Fault-Tolerant Real-Time °
Multiprocessor Scheduling

Yingfeng Oh,
Sang Son

Computer Science Report No. TR-92-09
April 9, 1992



Fault-Tolerant Real-Time Multiprocessor Scheduling
Fault-Tolerant Real-Time Multiprocessor Scheduling

Yingfeng Oh and Sang H. Son
Department of Computer Science
University of Virginia
Charlotiesville, VA 22903

- USsA

Abstract

Multiprocessors are increasingly used to support hard real-time sys-
‘tems. The increase in the number of processors in a system makes a system
susceptible to processor failures. Fault-tolerant mechanisms as well as real-
time scheduling techniques should be used together to ensure that hard real-
time systems continue to operate correctly even in the presence of processor
failures, since deadline missing in a hard real-time system may result in cata-
strophic consequences. In this paper, we present approaches to achieving
fault-tolerance in hard real-time multiprocessor systems. Using the primary-
backup copy approach, we propose two efficient scheduling algorithms to
solve a special case of the general scheduling problem. The scheduling algo-
rithms have the property of generating near-optimal solutions to the problem
as well as determining the amount of redundancy required to achieve the
desired level of fault-tolerance. Experimental results are obtained to evaluate
the performance of the heuristics.

Keywords: multiprocessor, fault-tolerance, real-time, scheduling, processor failure



Fault-Tolerant Réal-Time Mutltiprocessor Scheduling

1. Introduction

Hard real-time systems are defined as those systems in which the correctness of the system
depends not only on the logical results of computation, but also on the time at which the results
are produced. Missing of a hard deadline in such a system may result in catastrophic conse-
" quences, such as immediate danger to human life, severe damage to equipments, and waste of

expensive resources. As hard real-time systems are being increasingly used in applications which
are mission-critical and life-critical, fault tolerance of those systems becomes extremely impor-
tant.

While extensive research has been done in the areas of fault-tolerant computing [Anders81]
[Johnson89] [Lala85] [Pradha86] [Randel78} [Rennel84] [Siewio82] and real-time computing
[Stanko88], relatively few research has been carried on in combining the two together to create
highly reliable real-time systems. Like any other systems, a computer system is not immune to
failure. Various techniques such as fault prevention, fault avoidance and fault-tolerance have been
developed to improve the reliability of a system. However, few techniques have been proposed to
ensure that the tasks in a system complete in a timely manner. Researchers in real-time computing
has been mainly focusing on various scheduling techniques to guarantee that the deadlines of
tasks are met [Bettat89]. Few techniques are devised to make the real-time systems fault-tolerant,

Several studies have focused on achieving fault tolerance in real-time systems through the
scheduling of redundant resources, such as replicated tasks and redundant processor power
[Anders83] [Balaji89] [Bannis83] [Bertos91] [Liestm86] [Krishn86] [Randel78)]. Bannister and
Trivedi [Bannis83] showed that a set of periodic tasks, each having the same number of clones,
can be scheduled on a set of identical processors by the Best-Fit heuristic to achieve a good bal--
ance between processor utilization. Their dynamic scheduling algorithm assumes that once a pos-
sible missing of a deadline is detected, the task is either aborted or scheduled on additional
processors, The number of additional processors are assumed to be enough to accommodate the
execution of all real-time tasks. Obviously, their approach can not be used for hard real-time sys-
rems. Krishna and Shin [Krishn86] proposed a dynamic programming algorithm for multiproces-
sor, systems to ensure that the backup schedules can be efficiently embedded with the primary
schedule. The algorithm assumes the existence of the optimal allocation of tasks to processors and
schedules the tasks on each processor in order to minimize 4 given local cost function. Liestman
and Campbell [Liestm86] proposed an algorithm to generate optimal schedule for a single proces-
sor system using the recovery-block approach. Bertossi and Mancini[Bertos91] recently showed
how to use a scheduling heuristic -- LPT (Largest Processing Time first) [Graham69] to schedule
tasks with primary-backup copies on a multiprocessor system to tolerate one arbitrary processor
failure, while minimizing the makespan of the schedule. As we ‘shall see later, all these
approaches are related to a more general fault-tolerant real-time scheduling problem defined in
the next section. :

The contribution of this paper is to define a general fault-tolerant hard real-time multipro-
cessor scheduling problem and propose two efficient scheduling heuristics to solve a specific case
of the general problem. Our approach differs from other approaches [Bannis83] [Krishn86] [Ber-
t0s91] in that all the hard deadlines of the real-time tasks are guaranteed even in the presence of
up to m processor failures in the best case, where m is less than or equal to the number of proces-
sors needed to schedule the primary task set. Also, the scheduling heuristics calculate the number



Fault-Tolerant Real-Time Multiprocessor Scheduling

of redundant processors and the number of replicated tasks needed to achieve the desired level of
fault tolerance.

The rest of the paper is organized as follows: Section II defines the general fault-tolerant
real-time multiprocessor scheduling problem. Section I identified a special case of the general
scheduling problem and states the scheduling problem more specifically. The two scheduling
algorithms are presented in Section IV and V. The analysis and performance evaluation of the
scheduling algorithms are described in Section VL Section VII concludes the paper and suggests
future work. ' : :

II. Background and Formulation of the General Scheduling Problem

Tasks in a real-time system arrive periodically or aperiodically with hard or soft deadlines
associated with them. Periodic tasks appear in a fixed period, while aperiodic tasks arrive at the
“system with unpredictable intervals. Tasks such as environment monitoring, sampling and fault
diagnosis, are periodic tasks. Tasks such as garbage collection, fault isolation and system configu-
ration are aperiodic tasks. Most real-time systems support functions which are periodically exe-
cuted and the execution of these functions has hard deadlines.

A failure in computer systems is caused by hardware, software or timing faults. Apparently,
we want to avoid all of them, especially the timing faults because missing a hard deadline may
result in catastrophic consequences. Timing faults are usually avoided through real-time schedul-
ing. Hardware and software faults are generally tolerated through the use of redundant hardware
and software. Most hard real-time systems are supported by multiprocessor systems primarily for
the following two reasons. First, a multiprocessor system is generally more reliable than a unipro-
cessor system, because the failure of one processor in a multiprocessor system does not necessar-
ily cause the whole system to fail if some fault tolerance techniques are provided. Second, a
multiprocessor system can offer more computational power for hard real-time systems than a uni-
processor system. However, with the employment of more processors also comes the problem of
more likelihood of processor failures. A multiprocessor system can be less reliable than a unipro-

 cessor system if one processor failure may cause the whole system to fail. This can happen if no
fault-tolerant technique is provided. Thus, a processor failure in a hard real-time multiprocessor
system is a very serious problem, which needs to be tolerated. In this paper, we consider the usage
of hardware redundancy as well as software redundancy to tolerate processor failures. The
approaches taken can be described as the solutions to the following fault-tolerant real-time multi-
~ processor scheduling problem. | S ‘

The General Fault-Tolerant Real-Time Multiprocessor Scheduling Problem: The work
to be performed by a real-time system is specified as-consisting of a set of n tasks
S = {T,,T, ....T,}. A task i is represented as a quadruple (4, C,D,P;), where A; is the

“arrival time of the task, C, is the computation time of the task, D, is the task’s deadline and P; is
the task’s period. If the task is aperiodic, the value of P; is undetermined. The fault-tolerant real-
time multiproéessor scheduling problem is to find a schedule subject to the following constraints:

(1) All the hard deadlines of the tasks are guaranteed.
(2) Minimize the hardware and software redundancies required.



Fault-Tolerant Real-Time Multiprocessor Scheduling

(3) Méximize the number of processor failures to be tolerated.
(4) Maximize the number of soft deadline tasks to be executed.

Formally, let / be a schedule instance generated by the scheduling algorithm, N r (1) bethe
number of processor failures to be tolerated, D (I) be the value function used to measure the suc-
cess the scheduler has on real-time tasks, and Ry (/) and R (/) be the degree of redundancy of
hardware and software respectlveiy The scheduling goal is thus to maximize the following value
functlon :

D (I) x Ny ()

FD = R,

The specxﬁcauon of the scheduling constraints does not limit the possible solutions to one
specific hardware or software redundancy approach which may be used to guarantee the deadlines
of the tasks even in the presence of hardware or software failures. Software redundancy

' approaches such as primary-backup copy approach [Randel78] and N-version programming tech-

nique {Chen78] can be used separately or together. As we shall see more clearly later, redundant
processor power-has to be used if processor failure is to be tolerated in a hard real-time system.
Among the above requirements, there exists a trade-off between the requirements (2) and (3).
Requirement (3) suggests that a task should be replicated as many times as the number of proces-
sor failures to be tolerated. However, as we require that no timing faults (i.e., missing deadlines)
should occur, more processors are needed to execute the tasks in order to make the deadlines, as
the deadlines of the periodic tasks are fixed and the number of tasks increases due to the result of
the duplication of tasks. The requirement of more processors not only incurs higher cost, but also
increases the probability of processor failures if the reliability of each processor remains the same.

. Thus, there is a threshold of reliability which can be achieved under the above constraints. This

threshold is achieved when the number of processors used is minimized to execute the set of tasks
under a certain degree of hardware and software redundancy.

IIL Solutions to A Special Case of the General Scheduling Problem

The scheduling problem formulatcd in the previous section is an extension of the basic mul-
tiprocessor scheduling problem considered by Karp{Karp72]. The basic multiprocessor schedul-
ing problem was proved to be NP-complete. In other words, it is widely believed that no optimal
solution to minimize the length of schedule can be found in polynomial time complexity. Two
efficient multiprocessor scheduling heuristics--LPT [Graham69] and MULTIFIT [Coffma78]
have been proposed to obtain approximate solutions to the problem. The scheduling goal of the
algonthms is to find a schedule with minimal makespan. The makespan of a schedule is defined as
the maximum of the sums of the lengths of the tasks assigned to each processor. An optimal
schedule is the one for which the length is the shortest possible for a given number of processors..
In both the-LPT schedule and the MULTIFIT schedule, the tasks are first sorted into nonincreas-
ing order of computanon time. For the LPT schedule the tasks are ass:gned in decreasing order so
that when a task is assigned to a processor, the finishing time of the task on that processor is the
earliest. The MULTIEIT algorithm is based on the FFD (First Fit Decreasing) bin packing algo-



- Fault-Tolerant Real-Time Multiprocessor Scheduling

rithm. By regarding the processors as bins and the tasks as items having sizes equal to their com-
putation times, the completion of a schedule by time  can be considered as the successful packing
of the n items into M bins of size . In the FFD algorithm for bin packing the bins are numbered
from 1 to M and the items, pre-sorted into decreasing order of size, are packed sequentially, each
“going into the lowest numbered bin in which it will fit. By trying to pack the items using different
bin sizes, schedules of different lengths can be obtained. The minimal bin size for which the tasks
are packed with the number of bins equal to the number of processors is the makespan of the
MULTIFIT schedule. This bin size is found by using a binary search technique. The LPT and
MULTIFIT algorithms find schedules whose makespans are within 4/3 and 13/11 of the optimal
makespan respectively.

The problem of scheduling a set of periodic tasks on multiprocessor systems are studied in
[Dhall78] [Leung82]. There are two basic approaches to schedule a set of real-time periodic tasks
on a multiprocessor system: partitioning and non-partitioning approaches. In the partitioning.-
approach considered by Dhall and Liu [Dhall78], the set of tasks are partitioned into groups and
assigned to distinct processors. The partitioning is done by applying one of the two bin packing
heuristics--Next-Fit and First-Fit. The rate-monotonic priority assignment algorithm {Liu73] is
then used to ensure that each group of tasks are guaranteed to meet their deadlines. The rate-
monotonic priority assignment algorithm assigns static priorities to tasks according to their peri-
ods. Higher priorities are assigned to tasks with shorter periods. The non-partitioning approach
~ [Leung82] is the opposite of the partitioning approach in that tasks are not partitioned into groups.
Instead, the processors are treated collectively as one entity with increased computing power to
execute the entire task set. Each task is assigned a distinct priority and the processors execute
requests of high-priority tasks before requests of low-priority tasks.

Suppose we want to tolerate one arbitrary processor failure. A naive solution to the schedul-
ing problem is readily proposed. First, one of the scheduling heuristics proposed by Dhall and Liu
in [Dhall78] is used to obtain the number of processors needed to execute the set of periodic tasks
and their schedules, One redundant processor is introduced into the system in order to tolerate one
~ arbitrary processor failure. We further assume that this redundant processor can be immediately

informed of the failure of any other processors and it can execute any remaining tasks scheduled
on the failed processor. Yet.the failure of any processor can not be tolerated in the following case.
Suppose that the deadline of a task is tight, i.e., the deadline of the task is equal to the sum of its
starting time and the amount of time needed to execute the task. The processor executing this task
fails in the middle of its execution. Even if the redundant processor is immediately informed of
thie failure and starts to execute the task immediately, there is not enough time left to execute the
whole task on the redundant processor. The deadline of the task is thus missed. ' '

Another possible solution to the general scheduling problem is to duplicate the tasks and
schedule them on a set of processors. Obviously, for fault-tolerant purpose, the duplicated copies
of a task should be scheduled on different processors and each of them should be finished before
their deadlines. Due to the immense complexity involved in this scheduling algorithm, the feasi-
bility of this solution is not known yet. '

In.this paper, a special case of the general scheduling problem is considered. We resolve to
the primary-backup approach to tolerate one arbitrary processor failure in the worst case and up to
| m/ 2.} processor failures in the best case, where m is the number of processors needed to sched-
ule the task set. The two scheduling algorithms are of polynomial time complexity and have the
property of obtaining near-optimal solutions to the problem in both cases of failure and non-fail-



Fault-Tolerant Real-Time Multiprocessor Scheduling

ure.

Assumptions: We assume that processors fail in the fail-stop manner and the failure of a
processor can be detected by other processors. All periodic tasks atrive at the system in one cycle
T, i.e., having the same period and are ready to execute any time within each cycle. We further
assume that all periodic tasks have hard deadlines and their deadlines have to be met even in the
presence of processor failures. We define a task’s meeting its deadline as either its primary copy
or its backup copy finishes before or at the deadline. Because the failure of processors.is unpre-
dictable and there is no optimal dynamic scheduling algorithm for multiprocessor scheduling
[Dertou89], we focus on static scheduling algorithms to ensure that the deadlines of tasks are met
even if some of the processors might fail. The scheduling problem can be rephrased using the
framework of the general scheduling problem as follows:

The Scheduling Problem: A set of » periodic tasks § = {7, Ty, ..., T} is to be sched-
uled on a number of processors. For each task i, there are a primary copy P; and a backup copy
B, associated with it. The computation time of a primary copy P, is denoted as C;, which is the
same as the computation time of its backup copy B;. The tasks are independent of each other. The
scheduling requirements are given as follows: ' :

"(1) Each task is executed by one processor at a time and each processor executes one task at
a time. ' :

(2) All periodic tasks should meet their deadlines. Aperiodic tasks have soft deadlines.
3) Maximize the number of processor failures to be tolerated.

(4) For each task i, the primary task P; or the backup B, is assigned to only one processor
for the duration of C; and once it starts, it runs to its completion unless a failure occurs.

(5) The number of processors used should be minimized.

The deadlines of aperiodic tasks are assumed to be soft. However, as we will show later, the
execution of aperiodic tasks are taken into account. Thus, in normal execution situation, aperiodic
tasks are able to meet their deadlines. We further assume that all the processors are identical.
~ Requirement (1) specifies that there is no parallelism within a task and within a processor.

‘Requirement (2) dictates that the deadlines of periodic tasks should be met, maybe at the expense
of more processors. Requirement (3) 1s a very strong requirement. The primary and backup tasks
should be scheduled on different processors such that any one or more processor failure will not
" result in the missing of the hard deadlines of the periodic tasks. Furthermore, the primary copy

and the backup copy of a task should not overlap each other, as we shall see in Lemma 2. Require-
~ment (4) implies that tasks are not preemptive. A processor is informed the failure of other proces-
sors only at the end of the execution of a task. Also, care has to be taken to ensure that exactly one
of the two copies of a task is executed during a cycle to minimize the wasted work. Requirement

(5) states that the number of processors to be used to execute the tasks should be the smallest pos-

sible. ‘

Since no efficient scheduling algorithm exists for the optimal solution of the fault-tolerant
real-time multiprocessor scheduling problem as defined above, we resolve to a heuristic approach.
Two heuristics based on a bin packing algorithm and LPT, are used to obtain approximate solu-
tions. Before presenting the heuristics, we state the following Lemmas as the basic results upon
which the two scheduling heuristics are developed.



Fault-Tolerant Real-Time Multiprocessor Scheduling

Lemma 1: In order to tolerate one or more processor failures and guarantee that the dead-
line of all the periodic tasks are met using the primary-backup copy approach, the longest compu-
tation time of the tasks must satisfy the following condition: (C =L max {C;})=T/2,

: . . 1€isn :
where T is the period of tasks. '

- Proof: Suppose that the deadline of the task Tj can still be met even if C;>T/2. Suppose
- the processor which executes T, fails at the time of 7/2and the backup task B, is immediately
started, then the finishing time of Tj is BFj =T/2+ Cj-. As CJ,- >T/2, we have BFJ. >T,ie., the
deadline of the task is missed. This is a contradiction. A

'Lemma 2: One arbitrary processor failure is tolerated and the deadlines of tasks are met
with the minimum number of processors possible, if and only if the primary copy P; and the
Backup copy B; of task i is scheduled on two different processors and there is no overlapping
between them. : '

Proof: In [Lawler81], it is shown that a set of periodic tasks is schedulable on a multipro-
cessor if and only if there exists a valid schedule which is cyclic with a period T'; i.e., each proces- -
sor does exactly the same thing at time ¢ as it does at time ¢+ 7 Therefore it suffices to consider
the execution of tasks within a period T only. We first prove the necessary condition. Suppose one
arbitrary processor failure is tolerated. It is evident that the primary copy of a task and its backup
copy should be scheduled on two different processors. To prove that there is no overlapping
between the primary copy of a task and its backup copy, we define BB; as the beginning time of
the backup copy B; and FP; as the finishing time of the primary copy P,. If there is an overlap-
ping between the primary copy of task i and its backup copy, then FP;~ BB;> 0. Suppose the
processor k on which the backup copy B, of task i is assigned has no unused time within a period
and the processor j on which the primary copy is executed fails at time ¢> BB;. Processor k can
only be notified of the failure of processor j no earlier than ¢. Thus the finishing time of the whole
schedule of processor & is lengthened by 7~ BB; >0, resulting in a missed deadline. To prove the
sufficiént condition, we have that any pair of primary and backup copies are scheduled on two
processors and there is no overlapping between them. Then the failure of any one of the two pro-
cessors will trigger the execution of the backup tasks on another processor. Thus the deadline of
the tasks, will be met. A

IV. An Efficient Scheduling Algorithm

“The basic idea of using primary-backup copy approach to tolerate, processor failures is that
there are two copies associated with each tasks, i.e., the primary copy and the backup copy. Once
the prirhary copy fails, the backup copy is activated. Since the possible execution of the backup
copies should also be finished before the deadline, enough time must be reserved on each proces-
sor to execute the backup copies. The reservation of enough time for the execution of backup cop-
ies implies that redundant processors have to be used to execute the primary task set earlier
enough so that once a processor failure occurs, there will be time to execute the backup copies.

~ Our first scheduling algorithm is based on the First-Fit Decreasing (FFD) bin packing heu-
ristic. As shown in Lemma 1, the computation times of all tasks should be less than half of the
period in order 1o tolerate at least one arbitrary processor failure. Because the deadline of the tasks
are known a priori to be T, T is used as the size of bins for the FFD heuristic, The scheduling



Fault-Tolerant Real-Time Multiprocessor Scheduling

algorithm proceeds as follows: First, the primary tasks are arranged in the order of decreasing
cotnputation times, denoted as Py, Py, ..., P . Second, the FFD heuristic is used to schedule the
primary copies of the tasks into bins with size 7. More specifically, we begin with one processor.
Once the assignment of a task fails for the existing processors, a new processor is added. Tasks
are assigned to processors in the order of their decreasing computation time. In other words, task
P, is scheduled before task P, where i <j. Task P; is assigned to the lowest-indexed processor
on which its finishing time is fess than the period 7. The schedule thus obtained is called the pri-
mary schedule. Let the number of processors required be . It is apparent that though the tasks
are schedulable to finish before the deadline, at least one of the tasks will miss its deadline if there
is a failure. Therefore, the following steps are necessary. Third, the primary schedule is duplicated
on another set of m processors to form the backup schedule. The tasks in the backup schedule are
swapped based on the swapping rules to be defined below. Fourth, the tasks in the two schedules-
-primary and backup schedules are all renamed according to the following renaming rule, such
that the primary schedule uses 2 X m processors and precedes the backup schedule, and there is
no overlapping betweén any pair of primary and backup copies of tasks.

By summarizing what we described above, we state the algorithm as follows.-
procedure Heuristic1(Set of Tasks, Period T); _
* Sort the set of tasks in the order of decreasing computation time and rename them .
PPy Py ‘
Apply FED (First-Fit Decreasing) to assign the set of tasks into m processors; |
Duplicate the schedule on m backup processors to form the backup schedule;
Applying swapping rules to the backup scheduié;
Applying the renaming rule to both the primary schedule and the backup schedule;
end Heuristicl; | |

In the following, we define the rules precisely and prove that a schedule produced by apply-
ing these rules can tolerate one arbitrary processor failure. '

Definition 1: For the schedule on each processor, L, is defined as the length of schedule
less than or equal to half of the period 7 such that it is the sum of the computation times of those
tasks whose finishing times are less than or equal to half of the period. L 'is the length of schedule
for a processor. L, is defined as the L, ~ L. Obviously, Lq sTand L, < T/2, as illustrated in
Figure A. From now on, where no con?usion can be incurred, L, is also used to denote the time
interval whose length is L,,. L, and L, are also used in the similar manner. -

In Figure 1, for example, L, and L, are equal to S and 9 respeétivéiy for processoi' 1. For
- processor 2, LP is 4, and Lq is 9.

With the definition of L_ as above, the swapping rules for each processor in the backup
schedule can be described as follows: o

Swapping Rules:



Fault-Tolerant Real-Time Multiprocessor Scheduling

Lp T2 lg| T
vy

: Figure A |
(1) Tasks in L, and tasks in L, are swapped together.

(2) The first task.in L, starts at time 0. The starting times of the rest of the tasks in L, fol-
lows, '

(B If L > L,, the first task in L, starts at time Lp Since L, £T/2, the tasks in L can meet
. thelr dcadlmes If L, <L, the starting time of the first task i in L,isL,.

In Figure 1, for example, as L_ =5 > L, =4, T, is swapped with T2 w1th its starting time
being L, = 5. For processor 2, L, =4 < L, = 5 tasks 4 and 5 are swapped with task 3. The start-
ing time ef Tyis L, =4,

Having described the swapping rules, we are now ready to present the renaming rile.

- Renaming Rule: In the primary schedule of each processor, rename all tasks whose finish-
ing times are less than or equal to 7/2 as primary tasks. The rest of the tasks are renamed as
backup tasks. In other words, the tasks in L, for each processor are renamed as primary tasks and
the tasks in L, are renamed as backup tasks. In the backup schedule of each processor, all tasks in
L, after swapping are renamed primary tasks and the tasks in L after swapping are renamed as
backup tasks. :

As an example, let us apply the scheduling algorithm to the following scenario. Suppose the
period T is 10 time units and the set of tasks is given by § = {71, T,, T5, T4, T5}, with compu-
tationtime C = {C,,C,,C;,C,, Cs} = {5,4,4,3,2} Because C; <T/2, the set of tasks can
be scheduled to meet their deadlines even though one of the processors may fail. Applying the
FFD algorithm to the set of primary tasks with bin size equal to 7, we obtain the schedule as
shown in Figure 1. The number of processors used is 2. We double the number of processors and
duphcate the schedule of primary tasks to form the backup schedule. The resulting schedule is
shown in Figure 2. The reason the number of processors‘is doubled is to allocate enough number
of processors to execute the primary tasks as well as the backup tasks once a failure occurs. In
Figure 2, the schedules on processor 1 and 2 are called primary schedules, while the schedules on
processors 3 and 4 are called backup schedules. Notice that the primary schedule and the backup
schedule described here are different from the ones after the renaming process. For each dupli-
cated schedule on a processor, tasks are swapped pivoted at L, as defined in Definition 1. The
renaming rule is then applied to the primary schedules as well as the backup schedules. The
resulting schedule is shown in Figure 3. As shown by this example, merely swapping the tasks
may not result in a valid schedule. Backup task B, can not be executed at time ¢ = 4, because
there is an overlapping between P, and B,. The starting time of B, should be 5. This is guaran-
teed by the swapping rules. After the swapping process is done, the tasks and the primary sched-
ules and backup schedules are all renamed such that the primary schedule now consists of all
tasks in the task set and precedes the backup schedule. In Figure 3, the przmary copy P, was orig-
maliy the backup copy on the backup schedule on processor 4.



* Fault-Tolerant Real-Time Multiprocessor Scheduling

.Before proving the following Theorem, we introduce the concept of twin processors. '

. Definition 2: Two processors are called twin processors if one’s backup tasks are appended
to the primary schedule of the other. The two schedules on twin processors are called twin sched-
ules. For example, in Figure 3, processor 3 and 4 are twin processors. '

Theorem 1: The swapping rules and the renaming rule as described above successfuily
ransform the schedule into a schedule in which an arbitrary processor failure is tolerated and the
deadlines of the tasks are guaranteed. : '

Proof: To prove that an arbitrary processor failure is tolerated, we only need to consider the
case of two processors which are twin, because every processor has exactly one twin processor.
By the swapping rules and the renaming rule, any pair of primary-backup copies is scheduled to
run on two twin processors. For any two schedules which are twin, we shall prove that there is no
overlapping between the primary Copy of a task and its backup copy. The following two cases are
considered. :

The meaning of LP and L, used:in the following is as defined in Déﬁnition 1.
Case 1: Lp > L, as shown in Figures Band C.

The tasks in L, of the backup schedule are swapped with the tasks in L, of the backup
schedule according to the swapping rules. The starting time of the first task in L, which becomes
backup schedule after the renaming is L ,. Since the finishing time of the last tasﬁ in L of the pri-
" mary schedule is L, there is no overlapping between any pair of the primary and baclzup copies.

._ 1:"'/ ) Z*Lpl Tv
_.Primary  Lp A///////%
Figure B |
Backup %////% '. -‘ LP.

“Figures B and C: Any twin schedules after swapping but befbre renaming

Case2: L, <L, as shown in Figures D and E.

The tasks in L, are swapped with the tasks in L,. First we claim that there are at least two
tasks in L. Suppose there is only one task in L, . Because L, < L,, ie., the computation time of
any task in L, is shorter than the computation time of the only task in L, this contradicts the FFD

10



Fault-Tolerant Real-Time Muitiprocessor Scheduling

algorithm for assigning tasks in the order of decreasing computation time to processors. Therefore
there are at least two tasks in L,. We further claim that if there is no overlapping between the first
primary copy in L, of Figure E and its backup copy in L, of Figure D, there is no overlapping
between the primary copy of any task and its backup copy on the twin processors. Suppose task w
is one of the tasks, but not the first task in L, of Figure E and its primary copy overlaps with its
backup copy in L, of Figure D. Then the computation time of task w must be longer than that of
the first task in L,. This again contradicts the rules used by FFD to assign tasks in the order of
decreasing computation time to processors. Now suppose that the first primary task in L, of Fig-
- ure E overlaps with its backup task in L, of Figure D for the length of € >0 time unit, then the
computation time of this task is L, + & > L, which again contradicts the rule used by FFD to
assign tasks to processors. We have shown that there is no overlapping between the primary copy
of any task in L, of Figure E and its backup copy in L, of Figure D. Since LP <L,, the primary
copy of any task in L, of Figure D can not overlap with its backup copy in LP of Figure E.

Lo, T4 Lq

Figures D and E: Any twin schedules after swapping but before renaming

From the above two cases, it is clear that for any pair of twin processors, one arbitrary pro-
~ cessor failure is tolerated and the deadlines of the tasks are guaranteed. A |

- V. Another Scheduling Algorithm

The number of processors required by the first scheduling algorithm depends on the perfor-
mance of the FED bin packing heuristic. In the worst case, the FFD bin packing algorithm finds
the number of bins within 11/9 of the optimal number of bins required:{Johnson73]. At the dupli-
cation step, the same number of processors are used to schedule the same set of tasks. This dupli-
cation step may not be optimal because the number of processors used to execute the same set of
tasks twice subject to the constraints listed in Section III may be smaller than twice the number of
processors used to execute the set of tasks once. Thus, there is some room for further improve- '

ment. The second scheduling algorithm is thus devised to minimize the number of processors

11



Fault-Tolerant Real-Time Multiprocessor Scheduling’

required. The minimization of the number of processors is necessary as stated in the definition of
the scheduling problem.

This scheduling algorithm first uses the FFD bin packing heuristic to find the number of
processors necessary for tolerating at least one arbitrary processor failure and for guaranteeing the
meeting of the deadlines of the tasks. Then the LPT heuristic is used to minimize the number of
processors required until no further reduction in the number of processors is possible. The algo-
rithm is given as follows: : ‘ .

Stepl: The set of tasks are ordered according to their decreasing computation times and
rename them T, T, ..., T,. The FFD bin packing heuristic is used to schedule the
primary set of tasks with bin size equal to T/2. The number of processors required
is obtained as m. ‘ '

Step2: Set k = m—1 and apply LPT to schedule the primary set of tasks into & identical
processors. The primary schedule is thus obtained.

Step3: Sort the primary schedule in the order of decreasing schedule length. Duplicate the
primary schedule to form a backup schedule and append it at the end of the primary
schedule.

Step4: Swap the backup schedule according to the swapping rules as defined below.

Step3: Shift the backup schedule according to the shifting rules as defined below to obtain
the mixed schedule. ' : :

Step6: The maximum schedule length of mixed schedule is found and compared to T. If it
is longer than T, then no further reduction in the number of processors required is
possible. Therefore, m is the minimum number of processors necessary for the exe-
cution of the tasks. The algorithm terminates at this point. Otherwise, m = m—1
and go to step 2.

The duplication and appending process is illustrated by Figure F.

T/

Primary Schedule Appended backup schedule
Figure F: Schedule after Appending

12



Fault-Tolerant Real-Time Multiprocessor Scheduling

Swappmg Rules:

(1) If the number of processors is even, the longest backup schedule is appended behind the
shortest primary schedule, and the second longest backup schedule is appended behind
the second shortest primary schedule and so forth.

(2) If the number of processors is odd, then the backup schedules of the three central proces-

sors are cyclically appended. The three central processors are the ones whose position

- is in the middle and its two adjacent neighbors. The backup schedules of the rest of the
processors are swapped by following swapping rule (1).

The swapping process is illustrated as follows.

Primary Schedule Swapped backup schedule
Figure G: Schedule after Swapping

Definition 3: For the primary schedule of a processor i, L, (i) is defined as its schedule
length. L, (i) is defined as the computation time of the first task in the schedule. Obviously,
,Lp (i) >£ (i) . Where no confusion can occur, we also use L (i) to denote the time interval -
whose length is LP ().

Sh:ftmg Rules:

| Suppose the backup scheduie of processor j is appended behmd the pnmary schedule of
processor i.

(OHIf L (i) £T/2 and L (j) £T/2, then the tasks in Lp (j) are shifted together ahead of
timc such that the startmg time of the first task in L () is max {L (i), L (N } 'Oth-
erwise, the starting time of the first task in L (j) is L (i).

VAR L (i) £T/2 and L (j) >T/ 2, the tasks in Lp (j) are shifted together ahead of time
, such that the startmg time of the first task in L (j) is L (z)

31t L (i) >T/2 and L (j) £T/2, the tasks in Lp (j) are shifted together ahead of time
such that the startmg time of the first task in L () is L (D).

(4) If L (z) >T/2and L, (j) >7T /2, the tasks in L (]) are shlfted together ahead of time

13



Fault-Tolerant Real-Time Multiprocessor Scheduling

such that the starting time of the first task in LP (j) is Lp (i).
(5) Apply the above rules to every schedule on the Processors.
The shifting process of the swapped backup schedule is illustrated in Figure H.

_

Sorted Primary Schedule Appended backup schedule

Figure H: Schedule after Shifting

The process of using this scheduling algorithm to schedule a set of three tasks is shown in
Figure 4 through Figure 6. Figure 4 shows the result obtained after step 1. The result after Step 4
is shown in Figure 5, while the final result is shown in Figure 6. '

N After presenting the swapping rules and shifting rules, we are ready to prove the following
lemma. : :

Lemma 3: There is no overlapping between the primary copy of any task and its backup
copy after the shifting rules are applied. ‘

Proof: In order to prove that no overlapping occurs between the primary copy of any task
and its backup copy, we first prove that there is no overlapping occurring between any pair of pri-
mary and backup copies of the tasks on any twin processors as defined in Definition 2.

Suppose processors { and j are twin PrOCESSOIS.

Case 1@ Lp (i) €T/2and L, (j) £T/2.Because all backup copies of the tasks start no ear-
lier than max {Lp (i), Lp (j)} by the shifting rules, there is no overlapping between

‘the primary copy of any task and its backup copy.

Case2: L, (i) <T/2 and L, (/) >T/ 2. Suppose that there is an overlapping between the
- primary copy of a task on processors Jj and its backup copy on processor i, then the
computation time of the task is more than LP (i). Because L, (j) > Lp (i) and
L_(j) > T/2, there must be at least two tasks in the primary schedfﬂc on processor f -
. (tﬁe computation time of any task is less than T/2 as stated before). This contradicts
the rule LPT uses to schedule task, i.c., LPT always schedules the next task on the first
available processor. The second task in Lp (j) should have been scheduled after
Lp (i) according to the LPT rule. Thus, there is no overlapping between any primary

copy on processor j and its corresponding backup copy on processor i.

14



* Fauit-Tolerant Real-Time Multiprocessor Scheduling

Case 3: The proof is similar to that of Case 2.

Case 4: L, (i) > T/2 and L, (j) > T/2, the resulting schedule length of either processor i
or processor j is longer than 7. This can not happen in a valid schedule as guaranteed

by Step 6 in the algorithm.

Having shown that no overlapping between any primary copy on processor { and its backup
COpY On Processor j can occur, we need to consider the two cases where the number of processors .
used is odd and even. ' ‘

If the mimber of the processors used is even, every processor has exactly one twin processor.
as guaranteed by the swapping rule. Because there is no overlapping between any pair of the pri-
mary and backup copies of the tasks on any twin processors, there is no overlapping between the
primary copy of any task in the system and its backup copy. :

If the. number of the processors used is odd, except for the three central processors, every -
. processor has exactly one twin processor. For the schedules on the three central processors, it

turns out to be that there is no overlapping between the primary copy of a task and its backup copy

~ also. This is readily proved by slightly modifying the proof of Case 2.

Therefore the Lemma is proyéd. A

Theorem 2:; The scheduling algoﬁzhm as-described above successfully finds the schedule in
which an arbitrary processor failure is tolerated and the deadlines of the tasks are guaranteed.

Proof: By Lemma 3 we have no overlapping between any primary copy of a task and its
backup copy. Since Step 6 in the scheduling algorithm ensures that any backup copy finishes.
before the deadline T, the theorem follows from Lemma 2. A

VL. Analysis and Performance Evaluation

It is apparent that both scheduling algorithms meet the scheduling requirements identified in
Section 3, though two algorithms may differ in obtaining the number of processors required for
the system to tolerate at least one arbitrary processor failure. In the worst case, only one processor
. failure can be tolerated. In the best case, up to | m/2 ] processor failures can be tolerated, where
m is the total number of processors used. Though the main focus of our scheduling algorithms is
to guarantee tasks with hard deadlines to meet their deadlines even in the presence of processor
failures, tasks with soft deadlines still have ample time for execution if there is no processor fail-
ure or the number of processor failures is small. This is achieved through the scheduling of pri-
mary copies to finish around half of the. period. Furthermore, the makespan of the primary
schedule is near-optimal, as guaranteed by the guaranteed performance bounds of FFD and LPT.
In other words, the primary schedule is the best we can hope for using existing scheduling algo-
rithms of polynomial time complexity.

The time complexity of the first algorithm is O (max {nm, nlogn} ), since the sorting
algorithm takes O (nlogn) and the rest of the algorithm takes O (nm) . The sorting process can
dominate the running time only when m = o (logn) .

The time complexity of second algorithm is O (rnlogn + nlogm +1i (n+ mlogm)) where n
is the number of tasks, i is the number of iterations taken between Step 2 through Step 6, and m is

15



Fault-Tolerant Real-Time Multiprocessor Scheduling

the number of processors. The number of processors decrements at each iteration, but it is bound
by the number of processors first obtained by using FFD. More specifically, sorting the task set
takes O (nlogn) time. The FFD takes O (nm) time, which can actually be done in O (nlogm)
time. The LPT takes O (n) time. The sorting of the m schedules takes O (mlogm) time. The
appending,the swapping and shifting takes O (m) time. As verified by experiments, the number
of iterations i never exceeds 2. Thus the time complexity of the algorithm is again dominated by
the sorting time.

Because the multiprocessor scheduling problem is known to be NP-complete, we are hope-
less in finding an optimal solution to the problem even when the number of tasks is small (e.g.
10). Thus, we consider the most ideal case, which we call “best possible”. The number of proces-
sors used in the most ideal case is the result of taking the ceiling of the result of dividing the sum
of computation times of all the tasks (primary and backup) by the cycle. The performance of two
scheduling algorithms and the “best possible” case is shown in Figure 9. The computation time of
each tasks is randomly generated from the range of {1, 20]. The period T is 90 time units. For the
first algorithm, there is only one processor difference in most of the cases. For the second algo-
rithm, we could not find any difference from the best possible case in all the experiments we have
done so far. ' '

it seems that any set of tasks which can be scheduled by the first algorithm on m processors
can be scheduled by the second algorithm with the same or less number of processors. One exam-
ple where the first algorithm uses four processors while the second algorithm uses three proces-
sors is shown in Figures 7 and 8. Figure 7 is the result after applying the FFD 1o the set of tasks.
The number of processors required for the primary schedule is two, and therefore, to tolerate one
arbitrary processor failure, the number of processors required is four.

 However, we have also found cases where the first scheduling algorithm performs better
than the second scheduling algorithm. An example is given in Figure 10, where the task set con-
sists of 12 tasks and the period T is equal to 39. The first scheduling algorithm finds the number
of processors needed is 4 while the second scheduling algorithm finds the number of processors
needed is 5. The first scheduling algorithm finds the best possible solution in this case. As this
task set is very special and the probability of generating such a task set using a random number
generator is very small, it is therefore not surprising that this case is not shown in Figure 9.

Even though we have not been able to obtain the exact guaranteed performance bounds for
the two scheduling algorithms, we believe from extensive experiments that as the number of tasks
increases, the scheduling algorithms can always find the near-optimal solutions, i.e., with maxi-
. mum of one processor difference.

VIIL. Conclusion

In this paper, we have identified the general fault-tolerant real-time multiprocessor schedul-
ing as the key problem in achieving fault-tolerance in hard real-time systems. Two efficient sched-
uling algorithms are proposed to solve a particular case of the general problem. Experiment
results show that the scheduling algorithms find near-optimal solutions. We have also showed that
one arbitrary processor failure can be tolerated by the schedules. Several examples are used to
compare the two scheduling algorithms.

16



Fault-Tolerant Real-Time Multiprocessor Scheduling

There are many open questions which needs to be answered in order to design extremely
reliable hard real-time systems. The case where tasks have different periods in the general sched-
uling problem is still an open problem. Another open problem is the same scheduling problem but
under the condition that the processors available are all uniform processors (the speeds of the pro-
cessors have linear relations). These are the topics for our future research.

. References

[Anders81] Anderson, T. and Lee, P.A., Fault Tolerance Principries and Practices, Prentice-Hall,
International, London, England, 1981.

[Anders83] Anderson, T. and Knight, J.C., A Framework for Software Fault Toie’rance in Real-
' time Systems, IEEE on Software Engineering, SE-9(3), May 1983, pp. 355-364.

[Balaji89] Balaji, S. et al., Workload Redistribution for Fault-Tolerance in a Hard Real-Time Dis-
tributed Computing System, FTCS-19, Chicago, Illinois, pp. 366-373, June 1989.

[Bannis83] Bannister, J.A. and K. S. Trivedi, K.S., Task Allocation in Fault-Tolerant Dlsmbuted
Systems. Acta Informatica, 20, Springer-Verlag, 1983.

[Bettat89] Bettati, R. et al, Recent Results in Real-Time Scheduling, Technical Report, Depart-
ment of Computer Scaence University of Illinois at Urbana-Champaign, October 10
1989.

[Bertos91] Bertossi, A.A. and Mancini, L., Fault-Tolerant Task Schcduhng in Multlprocessor
Systems, Tech. Report, Universita di Pisa, Italy, 1991.

[Carlow84] Carlow, G.D., Architecture of the Space Shuttle Primary Avionics Software System,
CACM, 27(9), September 1984,

[Chen78] Chen, L. and Avizienis, A., N-Version Programming: A Fault-Tolerance Approach to
~ Reliability of Software Operation, Digest FTCS-8: Eighth International Symposium on
Fault Tolerant Computing, Tolouse, France, June, 1978, pp. 3-9.

[Chung87] Chung, J.Y., Liu, JW.S, and Lin, K.J,, Scheduling Periodic Jobs Usmg Impremse
Results, Tech. Report University of Illinois, Nov. 1987,

| {Coffma?S] Coffman, E.G., JIr,, Garey, M.R., and Johnson, D.S., An Application of bin-packing to
Multiprocessor Scheduling, SIAM J. Computing, 7 (1978), pp. 1-17.

[Dertou89]j Dertouzos, M. and Mok, A.K-L, 'Multiprocessor On-Line Scheduling of Hé.rd-Real-
Time Tasks, IEEE Trans. on Computer, 15(12), December 1989, pp. 1497-1506.

' [Dhall78] Dhall, $.K. and Liu, C.L., On a Real-Time Scheduling Problem, Operations Research
Vol. 26, 1978, pp. 127-140.

[Graham69] Graham, R.L., Bounds on Multiprocessing Timing Anomahes, SIAM J. Appl. Math
17 (1969), pp- 416-429.

' [30hnson73] Johnson, D.S., Near-Optimal Bm Pdckmg Algorithms, doctoral thesis, MIT, 1973.

[}ohnson89] Johnson, B.W., Design and Analysis of Fault Tolerant Digital Systems, Addison-
Wesley, 1989.

[Karp72] Karp, R.M., Reducibility among Combmatorldl Problems. In Complexaty of Computer

17



~ Fault-Tolerant Real-Time Multiprocessor Scheduling

Computations, R.E. Miller and J.W. Thatcher, Eds., Plenum Press, New York, 1972 PP
85-103.

[Krishn86] Krishna, C.M. and Shin, J.C., On Scheduling Tasks with a Quick Recovery from Fail-
ure, IEEE Transactions on Computers, C-35(5), May 1986, pp. 448-454,

[LalaSS] Lala, PX., Fault Tolerant and Fault Testable Hardware Design, Prentice-Hall, Intema~
tional, London, England, 1985. -

[Lawler83] Lawler, E.L. and Martel, C.U., Scheduling Periodically Occun'ing Tasks on Multiple
Processors, Information Processing Letters, 12(1), 1981, pp. 9-12.

[Leung82] Leung, 1.Y.T. and Whitehead, J., On the complexity of fixed-priority scheduling of
periodic, real-time tasks, Performance Evaluation, Vol. 2, pp. 237-250, 1982.

[Liestm86] Liestman, A.L. and Campbell, R.H., A Fault Tolerant Scheduling Problem, IEEE
Transactions on Software Engineering, SE-12(11), November 1986, pp. 1089-1095.

{PradhaSG] Pradhan, D.K., Fault-Tolerant Computing -- Theory and Techmques Volumes I and
11, Prentice-Hall, Englewood Cliffs, N.J., 1986.

[Randel78] Randell, B., Lee, P.A,, and Treleavan, P.C., Reliability Issues in Computing System
Design”, ACM Computing Surveys, Vol. 10, No. 2, 1978, pp. 123-166.

[Rennel84] Rennels, D.A., Fault-Tolerant Computmg -- Concepts and Exampics, IEEE Trans. on
Computers, Vol. C-33, No. 12, December 1984, pp. 44-49,

{Siewio82] Siewiorek, D.P. and Swarz, R.S., THe Theory and Practice of Reliable System
Design, Digital Press, Bedford, Mass. 1982.

[Stanko88] Stankovic,J.A., Misconception of Real-Time Computing, IEEE Computer, Oct. 1988,
pp. 10-19.

[Ullman76] Ullman, J.D., Complexity of Sequencing Problems, Computer and Job/Shop Schedul-
ing Theory, E.G. Coffman, Ed., John Wiley, New York, 1976, Chap. 4

[Zhao87] Zhao, W., Ramamritham, K., and Stankovic, J.A., Scheduling Tasks with Resource
" Requirements in Hard Real-Time Systems, IEEE Trans.on Software Engineering, Vol.
SE-13, No. 5, May 1987, pp. 564-577. :

18



Fault-Tolerant Real-Time Multiprocessor Scheduling

5* ' T=10
T1 T2 T=10 Processorl 5
Processorl 5 4 Processor?2 4 : 3
Processor2 4 | 3 . Processor3 5
T3 T4 TS5 o 4 3
. Processord :
Figure 1 -
Figure 2
T=16
Processorl 5 . ‘
Processorl
Processor2 4
" Processor2
Processor3 4
Processor3 |
Processord 3 (P4
+6-5 T=10
o Processorl 4
Processorl
Processor2 3 3 \\
Processor2 3 :
| ' - Figure 6
Figure 5
* T=19 Processori
Processorl |
Processor2
* Processor2
: Processor3

Figure 7

19



Fault-Tolerant Real.Time Multiprocessor Scheduling

Processors

22
21
20

19

18
17
i6
15
14
i3

12
11

LB IR RN HeuriStic I

o
[—]

— DSt Possible &
Heuristics 2

T=90 1<=Ci<=19

P R R N T - - TR -

25 30 35 40 45 50 55 60 65
: : Tasks

Figure 9: Compa‘fisbn of Two Heuristics

20



