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Abstract

We introduce the dense skip tree, a novel cache-conscious randomized data structure. Algo-
rithms for search, insertion, and deletion are presented, and they are shown to have expected
cost O(logn). The dense skip tree obeys the same asymptotic properties as the skip list and
the skip tree. A series of properties on the dense skip tree is proven, in order to show the
probabilistic organization of data in a cache-conscious design. Performance benchmarks show
the dense skip tree to outperform the skip list and the self-balancing binary search tree when
the working set cannot be contained in cache.

1 Introduction
The persistent disparity between processor and memory speeds, the so-called “memory wall” [1,
2], is a pervasive component of modern computing. Over the past two decades, while processor
performance has doubled every 18 months, memory latency has improved only by about 7% a year
[3]. The lag of latency versus bandwidth is observed across all layers of information processing,
from the microprocessor, to the memory, the hard drive, and the network interconnect. In the time
that bandwidth doubles, latency improves by no more than a factor of 1.2 to 1.4 [4]. Numerous
techniques have been developed for the cache-conscious access of data within the framework of the
multilevel memory hierarchy. These techniques include loop transformation [5, 6], data clustering
[7], data coloring [8], and heap reorganization through garbage collection [9], or dynamic profiling
[10]. These techniques are deterministic in nature. This paper introduces the dense skip tree, a
variant of the skip list, as a novel cache-conscious randomized data structure that is designed to
probabilistically achieve a cache-conscious access of data. The randomization technique is a novel
addition to the set of deterministic techniques that are used to reduce latency effects associated
with the memory wall.

The skip list [11] is a randomized data structure that is balanced probabilistically in order to
yield expected O(logn) complexity costs for common operations. The local balancing of the skip list
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has made it an attractive data structure in a variety of applications such as peer-to-peer distributed
search [12, 13], multiple predicate matching in database systems [14], high-dimensional approximate
nearest neighbor search [15], and concurrent lock-free information retrieval [16–18]. The skip list
provides fast algorithms for insertion and deletion, but its search performance is restricted as only
one key is stored per data structure node. The dense skip tree allows multiple keys to be stored
per node, yet with no global constraints on the distribution of nodes. Furthermore, the number of
keys stored per node is shown to be a derived property of the dense skip tree. It will be shown that
the dense skip tree is a compelling alternative to the skip list and the skip tree as a cache-conscious
randomized data structure.

2 Dense Skip Tree Algorithms
We define the dense skip tree data structure and provide algorithms for search, insert, and delete
operations. The search operation is identical to any other search on a k-ary tree, such as searching
a binary tree or a B-tree. The insert operation will be described in detail in this section. The
delete operation will not be discussed. However, the algorithm for deletion can be deduced from
the insertion algorithm.

Definition 1. A skip tree [19] is defined to be a multiway search tree, such that the following
properties hold for all nodes:

(D1) Each node contains k keys in sorted order, k values, and possibly-null references to k+1
children for k ≥ 0.

(D2) Each node contains a height h for h ≥ 0.

(D3) Each key is assigned a random height at insertion.

(D4) A node with height h has children with height h− 1. Nodes at zero height do not have
children.

(D5) The left subtree of any key contains only keys of lesser value.

(D6) The right subtree of any key contains only keys of greater value.

A leaf node is defined as a node with height 0. The root node is defined as the node with the
maximum height. Notice that in the skip tree, all paths from the root node to a leaf node have
the same length. A skip tree node with 0 keys is defined as a white node. The skip tree consists
predominantly of white nodes, in order to maintain the path length invariant. The dense skip tree is
defined as a compact variation on the skip tree data structure. The dense skip tree definition shares
properties (D2), (D3), (D5), and (D6) from the original skip tree. (D4) is relaxed in the dense skip
tree to permit any monotonic decreasing relationship between parent and children heights. With
this relaxation, the existence of nodes with zero keys is no longer necessary.

Definition 2. A dense skip tree is defined to be a variant of the skip tree, such that the following
properties are different:

(D1’) Each node contains k keys in sorted order, k values, and possibly-null references to k+1
children for k ≥ 1.

(D4’) A node with height h has children with heights that are less than h.
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Figure 1: (a) A dense skip tree with (b) corresponding Ki and Hi vectors

An example of a dense skip tree is shown in Figure 1(a). Nodes are shown with their keys but
without their values. The number above each node indicates the height of that node. Insertion on
a dense skip tree is defined as a recursive algorithm that traverses from the root of the tree to the
leaves. The accompanying pseudocode is shown in Algorithm blocks 1-4. The insert operation first
checks the current node to determine if the target key is present (Algorithm 1).

Algorithm 1 Dense skip tree insertion, preamble
1: procedure insert(node : Node, key : Key, value : V alue, height : N)
2: Search for key in current node
3: if (key is found) then
4: update the value in node and exit
5: end if

There are three possible cases to consider for the insertion of a key. The height of the new key
is either less than, equal to, or greater than the height of the current node. If the height of the
new key is less than the height of the current node, then the new key must be inserted into the
appropriate child of the current node (Algorithm 2).

Algorithm 2 Dense skip tree insertion, case one
6: if (height < node.height) then
7: find the insertion point of the new key in the current node
8: if (∃ a child at the insertion point) then
9: recursively insert (key, value, height) in child node

10: else
11: create singleton child (key, value, height)
12: add child to the current node at the insertion point
13: end if
14: return the current node

A singleton node is a node that contains exactly one key, one value, and two NIL children.
The insertion point of a key is the index at which a key would be inserted in order to maintain the
ordering of the keys. The insertion point of an array of size n is a value in the interval [0, n], which
may lie outside the bounds of the key array but always lies inside the bounds of the children array.
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The insertion of a new key at the insertion point preserves properties (D5) and (D6).
In the second case of the insert operation, the height of a new key is equal to the height of the

current node (Algorithm 3). At this point the split operation is defined. The split operation takes a
target node, a target key, and a new value as input parameters. It returns either one node or a pair
of nodes as the result. If the target node or any of its descendant nodes contains the target key,
then the value associated with the target key is updated and the target node is returned. Otherwise
the node is split into two trees, a left tree that contains keys less than the target key, and a right
tree that contains keys greater than the target key.

Algorithm 3 Dense skip tree insertion, case two
15: else if (height = node.height) then
16: find the insertion point of key in node
17: split the child at the insertion point
18: if (split returns two nodes) then
19: add the key to this node at the insertion point
20: add the two children to this node at the insertion point
21: end if
22: return the current node

In the last case, the height of a new key is greater than the height of the current node (Algorithm
4). The current node is split into a left subtree and a right subtree. If the split operation returns
a single result, then update the existing key with a new value. If the split operation returns two
nodes, then create a singleton node with the (key, value) pair and insert the two subtrees as the
children of this singleton node.

Algorithm 4 Dense skip tree insertion, case three
23: else . (height > node.height)
24: split the current node
25: if (split returns two nodes) then
26: create a singleton node
27: add (key, value, height) to the singleton node
28: add the two children to the singleton node
29: return the singleton node
30: end if
31: end if
32: end procedure

The split operation of a dense skip tree is similar to the split operation of a B-tree or the split
operation of a regular skip tree. The split algorithm proceeds down a path of skip tree nodes and
partitions the path according to the new key. The new paths must be created in order to preserve
properties (D5) and (D6) of the skip tree. When the split algorithm terminates, one of the created
paths will hold those keys that are less than the new key, while the other path will hold keys greater
than the new key.

3 Dense Skip Tree Properties
In this section we will show that the number of keys per node of a dense skip tree is distributed
according to a geometric distribution, and that the expected height of the tree of N keys is bounded
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by logQ N . Combining these two results will yield the claim that the expected time for search,
insert, and delete operations is O(logQ n). Property (D3) of the dense skip tree definition assigns
random heights to each key, which is clearly not a specification of the number of keys per node.
The proofs are novel to the dense skip tree design, and serve as a completion of the skip tree
proofs that are outlined by Messeguer [19]. The proof techniques used in this paper represent a
significant departure from the methods outlined in the original skip tree paper. Let H indicate the
random variable for the height of some key in the tree. We specify that the heights of the keys are
distributed according to a geometric distribution:

Pr(H = h) = qhp where p+ q = 1 and Q = 1/q

Theorem 1. Let S indicate the number of keys per node, which is defined to be the size of a node.
The mean value of S is 1/q and the variance of S is p/q2.

Because the heights are assigned to keys independently of natural ordering of the keys, we may
sort the heights based on the natural ordering of the keys in the data structure. Then let Hi
represent the height of key Ki in some sorted sequence of keys {K0,K1,K2, . . .}. The size of a node
is the the number of keys in the sequence observed with height Ho = h, before a key is found with
height greater than h. This is because smaller heights do not divide the current node, while larger
heights signal the start of a new node (see Figure 1b). The sequence of heights {H0, H1, H2, . . .}
can be characterized by a Markov chain with three possible states for each Hi random variable:

(INC) Increment state :
(Hi = h) and (H0, H1, H2, . . . ,Hi−1 ≤ h)

(NEU) Neutral state :
(Hi < h) and (H0, H1, H2, . . . ,Hi−1 ≤ h)

(TER) Terminating state :
At least one of {H0, H1, H2, . . . ,Hi} is greater than h. This is an absorbing state.

The transition matrix A is given by:

A = INC
NEU
TER

INC NEU TER p(H = h) p(H < h) p(H > h)
p(H = h) p(H < h) p(H > h)

0 0 1

 =
 qhp 1− qh qh+1

qhp 1− qh qh+1

0 0 1


The expected value for the size of a node, E(S), is entry (1, 1) of the fundamental matrix F ,

which gives the expected number of times the process will be in transient state INC given that it
started in state INC [20, 21]. The variance V ar(S) is entry (1, 1) of the variance matrix V . Let Θ
represent the transition matrix for the transient states.

Θ =
[
qhp 1− qh
qhp 1− qh

]

F = (I −Θ)−1 =
[

1− rp 1− r
−rp r

]−1

=
[

1/q 1/qr − 1/q
p/q 1/qr − p/q

]
where r = qh

Let s = 1/q(1/r − 1) and t = 1/q(1/r − p).

5



V = F (2Fdg − I)− Fsq

=
[

2/q2 − 1/q s(2t− 1)
2p/q2 − p/q s(2t− 1)

]
−
[

1/q2 s2

p2/q2 t2

]
=
[
p/q2 s(2t− 1)− s2

p/q2 s(2t− 1)− t2

]

Theorem 2. The probability mass function of S is Pr(S = s) = ps−1q for s ≥ 1.
To determine the probability mass function of S, reduce the problem to a well-known game

from probability analysis. Suppose a game consists of independent turns (τ) at which one of three
mutually exclusive events can occur [22, 23]. The events have been labeled with their transition
states from the Markov process.

(INC) The game continues with the addition of one point to the score. Let a = Pr(τ =
INC) = Pr(H = h).

(NEU) The game continues without addition to the score. Let b = Pr(τ = NEU) = Pr(H < h).

(TER) The game terminates without addition to the score. Let c = Pr(τ = TER) = Pr(H >
h).

Let X represent the random variable for the number of points scored in a game. The probability
mass function of X will be determined through its probability generating function. The generating
function of X is determined by application of the partition theorem for expectation. The reduction
to the problem of computing node size is made by S = X + 1, as X fails to account for the initial
key K0 with height H0 = h.

E(X) = a·E(X|INC) + b · E(X|NEU) + c · E(X|TER)
gX(z) = E(zX) = a · E(zX |INC) + b · E(zX |NEU) + c · E(zX |TER)

E(zX |INC) = E(zX+1) = zE(zX)
E(zX |NEU) = E(zX)
E(zX |TER) =

∑∞
x=0 z

x Pr(X = x|TER) = (s0)(1) +
∑∞
x=1(sx)(0) = 1

gX(z) = a · zgX(z) + b · gX(z) + c

= c

1− b− za = c

1− b

(
1− za

1− b

)−1
= c

1− b

∞∑
k=0

(
za

1− b

)k
Pr(X = x) = c

1− b

(
a

1− b

)x
= qh+1

1− (1− qh)

(
qhp

1− (1− qh)

)x
= pxq

Pr(S = s) = Pr(X = s− 1) = ps−1q for s ≥ 1

Corollary 1. Search, insert, and delete operations on a dense skip tree have expected cost O(logQ n).
To derive estimates for the height of the tree, let Mn represent the maximum height observed

on a sequence of n keys. Mn is an upper bound on the longest path from the root to the leaves of
the tree. It has been shown that E(Mn) = logQ n+ γ

L
+ 1

2−δ(logQ n)+O

( 1
n

)
, where L = logQ, γ

is Euler’s constant, and δ(x) is a periodic function of period 1 and mean 0 [24]. Thus the expected
height of the tree is bounded by logQ n for n� 0 as logQ n is the dominating term. Theorem 1 has
shown that the expected size of a node is a constant. If the expected height of the tree is bounded
by logQ n, then the expected cost for search, insert, and delete operations is O(logQ n).
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Theorem 3. The dense skip tree has fewer pointers per item than either a binary tree or a skip list.
The space efficiency of the dense skip tree can be estimated by the expected number of pointers

per element of the tree. Keys cannot migrate up or down the tree once they have been inserted.
Therefore leaf nodes do not need storage allocated for children pointers. p is the fraction of keys
that reside at the leaves of the tree, while q is the fraction of keys that reside above the leaves. The
expected number of pointers per node in the upper level of the tree is equal to the expected number
of keys per node plus one. Therefore the expected number of pointers per key is: q · (E(S) + 1) +
p · (0) = q · (1

q + 1) + 0 = 1 + q. This is more space-efficient than the expected number of pointers
per key in a binary tree (2 pointers per key) and the expected number of pointers per key in a skip
list (1/p pointers per key).

In summary, the basic operations on a dense skip tree share the same asymptotic costs for their
expected values as the skip list and the skip tree. The asymptotic expected costs of search, insert,
and delete operations on dense skip trees, skip trees, and skip lists equal the asymptotic worst-case
costs of these operations on balanced binary trees. In section 5, it is shown that dense skip trees
make efficient use of spatial locality to outperform the other data structures in practice, when the
working set cannot be contained in cache.

4 Related Work
The skip tree was introduced by Messeguer [19] as a generalization of the skip list with simpler
algorithms for concurrent insert and delete operations. Several papers have noted the similarities
between skip lists and other related data structures [25–28]. Comparisons are discussed between
skip lists and randomized treaps [26], and skip lists and randomized binary search trees [29]. The
treap data structure is a hybrid of a tree and a heap; hence the name ’treap’. Each node of a treap
stores a key, a priority, and left and right children pointers. The keys of a treap are arranged in
sorted order and the priorities are arranged in heap order. Randomized binary search trees are a
refinement of randomized treaps in which the priorities are random integers drawn from the interval
[0, n] where n is the current size of the tree.

Two related techniques for reducing cache misses in data structure design are cache-oblivious
data structures [30, 31] and cache-conscious data structures [8]. Cache-oblivious algorithms are
designed to perform an asymptotically optimal number of memory transfers given any memory
hierarchy and at all levels of the hierarchy. In contrast, cache-conscious data structures are designed
with explicit knowledge of either one or several block line sizes in the memory hierarchy. Cache-
conscious B-trees store fewer pointers than regular B-tree by storing all children nodes contiguously
and keeping only the pointer to the first child node. The dense skip tree is distinguished from the
cache-conscious B-trees by the employment of internal fragmentation in cache-conscious B-tree
nodes to maintain spatial locality.

5 Performance Analysis
The dense skip tree, the skip list, and the redblack tree were compared in these performance
benchmarks. Throughput tests are conducted on the dense skip tree measuring the number of
operations per millisecond under varying workloads of search, insert, and delete operations. Three
synthetic performance benchmarks were created using a random uniform distribution of integer
keys and values. All keys per run are guaranteed to be unique. The dense skip tree, the skip list,
the red-black tree were compared in these performance benchmarks. The dense skip tree and the
skip list were implemented in C by the authors, while the red-black tree implementation comes
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Figure 2: (a) Benchmark performance and (b) simulation results for 90% search, 5% insert, and
5% delete operations.

from the standard template library (STL) map container that is provided by C++. The tests were
compiled using g++ version 4.2.3 with -O2 and -finline-functions. The benchmarks were run on a
3.0 GHz Pentium 4 workstation. The skip list was measured with p values of 1/2, 1/4, or 1/8 , while
the dense skip tree was measured with a q value of 1/16.

Performance benchmarks were completed under three different loads of search, insert, and delete
operations. Figure 2a shows the results for a workload of 90% search, 5% insert, and 5% delete
operations. Figure 3a shows 33% search, 33% insert, and 33% delete operations, and Figure 3b
shows 0% search, 50% insert, and 50% delete operations. All the figures are plotted with relative
advantage on the y-axis, as compared to the C++ STL red-black implementation as a baseline
(horizontal dashed line in the figure). If the throughput ratio as compared to the red-black tree
implementation is greater than one (r > 1), then relative advantage is defined as 1 − r. If r is
less than one, then relative advantage is defined as 1/(1−r). Relative advantage allows performance
gains and losses to be plotted together, such that their respective distances from the x-axis can be
compared in a meaningful way. For example, a relative advantage of 1.0 implies a ×2 change in
throughput, while a relative advantage of −1.0 implies a ×1/2 change in throughput.

Both advantages and disadvantages of the skip list are best observed under the scenario of
intense insertion and deletion (Figure 3b). When the working set fits entirely in cache, the lack
of global rebalancing in skip list algorithms provides a performance gain. Note that the relative
advantage is greatest when the skip list behaves as a linked list (when p is 1/8, and thus 7/8 of
the items have zero height). However, the smaller parameters of p are disadvantageous when the
working set extends beyond the memory wall. For large working sets, it is shown that a p-value of
1/8 performs the worst under intense insertion and deletion.

In order to test the hypothesis that dense skip tree search operations efficiently exploit the
memory hierarchy, the benchmark from Figure 2a was run in a cache simulator. The results of
the cachegrind simulator are shown in Figure 2b. Cachegrind is a cache profiler from the valgrind
instrumentation framework [32]. L1 and L2 cache sizes and cache line associativity parameters
were set to match the Pentium 4 architecture (L1 data cache 16 kbytes, 8-way set associative,
64-byte line size; L2 cache 1024 kbytes, 8-way set associative, 64-byte line size). No cache misses
were observed for data sets smaller than 216 elements. L2 cache misses are plotted on the y-axis, as
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Figure 3: Benchmark performance under (a) 33% search, 33% insert, and 33% delete or (b) 0%
search, 50% insert, and 50% delete.

compared to the cache misses incurred by the C++ STL red-black implementation. The simulation
confirms that spatial locality of reference is highly preserved in dense skip trees as compared to the
skip list or the self-balancing binary tree. The dense skip tree incurs 0.10 to 0.54 as many cache
misses per operation as compared to the red-black tree, while the skip list incurs 0.8 to 3.0 cache
misses per operation as compared to the red-black tree.

6 Summary
We have introduced the dense skip tree, a cache-conscious randomized data structure. The dense
skip tree does not have any global rebalancing requirements; the sizes of nodes are a probabilistic
quantity that is derived from the distribution of the height of keys. The dense skip tree was proven
to have the same asymptotic expected costs as the skip list for search, insertion, and deletion
operations. It has been shown to outperform the skip list when the data structures cannot fit
in cache memory. A cache simulation of the performance benchmarks support the claim that the
dense skip tree is an attractive alternative to the skip list for large working sets. The randomization
technique for the probabilistic cache-conscious access of data is a novel addition to the set of
deterministic techniques that have been employed to mask the effects of the “memory wall”. The
cache-conscious dense skip tree is particularly appealing when considering a concurrent shared
memory architecture. A concurrent dense skip tree should offer performance improvements over
a concurrent skip list, as the memory wall for multicore processors must now contend with the
requirements imposed by the cache coherence protocol.
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