, the levels
of abstraction needed for the model are different. KRONOS has the coarsest abstraction of the system
and potentially the widest gap between the abstraction and the implementation.

Fourthly, the user of SPIN and KRONOS is assumed to have prior knowledge of formal languages, and
the user probably has to learn a new specification language to specify the model for the tool. On the other
hand, SLAM and BLAST have been targeted to encourage general programmers to use model checking
techniques for software verification. Hence, the user is not expected to have any background in formal
languages or to learn a lot of new things. For this purpose, the languages for specifying the properties have
a C-like syntax which is familiar to the programmers.

Additionally, SLAM and BLAST are used for checking safety properties only, whereas SPIN is more

- 17 -

developed and checks liveness properties also. In this sense, SLAM and BLAST are actually covering a
subset of the functionality covered by SPIN. Although, we must remember that these tools are targeted
for the software industry, hence the emphasis is not on having all the functionalities of a traditional model
checker. KRONOS and SPIN cover some overlapping properties. However, since KRONOS works on
timed automata, potentially many more functionalities can be checked compared to SPIN.

Finally, SPIN has been used for a wide variety of applications like call processing, ring protocol etc.
KRONOS has been used to verify real-time systems including the classical CSMA/CD protocol.
Although, BLAST can be extend to multithreaded programs, it can never reach the scale of KRONOS. It
is yet to be seen if SLAM and BLAST can compete with SPIN, which is considered the standard model
checking tool, in terms of functionality.

REFERENCES
[1] Thomas Ball, Sriram K. Rajamani. “The SLAM Project: Debugging System Software via Static Analysis”, POPL

2002, January 2002.
[2] Thomas Ball, Sriram K. Rajamani. “Automatically Validating Temporal Safety Properties of Interfaces”, SPIN

2001, Workshop on Model Checking of Software, LNCS 2057, May 2001, pp. 103-122.
[3] Thomas Ball, Sagar Chaki, Sriram K. Rajamani. “Parameterized Verification of Multithreaded Software Libraries”.

TACAS 2001, LNCS 2031, April 2001, pp. 158-173.
[4] Thomas Ball, Sriram K. Rajamani. “The SLAM Toolkit”. CAV 2001.
[5] The slides from the PLDI 2003 tutorial. http://research.microsoft.com/slam/ .
[6] Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. “Checking memory safety with Blast”. In

Proceedings of the 8th International Conference on Fundamental Approaches to Software Engineering (FASE
2005), LNCS 3442, pages 2-18, Springer-Verlag, 2005.

[7] Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. “Race checking by context inference”. In Proceedings
of the International Conference on Programming Language Design and Implementation (PLDI), ACM Press,
2004.

[8] Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. “An Eclipse plug-in for model checking”.
In Proceedings of the 12th IEEE International Workshop on Program Comprehension (IWPC 2004), pages
251-255, IEEE Computer Society Press, 2004.

[9] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar and Kenneth L. McMillan. “Abstractions from Proofs”. In
ACM SIGPLAN-SIGACT Conference on Principles of Programming Languages, 2004.

[10] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Shaz Qadeer. “Thread-modular Abstraction
Refinement”. In Proceedings of the 15th International Conference on Computer-Aided Verification (CAV),
LNCS 2725, Springer-Verlag, pages 262-274, 2003.

[11] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Gregoire Sutre. “Software Verification with Blast”. In
Proceedings of the 10th SPIN Workshop on Model Checking Software (SPIN), LNCS 2648, Springer-Verlag,
pages 235-239, 2003.

[12] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, George C. Necula, Gregoire Sutre and Westley Weimer.
“Temporal-Safety Proofs for Systems Code”. In Proceedings of the 14th International Conference on
Computer-Aided Verification (CAV) , LNCS 2404, Springer-Verlag, pages 526-538, 2002.

[13] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar and Gregoire Sutre. “Lazy Abstraction”. In ACM
SIGPLAN-SIGACT Conference on Principles of Programming Languages, pages 58-70, 2002.

[14] The BLAST Group. “BLAST User’s Manual”. October 18, 2005.
[15] The slides from the SPIN 2005 tutorial. http://embedded.eecs.berkeley.edu/blast/.
[16] Wai Sum Mong. “Lazy Abstraction on Software Model Checking”. CSC2108 – project report.

http://www.cs.toronto.edu/~arie/csc2108conf/mong.pdf
[17] Hao Chen and Jonathan S. Shapiro. “Exploring Static Checking for Software Assurance”. In Proceedings of

2004 IEEE Symposium on Security and Privacy, 2004.
[18] Hao Chen, Drew Dean and David Wagner. “Model Checking One Million Lines of C Code”. In Proceedings of

Network and Distributed System Security (NDSS 2004), February 2004.

- 18 -

[19] Byron Cook, Daniel Kroening and Natasha Sharygina. “Accurate Theorem Proving by Program Verification”.
ETH Technical Report 464.

[20] Byron Cook, Daniel Kroening and Natasha Sharygina. “Cogent: Accurate Theorem Proving for Program
Verification”. In Proceedings of Computer Aided Verification: 17th International Conference, CAV 2005,
Edinburgh, Scotland, UK, July 6-10, 2005. Springer-Verilag Volume 3576/2005.

- 19 -

I. INTRODUCTION
Model checking is a method to verify the correctness of software designs. It is an automated

technique that, given a logical property and a model of a system, systematically checks whether
this property holds for that model. Thus, when the system itself cannot be verified exhaustively,
we can build a simplified model of the system that preserves its underlying design characteristics
but at the same time avoids known sources of complexity. The model can then be verified using
model checking techniques. Model checking is based on the idea of exhaustive exploration of the
reachable state space of a system model. Therefore, currently, it can only be applied to systems
which have a finite state space, with bounded states. In practice, this is a severe limitation.

SPIN is among the most popular model checking tools. The tool was developed at Bell Labs in
the original Unix group of the Computing Sciences Research Center, starting in 1980. It has been
available freely from the web since 1991, and continues to evolve over many years. SPIN is
written in ANSI standard C, and is portable across all versions of Unix, Linux, cygwin, Plan9,
Inferno, Solaris, Mac, and Windows. Now it is one of the most widely used model checkers and
has a fairly broad group of users in both academia and industry. In April 2002 the tool was
awarded the prestigious System Software Award for 2001 by the ACM [5].

SPIN is designed for analyzing the logical consistency of concurrent or distributed
asynchronous software systems, and is specially focused on proving the correctness of process
interactions. Hence typical SPIN models attempt to abstract as much as possible from internal
sequential computations. SPIN has been used to detect design errors in distributed applications
such as operating systems, data communications protocols, switching systems, concurrent
algorithms, railway signaling protocols, etc., ranging from high-level abstract descriptions to
low-level detailed codes.

II. CAPABILITIES

A. Summary
In SPIN, the system models are described in a modeling language called PROMELA (Process

Meta Language). The language is intended to make it easier to find good abstractions of system
designs. Emphasis in this language is on the modeling of process synchronization and
coordination, not on computation. It allows for the dynamic creation of concurrent processes
while process interactions can be specified with rendezvous primitives, with asynchronous
message passing through buffered channels, through access to shared variables, or with any
combination of these.

Given a model system specified in PROMELA, SPIN can either perform simulations of the
system's execution or it can generate a verifier in C programming language that performs an

An Introduction to the SPIN Model Checker
CS851 − Tools for Model Checking and Model-based Development

Project Report: Tool Description and Analysis

Xiang Yin
xyin@cs.virginia.edu

- 20 -

efficient verification to check the logical consistency of the specification. SPIN reports on
deadlocks, unspecified receptions, unexecutable code, flags incompleteness, race conditions, and
unwarranted assumptions about the relative speeds of processes. The verifier can also be used to
verify the correctness of system invariants, it can find non-progress execution cycles and
acceptance cycles, and it can verify correctness properties expressed in next-time free linear
temporal logic formulae.

B. Architecture
The Basic architecture of SPIN is illustrated in Figure 1.

deadlocks
safety properties
liveness properties

editing window
simulation options
verification options

MSC simulation window
counter
example checker

C program

Verifier
Generator

Simulator

spin.exe

LTL
Translator

Xspin

correctness
properties

random
guided
interactive

pan.*

pan.exe

Promela
model

SPIN

false

true

Fig. 1. SPIN architecture [3][4]

SPIN can be initiated from command line or optionally using its graphical interface XSPIN.
The user needs to specify a high-level model of a concurrent system, or distributed algorithm, in
PROMELA. It can be done either manually or with the help of some mechanical tools. Besides
SPIN’s built-in correctness requirements (such as absence of deadlock, unreachable code, race
conditions), other correctness properties of the model that needs to be checked can be specified as
system states or process invariants, as linear temporal logic requirements (LTL), as formal Büchi
Automata, or more broadly as general omega-regular properties in the syntax of never claims [5].

Optionally there is a LTL translator that can automatically generate PROMELA correctness
claim from a LTL formula. After fixing syntax errors, interactive or random simulation can be
performed through the SPIN simulator so that the user can gain some basic confidence that the
model has the intended properties. Then, SPIN can generate an optimized on-the-fly verification
program in C from the specification of the high-level model and the correctness properties. This
verifier is compiled, with possible compile-time choices for the types of reduction algorithms to
be used, and it can then be executed to perform an exhaustive or partial verification. If any
counter example to the correctness claims is detected, it can be fed back into the SPIN simulator.
Guided simulation on the error trail should be inspected in detail to determine the cause of the
correctness violation. The model can then be modified to prevent the violation. Once a
correctness property has been shown to hold, it is often possible to then reduce the complexity of

- 21 -

that model by using the now trusted property as a simplifying assumption. The simpler model
may then be used to prove other properties.

C. Graphical Interface
The graphical interface XSPIN is not a must, but it can ease the whole process of SPIN model

checking. XSPIN operates independently from SPIN itself. It provides a clean view of the
commands and many options for performing simulations and verifications in SPIN. It executes
SPIN commands in the background, in response to user selections on the graphical front-end.
Nonetheless, it supplies a significant added value by providing graphical displays of message
flows, time sequence diagrams, the finite-state machine corresponding to a PROMELA model,
etc.

D. Simulation
As shown above, SPIN has two principal modes of operation: simulation and verification.

Simulation is the step-by-step trace of a system execution. Verification requires exhaustive search,
whereas simulation does not and therefore can deal with larger state spaces. Since SPIN is
targeted at concurrent systems, in the system model there may be several different possible
processes enabled at each point of execution, and each process may have several different
possible actions enabled at each point of execution. SPIN assumes a non-deterministic scheduling
policy. According to how these non-deterministic choices are resolved at the execution time, the
SPIN simulation can be of the following three forms: random, interactive, or guided. Simulation
is just like testing and debugging. It is used to gain basic confidence that the system behaves as
intended. However, just as in all forms of testing, it can only indicate errors and can never show
the absence of errors. The most important use of simulation in SPIN is to inspect an error trail (or
counter example) to establish, and then remove its cause, when verification finds a property
violation.

E. Verification
Perhaps the most important feature of SPIN is that it can generate optimized verifiers from a

user-defined PROMELA model. SPIN does not attempt to verify properties of a model directly,
with any generic built-in code. By generating a verifier that can be compiled and run separately,
we usually can achieve a significant gain in performance [2].

SPIN uses finite automata based model checking. Each process of the checked model is
translated into a finite automaton, and the global behavior of the concurrent system is obtained by
computing an asynchronous interleaving product of automata, one automaton per asynchronous
process behavior. The checked property, representing the violations of correctness properties, is
translated into a property automaton (i.e., the never-claim). SPIN checks the given model against
the given property by calculating the intersection of the corresponding automata. A non-empty
intersection means the possibility of violating a correctness requirement. The verification
procedure is based on the reachability analysis of the automata, using an optimized
depth-first-search or breadth-first-search graph traversal method (breadth-first-search is only
supported by SPIN version 4.0 or later). Since it indeed requires an exhaustive search, there is a
state-space explosion problem, just as in all other current model checking techniques. A number
of special-purpose algorithms are used to avoid a purely exhaustive search procedure or to reduce
the state space (e.g., partial order reduction, state compression, hash compaction, and sequential
bitstate hashing). Also, the verification procedure is done on-the-fly, namely, the state space need
only be built up to the point where the property can be verified, which means that it avoids the
need to preconstruct a global state graph. Therefore if the state space is too large to fit in the
SPIN model checker, at least we can have some partial results to look at.

- 22 -

In SPIN, verification is subdivided into two aspects: safety and liveness. Verification of safety
is usually done first since it is more critical, and it is easier.

1) Safety Properties
By safety properties, we mean “nothing bad ever happens”. For instance, invariant (e.g. x is

always less than 5) and deadlock freedom (the system never reaches a state where no actions are
possible) are both safety properties. By default, SPIN will check a set of basic safety properties
such as absence of deadlock and unreachable code. It will also check that any user-defined
process assertions or invariants cannot be violated.

SPIN check a safety property by trying to find a trace leading to the “bad” thing. If there is not
such a trace, the property is satisfied.

2) Liveness Properties
By liveness properties, we mean “something good will eventually happen”. For instance,

termination (the system will eventually terminate) and response (if action X occurs then
eventually action Y will occur) are both liveness properties. By default, SPIN can check that the
system can only terminate in user-defined valid end-states. The PROMELA language includes
two types of labels that can be used to define two complementary types of liveness properties:
acceptance and progress. In the syntax of linear temporal logic (LTL), an acceptance property
corresponds to formulae of the type □◊p, where p is a user-defined accepting state. When
checking for acceptance cycles, the verifier will complain if there is an execution that visits
infinitely often an acceptance state. The violation of a progress property corresponds to formulae
of the type ◊□¬p, with p as a user-defined progress state. When checking for non-progress cycles,
the verifier will complain if there is an infinite execution that does not visit a progress state
infinitely often.

SPIN check a liveness property by trying to find an infinite loop in which the “good” thing
does not happen. If there is not such a loop, the property is satisfied.

3) LTL Properties
Many safety and liveness properties can be expressed, and verified, without the use of a formal

logic. For instance, the properties can be specified as system or process invariants (using
assertions). However, SPIN can be used as a full LTL model checking system, supporting all
correctness properties expressible in linear temporal logic (LTL).

For example, the formula □(req → ◊ack) asserts that at any point in the execution, if a request
was made, an acknowledgement is eventually reached. SPIN versions 2.7 and later include a
translation algorithm that converts LTL formulae like this into PROMELA never-claims.
Never-claims formalize the potential violations of a correctness property, i.e., behavior that
should never happen. More specifically a never-claim can be used to represent an automaton, and
it is this capability that is exploited by the LTL translator. Although the expressive power of LTL
is smaller than that of never-claims, the use of LTL can be simpler and more direct.

F. Model Extraction
There are two basic ways of working with SPIN in system design. The first method is to use the

tool to construct verification models that can be shown to have all the required system properties.
Once the basic design of a system has been shown to be logically sound, it can be implemented
with confidence. It is the traditional way to perform model checking. A second method, which fits
in modern model checking techniques, is to start from an implementation and to convert critical
parts of that implementation mechanically into verification models that are then analyzed with
SPIN.

Automated model extraction tools have been built to convert programs written in mainstream

- 23 -

programming languages such as Java and C into SPIN models. For example, Modex is a tool that
mechanically extracts PROMELA models from C programs, and Bandera can extracts from Java
codes. Various techniques like slicing algorithms have been developed to provide an appropriate
level of abstraction. Types and actions in C that cannot be translated to PROMELA (e.g. floating
point, pointer) can be embedded into the PROMELA model and compiled into the verifier since
the latest SPIN version 4.0. This makes it possible to directly verify implementation level
software specifications, using SPIN as a driver and as a logic engine to verify high level temporal
properties

III. PROBLEMS TO WHICH THE TOOL IS SUITED
Since SPIN is designed for asynchronous process systems, the problems to which the tool is

most suited are proving correctness, especially temporal related properties for concurrent systems,
specifically data communication protocols. The obvious applications include generic distributed
algorithms (e.g., the leader election algorithm, mutual exclusion algorithms), communications
network design problems, or protocol design problems. Some applications of SPIN to real-life
problems are the Cambridge ring protocol, the IEEE logical link control protocol LLC 802.2, and
fragments of larger protocol applications such as XTP and TCP/IP [1].

In the SPIN literature, we can also see that SPIN has been applied to the verification of data
transfer protocols, bus protocols, address registration protocols, error control protocols,
requirements analysis, controllers for reactive systems, distributed process scheduling algorithms,
fault tolerant systems, hardware-software co-design, asynchronous hardware designs,
multiprocessor designs, local area network controllers, microkernel design, operating systems
code, railway signaling protocols and circuitry, rendezvous algorithms, security protocols, flood
surge control systems, feature interaction problems, Ethernet collision avoidance techniques,
self-stabilizing protocols, and so on [1].

Note that, although SPIN can be and has been applied to hardware design, it is designed for
checking software systems. It can be applied on complex distributed software systems, provided
that the system states are bounded finite after abstraction. Inspiring applications of SPIN in the
last few years include the verification of the control algorithms for the new flood control barrier
built in the late nineties near Rotterdam in the Netherlands; the logic verification of the call
processing software for a commercial data and phone switch, the PathStar switch that was
designed and built at Lucent Technologies; and the verification of a number of space missions
including Deep Space 1, Cassini, the Mars Exploration Rovers, Deep Impact, etc [5].

As discussed above, SPIN can be used to verify safety properties and liveness properties in
these kinds of systems. These properties are mostly temporal properties. As an illustration, take a
look at the SPIN model in Figure 2. This is correct PROMELA and it corresponds to Peterson’s
algorithm for the mutual exclusion problem. It has the shared variable turn of type bool (= {0,
1}) and flag, an array of bits. The model spawns two processes user with pid 0 and 1.

We now want to express the safety property that the two processes are never simultaneously in
the critical section. The easiest way to do this is to introduce a third shared variable ncrit of
type byte, to count the number of processes in the critical section. So, ncrit is incremented
when a process enters the critical section and it is decremented when it leaves the critical section.
When a process is in the critical section, it is verified that ncrit = 1 by means of assertion.

- 24 -

Fig. 2. Peterson’s solution to the mutual exclusion problem in PROMELA

SPIN will not find any error in this case since this is a correct mutual exclusion solution.
However, in case it is not a correct algorithm and the two users can both enter the critical section
at the same execution point, ncrit will be increased to 2. Then SPIN will complain about a
possible assertion violation to indicate the violation of the mutual exclusion property and give out
an error trail.

Besides checking the temporal properties for distributed systems, SPIN can also do some work
(albeit limited) on functional properties. A good example would be the optimization problems.
Given a model M of the problem in PROMELA, with:

1) certain costs (or time) associated with states/transitions
2) a global cost is updated when a transition is taken or a state is reached.
We want to find the optimal schedule to an end-state with minimum cost. (A typical example of

this optimization problem would be the famous traveling salesman problem.) The intuitive way to
do this in SPIN is to:

1) verify that M is error-free
2) find the optimal schedule as shown in Figure 3

Fig. 3. Finding optimal schedule in SPIN [4]

We guess an initial value of minimal cost (which should be larger than the optimal one) and
then use SPIN to check the property “eventually cost will be larger than min”. If there is a path to
a final state for which the cost is less than min, SPIN will generate an error trail leading to this
state. This error trail corresponds to a better schedule. We then modify the minimal cost to

/* Peterson’s solution to the mutual exclusion problem */
bool turn, flag[2];
byte ncrit;

active [2] proctype user()
{
 assert(_pid == 0 || _pid == 1);
again:
 flag[_pid] = 1;
 turn = _pid;
 (flag[1 - _pid] == 0 || turn == 1 - _pid);

 ncrit++;
 assert(ncrit == 1); /* critical section */
 ncrit--;

 flag[_pid] = 0;
 goto again
}

min = guess of (worst case, maximum) cost
do

verify ◊ (cost ≥ min) holds for M
if (error) min = cost fi

while (error)

- 25 -

represent this trail and repeat the whole process. The iteration stops when SPIN cannot find error
trail, which means no better schedule exists. Thus we know we get the optimal minimal cost.

With the development of the mechanical model extraction for the implementation code to a
PROMELA model, SPIN is also suited to ease verifying the properties for some existing
implementations. A good example would be the logic verification of the call processing software
in the PathStar switch, mentioned above. The application was based on model extraction from the
full and unmodified ANSI-C code of the implementation, which was checked for compliance
with a group of roughly 20 features formalized in linear temporal logic (e.g., call waiting,
conference calling, etc.) [5].

IV. PROBLEMS TO WHICH THE TOOL IS NOT SUITED
The basic limitations (state space explosion) of model checking techniques still apply to SPIN.

It can only work with finite and bounded states, with machine limitations. When it comes to
checking the model and properties with infinite or unbounded states (e.g. floating point
verification), we must use other formal methods. There are experiments with symbolic model
checkers that should be able to deal with infinite state spaces, but that is for the future.

SPIN is targeted to check temporal properties, and PROMELA has limited support of internal
sequential computations (limited data types and limited operations). It is not powerful enough to
verify many algebraic properties or full correctness with respect to the formal specification. In
this case, theorem proving is a better choice.

Another limitation of SPIN is that it is not timed. All the timing relations in SPIN are
qualitative, not quantitative. This means that properties such as “between event A and event B at
least 5 time units should pass” can not be expressed and checked in SPIN. Also, we cannot have
an estimate of the execution, either BCET or WCET. There are extensions to SPIN that add
real-time features by implementing some sort of dense time in the model. However, SPIN is still
well suited for modeling the untimed aspects of the protocol processes and for expressing the
relevant (untimed) properties. When serious about verifying timing constraints, one should use a
dedicated real-time model checker like KRONOS or UPPAAL, which adopts timed automata in
modeling. Perhaps it is better to use SPIN to check the correctness of the model, with real time
abstracted, while use other real-time model checker to check the timing constraints.

V. TOOLS COMPARISON
In this section, we briefly compare and contrast the model checking tools we have discussed in

the class: SPIN, KRONOS, and SLAM/BLAST. In brief, SPIN focuses on proving the
correctness of process interactions; KRONOS is dedicated to validate real time properties, while
SLAM/BLAST is specifically targeted at C programs, especially device driver protocols. Since
all formal model checkers aim to provide a notation for specifying system design choices, a
notation for expressing correctness requirements, and a methodology for establishing the logical
consistency of the design choices and the matching correctness requirements, we compare and
contrast these model checkers from these aspects. I will also mention other existing model
checkers when necessary.

A. Model Specification
In SPIN, the system models are described in a C program like modeling language, called

PROMELA. A PROMELA model can be generated either manually from the high-level system
design, or mechanically from the low-level implementation with the help of certain model
extraction tools. Mechanical extraction can reduce possible errors in generation of system models.
Currently there are model extraction tools that support main stream languages such as C and Java.

- 26 -

In KRONOS, each process or component of the system is modeled as a timed automaton, and the
whole system model is their product automaton. At the current stage of KRONOS, it does not
support mechanical generation for timed automata models, so that they have to be constructed
manually by the user. Both SPIN and KRONOS make no assumption on the implementation
language, so that their system models can be derived directly from system design decisions with
or without any specific kind of implementation. However, it is not the case for SLAM and
BLAST. SLAM and BLAST do not have a separate modeling language like SPIN and KRONOS.
They are particularly designed to verify C programs and hence only work for C programs at this
time. The input system models for SLAM/BLAST are direct C programs. They do have certain
internal representation of the abstract system model, such as boolean program (for SLAM) and
symbolic abstraction structure (for BLAST). But users are not allowed to modify the abstraction
directly as they do with the system models in SPIN and KRONOS.

As for the design decisions that can be conveyed in the system model, these tools also have
very different focuses. The emphasis in the PROMELA model for SPIN is the abstraction of
synchronizations and interactions among concurrent processes, with limited support of internal
sequential computations. PROMELA resembles the programming language C, so that it is usually
straightforward to derive a PROMELA model from the system design. PROMELA supports some
finite data types, but since it intentionally abstracts out the implementation details of sequential
computations, it does not support many elements in modern languages, such as pointers,
floating-point types, etc. Timed automata in KRONOS are dedicated to real-time properties.
Timing constraints are expressed as predicates on the values of clocks, which is used to model
time elapsed between events. Theoretically timed automata can also express any untimed
property for concurrent systems. However more human effort needs to be put to derive the model.
KRONOS does not support any data type except the integer clock used to express timing
properties. Hence usually the timed automata in KRONOS are used to express very abstract
high-level system designs. Among other current model checkers, there is one called UPPAAL
which also adopts timed automata as the system model. UPPAAL has partial support for data
types associated with the timed automata and continues to evolve over these years. So in my view
it is more powerful than KRONOS. For SLAM and BLAST, they work for sequential C programs,
with partial support for C features like function calls, pointers, floating-point types, and so on.
However, they do not look at process interactions and thus do not aim at concurrent systems as
SPIN and KRONOS do.

B. Property Specification
Users also need to specify the correctness properties that they want to check for the system

model. In SPIN, there are some built-in properties such as deadlocks and unreachable code that
can be checked. The user can also specify other correctness properties as system or process
invariants (using assertions), as linear temporal logic requirements (LTL), as formal Büchi
Automata, or more generally as never claims. Usually users will use assertions, system states, and
LTL formula since they are simple to understand and powerful enough for most properties. In
KRONOS, properties can be specified either in timed temporal logic (TCTL) as a logical
approach or in timed automata as a behavior approach. The case of SLAM/BLAST is still
different. They use specifications with C-like syntax, and insert them into the original C programs,
just like aspect-oriented programming. BLAST also supports type-state properties with CIL as
front-end to parse C programs.

From the above comparisons, we can see that SPIN and KRONOS are targeted at the formal
model checking community. They have formal specification for system models and correctness
properties and they require people to have knowledge of the specification language or logic they
adopt. Once mastered, they will be powerful tools to perform various verifications. On the other

- 27 -

hand, SLAM and BLAST are targeted at C programmers. They don’t require users to learn much
about the specification language and the underlying logic as far as they know C programming. In
turn, their uses are narrowed in the scope of sequential C programs.

C. Capabilities and Limitations
The verification methodologies of all these model checkers are similarly based on exhaustive

exploration of the reachable state space of the system model. The detailed search algorithms are
different, though. SPIN uses depth-first and bread-first search on the finite automata; KRONOS
uses backward and forward analysis on the timed automata; and SLAM/BLAST searches on its
internal reachability tree. Since this course is not focused on the algorithms they adopt, we
compare their verification methodologies by their capabilities and limitations.

SPIN is designed for asynchronous process systems. It detects design errors (especially
temporal related correctness properties) for concurrent systems, ranging from high-level
descriptions of distributed algorithms to detailed code for controlling telephone exchanges. With
built-in properties, SPIN can check deadlocks, unspecified receptions, unexecutable code, flags
incompleteness, race conditions, and unwarranted assumptions about the relative speeds of
processes. Other properties that can be specified by invariants (assertions), system states (i.e.
non-progress cycles, acceptance cycles), and LTL formula all fit into the category of safety
properties (nothing bad ever happens) or liveness properties (something good will eventually
happen). However, these properties are untimed, or in other words, of qualitative, not quantitative
timing relations. Moreover, SPIN only has limited support for internal sequential computation.
KRONOS uses timed automata as its basis so that theoretically it can express and verify all those
properties expressible by SPIN. Nevertheless, it introduces the clock into system states which
makes the verification of untimed temporal properties much less efficient than SPIN. Therefore
KRONOS is usually more suitable to verify real-time properties and timing constraints with
dense time. In practice, the large number of clocks is a severe constraint for KRONOS. Since
KRONOS does not have data types, it is even worse than SPIN in supporting internal sequential
computation. SLAM and BLAST, however, are dedicated to deal with sequential C programs.
They manage the data types and computations in C pretty well, but they have limited support for
concurrent properties. They almost only check for sequential safety properties such as the
ordering or locking/unlocking. Currently BLAST provides some algorithms to check for race
conditions in multithreaded C programs. Perhaps it is the best to use SPIN to check the
correctness of untimed temporal properties or concurrent systems, use KRONOS to check the
real-time constraints, and use SLAM/BLAST to check safety properties in sequential C.

Note that all these model checkers do not support most high-level constructs in modern
languages, which made the generation of the system model a bit painful. In view of this, there is a
model checker called Bogor. The good thing about Bogor is that its modeling language (BIR)
supports many commonly used high-level constructs and is extensible. Furthermore, it is allowed
to introduce new abstract data types so that one can have a customized abstract machine for each
specific application domain. It might be efficient because then the modeling language can move
closer to the abstraction level of the system description used for that particular application
domain.

D. Other Issues
All these model checkers suffer from the state explosion problem. The abstract system model

must be finite and bounded states, with machine limitations. All of them have implemented a set
of optimization algorithms or reduction algorithms to mitigate this problem and to make
verification run more effectively, i.e. partial order reduction and bitstate hashing in SPIN, lazy
abstraction in BLAST. We haven’t established experiment results to compare and contrast the

- 28 -

memory management and efficiency of these tools, though.
SLAM/BLAST does not require the user to learn additional modeling language and any

underlying logic. As stated above, they have less steep learning curves than SPIN and KRONOS,
although their uses are limited to certain C programs. It is the powerful modeling language and
property specification that make SPIN and KRONOS more general model checkers.

As for ease of use, SPIN provides a powerful graphical interface XSPIN, which can run SPIN
commands in background and display graphical displays of, for instance, message flows. When it
comes to examine an error trail, a graphical display will help to locate the cause of the error more
quickly and more efficiently. Also, both SLAM and BLAST provide GUI, and BLAST even has
an eclipse plug-in. Unlike SPIN and KRONOS, the error trace for SLAM/BLAST maps back to
the original program, not any abstract model. KRONOS does not have strong points in this aspect.
It only uses textual input and output. (There are third party tools that implemented some sort of
GUI for KRONOS.)

For industrial applications, as we have discussed in section 3, SPIN has been applied to trace
logical design errors in distributed systems design, such as operating systems, distributed
algorithms, communication network design problems, protocol design problems, railway
signaling protocols, flood control systems, call processing systems, mission critical systems, etc.
KRONOS has been used to analyze real-time communication protocols like CSMA/CS, FDDI,
Philips audio control protocol, timed asynchronous circuits and so on, most of which are
associated with real-time constraints. SLAM and BLAST are mainly used for device driver
verifications.

REFERENCES
[1] Holzmann, G. J., “The Model Checker SPIN”, IEEE Trans. on Software Engineering, Vol. 23, No. 5,

May 1997, pp. 279-295.
[2] Holzmann, G. J., The Spin Model Checker: Primer and Reference Manual, Addison-Wesley, 2003.
[3] Ruys, T. C., “SPIN Beginners’ Tutorial”, SPIN 2002, April 2002.
[4] Ruys, T. C. and G. J. Holzmann, “Advanced SPIN Tutorial”, SPIN 2004, April 2004.
[5] “On-the-fly, LTL Model Checking with SPIN”, http://spinroot.com/, January 22, 2006.

- 29 -

KRONOS: A Verification Tool for Real-Time
Systems

Na Zhang

I. INTRODUCTION

KRONOS [1] is developed by Sergio Yovine. He is working at VERIMAG, a leading research center
in embedded systems in France.

KRONOS is a tool developed with the aim to assist the user to validate complex real-time systems.
Real-time systems are systems that must perform a task within strict time deadlines. Embedded
controllers, circuits and communication protocols are examples of such time-dependent systems. These
systems are often part of complex safety-critical applications such as aircraft avionics, which are very
difficult to design and analyze, but whose correct behavior must be ensured because failures may have
severe consequences. Hence, real-time systems need to be rigorously modeled and specified in order to
be able to formally prove their correctness with respect to the desired requirements.

KRONOS checks whether a real-time system modeled by a timed automaton [2] satisfies a timing
property specified by a formula of the temporal logic TCTL [3]. KRONOS implements a symbolic
model-checking algorithm, where sets of states are symbolically represented by linear constraints over
the clocks of the timed automaton.

II. MATHEMATICAL FOUNDATIONS

In KRONOS, components of real-time systems are modeled by timed automata and the correctness
requirements are expressed in the real-time temporal logic TCTL.

Timed automata are automata extended with a finite set of real-valued clocks, used to express timing
constraints. Clocks can be set to zero and their values increase uniformly with time. At any instant the
value of a clock is equal to the time elapsed since the last time it was reset. A transition is enabled only if
the timing constraint associated with it is satisfied by the current values of the clocks. A timed automaton
models the behavior of a single process or component of the system. The locations of the automaton
correspond to the different control points of the process. A transition from one location to another
location corresponds to the execution of a statement. Timing constraints such as propagation delays,
execution times and response times, are expressed as predicates on the values of the clocks.

As a quick view of timed automaton, take CSMA/CD protocol [4] as an example. The behavior of
process Senderi is depicted in Figure 1. Figure 2 shows the behavior of the bus medium in the system.

- 30 -

Figure 1: timed automaton for senderi in CDMA/CD protocol

Figure 2: timed automaton for bus in CSMA/CD protocol

III. VERIFICATION

KRONOS checks whether a timed automaton satisfies a TCTL-formula. The model-checking algorithm
is based upon a symbolic representation of the infinite state space by sets of linear constraints. Basically,
KRONOS provides a specification framework that integrates both logical and behavioral approaches to
verification. The details of these two approaches will be discussed in the section B and C.

A. Input of KRONOS tool

Figure 3 shows the textual description of the timed automaton of the bus in the KRONOS input
language.

- 31 -

Figure 3: the input file for KRONOS [1]

B. Logical approach

For the logical approach, KRONOS implements model-checking algorithms that check whether the
system satisfies a property given as a formula in TCTL. These algorithms can be classified in two general
categories according to the strategy applied to explore the state-space: backward analysis and forward
analysis. Backward analysis algorithms perform a backward search of the reachability graph to compute
the set of predecessors of a given set of states. Forward analysis algorithms construct the set of
successors by performing a forward exploration of the graph.

Given a system modeled as a network of synchronizing timed automata, KRONOS can verify whether
it satisfies the correctness criteria specified as formulas of the timed temporal logic called TCTL.

 Reachability
Many interesting properties can be stated in terms of the reach-ability of a given set of states. An
example is safety properties: a system satisfies the safety criteria if the system never enters into a
state belonging to the set of unsafe states. In TCTL, a safety property is expressed as follows:
init ¬ unsafe

where init is the predicate characterizing the set of initial states, and the symbol “ ” means
some state along some execution.
Another equivalent way of expressing the same property is the following:
init □ safe

where the symbol “ □” means every state along every execution. In words, the above formula
says that all the states reachable from the set of initial states are safe.

 Non-Zenoness
Another important property that has to be shown concerns the divergence of time. A good timed
model must allow time to elapse without bound. Executions along which time converges are
called Zeno. A state is called Non-Zeno if whatever the system does at the state, it does not
prevent time to diverge. Detecting Zeno behaviors is very important: it might be the case that the

- 32 -

system meets the safety criteria by just stopping the flow of time. Clearly, such behaviors are not
acceptable.
It has been shown that all the states reachable from the set of initial states are Non-Zeno if and
only if the following formula evaluates to true:

init □ 1 true

The subscript “=1” means that we are only interested in states that are reachable in a time equal
to one. In other words, the above formula states that every state reachable from init can let time
pass one time unit.

 Bounded response
One important property of real-time systems is that they have to respond in bounded time to
requests issued by their environment. For instance, a typical requirement is the following: every
request from a client has to be served or rejected in at most 5 time units. This property is
specified in TCTL as follows:

request 5 (served rejected)

where request, served and rejected are predicates that characterize the set of states corresponding
to the reception, the acceptance and the rejection of a request, respectively. The symbol “ ”
means some state along every execution. The subscript “ 5 ” means that we are only interested
in states that are reachable in a time less than or equal to 5.

C. Behavioral approach

For the behavioral approach, KRONOS provides an algorithm that constructs an automaton in which
time has been abstracted away in such a way that the causal relationship between events is preserved.

Behavioral equivalences have proven useful for verifying the correctness of concurrent systems. They
provide a means for comparing the behavior of two systems, both represented as labeled graphs. The
theoretical foundations of the behavioral approach can be found in [15]. Several tools for verifying
whether two processes are behaviorally equivalent have been developed. One such tool is ALDEBARAN
[5]. Details of this tool are beyond the scope of this report.

D. Summary

The main features provided by KRONOS include:
 KRONOS is able to construct the automaton on-the-fly, that is, while performing the verification.

In the current version, that is, version 2.2, this is only possible in the case of reachability properties. The
developers are implementing an algorithm that allows on-the-fly verification for full TCTL.

 KRONOS provides both backward analysis and forward analysis. Backward analysis algorithms
perform a backward search of the reachability graph to compute the set of predecessors of a given set of
states. Forward analysis algorithms construct the set of successors by performing a forward exploration
of the graph. The default analysis is backward analysis.

 If KRONOS finds that the property is indeed not verified by the system, it will output a counter-
example, that is, an example of a finite execution that violates the property. The counter-example is
written down into the file _path.reach and _trace.reach. By analyzing the paths leading to the state where
the property is not satisfied, we can find the reason and modify the protocol correspondingly.

 KRONOS performs the forward analysis using a breadth-first strategy. A depth-first strategy can
be invoked by executing KRONOS with the option -DFS.

 The verification of more complex systems should require the use of other features and options
provided by the KRONOS. For example, the optimization of the number of clocks in the model, the use
of on-the-fly and partial-order techniques, and binary decision diagrams. All these features have an
important aspect in common: they try to reduce the size of the state space explored during the

- 33 -

verification. They have been implemented in order to improve both the amount of memory and time
required by the verification algorithms.

IV. DISCUSSION

In this section, we discuss the problems that KRONOS is suited and not suited.
As we mentioned above, KRONOS is a software tool built with the aim of assisting designers of real-

time systems to verify whether their designs meet the specified requirements. One major objective of
KRONOS is to provide a verification engine that can be integrated into design environments for real-time
systems in a wide range of application areas.

Some examples of application domains where KRONOS has already been used are: real-time
communication protocols such as CSMA/CD, FDDI protocols, Philips audio control protocol, timed
asynchronous circuits, and hybrid systems.

KRONOS has also been applied to analyze real-time systems modeled in several process description
formalisms such as ATP [8], AORTA [9], ET-LOTOS [10], and TARGOS [11]. Several projects are
currently under development to connect KRONOS to specification languages such as SHIFT [12],
DIADEM [13], and TCES [14] (Timed Condition/Event Systems.)

While KRONOS can be applied to many areas, it suffers some constraints. Specifically, the problems
that KRONOS is not suited include:

A. The large number of clocks

KRONOS has been used to verify the FDDI protocol, which has up to 25 clocks. This exceeds the
clock-space dimension of similar examples treated in the literature. Therefore, if the number of clocks of
a protocol is too large, then KRONOS can not handle it.

B. Maximum simulation states

Maximum simulation states and transitions are constraints, although this is true of any model checker.

C. The constraints of the model

Since the tool is based on the timed automaton, any system that can not be represented by timed
automaton is not suitable for KRONOS. For example, the timed automaton does not support some data
types such as boolean and integer variables. Therefore, KRONOS can only work on the high level system
abstraction. A lot of details of the system are ignored. One tool that extends the timed automata with
more general types of data variables is UPPAAL [7]. More information about this tool will be discussed
in section VI.

V. EXTENSION OF THE KRONOS TOOL - TAXYS

KRONOS has been extended and combined with other verification tools such as TAXYS [7]. TAXYS
is a tool for verifying real-time properties of embedded systems. The tool connects France Telecom’s
ESTEREL compiler SAXO-RT with VERIMAG’s model-checker KRONOS.

- 34 -

ESTEREL source
code + constraints

Intermediate Code
+ REACT procedure

C functions
(treatments)

Machine
Description file

Environment
Timed Model

Application
Timed Model

External Events Handler
Model

Target machine
executable code

Diagnostics

SAXO-RT

IC2TM KRONOSSAXO

Execution times

Environment
description

External Events
Handler description

EEH2A Env2TM

Figure 4: TAXYS general architecture

Figure 4 shows the general architecture of TAXYS. SAXO-RT, SAXO, Env2TM, EEH2A, IC2TM and
KRONOS are integrated into the TAXYS environment. TAXYS takes as inputs the description of the
application, of the EEH and of the environment, the constraints that have to be verified and the features
of the hardware target architecture. From ESTEREL source code annotated with temporal constraints and
from C functions, the SAXO-RT tool produces an intermediate code. This intermediate code is compiled
by the SAXO tool in order to generate self- sequenced code directly executable by the target architecture.
A timed model of the implementation of the application is then produced from the intermediate code by
the IC2TM tool. The environment is also modeled as a timed automaton by the Env2TM tool. The EEH
is modeled as an automaton by the EEH2A tool. The three automata are then composed, in order to
obtain a global model, and analyzed by the KRONOS tool which generates diagnostics if the timing
constraints are not satisfied.

VI. COMPARISON WITH OTHER MODEL CHECKERS

In this section, we compare the KRONOS tool with other popular model checkers such as SPIN [16],
BLAST [17] , and UPAAL [7].

Spin is a popular open-source software tool. It can be used for the formal verification of distributed
software systems. The tool was developed at Bell Labs in the original Unix group of the Computing
Sciences Research Center, starting in 1980. The software has been available freely since 1991, and
continues to evolve to keep pace with new developments in the field. In April 2002 the tool was awarded
the prestigious System Software Award for 2001 by the ACM.

BLAST is a software model checker for C programs. The goal of BLAST is to be able to check that
software satisfies behavioral properties of the interfaces it uses. Blast uses counterexample-driven
automatic abstraction refinement to construct an abstract model which is model checked for safety
properties. The abstraction is constructed on-the-fly, and only to the required precision. The BLAST
project is supported by the National Science Foundation

UPPAAL is an integrated tool environment for modeling, validation and verification of real-time
systems modeled as networks of timed automata, extended with data types (bounded integers, arrays,
etc.). The tool is developed in collaboration between the Department of Information Technology at
Uppsala University, Sweden and the Department of Computer Science at Aalborg University in
Denmark.

- 35 -

A. Input/Model

As shown in Figure 3, the input file to KRONOS is the textual description of the timed automaton of
the corresponding component is the system. It is a high level abstraction of the system. Given a system
modeled as a network of synchronizing timed automata, KRONOS can verify whether it satisfies the
correctness criteria specified as formulas of the timed temporal logic called TCTL.

SPIN supports a high level language to specify systems descriptions, called PROMELA (a PROcess MEta
Language). PROMELA is a non-deterministic language, loosely based on Dijkstra's guarded command
language notation and borrowing the notation for I/O operations from Hoare's CSP language. SPIN
(starting with version 4) provides direct support for the use of embedded C code as part of model
specifications. This makes it possible to directly verify implementation level software specifications,
using SPIN as a driver and as a logic engine to verify high level temporal properties. SPIN can be used as
a full LTL model checking system, supporting all correctness requirements expressible in linear time
temporal logic, but it can also be used as an efficient on-the-fly verifier for more basic safety and liveness
properties. Many of the latter properties can be expressed, and verified, without the use of LTL.
Correctness properties can be specified as system or process invariants (using assertions), as linear
temporal logic requirements (LTL), as formal Büchi Automata, or more broadly as general omega-regular
properties in the syntax of never claims.

In BLAST, the specification language is processed by a command-line tool that takes as input a
specification and a list of C source files. A single instrumented C source file is created that combines the
input sources and ensures that they satisfy the properties described in the specification.

UPPAAL is appropriate for systems that can be modeled as a collection of non-deterministic processes
with finite control structure and real-valued clocks. The basis of the UPPAAL model is the notion of
timed automata too. To provide the a more expressive model and to ease the modeling task, UPPAAL
further extends timed automata with more general types of data variables such as boolean and integer
variables. In this way, they are trying to develop a modeling/design language which is as close as
possible to a high-level real-time programming language with various data types. This may create
problems for decidability of model-checking. However, they always require the value domains of the
data variables to be finite, in order to guarantee the termination of a verification procedure. By
comparison, in the KRONOS tool, data types are not involved. Therefore, the KRONOS can only work
on the high level system abstraction.

B. Properties that can be verified

KRONOS can check many interesting properties of a real-time system such as reachability, safety,
non-zenoness and bounded response. UPPAAL can check as reachability, safety, deadlock and liveness
properties. BLAST focuses on the safety properties of C code. SPIN has been used to trace logical design
errors in distributed systems design, such as operating systems, data communications protocols,
switching systems, concurrent algorithms, railway signaling protocols, etc. The tool checks the logical
consistency of a specification. It reports on deadlocks, unspecified receptions, flags incompleteness, race
conditions, and unwarranted assumptions about the relative speeds of processes. Both BLAST and SPIN
can not deal with real-time properties.

C. User Interface

The user interface of KRONOS is simply command line. While on the other hand, UPPAAL provides a
nice graphical interface. SPIN provides a friendly user interface, both in command line and graphical.
Xspin is an optional but highly recommended, graphical user interface to SPIN. Blast comes with a
rudimentary whose chief purpose is to make it easier to view counterexample traces. A good GUI is
provided. For example, source and predicate files are loaded in using File in the main toolbar, or by
entering the filenames in the appropriate text boxes and clicking the load button.

- 36 -

D. Application

As stated before, some examples of application domains where KRONOS has already been used are:
real-time communication protocols such as CSMA/CD, FDDI protocols, Philips audio control protocol,
timed asynchronous circuits, and hybrid systems.

SPIN has been applied to many inspiring applications such as flood control, call processing, and
mission critical software. For example, logic verification of the call processing software for a commercial
data and phone switch, the PathStar switch that was designed and built at Lucent Technologies. The
application was based on model extraction from the full and unmodified ANSI-C code of the
implementation, which was checked for compliance with a group of roughly 20 class-5 features
formalized in linear temporal logic (e.g., call waiting, conference calling, etc.). A cluster of 16 CPUs was
used to perform the verifications overnight, every day for a period of several months before the switch
was marketed. Perhaps the largest application of software model checking to date.

BLAST has been applied to device driver verification. It is used to check the interface usage rules and
lock-unlock property.

UPPAAL has been successfully applied to case studies ranging from communication protocols to
multimedia applications. Examples include Bang & Olufsen audio/video protocol, TDMA Protocol Start-
Up Mechanism, bounded retransmission protocol over a lossy channels, Lip synchronization algorithm
and power-down controller in an audio/video component.

VII. CONCLUSION

We have briefly presented KRONOS, a tool for the verification of real-time systems. This tool is freely
distributed through the web for academic non-profit use. The main purpose of the paper has been to
illustrate the use of KRONOS with a very simple case study. This example allowed us to present some of
the features provide by KRONOS, such as: backward analysis, forward analysis, and generation of
counter examples. The verification of more complex systems should require the use of other features and
options provided by KRONOS. Such features, whose explanation is out of the scope of this paper,
include the optimization of the number of clocks used in the model [18], the use of on-the-fly [19] and
partial-order techniques [20]. All these features have an important aspect in common: they try to reduce
the size of the state-space explored during the verification. They have been implemented in order to
improve both the amount of memory and time required by the verification algorithms.

REFERENCE

[1] S. Yovine. Kronos: A verification tool for real-time systems. International Journal of Software Tools for
Technology Transfer, Vol. 1, Issue 1/2, pages 123-133, October 1997. Springer-Verlag.

[2] R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science, 126:183-235, 1994.
[3] T. Henzinger, X. Nicollin, J. Sifakis, S. Yovine. Symbolic model checking for real-time systems. Information

and Computation, 111(2):193--244, June 1994. Academic Press.
[4] A. S. Tanenbaum. Computer Networks. Prentice-Hall, Englewood Cliffs, second edition, 1989.
[5] Jean-Claude Fernandez and Hubert Garavel and Laurent Mounier and Anne Rasse and Carlos Rodr'iguez and

Joseph Sifakis. A Toolbox for the Verification of LOTOS Programs. Proceedings of the 14th International
Conference on Software Engineering ICSE'14, Melbourne, Australia, 1992. 10

[6] V. Bertin, E. Closse, M. Poize, J. Pulou, J. Sifakis, P. Venier, D. Weil, S. Yovine. Taxys = Esterel + Kronos. A
tool for verifying real-time properties of embedded systems. In Proceedings of "Conference on Decision and
Control, CDC'01". Orlando, December, 2001. IEEE Control Systems Society.

[7] K.G. Larsen, P. Petterson, Wang Yi. “UPPAAL in a nutshell”, Journal of Software Tools for Technology
Transfert, vol. 1-1/2, pp 134-152, 1997.

[8] X. Nicollin, J. Sifakis, and S. Yovine. Compiling real-time specifications into extended automata. IEEE TSE
Special Issue on Real-Time Systems, 18(9):794-- 804, September 1992.

- 37 -

[9] S Bradley, D Kendall, W D Henderson, and A P Robson. Validation, verification and implementation of timed
protocols using AORTA. In Piotr Dembinski and Marek Sredniawa, editors, Protocol Specification, Testing and
Verification XV (PSTV '95), Warsaw, pages 193--208. IFIP, North Holland, June 1995.

[10] Daws, A. Olivero, and S. Yovine. Verifying ETLOTOS programs with KRONOS. In Proc. Int. Conf. on
Formal Description Techniques VII (FORTE'94), pages 227--242, 1994.

[11] M. Jourdan, F. Maraninchi, and A. Oliveiro. Verifying quantitative real-time properties of synchronous
programs. In Proceedings of CAV 93, volume 697 of Lecture Notes in Computer Science, pages 347--358.
Springer-Verlag, Berlin, 1993.

[12] Deshpande, A. Gollu and P. Varaiya. "SHIFT: A Formalism and a Programming Language for Dynamic
Networks of Hybrid Automata". To appear in Hybrid Systems V. LNCS. 1997.

[13] Deshpande and S. Yovine. The DIADEM-KRONOS Connection: Bridging the Gap between Implementation
and Verification of Hybrid Systems. 1997 Hybrid Systems V Workshop, Notre Dame, IN. workshop.

[14] Comparing Timed Condition/Event Systems and Timed Automata. Proc. of HART'97, Grenoble, LNCS
1201:81-86, Springer-Verlag, 1997.

[15] R. Milner. Communication and concurrency. Prentice Hall, 1989.
[16] Addison-Wesley, The Spin Model Checker: Primer and Reference Manual , ISBN 0-321-22862-6, 608 pgs,

cloth-bound.
[17] Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. Checking memory safety with Blast

Proceedings of the 8th International Conference on Fundamental Approaches to Software Engineering (FASE
2005), LNCS 3442, pages 2-18, Springer-Verlag, 2005.

[18] C. Daws and S. Yovine. Reducing the number of clock variables of timed automata. In Proc. 1996 IEEE Real-
Time Systems Symposium, RTSS'96, Washington, DC, USA, December 1996. IEEE Computer Society Press.

[19] A. Bouajjani, S. Tripakis, and S. Yovine. On-the-fly symbolic model-checking for real-time systems. In Proc.
18th IEEE Real-Time Systems Symposium, RTSS'97, San Francisco, USA, December 1997. IEEE Computer
Society Press.

[20] F. Pagani. Partial orders for real-time systems. In Proc. 4th Intl. Symp. Formal Techniques in Real-Time and
Fault-Tolerant Systems, FTRTFT’96, Uppsala, Sweden, September 1996.

- 38 -

Model-Based Development Tools

- 39 -

Model-Based Development Using Simulink
Ben Taitelbaum

I. INTRODUCTION

MODEL-BASED development is a new paradigm in software engineering that is receiving a good amount of
attention lately in both industry and academia. In this paper, we explore the most widely-used model-based

development tool, Simulink. We start by introducing the model-based development approach, and then specifically
the Simulink tool. We then discuss the uses and limitations of Simulink. When appropriate, we differentiate between
specific limitations of this tool, and general limitations of model-based development.

A. Model-Based Development

Even the smallest HelloWorld 1 application is difficult for many to think about at the machine code level of
strictly 0’s and 1’s. To handle this complexity, we introduce several layers of abstraction. First, the 0’s and 1’s can
be strung together and replaced with their hexadecimal equivalents. This makes the program much more readable,
and less prone to errors (it is very hard to see that a single bit has been entered incorrectly). The program can be
further abstracted to the level of assembly instructions, where the programmer may now use mnemonics (strings
instead of numbers) for instructions, as well as some other conveniences, like base-10 numbers and string literals,
that will be converted into 0’s and 1’s by the assembler. The next level of abstraction is what is often called a
high-level language, and is what most people consider programming. These high-level languages, like Algol, Fortan,
C, C++, and Java, allow programmers to use a richer, more natural way of expressing their programs. While our
HelloWorld program takes up about 6,000 bytes (or 48,000 0’s and 1’s) at the machine-code level, at the assembly
level it is 400 bytes, a size reduction of 93%. In C, this program is only 80 bytes.

Each of these layers of abstraction was introduced to combat the problem of software becoming ever more
complex. Many modern software systems are so complex, that they comprise more than a million lines of high-
level code. At this point, it becomes difficult to reason about the system. Model-based software development abstracts
the system into abstract, often graphical, representations of subsystems and their interactions in an effort to clarify
how the system behaves. As the adage goes, a picture is worth a thousand words, so model-based development
approaches strive to use pictures instead of words wherever possible.

B. Simulink

Real−Time

Workshop
StateFlow

Simulink

MATLAB

Fig. 1. The functionality of the MATLAB suite is greatly extended by additional toolkits which can interact. The Simulink toolkit controls
modeling and simulation, while the StateFlow toolkit adds events and state charts, which can be used in the simulation. The Real-Time Workshop
allows for automated code generation from Simulink models.

1the first computer application most programmers learn to write simply prints “Hello, World!” to the screen

- 40 -

Simulink is a model-based development toolkit that can be added on to the popular MATLAB mathematics suite
from MathWorks. Because it is not a standalone application, it builds on a rich, well-tested base, and has access to
myriad mathematical tools, like graphs and equation solvers.

Simulink is built around the concept of simulating a system, even if all the components of the system are not
finished. This allows early feasibility and sanity testing of system components, as well as rapid prototyping. Simulink
diagrams have arbitrary levels of zoom, since double-clicking on a subsystem will bring up that component’s diagram
(which may contain its own subsystems). In figure 2, we see a typical Simulink model (from the Bouncing Ball
demo that comes with the toolkit) and the output of its simulation.

(a) A Simulink model depicting a bouncing
ball.

(b) The output of this simulation,
showing the position vs. time graph
(bottom) and the velocity vs. time
graph (top)

Fig. 2. An example of a Simulink model with graphical simulation output.

In addition to Simulink, two other MATLAB toolkits can give additional functionality that is often required for
complex systems [2], [4], [8]. The StateFlow toolkit adds state charts to the simulation, which can be added just
as any other subsystem. Events in the Simulink model may trigger state changes in the StateFlow chart, and state
changes in StateFlow may change values in Simulink. This interoperability is a strong argument in favor of using
MATLAB as a base tool.

The other relevant toolkit is Real-Time Workshop, which can take Simulink (and StateFlow) models and auto-
matically generate C code. We will discuss the possible problems with this automatic generation in section III-B.

Because of MATLAB’s rich graphics libraries, the simulations can produce extremely informative graphs and
visualizations. The simulations can also include interactive components, where values are changed and switches are
toggled.

Fourteen libraries of components come with Simulink, and include mathematical operators, logical operators,
and more advanced libraries like signal routing and model verification. These libraries are shown in figure 3. It
is also very easy to create new libraries with user-defined components, providing an extensible tool set. These
user-defined components can either be superblocks created out of other components, or special S-functions which
can be coded in C or MATLAB. It is necessary to specify how the target language compiler (TLC) should handle
these S-functions when using Real-Time workshop’s automated code generation. Some tools can build the TLC
scripts automatically, but in some circumstances it may be necessary to hand-code these.

II. CURRENT USE

Simulink is most often used in feedback and control systems for embedded devices. Embedded device manufac-
turers realized long ago the benefit of modeling a device before blindly building it. Simulink gives this modeling
capability with the added benefit of actually simulating the device before building it. The Model Verification library
provides some assertions that can be added to the model to aid in testing as well.

Unlike embedded device engineers, desktop software engineers often start building a system straight from the
requirements. Even if they have formal specifications to start from, they often cannot get realistic simulations until

- 41 -

Fig. 3. 14 libraries come with Simulink, but more can be defined.

nearly all of the components have been built. At this stage, it is extremely expensive to learn that some of the system
properties have not been satisfied. Still, these software engineers tend to stay with their code-debug paradigm. As
many companies are finding out, with current complex desktop software, this methodology costs too much money
and time. Because of this, I believe we will start to see more and more projects using model-based development
tools, as well as these tools catering more towards the software engineer.

Currently, Simulink is used in many industries ranging from aeronautics [2], [4] to signal processing [6].

III. LIMITATIONS

Since Simulink is a Turing Complete modeling environment, in theory it can describe any system that traditional
code can, so it is not limited in this way. The limitations deal more with how the tool functions, and are more
social factors than engineering ones.

A. Costs

While many projects have claimed a cost reduction from using Simulink [8], there is always an overhead associated
with switching tools. While the actual cost of purchasing the software may be prohibitive for a small startup company,
it is nothing to serious companies. The cost of training employees, however, is a factor to consider. As Simulink
enters more into the mainstream and is taught by universities, this training cost will not be a factor, since companies
can simply hire engineers and managers with the proper backgrounds.

B. Automatic Code Generation

When high-level languages came about, people were worried that the compilers would introduce errors in their
assembly code generation. This is the same worry that people now have with automatic code generation from models
[1]. Over time, the fear of compilers subsided, and I believe this will be the case with model based development
tools as well. What is really needed, however, is a rigorous formal analysis of the code generation, to prove that
the generated program is semantically identical to that which has been modeled. This is especially true if testing
takes place at the model level.

Another difficulty with automatically generated code is that it is not nearly as optimized as manually generated
code. This was also the case with compiled code versus hand-written assembly code, but just as in that case,
eventually the benefits of error-free code and reduced implementation time will overcome the optimizations.

C. Precise Semantics

While many Simulink components have widely-understood semantics in the engineering domain, there are no
explicit formal semantics associated with these components. For example, the documentation for the sqrt function
states that, “B = sqrt(X) returns the square root of each element of the array X. For the elements of X that are
negative or complex, sqrt(X) produces complex results” [3]. While this may be precise enough for most engineers
to understand, it is not precise enough for automated theorem provers, or formal analysis of the operation. What

- 42 -

is needed is a formal statement saying that sqrt returns a complex number that when squared is equal to the
operand. Furthermore, we need to be able to reason from the formal semantics about how precise a result we can
expect (depending on the target system).

D. Theorem Proving
While Simulink provides simulation-time assertions, it does not have the capabilities to prove that these assertions

always hold. Adding this functionality would greatly increase the applicability of this tool to safety-critical software;
however, before this can be added, the tool needs precise semantics (as mentioned in section III-C) and a way of
proving that the assertions will still hold after code has been generated. This would also prevent engineers from
hand-optimizing or modifying the generated code.

E. Right Tool for the Job
A common engineering aphorism is that the right tool should always be used for the job. Thus, if we have a

component whose job is to parse certain regular expressions, many would argue that perl would be the correct
program for this part of the system. In fact, writing a correct and robust regular expression parser is no trivial task,
and highly prone to errors. It would not make sense to divert effort from the main system to build this component in
Simulink. A possible workaround for this particular problem would be to write a Simulink component that makes
calls to a native regular expression library. This would allow fast prototyping of the system, but would prevent
automatic code generation (unless the same library exists for the target platform) and would also prevent any kind
of formal reasoning about the correctness of this component.

If Simulink becomes friendlier to typical software engineers, as predicted in section II, then we may very well
see operations such as regular expression parsing as Simulink libraries, with precise formal semantics.

IV. COMPARISON

There are currently many other model-based development tools on the market, such as SCR, SCADE, UML2,
and PerfectDeveloper, Simulink and SCADE. SCADE is most similar to Simulink, but there are a few features
that separate these two applications. First, while Simulink is a cross-platform tool with its own look and feel,
SCADE is a Windows application that presents the familiar Multiple Document Interface (MDI) look and feel,
which is comfortable for most Windows users. Simulink is more powerful in terms of what can be modeled,
because it has more built-in blocks, is easier to define new blocks, and can provides more data types. This last
point is worth a closer look; while SCADE provides boolean, float, and int data types for block input and
output, Simulink provides both single and double-precision floating point, int’s of varying byte-sizes, and most
importantly, vectorized inputs and outputs. With StateFlow, it is also possible to model events and state charts, a
feature lacking from SCADE. Both tools provide automated code generation, but a comparison of the generated
code has not been done. Lastly, an extremely important feature of SCADE that is lacking from Simulink is the
ability to perform formal reasoning about assertions. For this reason, SCADE is often used in conjunction with
Simulink, where a system is modeled in Simulink and then converted into SCADE where assertions can be proved.

In fact, SCR and PerfectDevloper also provide formal proof techniques to guarantee assertions. It is possibly
because of Simulink’s powerful modeling capabilities, along with the absense of formal methods from DO-178B,
that MathWorks has not added this functionality. SCR is very limited in what it can model, because it does not
model memory or continuous variables. SCR models are very similar to StateFlow charts in the sense that they
contain multiple even and condition tables. StateFlow charts are more readable, however, because they have a more
advanced interface, and mix between graphical representations and textual table-based representations, whereas SCR
always uses tables.

PerfectDeveloper is a text-based tool, very much like SPARK Ada (although not as mature). In this model,
the code, along with pre-conditions, post-conditions, and assertions, serves as the model. It does not provide the
simulation tools that SCADE and Simulink have, where values can be inspected and visualized, but rather relies
more heavily on formally proving assertions. In this sense, neither SCR nor PerfectDeveloper allow for rapid
prototyping like SCADE and Simulink do, for a system must be provably correct before it is run.

None of the model-based development tools listed above (possibly with the exception of UML2) is suited for
gathering non-functional requirements, like timing or resource-load requirements. While a Simulink simulation will
often give a good approximation for a system’s timing, and even provides synchronization blocks, non-functional
requirements can only be tested once the system has been compiled into code for the embedded system (which
Simulink will automate).

- 43 -

V. CONCLUSION

Simulink is a powerful model-based development tool that can decrease both the cost and bugs of a system.
Teaching Simulink to undergraduates would be extremely beneficial to them for many reasons. First, it would
introduce them to the next major paradigm in software development. Next, it is currently being used and investigated
by many leading companies, and would give students a competitive edge in the job market. Lastly, tools like
Simulink help students visualize how a system is made up of subsystems and what good design really looks like.
As a specification tool, Simulink often conveys more information than a written natural language document, because
it forces certain features to be considered that are often forgotten in a typical undergraduate specification exercise.
While this tool is not yet perfect for all types of development, the domain of its applicability is ever growing, and
therefore can be introduced early on in any engineer’s education.

REFERENCES

[1] Paul Bernard. Software development principles applied to graphical model development. http://www.mathworks.com/mason/
tag/proxy.html?dataid=6804&fileid=28446.

[2] MathWorks. Mathworks tools help land unpiloted boeing spacecraft. http://www.mathworks.com/company/user_stories/
userstory2329.html?by=company.

[3] Mathworks. Matlab user’s manual. http://www.mathworks.com/access/helpdesk/help/techdoc/matlab.html.
[4] MathWorks. NASA uses stateflow and stateflow coder to generate fault-protection code for deep space 1. http://www.mathworks.

com/company/user_stories/userstory2332.html?by=company.
[5] MathWorks. Real-time workshop manual. http://www.mathworks.com/access/helpdesk/help/toolbox/rtw/.
[6] MathWorks. Sandia implements a high-performance radar receiver using mathworks and xilinx dsp design tools. http:

//www.mathworks.com/products/simulink/userstories.html?file=4517&title=Sandia%20Implements%
20a%20High-Performance%20Radar%20Receiver%20Using%20MathWorks%20and%20Xilinx%20DSP%20Design%
20Tools.

[7] MathWorks. Simulink user’s manual. http://www.mathworks.com/access/helpdesk/help/toolbox/simulink/.
[8] MathWorks. User stories. http://www.mathworks.com/company/user_stories/index.html.
[9] Martin Törngren and Ola Larses. Characterization of model based development of embedded control systems from a mechatronic perspective.

Technical report, Mechatronics Lab, Department of Machine Design. Royal Institute of Technology, KTH, 2004.

- 44 -

http://www.mathworks.com/mason/tag/proxy.html?dataid=6804&fileid=28446
http://www.mathworks.com/mason/tag/proxy.html?dataid=6804&fileid=28446
http://www.mathworks.com/company/user_stories/userstory2329.html?by=company
http://www.mathworks.com/company/user_stories/userstory2329.html?by=company
http://www.mathworks.com/access/helpdesk/help/techdoc/matlab.html
http://www.mathworks.com/company/user_stories/userstory2332.html?by=company
http://www.mathworks.com/company/user_stories/userstory2332.html?by=company
http://www.mathworks.com/access/helpdesk/help/toolbox/rtw/
http://www.mathworks.com/products/simulink/userstories.html?file=4517&title=Sandia%20Implements%20a%20High-Performance%20Radar%20Receiver%20Using%20MathWorks%20and%20Xilinx%20DSP%20Design%20Tools
http://www.mathworks.com/products/simulink/userstories.html?file=4517&title=Sandia%20Implements%20a%20High-Performance%20Radar%20Receiver%20Using%20MathWorks%20and%20Xilinx%20DSP%20Design%20Tools
http://www.mathworks.com/products/simulink/userstories.html?file=4517&title=Sandia%20Implements%20a%20High-Performance%20Radar%20Receiver%20Using%20MathWorks%20and%20Xilinx%20DSP%20Design%20Tools
http://www.mathworks.com/products/simulink/userstories.html?file=4517&title=Sandia%20Implements%20a%20High-Performance%20Radar%20Receiver%20Using%20MathWorks%20and%20Xilinx%20DSP%20Design%20Tools
http://www.mathworks.com/access/helpdesk/help/toolbox/simulink/
http://www.mathworks.com/company/user_stories/index.html

 Safety Critical Application Development
Environment

Kendra N. Schmid

I. INTRODUCTION

There is an increasing amount of reliance placed on computers in aircraft and automobiles. Failures of
these systems could cause catastrophic loss of life, thus the computer systems in these applications must
be considered safety-critical components. The hardware safety component is often addressed through
redundancy. However, where the software that sits on top of the hardware needs to be as safe and
reliable, this requirement cannot be achieved through redundancy [12].

This report looks at one tool that aims to create safe code efficiently: the Safety Critical Application
Development Environment (SCADE), produced by Esterel Technologies [8]. SCADE is a model-based
development tool that comes in a suite that includes the block diagram editor, Safe State Machines
Editor, a Simulink Gateway, Simulator, C and Ada code generators, and Design Verifier. The remainder
of this paper is divided into sections presenting: background information; the capabilities of the tool; the
problems to which SCADE is best suited; the problems to which SCADE is not ideal; and a comparison
of SCADE with Simulink.

II. BACKGROUND
SCADE is classified as a model-based development tool. The term “Model-Based Development”

(MBD) is not strictly defined, but the general idea is that instead of moving straight from specification to
code, an intermediate representation, the model, is created.

This concept of building correct code from a model representing a system has been called
“Correctness-by-construction” [3, 7]. Correct-by-construction claims that an implementation accurately
represents a model through the use of automatic code generators. Unlike traditional software
development processes in which humans develop implementations by hand, automatic translation
introduces no errors (if the translator is perfect). Practically, no translator is or will be perfect; the
amount of reliance that can justifiably be placed on automatic translators is an open question [1].

Another advantage of having a model is that it facilitates validation and verification, activities that are
difficult in a typical software development processes. SCADE, for instance, provides model checking and
proof objective analysis capabilities to aid verification and simulation of a model to aid in validation.
Furthermore, MBD tools provide graphical input languages that are designed to be familiar to domain
experts. This familiarity reduces the potential for miscommunication between domain experts and
software engineers because domain experts can be directly involved with the design of the system.
SCADE allows control engineers to specify designs very naturally using block diagrams.

III. CAPABILITIES
SCADE is a suite of several components that, together, facilitate the development of safety-critical

applications. This section describes those components and how they fit into the development process.
The components and their relationships are summarized in Figure 1.

- 45 -

Figure 1: SCADE components

A. Building the Model
SCADE provides two primary ways to build a model. The first is through block diagrams, which are

used for modeling continuous control. Continuous control systems continuously sample an environment
and react to it [3]. The second is through Safe State Machines (SSM), which are essentially hierarchical
state machines (these are similar to Statecharts in other systems) [3]. SSMs are used for discrete control:
reactions to specific external events such as interrupts or user interaction [3]. These two model types can
be used in combination.

1) Block Diagrams

Figure 2: Block Diagram

Block diagrams are models that represent the system in terms of blocks representing components and

the interactions between components through connectors, as seen in figure 2. Blocks are hierarchical,
and the SCADE tool allows users to inspect the internal structure of blocks used in a diagram such as
figure 2. The importance of block hierarchy is that a component can be developed independently of the
rest of the model.

- 46 -

The SCADE block diagram editor has a number of features that make creating block diagrams easier.
First, a collection of tool bars gives quick access to commonly used components such as addition,
multiplication, input, and output. Less commonly used components can be found in a set of libraries that
are included with the tool. In addition, one can create new libraries of components that would be useful
for sharing common parts within an organization. Second, the editor has a quick check for construction
errors. It both alerts the designer if any inputs or outputs are not used based on the declared interface and
type checks all inputs and outputs of blocks used in the diagram.

The main domain in which block diagrams are used is control systems. Control systems do not wait for
specific events to occur (such as interrupts or exceptions); rather they pull their data at regular time
intervals and perform functions on that data. The block models are able to feed calculated results back
into the system, a key feature of reactive systems, which sample their environment and recycle changes
back into that environment. Continuous control systems can handle discrete values as well as the flow of
data that is sampled. The pace at which the environment changes depends on both external events and the
reactions that the system makes. Thus, if the feedback from the system is delayed, it does not mean that
environmental changes are delayed as well [11, 13]. This is in contrast to interactive or discrete systems
in which a process can force the changes to the environment to be delayed.

2) Safe State Machines

The other type of model supported by SCADE is the Safe State Machine (SSM). SSMs are built from
finite state machines (FSM), in which nothing occurs until an event happens. Events trigger state changes
and possible actions [2, 3].

Figure 3: Hierarchical Safe State Machine

SSMs are different from simple FSMs because SSMs do not allow “unsafe actions” such as back-

tracking transitions or crossing macrostate boundaries [3]. Macro state boundaries are much like
hierarchies in block diagrams: each state can be made up of a smaller state machine. These smaller state
machines are not allowed to transition out of their component unless they reach one of the transition
locations. Just like block diagrams, SSMs can handle multiple machines running concurrently. In fact, the
SSMs are quite often modeled as concurrent finite state machines [2].

The SCADE SSM editor assists in the creation of the SSM model. When creating new transitions
between nodes, the editor provides a dialogue box for inputting the event and the effect as well as labels.
In addition, the dialogue box has convenient help for the syntax of the transitions, including information
about guard conditions.

The SSMs are used to model the discrete portion of the control system interactions. A SSM can be
placed inside a block diagram component to represent the discrete event handling.

- 47 -

B. Code Generation
SCADE can generate code in Ada, SPARK Ada, Qualifiable C (v3.1 or v4.2), and standard C. The

implementation is synthesized by an automatic code generator that translates the SCADE model into
code. The only user interaction that is required is to choose a target language and the root node. The root
node is the block diagram that is considered to be the top level and code will be generated for this and all
subcomponents of it.

To make ‘safe’ code, the generator follows certain rules. First, the generator makes no extraneous
code [10]. This is accomplished by only generating code that directly corresponds with the present
model. Thus if a model is changed and recompiled, any old code with be replaced. Second, it does not
insert any dead code (code that will never be reached). Both of these keep the code base smaller and
compliant with the DO-178B level A requirements [9]. Third, the code generator does not create code
that uses pointer arithmetic [10]. This reduces the chance that memory will be overwritten due to
arithmetic leading the pointer out of its desired bounds. Finally, the code generated also uses static
memory allocation, which means all the memory is allocated at compile time and static analysis can
determine whether an architecture has sufficient memory to support the application [10].

No manual modification should be done to the code without acknowledging that any changes will not
be reflected in the model or any assertions about the model. Even though it should not be touched, the
code generated is quite readable, with numerous comments and function names reflecting the original
model.

Another way to increase code safety is the use of a precisely defined language. Using a language such
as SPARK Ada that restricts the available features of Ada to those with precise definitions means that all
code written using Spark Ada will have only a single interpretation. This creates applications that will
lead to the same functionality given different compilations. In addition, using a limited subset with strict
definitions allows for rigorous checking of the semantics [1].

The rest this section discusses how the code is generated from the model.

1) Formal Semantics

The formal typed semantics of the models allow precise translation into code. The types offered for
the models line up with types in code, such as Boolean, int, and string. SCADE requires all blocks and
inputs to be assigned to a type, which means the code generator does not have to make any arbitrary
decisions about the type of a component. In addition, the type checker can determine if there are
inappropriate interactions of variable types.

Formal semantics also help the safety of a system because the each block provided by the libraries is
precisely defined [3]. Investigating the semantics of a block down to its logical component is possible in
almost all cases. A few components that deal with mathematical operations on reals, such as square root,
are not able to be investigated and will ultimately depend on the compiler library used for compilation of
the final code.

2) Lustre

Lustre is used for intermediate representation for supporting cycle computations. In SCADE, both
block diagrams and Safe State Machines have a notion of a cycle. In block diagrams, sampling starts
again as soon as calculations and reactions from the previous cycle are complete. For SSMs, the cycle
starts based on the occurrence of an event. This introduces a paradigm of a stream of data that is
accessed whenever a cycle is ready for it. SCADE uses Lustre to support this cycle-based approach.

Lustre is a language that has been developed for synchronous data flow. Data flow is important for
SCADE and other uses because it is able to represent the continuous flow of data better than languages
and data types that work with discrete values. A user does not need to work directly with Lustre; the

- 48 -

Lustre code is generated automatically from the model.
Lustre is compatible with safety code because it uses clock calculus to give a defined meaning to the

data flows [4, 5]. This allows SCADE to check for data consistency as well as time consistency within a
program. SCADE can check for properties such as that all flow variables of a calculation must be alive
at the time of the calculation [4].

3) Concurrency in models

SCADE supports concurrency by allowing all components (blocks and SSMs) to do calculations
simultaneously. This is important because control systems are unlikely to ever exist in isolation, which
means there are likely many subsystems that will be running concurrently in a system built using
SCADE. Concurrency introduces many problems if the commands in a program interleave in arbitrary
ways. By allowing arbitrary interleaving, an application could end up exhibiting non-determinism and
testing might not be able to find all of the possible incorrect interactions.

SCADE’s solution is to make the final interleaving deterministic by doing cycle fusion [3]. Cycle
fusion orders the events using messages that may be sent from one cycle to another. From this
deterministic interleaving, deterministic code can be generated.

C. Analysis

1) Proof analysis

SCADE incorporates a design verifier that can perform basic model checking. Model validation and
verification is useful to ensure that unsafe properties have not been introduced into the system. This can
be done at many levels in SCADE, from simple syntax checking to the more complex assertion
statements [6, 11].

 The verification portion checks for user-defined properties though proof objective analysis, which is
essentially assertion checking. Assertions are added though observer nodes, which are built in the same
way as a normal block diagram node. A node checks the validity of a particular safety property within a
specified amount of time (up to five ticks or true at all times) [11]. The observer node can be run in
parallel with the main program for testing purposes alone, or it can remain present in the final version as
well. If the assertion does not hold, the verifier produces counter examples with links to the failed
section.

2) Simulation

The SCADE tool can also aid validation through the use of model simulation. SCADE first generates
code, then allows the user to manually or automatically step through the cycles. This stepping through
cycles can be done at 1, 5, 10, 15, 20, or 25 steps at a time in manual mode. Any variable used in any
layer of a block can be watched in textual or graphical form. Textual forms are presented in a list,
whereas the graphical representation maps the time versus value.

- 49 -

Figure 4: Full screen of a simulation running

D. Other capabilities
In addition to the components that make up the suite to create independent projects, SCADE can also

work with DOORS and import Simulink models.

1) Requirements tracing

DOORS is a requirements-tracking system that tracks information about requirements, including the
originator, various changes to the requirement, and dependency trees. SCADE is able to create a link
with the DOORS database and that can link the requirements stored in DOORS to the models in SCADE.
This provides full traceability from the requirement to the code which is important to DO-178B Level A
to trace back to the high level requirements [9].

2) Simulink compatibility

SCADE can also import models from Simulink which is another popular model based development
tool. Older versions of Simulink did not have code generation or the requirement of strongly typed
components [4]. Thus, to increase the formalism it was desirable to transport the already created
Simulink model into SCADE to do the final steps of simulation and code generation. Simulink is now
able to do some of these functions on its own, but for groups that still feel more comfortable designing
and modeling in Simulink, they can still get the added benefit of moving toward the DO-178B
compliance with SCADE.

- 50 -

IV. ASSESSMENT OF SCADE

A. Problems to which SCADE is well suited
The SCADE suite was designed with safety-critical systems in mind. The industries that SCADE has

been used in include avionics, defense, railway, and automotive [8]. SCADE caters to these groups by
incorporating features to assist in the certification process. For the DO-178B standard, SCADE includes
the generation of code that is traceable to the requirements.

The capabilities that SCADE offers are consistent with what would be required for designing avionics
and automotive systems. In avionics, control systems need to constantly check values of their
environment such as the altitude, wind speed, or heading. Thus, SCADE’s ability to model reactive
systems is important.

Another category of problems SCADE would be well suited to is the design and verification of
circuits. Circuits also use the continuous control paradigm in which signals are fed back into the system
[S_23]. Through the use of design verification, safety properties such as deadlocking could be quickly
checked for these systems.

B. Problems to which SCADE is not suited
SCADE is not suited to model many types of systems such as multi-threaded or objected-oriented

environments. SCADE is only able to generate variations of C or Ada code, both of which are not
primarily object orientation. While avoiding object oriented may provide more streamlined code, it can
make it more difficult to be understandable to the reader of the code.

SCADE would not be ideal for environments desiring the non-deterministic behavior of concurrent
cycles. While predictability of code order is good, it is likely to be less efficient than to allow threads to
interweave arbitrarily. Thus for configurations such as distributed systems, generating implementations
using SCADE semantics would not be advisable since it would slow the overall performance.

In addition, SCADE is not suited for systems that need to have highly efficient code. While the
conversion from block diagram to code does remove the artificial hierarchy structure which will optimize
the code some, for the most part performance is not considered. Thus, the code must still be checked for
the correct performance requirements.

Using SCADE’s automatic code generation is also not ideal for creating device drivers [1]. Device
drivers have specific interfaces that must be matched, but the interfaces cannot be effectively
implemented through the SCADE models. In addition, the generated code cannot be modified without
losing the trustworthiness of the safety assertions. Therefore, any verification advantage gained by using
SCADE is reduced by the necessity to change the code to meet the interfaces.

V. COMPARISON TO SIMULINK
Simulink is also a model-based development tool that has many similarities to SCADE. Both tools are

primarily used for controls systems and model those systems through block diagrams. Both tools allow
for validation through simulation. Also, the newer version of Simulink now offers automatic code
generation from diagrams.

The SCADE suite has some advantages over Simulink. First, SCADE has support for proof objective
analysis, which is important for verification. Second, SCADE can generate Ada and qualifiable versions
of C where as Simulink only offers support for C. SCADE also forces all components to have types,
where in Simulink typing is an option but is not strictly required. Finally, SCADE has support for
importing Simulink models into its own environment.

Simulink has one main advantage over SCADE: the strong mathematical basis. Simulink is built on
top of MATLAB, and thus has integrated support for a number of types of mathematical analyses.

- 51 -

VI. CONCLUSION
SCADE is a model based development tool that can be used to model systems from which proof

objective analysis and code generation can be done. The systems are modeled using block diagrams or
safe state machines. These allow the modeling of continuous or discrete control systems. In addition,
SCADE focuses on safety critical systems by offering features related to the certification process such as
code that is compliant with DO-178B standards. The tool is well suited for control systems, but is not
well suited for real time based systems.

REFERENCES
[1] P. Amey, B. Dion, “Combining Model-Driven Design With Diverse Formal Verification”, Embedded Real Time

Software. 2006.
[2] C. Andre, “Semantics of SSM (Safe State Machine),” Esterel Technologies, 2003.
[3] G. Berry, “The Effectiveness of Synchronous Languages for the Development of Safety-Critical Systems,”

Esterel Technologies. 2003.
[4] P. Caspi, A. Curic, A. Maignan, C. Sofronis, S. Tripakis, and P. Niebert, “From Simulink to SCADE/Lustre to

TTA: a layered approach for distributed embedded applications”. In ACM-SIGPLAN Languages, Compilers,
and Tools for Embedded Systems , 2003.

[5] J. Colaço, A. Girault, G. Hamon, and M. Pouzet, “Towards a higher-order synchronous data-flow language”. In
Proceedings of the 4th ACM international Conference on Embedded Software. 2004. ACM Press, New York,
NY, 230-239.

[6] S. Dajani-Brown, D. Cofer, A. Bouali, “Formal Verification of an Avionics Sensor Voter using SCADE”. In
proceedings of International Conference on Formal Techniques in Real-time and Fault-tolerant Systems, 2004.

[7] B. Dion, “SAE Paper # 4AE-129: Correct-by-Construction Methods for the Development of Safety-Critical
Applications”. In SAE World Congress, 2004.

[8] Esterel Techologies. http://www.esterel-technologies.com/
[9] T. K. Ferrell, U. D. Ferrell, “RTCA DO-178B/EUROCAE ED-12B,” The Avionics Handbook. CRC Press,

2000.
[10] J. Gartner, “Efficient Development of Embedded Automotive Software with IEC 61508 Objectives using

SCADE Drive,” In Embedded World, 2006.
[11] N. Halbwachs, “Synchronous Programming of Reactive Systems,” Kluwer Academic Publishers, 1993.
[12] J. Knight, and N. Leveson, “A Large Scale Experiment In N-Version Programming,” Digest of Papers FTCS-15:

Fifteenth International Symposium on Fault-Tolerant Computing, June 1985, Ann Arbor, MI. pp. 135-139.
[13] O. Labbani, J.-L. Dekeyser, and P. Boulet, “Mode-automata based methodology for SCADE,” In Hybrid

Systems: Computation and Control: 8th International Workshop, LNCS 3414, pages 386–401. Springer-Verlag,
2005.

- 52 -

Perfect Developertool suite
Michael Spiegel

I. I NTRODUCTION

The tool studied in this report isPerfect Developer,developed by Escher Technologies. The goal ofPerfect De-

veloperis to provide a programming environment that combines object-oriented language features with verification

guarantees using an automated theorem-prover. This tool was created to address safety-critical software projects

that can benefit from an object-oriented approach yet require formal method techniques for a safety analysis.

Perfect Developeris unique for its successful fusion of object-oriented design with static analysis and theorem

proving to facilitate design-by-contract. Object-oriented programming has become the dominant paradigm for

building large-scale software projects. But the same abstractions that are so popular with software developers

are anathema to safety-critical designers. Formal programverification has not gained much acceptance with popular

object-oriented languages. ThePerfect Developerlanguage is successful because it was explicitly designed for static

safety analysis. Dynamic method binding is allowed only because an overriding method weakens the precondition

or strengthens the postcondition of the overridden method [1]. Inheritance is permitted but the derived class must

preserve all the invariants of the base class. The language is strongly typed to ensure that explicit type conversions

always succeed. As a consequence of these design decisions,runtime exceptions are not possible in thePerfect

Developerlanguage. Instead the combination of defensive programming and static contract analysis ensure that

exceptional behavior does not occur.

Escher Technologies is a UK-based company founded in 1995. The first version ofPerfect Developerwas released

in 2001.Perfect Developerversion 2.0 was released in 2002 and version 3.0 was producedin 2005. The educational

version of the toolset is available free of charge to academic institutions.

II. TOOL COMPONENTS

The Perfect Developertool is based around the programming languagePerfect. Perfect is both a specification

and implementation language not unlike the B-Method [2]. APerfectprogram is a combination of a specification

and implementation. The specification describes the behavior of the program without specifying how the behavior

is achieved. The specifications consist primarily of a pair of precondition and postcondition statements on each

method of a class. The implementation is a refinement of the specification: it is the algorithm that will be executed

to achieve the program specification. A typical program willhave interleaved implementation and specification

sections; however, it is trivial to identify one section from the other.Perfect Developeruses static analysis to

enforce design-by-contract. Therefore, the code generator uses only the implementation sections. The program

contract is not used during code generation.

Perfect Developeras a tool suite consists of a compiler and an automated theorem prover (Figure 1). The compiler

will translate a program from thePerfectlanguage into either C++, Java, or Ada. The goal of thePerfectcompiler is

to produce high-level language code that can then be furthercompiled into a machine or virtual-machine executable

format.

The goal of the automated theorem prover is to prove a set of verification conditions, also known as proof

obligations. If a program’s verification conditions are allproven true, then the program correctly implements its

specification. A verification condition is a statement aboutthe program that has been generated from the program’s

specification and implementation.

- 53 -

Fig. 1. Perfect Developertool suite

A. Proof Obligations

Proof obligations are generated using the design by contract paradigm. In design by contract, a set of preconditions

and postconditions together specify a contract between a subroutine and the rest of the program. A subroutine has

a set of preconditions that must be satisfied before it can be invoked. And has a set of postconditions that it must

satisfy when it has completed execution. If the program agrees to honor its obligations in the precondition, then

the subroutine will agree to honor its obligations in the postcondition.

The design by contract paradigm does not dictate the enforcement mechanisms for contracts. Languages such as

Eiffel [3] and iContract [4] use runtime checking to ensure that contracts are satisfied.Perfect Developerhas a static

analysis tool that extracts a series of verification conditions from aPerfectprogram. These verification conditions

are generated from the preconditions and postconditions ina Perfectspecification. The static analysis offers a strong

guarantee on its proof obligations. With static analysis weknow that the proven verification conditions will hold

for all possible runtime conditions. Runtime analysis cannot provide this guarantee. Additionally, the execution

overhead of runtime analysis is not present in static analysis.

Perfect is designed as an object-oriented language which means it has support for encapsulation, abstraction,

inheritance, polymorphism, and dynamic binding. What separatesPerfect from other object-oriented languages is

that these design features are incorporated into the verification conditions for the automated theorem prover. The

automated theorem prover generates verification conditions that check for the following conditions:

• “Every method precondition is satisfied at each point of call;

• Every constructor and procedure satisfies its postcondition and postassertions;

• Every function delivers its declared result value;

• When one method overrides another and declares a new contract, the new contract respects the old;

• Class invariants are established by all constructors and preserved by all methods;

• Loop invariants are established and preserved;

• Loops terminate after a finite number of iterations;

- 54 -

• Assertions embedded within an implementation are satisfied;

• Behavioural properties specified by the user are satisfied;

• Explicit type conversions always succeed.” [5]

B. The Language

The Perfect language is large by necessity. It is designed as both an implementation and specification language

and as an object-oriented language. The language has no lessthan 99 keywords and 40 operators (listed in the

Appendix). Some of these keywords are recognizable from their counterparts in mainstream high-level languages

such as C++, Java, or Ada. We encourage the reader to browse through the Appendix and estimate for themselves

the learning curve for these language constructs. Even an experienced programmer will need an adjustment period

to learn effective programming inPerfect.

Perfect has been designed to facilitate proving verification conditions. It contains several design features that

are atypical of most programmers’ experiences. The assignment operator has been replaced with postcondition

statements. The general form of a postcondition consists ofa list of expressions to be changed and a list of predicates

to be satisfied. The code generator will attempt to generate intermediate code that performs the necessary assignment

operations. These postconditions are subsequently used todischarge verification conditions.

The conditional branching forms of code flow have been replaced with a loop statement that includes (a) a set

of local variable declarations, (b) a list of variables which are permitted to change, (c) a predicate list of loop

invariants, (d) a list of expressions that are guaranteed todecrease on every iteration but never become negative,

and (e) the loop body. The loop invariants are predicates that must be true at the start of the loop and remain true

throughout its execution. The loop invariants and decreasevariants are necessary to prove loop termination and

satisfiability of the loop postconditions.

The learning curve for thePerfectlanguage would be much more reasonable if the accompanying documentation

was in a better state. ThePerfect Developer Language Reference Manual[6] is the best source of information on

the language. The material is presented in a clear and concise manner. But the reference manual is sorely lacking

an index of terms. The only available method of finding the purpose of a particular keyword is to search through

every section of the manual. A great investment has been madeto produce thePerfect Developertool suite. This

investment will not be effectively used in industry and academia until the necessary changes are made to the product

documentation. The lack of an index in the language reference manual is the major obstacle to the usability of

Perfect Developer.

Perfect Developertranslates the implementation sections ofPerfect programs into C++, Java, or Ada. These

high-level languages are then either compiled or interpreted by a virtual machine to execute the program. The

readability (for a human) of the generated code is poor when compared to the original sections from thePerfect

code. We will use several examples of obfuscation from the autogenerated C++ code, but similar arguments can

be made for the other languages. Primitive datatypes are allaliased by means of type definitions. While this is a

great method for assisting portability when compiling on separate machines, the typedef aliases are much harder

to read in the code. It is preferable to specify duringPerfecttranslation the datatype translation, and then eliminate

the extra level of indirection. Variable names are poorly translated to avoid namespace collisions:

- 55 -

if (:: _oLess (members [_vLet_p_38_21], x))

{

i = :: _oSucc (_vLet_p_38_21);

}

else

{

k = _vLet_p_38_21;

}

Finally there are a few lines of code that are simply indecipherable:

static const _eHndl < _eModuleDescriptorData > _amoduleData (

new _eModuleDescriptorData (_eSeq <_eHeapTableEntry > (),

_eSeq < _eTypeTableEntry > (_eTypeTableEntry (

_mString ("Table"),

_mInteger (1),

_eSeq < _eSeparatorId :: _eEnum > ())),

_eSeq < _eInstantiationTableEntry > ()));

static const _eMDH _aobjLoaderNode (_amoduleData, NULL,

NULL,NULL);

We recommend that namespace collisions be avoided using thestandard namespace encapsulation techniques

that are present in all three high-level languages. Additionally an effort should be made to transform thePerfect

translator into a faithful translation of the programming style used inPerfect implementations. The rationale for

these improvements goes beyond aesthetics. The target market for Perfect Developeris safety-critical software that

needs to meet software standards such as DO-178B. One component of DO-178B is a set of a software code

standards (SCS). It can be argued that an SCS is unnecessary for the high-level languages if an SCS is provided

for programming in thePerfect language. But a stronger argument for the purposes of software traceability would

be a set of conforming standards for both thePerfect language and the autogenerated high-level language.

III. T OOL WEAKNESSES

Perfect Developerdoes not have any mechanisms for enforcing real-time constraints. But on the other hand,

neither did any of the other tools studied in this course offer mechanisms for enforcing real-time constraints.

Crocker claims that worst case execution timing can be studied in Perfect Developerusing temporal contracts:

“Provided my preconditionP is satisfied on entry, I promise to return within timeT in a state satisfying my

postconditionR.”[5] However there is no support to specify temporal quantities in the current version ofPerfect

Developer.Additionally such discussions of worst-case execution time are very impractical on modern computing

architectures with a multitiered memory hierarchy, pipelined execution instruction, and operating system scheduling

constraints. Typical execution behavior is much better than absolute worst-case execution time.

Perfect Developersupports bounded memory execution by providing memory management libraries. These

libraries require an upper limit on the total number of objects that can be stored at any time. This places a

memory bound on the size of the heap. Since thePerfectlanguage supports recursion, it must also ensure bounded

memory execution on the call stack. Since all recursive calls have verification conditions that ensure termination,

we can guarantee an upper bound on the size of the stack. However there is no explicit mechanism for calculating

the upper bound of memory used by the program heap and stack.

- 56 -

Perfecthas no threading model any other form of support for concurrent programming. Consequently, there is

no support for shared memory, message passing, or synchronization primitives. If a threading model were added to

the Perfect language, the proof checker would need to be augmented in order to prove temporal logic conditions.

These temporal logic conditions would look very much like the conditions that are checked by a model checking

tools such as SPIN [7]. With the current available technologies, the recommended solution is to design each process

independently usingPerfect Developer.Check the verification conditions per process using thePerfect Developer

theorem prover, and then combine the various processes at the final step using a model checker. The drawback to

this solution is that it does not allow thread-level granularity of concurrent programming.

IV. CONCLUSIONS

Perfect Developerprovides a programming environment that combines object-oriented language features with

verification guarantees using an automated theorem-prover. This tool was created to address safety-critical software

projects that can benefit from an object-oriented approach yet require formal method techniques for a safety analysis.

ThePerfect Developerlanguage has support for encapsulation, abstraction, inheritance, polymorphism, and dynamic

binding. What separatesPerfectfrom other object-oriented languages is that these design features are incorporated

into the verification conditions for the automated theorem prover. The major obstacle to learningPerfect Developeris

the missing index in the language reference manual. Additionally we recommend improving the high-level language

compiler to meet traceability requirements for software standards such as DO-178B.

REFERENCES

[1] B. Liskov and J. Wing, “A behavioral notion of subtyping,” ACM Transactions on Programming Languages and Systems, vol. 16, pp. 1811–

1841, November 1994.

[2] S. Schneider,The B-method: an Introduction. Palgrave Macmillan, 2001.

[3] B. Meyer, Eiffel: The Language. Prentice-Hall, 1991.

[4] R. Kramer, “iContract: The Java(tm) Design by Contract(tm) tool,” in Proceedings of the Technology of Object-Oriented Languages and

Systems, p. 295, IEEE Computer Society, 1998.

[5] D. Crocker, “Safe object-oriented software: The verified design-by-contract paradigm,” inProceedings of the Twelfth Safety-Critical Systems

Symposium(F. Redmill and T. Anderson, eds.), (London), Springer-Verlag, 2004.

[6] Escher Technologies,The Perfect Developer Language Reference Manual Version 3.0, 2004. Available athttp://www.eschertech.

com/product_documentation/Language%20Reference/la%nguage_reference.pdf.

[7] G. J. Holzmann,The Spin Model Checker: Primer and Reference Manual. Addison-Wesley Professional, 2003.

APPENDIX: PerfectLANGUAGE

Operators

->, <-, <->, ::, ^=, ..., ~, ==>, <==, <==>, <=, <<=, >=, >>=, <<, >>, <, >,

++, --, +, -, *, **, %%, ##, *, %, /, #, .., ^, &, =, |, ~~, [], ., :-, ||

Keywords

abstract, absurd, any, assert, associative, axiom, bag, begin, bool, build, byte,

change, char, class, commutative, confined, const, decrease, deferred, define, done,

early, end, enum, exists, extern, false, final, for, forall, function, ghost, goto,

has, heap, highest, identifier, identity, if, import, idempotent, inherits, int,

interface, internal, invariant, it, keep, let, like, limited, loop, lowest, map,

name, nonmember, null, of, on, opaque, operator, par, pass, post, pragma, pre, proof,

property, public, rank, real, redefine, ref, repeated, require, result, satisfy,

schema, selector, self, seq, set, storable, super, tag, that, then, those, total,

trace, true, until, value, var, via, void, when, within, yield.

- 57 -

 SCRtool and the SCR Specification Language

Patrick John Graydon

I. INTRODUCTION

SCRtool is a prototype tool intended to allow software engineers to create concise, unambiguous

requirements specifications for real-time embedded systems [2]. The product of research by Constance

Heitmeyer and others at the Naval Research Laboratory (NRL) [2], the tool is designed around the tabular

SCR specification notation developed by Katherine Heninger, David Parnas, and others at NRL as part of

the Software Cost Reduction (SCR) requirements method [5].

The tool contains four basic components: a specification editor, a consistency checker, a dependency

graph browser, and a simulator. We will describe these components in the context of how they could be

used to generate and validate a specification for an example embedded control system.

II. SPECIFYING AN EXAMPLE EMBEDDED CONTROLLER

As an example application to guide our discussion of the SCRtool, consider the simple microwave oven

depicted in fig. 1. It has a chassis, a microwave emitter for cooking food, an interior light for illuminating

the oven cavity, a door switch in order to sense when the door is open, a timer dial to allow the user to

select a cooking duration, and a start button that causes the unit to begin cooking. We must create a

specification for an embedded computer-based controller that will read input from the door sensor, timer

dial, and start switch and control the microwave emitter, light, and timer motor.

door

start

timer

Fig. 1. A simple microwave oven

A. Monitored Variables

In the SCR specification model, the software observes monitored variables in the environment through

input devices, computes the value of controlled variables, and then outputs these values to the

environment through output devices. These variables are abstract; they represent the meaning of what an

input device reports or what an output device is asked to do without being tied to the specific bit patterns

received from or sent to these devices. This abstraction is intended to allow the software to be more

easily adapted for use with input or output devices that are similar in function to, but do not encode values

in exactly the same manner as, the devices it was first used with.

Before we can define variables for our microwave oven controller, we must first define types for them.

Custom types in SCRtool may be either numerated types, as shown in fig. 2, or integer or floating-point

types with defined ranges. The DoorSensorStates type, for example, is an enumerated type

- 58 -

representing the values that the oven’s door sensor can indicate. By defining a custom type that contains

the values Open and Closed, we give ourselves a way to refer to the door sensor states abstractly and

avoid littering the remainder of the specification with references to the bit patterns that the controller will

actually receive.

To view, add, edit, or remove custom types, we use SCRtool’s type dictionary. This dictionary, shown

in fig. 2, displays the custom types in a specification in tabular notation. Creating a new type is as simple

as selecting the add row command from a context menu and using mouse selection and keyboard input to

populate the cells in the row.

Fig. 2. SCRtool's Type Editor

After defining types, we define monitored variables for the oven’s door, timer, and start button, and

controlled variables for the microwave emitter, interior light, and timer motor. In order to represent the

state of the door, for example, we define the monitored variable Door of type DoorSensorStates as

shown in fig. 3. Just as we used the type dictionary to manage types, we use the tabular variable
dictionary to manage variables. Adding new variables is again just as simple as adding a new row and

filling in its cells. For each variable we give an initial condition. We will eventually give a table

describing how the values of controlled variables ought to be derived, but before we do, we must create a

model of the oven’s modes as described in the next section.

Fig. 3. SCRtool's Variable Editor

In addition to monitored and controlled variables, the SCR specification notation supports terms and

constants. Terms are intermediate variables that represent functions over the monitored variables but do

not directly control the actuators. They are used in place of common expressions in the definition of the

values of controlled variables, more formally serving one of the needs for which text macros were used in

the original SCR tabular notation [5]. Constants replace common literal values, helping to eliminate

magic numbers from the specification.

B. Modes

While we could probably specify the value of the outputs of this simple system in terms of logical

predicates over the monitored variables quite easily, in many specifications we would find if we

attempted this that many of our formulae had common sub-expressions that picked out specific modes of

operation. The SCR tabular notation makes these modes, and their effect on the output variables, more

explicit through the description of mode classes and the modes that form their values. In the case of our

microwave oven, we identify one mode class, OvenMode, with two modes: Ready and Cooking. In

Ready mode the oven is standing by, waiting for the user to insert food, select a cooking time on the

- 59 -

timer dial, and press the start button. In Cooking mode, the oven cooks the food for the specified length

of time, pausing each time the user opens the door to sample the food’s temperature, stir the food, etc.

SCRtool’s specification editor allows us to declare OvenMode in a convenient table editor as shown in

fig. 4.

Fig. 4. SCRtool’s mode class editor

Transitions between modes in SCR are defined in a mode class table as shown in fig. 5. Each row in

the table specifies a transition from a source mode or modes to a destination mode in response to an event.
Events in SCR are written in the form @T(X) or @F(X), where X is a predicate over the monitored

variables. @T(X) means “the moment X becomes true”, and @F(X) means “the moment X becomes

false”. Either of these may be followed by a guard condition in the form WHEN Y, where Y is a predicate

over the monitored variables that must be true if the event is to cause a state transition. In fig. 5, the event

expression we give for the transition from Ready to Cooking specifies that the transition will be made

when the door is already closed, the timer has already been set to something other than zero, and the start

switch is depressed.

Fig. 5. SCRtool's mode transition table editor

C. Function Tables

With the monitored variables, controlled variables, and modes defined, we can define function tables

that specify the values the controlled variables should be given by the controller. In an SCR specification,

a condition table, event table, or hybrid table may govern a controlled variable. Fig. 6 shows the

condition table defining how the output to the oven’s microwave emitter is derived. Each row in a

condition table represents a mode or modes, and each column represents a value or group of values. Each

cell represents the condition under which, when in one of the modes represented by the cell’s row, the

governed variable should take on the value represented by the cell’s column. In fig. 6, for example, the

cell in the Cooking mode row and the emitter is On column contains the expression “Door = Closed”,

meaning that when the OvenMode is Cooking, the microwave emitter should be on when the oven door

is closed.

- 60 -

Columns need not necessarily represent constant values. When a condition table is used to define an

integer or floating point variable, the value expression defining the column may be an arithmetic

expression. A controller aiming to keep the level of fluid in a tank constant, for example, may use such a

construct to set the fill rate proportional to the amount of fluid that needs to be added.

Fig. 6. SCRtool's condition table editor

Event tables are similar to condition tables, except that the cells contain the events upon which the

variable should be set to the indicated value, rather than the conditions under which it takes the indicated

value.

D. Assertions

Our microwave oven’s cabinet is designed to contain harmful radiation while the oven is operating so

as to protect the user. We expect users to attempt to open the door while cooking is in progress. In some

cases this may be inadvertent, but we expect the user to periodically inspect the temperature of the food,

stir liquids, turn solids over, and so on. In order to avoid exposing the user to microwave radiation, we

must never allow the microwave emitter to be on while the oven door is open. We could accomplish this

with hardware devices, such as an electromagnetic lock on the door or a hardware interlock that blocks

electrical current to the microwave emitter while the door is open, but for this example we will make the

controller responsible for the safety of the operator. It is critical that our controller logic satisfy the

property that it never commands the emitter to be on while the door is open. The SCR notation allows us

to write this property as an assertion as shown in fig. 7. Expressing this constraint as an assertion has two

purposes: it formally records this design requirement, and it enables the use of formal verification tools to

ensure that the specification guarantees that it will be satisfied.

Fig. 7. SCRtool's assertion editor

- 61 -

E. The Dependency Graph Browser

Understanding the components of a system as small as our microwave oven controller, and the

dependencies between them, poses little difficulty. As specifications grow in size, however,

understanding the relationships between specification components becomes more difficult [2]. To

address this difficulty, SCRtool includes the dependency browser shown in fig. 8.

Fig. 8. SCRtool's dependency graph browser

In order to help the engineer cope with complex specifications, the dependency graph browser includes

a feature for separating a selected sub-graph into its own specification file.

F. The main window

SCRtool’s main window is organized as a tree view as shown in fig. 9. Expanding the leaves of the

tree allows the specification engineer to browse the specification hierarchically. Double-clicking on

portions of the specification causes the SCRtool to open dictionary windows for viewing, adding to,

editing, or deleting parts of the specification.

Fig. 9. The main SCRtool window

- 62 -

III. CHECKING A SPECIFICATION

Now that we have written a specification for our microwave oven controller, we would like to check it

for specification errors. The first step is to run a suite of simple consistency checks. Running these

checks is literally a push-button affair; we direct SCRtool to perform type+, disjointness, and coverage

checks by clicking on the “check all” button in the toolbar of the main SCRtool window (shown in fig. 9).

A. Type+ Checking

Type+ checking will catch several kinds of specification errors. It includes simple syntax checking,

which will help us find typos such as @(Foo=Bar) when @T(Foo=Bar) was intended. It also includes

checking similar to a compiler’s semantic checking that will catch references to non-existent variables or

constants, or attempts to equate to a variable a value that is not a member of that variable’s type. During

type checking the tool set will automatically verify that the initial conditions for the specification’s

variables are consistent with the function definitions. The tool also checks for circularities in variable

definitions, which are illegal. Finally, the tool will verify that all modes in all mode classes are reachable

from the initial modes. If an error is found, the tools will highlight the offending portion of the

specification in red and describe the problem, as shown in fig. 10.

Fig. 10. SCRtool reporting a type checking error

B. Disjointness Checking

Disjointness checking verifies that the conditions in each row of each condition table and the events in

each row of each event table or mode transition table are disjoint. If there were a combination of

monitored variable values that caused multiple conditions or events in a row to be applicable, the variable

controlled by the table would be specified to simultaneously be equal to at least two different values.

With simple conditions, such as the one shown in fig. 6, it is easy to determine by inspection that the

conditions are disjoint. With more complex conditions, however, this becomes more difficult. By

offering a mechanical check for disjointness the SCRtool gives us increased confidence that our

specification is not self-contradictory and reduces the need for expensive manual checking. As with type

checking, consistency checking is fully automatic.

C. Coverage Checking

Coverage checking verifies that the conjunction of the conditions in each row of a condition table is

true. If there were some combination of monitored variable values that cased no condition on a row to be

true, the value of the variable being defined by the table would be undefined. While non-determinism

- 63 -

isn’t necessarily erroneous, the SCRtool authors contend that deterministic specifications are far easier to

analyze and debug than nondeterministic ones [3], and correspondingly require specifications created

with their tool to be deterministic. Again, as with type and consistency checking, coverage checking is

fully automatic.

D. Proving Assertions

Once we have verified that our specification is free of type, disjointness, and coverage errors, we can

use SCRtool’s proof mechanism in order to prove that our assertions hold. Here too the process is fully

automatic by design: the tool’s creators explicitly aimed to minimize both the effort and expertise needed

to use the tool [2]. SCRtool’s prover was able to prove both assertions shown in fig. 7 in a few seconds on

a commodity Pentium 4 desktop machine running the Windows XP operating system. The prover does

not always work this quickly; proving a different assertion on the same machine took several hours.

In some cases proving an assertion will require knowledge about relationships between monitored and

controlled variables that are enforced by mechanisms in the environment, rather than by the software. In

the case of our microwave oven, for example, if the timer motor is on then the timer will eventually reach

zero. When it is necessary to document how our manipulation of the controlled variables will affect the

values taken on by the monitored variables, we can create an assumption. In SCRtool, assumptions are

created and edited in much the same manner as assertions. Assumptions are treated as facts by the prover,

which takes them into consideration when attempting to prove assertions.

In other cases, the prover will need help to prove the assertions in a specification even though all of the

information needed to prove them is present. To help it out, the tool set includes a facility for

automatically generating and proving invariants that the prover can take into account when attempting to

prove other properties. Once again this is fully automatic; the user selects a menu item, chooses the

invariant generation strategy and the parts of the specification to examine, and clicks a button to activate

the generator.

In some cases, adding assumptions and generating invariants may not be enough to allow the tool to

prove a property that is, in fact, true. A sample specification that we were given by the authors of the

tool, for example, contains an assertion that is true but cannot be proved by the tool. In such cases,

specification developers will either need to prove the property manually or use a different tool. The

generated invariants will likely be of help in doing this.

IV. SIMULATION

In order to help engineers to validate their specifications or explore the meaning of an error discovered

during verification, SCRtool includes a facility for simulating specifications. The simulator, shown in fig.

11, includes windows that show the monitored and controlled variables, terms, and mode classes. An

engineer drives the simulation by entering new values for the monitored variables. As each change is

made, the simulator computes the response commanded by the specification and shows any resulting

changes to controlled variables. Fig. 11 shows a simulation of a user cooking food that is already in the

microwave: the timer dial is first turned to the desired cook time, resulting in the timer reporting that it is

NotAtZero; the user presses the start button, causing it to become Depressed and then Released; and

finally the timer counts down to zero, causing it to report being AtZero, thus ending the cooking

operation. If any of the monitored variable changes input by the engineer contradicted one of the

assumptions in the model, the simulator would have displayed a warning of the violation in red in the log

window. Likewise, if the simulated controller had violated an assertion, the simulator would have

detected and reported the violation.

- 64 -

Fig. 11. SCRtool's simulator

V. DISCUSSION

SCRtool and the underlying tabular SCR specification notation have been used to develop software for

a variety of real world systems, including the flight program of the A-7 aircraft , the shutdown system for

the Darlington nuclear power plant, and the flight program for the Lockheed C-130J [2]. These systems

are examples of the kinds of software programs SCRtool and the SCR specification notation are intended

for: embedded control systems. While the tools offer a clear notation, a precise formal semantics [3], the

ability to prove properties of interest, and the ability to simulate the system for validation and debugging

purposes, neither the tool nor the language is well-suited to all kinds of software.

A. Complex user interfaces

The SCR notation is not particularly convenient for specifying complex user interfaces. Simple manual

switch, dial, indicator lamp, and gauge components, which formed much of the A-7’s user interface,

present no difficulty, as these components can be easily mapped to monitored and controlled variables of

the supported types. More complicated controls present more difficulty. The A-7, for example, includes

a 13-character 7-segment LED display that serves to display several kinds of information to the pilot. The

team that wrote the A-7 specification in SCR notation opted to model this display as 48 separate

controlled variables, each representing the value that would be displayed on the panel if the panel was in

the mode that caused it to be displayed [5].

This limitation does not seem to be specific to the SCR notation or the SCRtool. Model-based

development tools such as Simulink and SCADE also have this limitation, as user interfaces must be

- 65 -

represented in these tools as input and output signals that are analogous to SCR’s monitored and

controlled variables.

B. Complex system state

The prototype tool we examined provides no support for string, list, array, stack, queue, map, or other

non-scalar data types. Because controlled variables and modes are the only ways to represent the con-

troller’s state in SCR notation, the absence of these types means that there is no practical way to model

collections of things in the controller’s state. While many environmental values of interest to an

embedded controller can be modeled using the simple Boolean, enumerated, integer, and floating-point

types provided, the lack of a mechanism for modeling a state that includes a collection of any kind will

make it impractical to use this version of the SCRtool to describe some kinds of software systems. A

simple program to track a library of books to be lent out, for example, could not be easily specified.

Again, this limitation seems to also apply to tools such as Simulink and SCADE. These tools also lack

the ability to represent collections of values. However, while future versions of SCRtool may include

support for collections, the nature of Simulink and SCADE models seems to preclude them. Simulink

and SCADE model the paths along which information flows from operation to operation as if these paths

were wires and the operations electronic components; it is difficult to imagine how a collection of values

would be represented within the framework of that metaphor.

C. Target audience

SCRtool and the SCR specification language are intended for use by requirements analysts [4], and

SCRtool was deliberately developed to require as little skill in discrete mathematics and theorem proving

as possible. In the view of the tool’s creators, requirements analysts should create the specification on

behalf of their customers by formalizing and describing the customer’s expressed needs [4].

This view is quite different from the one seemingly held by proponents of model-based development

tools such as Simulink and SCADE. These tools are intended for use by control engineers, who specify

the system they want in a familiar graphical notation and then use the tools to automatically generate

finished source code. By modeling the requirements of a computer-based system in a manner that is easy

for control engineers to understand, these tools eliminate the need for a human software requirements

analyst to translate a description of the needed functionality into a more software-centric language.

D. Code generation

Unlike both Simulink and SCADE, the current-generation SCRtool lacks the capacity to automatically

generate finished source code. While it does have a source code generator, that generator produces Java

code that is suitable for use in simulation, but almost certainly unsuitable as production code

implementing the specified system. While Simulink and SCADE are touted for eliminating the need to

manually write source code, a development team using SCRtool would need to write source code

implementing the specification they develop.

VI. CONCLUSION

SCRtool offers tools to create, edit, analyze, and simulate specifications written in the formal SCR

specification notation. The system model embodied in the language and tools describes software that is

embedded in an environment that it senses through monitored variables and manipulates via controlled

variables. The tool set includes a fully-automatic prover that can be used to demonstrate that assertions

hold over the specification and a simulator that can be used both to explore specification errors and to

allow the specification developers to assure themselves that the specification describes the desired

controller.

While the tabular SCR specification language is clear and concise, the current-generation SCRtool is

not suited to all types of software development. The tool’s type system for monitored and controlled

- 66 -

variables in particular is well suited to the target embedded control system market, but may be ill-suited

for applications that will need to maintain complex data structures.

Unlike such model-based development tools as Simulink and SCADE, SCRtool is designed for use by

software requirements analysts. Where Simulink and SCADE are intended for use by control engineers,

the development model surrounding SCRtool treats these system-level engineers as customers and

requires the requirements analyst to translate the requirements imposed on the software by the system into

the SCR tabular specification notation. Where Simulink and SCADE offer the developer the ability to

automatically generate source code that can be used as the implementation of the system, human

programmers are needed to generate production-quality source code implementing the functionality

captured in a specification generated using the SCRtool.

ACKNOWLEDGMENT

I thank Ralph Jeffords for his help in acquiring and understanding SCRtool and its proof mechanism.

REFERENCES

[1] C. Heitmeyer. “Managing Complexity in Software Development with Formally Based Tools.” Electronic

Notes in Theoretical Computer Science, vol. 108, 2004.

[2] C. Heitmeyer, M. Archer, R. Bharadwaj, and R. Jeffords. “Tools for constructing requirements specifications:

The SCR toolset at the age of ten.” International Journal of Computer Science & Engienering, vol. 20, no. 1,

January 2005.

[3] C. Heitmeyer, R. Jeffords, and B. Labaw. “Automated Consistency Checking of Requirements Specifications.”

ACM Transactions on Software Engineering and Methodology, vol. 5, no. 3, July 1996.

[4] C. Heitmeyer. “Point/Counterpoint.” IEEE Software, vol. 22, no. 1, Jan.-Feb. 2005.

[5] K. Heninger. “Specifying Software Requirements for Complex Systems: New Techniques and Their

Application.” IEEE Transactions on Software Engineering, vol. SE-6, no. 1, January 1980.

- 67 -

	ben_report.pdf
	Introduction
	Model-Based Development
	Simulink

	Current Use
	Limitations
	Costs
	Automatic Code Generation
	Precise Semantics
	Theorem Proving
	Right Tool for the Job

	Comparison
	Conclusion

	ben_report_reformat.pdf
	Introduction
	Model-Based Development
	Simulink

	Current Use
	Limitations
	Costs
	Automatic Code Generation
	Precise Semantics
	Theorem Proving
	Right Tool for the Job

	Comparison
	Conclusion
	References

