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Abstract

Energy and cooling costs of web server farms are
among their main financial expenditures. This pa-
per explores the benefits of dynamic voltage scal-
ing (DVS) for power management in server farms.
Unlike previous work, which addressed DVS on in-
dividual servers and on load-balanced server repli-
cas, this paper addresses DVS in multi-stage service
pipelines. Contemporary Web server installations
typically adopt a three-tier architecture in which the
first tier presents a Web interface, the second exe-
cutes scripts that implement business logic, and the
third serves database accesses. From a user’s per-
spective, only the end-to-end response across the en-
tire pipeline is relevant. This paper presents an al-
gorithm for minimizing the total energy expenditure
of the multi-stage pipeline subject to soft end-to-end
response-time constraints. A distributed power man-
agement service is designed and evaluated on a real
3-tier server prototype for coordinating DVS settings
in a way that minimizes global energy consumption
while meeting end-to-end delay constraints. The ser-
vice is shown to consume as much as 30% less energy
compared to the default (Linux) energy saving policy.

1 Introduction

Complex web services are commonly realized by
multi-tier web server systems in order to distribute
computation across several computers. The differ-
ent tiers perform different parts of request processing.
For example, an e-business service usually consists of
an HTTP server tier, an application server tier, and a
database server tier. Client requests to these systems
generally have highly varying and unpredictable re-
source requirements at each tier. Requests for static
content such as images or binaries are often served
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by the first tier alone, with no resource usage in the
others. On the other hand, an online purchase trans-
action would likely have a large processing demand on
the application server and the database server, with
the HTTP server only transfering a trivial amount of
data.

In this paper, we consider the energy efficiency of
multi-tier web servers hosting soft real-time services
with guaranteed end-to-end response times. These
web servers are often significantly over-provisioned in
order to meet target response delay constraints even
under peak loads. This practice, however, leads to
poor overall energy efficiency since such systems are
typically under-utilized. The energy (and cooling)
costs of large server farms are reported to be a sig-
nificant part of their total upkeep and maintenance
expenses [5, 2]. Excess power consumption not only
hurts the operator economically, but it also limits
the number of servers per unit volume (in the ma-
chine room) due to heat dissipation considerations
[3]. Hence, there is an increasing need for solutions
that reduce the system’s energy consumption with as
little effect on performance guarantees as possible.

Dynamic Voltage Scaling (DVS) is a powerful tech-
nique that allows significant energy savings by sac-
rificing some system performance. Reducing volt-
age requires a roughly proportional decrease in fre-
quency, but power decreases quadratically with volt-
age. One of the key advantages of DVS (compared to
other schemes, such as turning machines off) is that
the overhead of performance adjustments is very low,
and thus it allows for an agressive power saving pol-
icy. Previous research has studied DVS in a single
web server with performance guarantees [16]. To our
knowledge, no work has been done to address DVS
in multi-tier web servers with end-to-end delay con-
straints.

In this paper, we design, implement, and evalu-
ate a coordinated distributed DVS policy for a tra-
ditional three-tier web server system, based on dis-
tributed feedback control driven by a simple stage
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delay model. We also present the formulation of the
problem of determining the optimal DVS policy for
such systems. We show experimental results confirm-
ing that our solution is efficient and stable.

The rest of this paper is organized as follows.
Related work is presented in Section 2. Section 3
presents the general system architecture and DVS
solution. Section 4 details the implementation. Per-
formance evaluation is presented in Section 5. The
paper concludes with Section 6.

2 Related Work

The importance of reducing both energy and power
consumption in server systems is now well-known,
and has become a major research topic. Several pa-
pers [3, 5, 2] have made the case by pointing out
negative environmental effects, high operating costs,
power density problems, and expensive infrastructure
requirements of large server sites.

Earlier DVS research primarily addressed stan-
dalone, battery-operated, embedded mobile devices,
which still remains an active research area [13]. Fam-
ilies of DVS algorithms integrated with an RTOS
scheduler are proposed for periodic hard real-time
task sets in [14, 1, 10]. DVS algorithms assuming
similar task sets and a continuous frequency setting
model are presented in [22] for multi-processors. Re-
cently, [23] presented the first feedback control-based
DVS framework with EDF scheduling in hard real-
time systems. A soft real-time energy-efficient sched-
uler for periodic tasks in embedded systems is pre-
sented in [21]. It employs a DVS algorithm similar
to the most aggressive one in [14], but it is based
on CPU cycle demand distribution histograms built
online. It can save more energy while providing sta-
tistical performance guarantees.

Much of the previous literature is focused on mul-
timedia task sets. The authors of [17] devise a DVS
algorithm for portable systems, which relies on of-
fline workload characterization and probabilistic on-
line detection of arrival or service rate changes. Other
DVS algorithms targeted at soft real-time systems
predict near-future processing requirements (load)
based on past history. PAST [20], one of the first such
algorithms proposed by Weiser et al., simply assumes
that the predicted (next) time window will have the
same amount of idle time as the previous window
had. Govil et al. presented and evaluated other pre-
diction schemes [6], including AGED AVERAGES,
which uses a moving average of past samples with ge-
ometric decay, and PEAK, which expects short peaks
in load, and was shown to outperform PAST. Re-

cently, the authors of [19] applied control theory to
predict the future workload. They designed an algo-
rithm, nqPID, that outperforms the aforementioned
ad-hoc algorithms, while its performance is also less
dependent on parameter tuning. However, their re-
sults were validated only by simulation against a pe-
riodic task model. Feedback control techniques are
used with DVS in [8, 9] to save energy while guar-
anteeing frame rate in multimedia workloads. The
prediction is calculated based on a queueing model.
In [8], similar energy savings are reported with re-
duced computation and improved quality of service
over [17]. The authors of [9] use a dead-zone control
method to provide strong real-time guarantees with-
out requiring prior workload knowledge like many
multimedia DVS schemes. However, since it controls
buffer levels, it is not applicable to systems that do
not tolerate buffering latency.

Several papers address DVS in standalone servers
and server clusters. The authors of [5] present a soft
real-time feedback control-based DVS policy com-
bined with request batching. Simulation results show
up to 42% savings of CPU energy in a standalone web
server, when 90% of the response times are within the
target deadline. They do not, however, validate their
results by implementation in a real system, nor do
they measure total system energy savings. A real
DVS policy is implemented in [16] for standalone
web servers with multiple QoS service classes, which
have soft real-time deadlines. The system builds on a
proven schedulability bound for aperiodic tasks, due
to which it can sustain less than 2% deadline miss
ratio. However, the work is restricted to a single tier
server. Elnozahy et al. present and evaluate by sim-
ulation five different power management schemes for
single-tier server clusters [4]. The schemes employ
VOVO (vary-on/vary-off, i.e. turning nodes on and
off depending on cluster load) and/or independent
or coordinated (across the cluster) DVS. VOVO at-
tempts to consolidate all workload to just as many
nodes as necessary, leaving enough slack for load
spikes. An independent DVS policy (IVS) is com-
pletely node-local, while a coordinated one (CVS) is
constrained to a small frequency range around the
cluster average. VOVO combined with CVS is shown
to be superior. However, they do not address service
pipelines.

A power-aware scheduler for distributed systems
with hard real-time end-to-end delay constraints is
proposed in [7]. It is capable of determining an opti-
mal voltage schedule in a single task chain (such as
a multi-tier web server), but it assumes periodic task
chains and requires worst case execution times. Our
work is different from the above literature in that we
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present and evaluate the first system implementation
of a feedback control-based DVS policy in a multi-tier
(i.e. pipeline) service that is not restricted to periodic
task instances.

3 Architecture

Our multi-tier web service architecture consists of a
pipeline of several processing stages. The processing
at each stage invokes services of the next stage in a
request-response fashion. Requests from a client are
addressed to the first stage. Depending on content,
they may be processed by subsequent stages sequen-
tially. Such processing is typically in response to calls
to business logic scripts and database queries. Even-
tually, calls and queries return to their originating
stage with a response to be sent back to the client.
This is the common architecture of most current
three-tier systems, where the first stage, an HTTP
server, requests dynamically generated content from
the second stage, an application server, which in turn
requests data from the third stage, a database server.

The non-traditional element in our energy-efficient
architecture is that the server machines in the afore-
mentioned pipeline have DVS-capable processors. By
employing our novel coordinated DVS policy, the
servers minimize the overall power consumption of
the web service while satisfying the (soft) real-time
end-to-end delay constraints on request processing.
The controlled variable is the end-to-end response
delay, with the set-point being a target end-to-end
delay value. To prevent frequent DVS changes in re-
sponse to delay fluctuations, a dead-zone is imposed.
In other words, no corrective action is taken as long
as the measured end-to-end delay lies within an ac-
ceptable range between a low and a high threshold. If
either threshold is violated, the feedback loop changes
DVS settings in the pipeline to recover from the vio-
lation.

3.1 Delay Characteristics

End-to-end delays are continuously measured at the
first stage, where client requests enter and responses
leave. The average CPU utilization Ui is measured at
each stage i with sampling period T . The measured
end-to-end delay, D, can be broken into a delay com-
ponent Di for each stage i. Hence, for an N -stage

system, D =
∑N

i Di. In turn, the delay Di, on stage
i, can be broken into a CPU processing delay, denoted
DCPU

i , and a blocking delay, such as I/O blocking,
denoted Dblock

i . This delay is incurred by a request
when waiting on or using a resource other than the

CPU.
The DVS mechanism manipulates CPU speed and

voltage only. Thus, it can only control the CPU
delay components, DCPU

i . In contemporary multi-
tier servers, significant non-CPU delay components,
Dblock

i , are typically present due to network latency
and database I/O. This happens to be a fortunate cir-
cumstance from the perspective of DVS schemes, as
opposed to a disadvantage. The reason is that DVS
schemes opportunistically increase CPU delay DCPU

i

whenever possible (by slowing processors down) in
order to save energy. If the end-to-end delay is pri-
marily a function of Dblock

i and not DCPU
i , more ag-

gressive energy savings can be accomplished without
adverse effects on overall delay performance.

3.2 Dynamic Voltage Scaling

To design an optimal feedback-based DVS scheme in
terms of energy savings, we make a couple of assump-
tions. First, we assume that CPU delay DCPU

i at
stage i is a convex function f(Ui) of the CPU uti-
lization, Ui, at that stage. In other words, stage
delay increases progressively more steeply as CPU
utilization increases. Formally, the second derivative
d2f(Ui)/d2Ui is positive. This assumption is gener-
ally true of busy servers according to queueing the-
ory. For example, given a Poisson arrival process and
exponentially distributed execution times, we know
from queueing theory that DCPU

i = T/(1−Ui), where
T is a constant. Hence, d2f(Ui)/d2Ui = 2T/(1−Ui)

3,
which is positive for Ui < 1.

The convexity assumption leads to a simple set
of rules for adjusting CPU speed to maximize en-
ergy savings subject to delay constraints. Namely, if
the measured end-to-end delay, D, exceeds an upper
threshold, step up the frequency of the most loaded
machine. Similarly, if the delay drops below a lower
threshold, step down the frequency of the least loaded
machine.

Intuitively, when the end-to-end delay exceeds the
desired value, some processor’s frequency must be
stepped up to decrease that processor’s utilization
and consequently decrease delay. The convexity of
the utilization-delay function implies that stepping-
up the frequency of the most utilized processor is a
good rule-of-thumb, because it results in the max-
imum reduction in delay for the same reduction in
utilization. Hence, hopefully, delay can be brought
down to the set point with the least additional en-
ergy expenditure.

By the same token, when the end-to-end delay is
below threshold, stepping-down the frequency of the
least utilized processor is a good choice because it
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results in the least impact on delay for the same in-
crease in utilization. Hence, this processor can pre-
sumably be slowed down the most resulting in the
most energy savings.

The main advantage of the above algorithm is sim-
plicity. It uses two simple rules that require only per-
machine total utilization measurements and a mea-
surement of end-to-end delay. In particular, it does
not need to know individual stage delays, task execu-
tion times, or processor power characteristics.

The algorithm does not actually lead to an optimal
solution to the energy minimization problem because
it implicitly assumes that energy savings are propor-
tional to utilization changes. In general, this is not
true. Fortunately, if the processors’s power-frequency
curve and the workload’s utilization-delay function
are known, the above optimization algorithm can be
easily adapted to produce the optimum energy con-
sumption as shown below.

3.3 Optimality Conditions

Let us assume that the power consumption Pi of stage
i can be approximated by:

Pi = Aif
n
i + Bi (1)

where Ai and Bi are constants.1 This assumption is
accurately satisfied in realistic systems, with n rang-
ing between 2.5 and 3. Second, assume that the delay
DCPU

i of a stage i is approximately related to its uti-
lization Ui by the equation:

DCPU
i = CiU

m
i + Gi (2)

where Ci and Gi are constants. In reality, this equa-
tion is not exact. However, it is general enough to
approximate a large variety of functions in the region
around the nominal operating point of the system. In
general, it is possible to obtain the exponents n and
m, and constants Ai, Bi, Ci, and Gi by curve fit-
ting against empirical measurements obtained from
profiling the system.

If the workload arrival rate at stage i is λi cy-
cles/sec, the utilization Ui of that processor is λi/fi,
where fi is the service rate or frequency in cycles/sec.
Equivalently, fi = λi/Ui. Substituting in Equa-
tion (1) and summing over the entire pipeline, the
total power consumption P of the N -stage system
can be expressed by:

P =

N
∑

i=1

Ai
λn

i

Un
i

+ Bi (3)

1The general rule of thumb is that P ∝ V 2f ∝ f3. In
reality, f ∝ V is a simplification, hence our more general ex-
pression.

Our objective is to minimize that power consumption

subject to the constraint
∑N

i=1 DCPU
i + Dblock

i ≤ L,
where L is the maximum desired latency. Taking the
equality condition as the limiting case, and substitut-
ing from Equation (2), this constraint can be rewrit-
ten as:

N
∑

i=1

CiU
m
i = K (4)

where K = L−
∑N

i=1 Dblock
i −

∑N
i=1 Gi, which we as-

sume is a constant independent of frequency settings,
since blocking delays are not affected by CPU speed.

To solve the aforementioned constrained optimiza-
tion problem, we first solve Equation (4) for UN ,
which yields:

UN =

(

K −
∑N−1

i=1 CiU
m
i

CN

)1/m

(5)

Then, we substitute for UN from Equation (5) into
Equation (3), which yields:

P =

N−1
∑

i=1

Ai
λn

i

Un
i

+ANC
n/m
N

λn
N

(K −
∑N−1

i=1 CiUm
i )n/m

+B

(6)
where B =

∑N
i=1 Bi. Taking the derivative dP/dUi,

then substituting from Equation (5) back with UN ,
we get for each i:

dP

dUi
= −nAi

λn
i

Un+1
i

+ nANCiU
m−1
i

λn
N

CNUn+m
N

(7)

It can be easily shown that the second derivative in
this case is positive, which means that equating all
derivatives dP/dUi to zero, we find the point at which
power consumption is minimized. From Equation (7),
dP/dUi = 0 gives:

U1

W1
=

U2

W2
= ... =

UN

WN
(8)

where Wi is a weight given by
(

Aiλ
n

i

Ci

)1/(m+n)

.

To minimize power consumption across the pipeline
subject to the end-to-end delay constraint, a feedback
loop is added to equalize the weighted utilizations of
all stages. Utilization is manipulated by changing the
CPU frequency settings.

3.4 Improved Algorithm

To converge on the condition expressed in Equa-
tion (8), average local stage CPU ulization measure-
ments, Ui, are broadcast by each machine at each
sampling period. Average end-to-end delay D is com-
puted by the first stage and also broadcast to all
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stages at each sampling period. Given this informa-
tion, the DVS algorithm on each machine computes
the weighted utilization, Ui/Wi for each stage i. It
is desired to keep these values as equal as possible
while observing that a given deadline miss ratio is
not exceeded.

To ensure that a maximum tolerable miss ratio
r is not exceeded, one can compute (from the ex-
pected workload distribution) the conditional proba-
bility that a deadline miss will occur in the next sam-
pling interval given that the maximum delay observed
in the current sampling interval is some fraction
αhi < 1 of the actual deadline L. We denote this con-
ditional probability by P (D[k+1] > L|D[k] < αhiL),
which is a function of αhi (where D[k] and D[k + 1]
denote the delay measurements in the current and
next samples respectively). If the maximum accept-
able deadline miss ratio is r, we would like to en-
sure that P (D[k + 1] > L|D[k] < αhiL) ≤ r. Given
an analytically derived or empirically measured con-
ditional probability function, the equality condition,
P (D[k + 1] > L|D[k] < αhiL) = r can be solved
for αhi simply by finding the point where the curve
of this function reaches value r. The following two
feedback rules are then applied:

• If D > αhiL (overload), machine i with
maxi{Ui/Wi} steps up its frequency.

• If D < αloL (underutilization), machine i with
mini{Ui/Wi} steps down its frequency (where
αlo < αhi).

The first rule guarantees that the conditions for a sus-
tained miss ratio of r or more are always corrected to
reduce miss ratio. The second rule allows energy sav-
ings to be applied when the system is underutilized.
The parameter αlo can be selected to achieve a good
compromise between power savings and actual dead-
line miss ratio. Finally, note that if Wi are equal for
all stages, the algorithm reduces to the one described
in Section 3.2.

3.5 Discussion

A few remaining issues are worth to point out regard-
ing the proposed algorithm. First, note that when
choosing the sampling period T , one major concern
is to limit controller overshoot as much as possible.
We use a small T value at overload because it pro-
vides high responsiveness. However, such a small pe-
riod is not suitable during underload, because it leads
to a small set of delay samples that makes their av-
erage not sufficiently representative. Therefore, the
sampling period during underload is increased. Our

results indicate that this yields a good compromise
between soft real-time performance and energy sav-
ings.

We rely on single-step actuation as opposed to
changing multiple CPU frequencies at the same time.
This is especially significant since the number of DVS
frequency settings is usually small, and multiple-step
actuation could easily overreact to load variations.
Having said so, the controller gain can be changed
by changing the sampling period. Smaller periods
result in higher gain since acuation is more frequent
(which the actuation step remains the same). It is
important to choose a sampling period that does not
violate loop stability. A control-theoretic analysis of
this loop is carried out for this purpose. Control-
theoretic models of absolute delay control loops have
been presented in [15].

The overall algorithm behavior can be effectively
adapted to user requirements by adjusting the delay
thresholds αhi and αlo. Decreasing these thresholds
generally reduces both deadline misses and power
savings.

Another architectural feature that impacts perfor-
mance is the issue of agreement in our distributed
coordination scheme. Although synchronous coordi-
nation should be capable of guaranteeing coherence
and consistency, it is expensive to enforce. There-
fore coordination (i.e., sharing of utilization values
and end-to-end delay) is done asynchronously. As-
suming that average utilization and average delay do
not change abruptly from sample to sample (which
can be ensured by an appropriate choice of the sam-
pling period), asynchrony has very little effect since
state is not very time-sensitive. However, asynchrony
does give rise to the possibility that, in an overload or
underload situation, there might be no agreement on
which stage should react (albeit there is likely to be
an agreement on whether the system is underloaded
or overutilized). As long as any stage decides to re-
act, lack of agreement can only increase the extent
of system reaction (as two or more machines decide
to perform a corrective action). In other words, lack
of agreement increases controller gain, which can be
easily accounted for in stability analysis.

Let us also remark that since we do not assume that
stage clocks are synchronized, the exact actuation
times may vary throughout the pipeline. We note,
however, that in the worst case, any stage’s reaction
will be late by at most T since the last broadcast
of end-to-end delay. Since we choose T to be small
(compared to end-to-end deadlines) for fast system
reaction, we argue that this delay is acceptable.

Finally, observe that while we described the algo-
rithm for a single class of clients with the same dead-
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line, it is straightforward to generalize to multiple
classes. The only change is that the first stage now
measures the end-to-end delay for each class sepa-
rately. This delay vector is broadcast to other stages.
Let the deadline of class i be Li and its measured end-
to-end delay be Di. Each stage executes the following
two rules:

• If ∃i : Di > αhiLi (overload), machine i with
maxi{Ui/Wi} steps up its frequency.

• Else, if ∃i : Di < αloLi (underutilization), ma-
chine i with mini{Ui/Wi} steps down its fre-
quency (where αlo < αhi).

In our evaluation, we experiment with one class only,
since Apache servers and Linux socket queues do not
support priority scheduling.

4 Implementation

In designing the structure of our implementation, our
primary goal was to make our DVS policy as indepen-
dent of the actual server software as possible. This
is preferable because it is unobtrusive to the server
software that we want to leave intact, and extensible
because it needs not be modified to accomodate a new
server software. There is no need to modify any ex-
isting server software on the source code level as long
as we can measure the end-to-end processing delay on
the first stage without doing so. This may be done by
taking advantage of certain hooks the server software
provides for plugin modules. The Apache web server
[18], for example, does provide such hooks. But our
controller could work with any alternative solution
through the same interface that it provides.

Our prototype three-tier web server system is com-
posed of three laptop computers with DVS-capable
processors, each running Linux 2.6. The first two
computers run Apache 1.3 as an HTTP server and as
an application server, respectively. The third com-
puter runs the MySQL database server [12]. Our
DVS policy is implemented independently as a stan-
dalone daemon to be started on all servers. The
daemons establish TCP connections to the ones run-
ning on their previous and next stages, they self-
coordinate once started on all stages, then they start
controlling the pipeline.

Measuring end-to-end delay in practice is a chal-
lenge, and for this reason it is also a serious limitation
of all delay model-based approaches. True end-to-end
delay could only be measured by the kernel. However,
this would require correlating TCP/IP messages in
the network-level protocol stack based on application-
level (for example HTTP) message content, which is

known to be computationally prohibitive, not to men-
tion that it is heavily application dependent. Alter-
natively, measuring delay in user space is a feasible
yet imprecise solution. We choose this latter solution
because even though it may not be completely accu-
rate, it is much more flexible, and it gives a reasonable
approximation if the network is not the bottleneck re-
source on the first stage.

To obtain end-to-end delay samples, processing de-
lays of the first stage (and thus the whole pipeline)
are measured by our Apache extension module at-
tached to the “post read-request” and the “logger”
hooks. The time elapsed between the invocation of
these two hooks for a given request is its measured
end-to-end processing delay. The DVS daemon run-
ning on the first stage provides a local (System V)
Message Queue IPC interface to gather these delay
samples. The end-to-end delay sample statistics are
periodically sent to all subsequent remote stages via
TCP/IP messages, originating at the first stage.

At the end of each sampling period, average stage
CPU utilization is measured by the DVS daemon on
all stages. The utilization values are obtained from
the the Linux kernel, by reading its clocktick account-
ing statistics from the virtual file “/proc/stat”. Av-
erages for each period are computed by subtracting
the values collected at the end of the previous period
from those at the end of the current period. The av-
erage stage CPU utilizations, along with the stage’s
current CPU frequency setting, are periodically sent
from all stages to each other also via TCP/IP mes-
sages.

As discussed earlier, we select a short sampling pe-
riod during overload for the sake of high responsive-
ness to deadline misses. Our choice is T = 200 ms be-
cause in a typical three-tier system only a small num-
ber of requests exit during this time, which means the
system quickly reacts after observing a few samples.
It also results in a low controller overhead, since co-
ordination data will be measured and sent only five
times per second. During underload, the sampling
period is equal to the deadline. The reason is that
this prevents the controller from decreasing system
capacity before current request delays could be mea-
sured, as long as deadlines are met. This much longer
sampling period does not mean, however, that the
system becomes unresponsive during underload, be-
cause it is implemented in terms of the normal short
periods by aggregating their samples.

The DVS algorithm is invoked at the end of each
(short or long) sampling period. Through the coor-
dination mechanisms described above, all stages ide-
ally have a consistent view of current CPU frequen-
cies, average CPU utilizations, and the end-to-end
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delay samples, hence they can solve the current DVS
problem instance independently. When a stage’s so-
lution indicates so, the stage applies the calculated
frequency adjustment to itself. The actual CPU
speed setting is implemented by invoking the stan-
dard “userspace” frequency scaling governor of the
Linux CPUFreq device driver.

5 Evaluation

We evaluate our algorithm by comparison to a base
case. In the base case, we set the CPU frequency to
constant maximum on all stages. Let us point out
that this does not necessarily mean that the CPUs
will actually constantly run at that frequency. Linux
(as most modern operating systems) attempts to save
power by default when the CPU is idle, even with-
out a DVS policy. The exact way is platform and
parameter-specific, but usually the CPU is turned off
until a hardware interrupt occurs. Our platform uses
the default method for x86 platforms: it executes the
“hlt” instruction, which halts the CPU. Our exper-
imental DVS implementation is run on top of this
policy. Thus, our reported power savings are those
above the aforementioned baseline policy.

5.1 Workloads

To evaluate the expected real performance of our al-
gorithm, we attempt to create a realistic server work-
load modeled after that of a typical three-tier web
server. As most serious services rely on large vol-
umes of data, we create a reasonably-sized database
on the third stage. We have 500 tables, each table
contains 1000 records, and each record consists of 20
fields. All records are initially filled with a key and
19 random fractional numbers. The physical size of
the database prevents it from being entirely cached
on our machine, making this stage I/O-intensive.

The second stage implements its application server
functionality using CGI scripts, which perform data
access and simulate data processing. The script first
requests the database server to perform one of three
different types of data manipulation actions: query
record based on primary key; update record selected
by primary key; and query records based on textual
search pattern. The requested action is randomly
chosen. In the first two cases, the key is randomly
selected from the existing valid keys, and in the third
case, the search pattern is a random 3-digit number as
a substring. This randomization helps avoid invalid
results due to disk caching by decreasing spacial lo-
cality of data accesses. These actions are, although

minimal, representative of many real applications be-
cause they consist of both reads and writes, they in-
volve both simple indexed lookups and complex non-
indexed searches, and they can have highly varied ex-
ecution times. Once the database access is finished,
the script performs numeric calculations to simulate
data processing. This processing, along with the pro-
cessing done by the database client library (before
sending a request to the database server), makes the
second stage CPU-intensive, with the amount of CPU
processing performed depending on the size of the
data set received.

Finally, for the first stage, we create a small
CGI script that sends an HTTP GET request to
the second stage, and copies the response to the
client. It models the non-CPU intensive mediator and
response-assembler role the HTTP server tier typi-
cally has.

Test requests from the client are generated by the
httperf [11] workload generator tool at various aver-
age rates. The request interarrival times are exponen-
tially distributed. An individual TCP connection is
created for each request. Figures 1 and 2 demonstrate
the baseline (no-DVS) end-to-end response delay dis-
tribution for requests generated at average rates of
150 and 300 requests per minute, respectively. We
can see that the distributions are realistic heavy-
tailed ones even at light load, which verifies that our
server workload is appropriate.

5.2 Measurement Setup

We place our three server laptops on one network seg-
ment, making sure that unintended traffic does not
flood it. The workload generator is run on a dedi-
cated client computer located in a separate network
segment. To filter out possible measurement errors
due to lack of client resources, we verify that close to
100% of system time is available for request genera-
tion on the dedicated computer during each test.

To measure the power consumption of the laptops,
we use three custom measurement circuits that sense
the current flowing from each laptop power supply
(AC adapter). Since the adapters provide constant
voltage (18.5V), we need not measure it. Observe
that the adapter’s voltage remains the same even
when the CPU is performing DVS. Hence, our mea-
surements reflect the true total power consumption
of the laptop, including that of the CPU and other
circuits. During power measurements, we remove the
batteries from the laptops, since we do not want to
measure power consumed to charge them, and we
want the laptops to obtain power exclusively from
the AC adapter. Also, since server systems usually
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Figure 1: Workload End-to-end Delay Distribution
at 150 requests/min
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Figure 2: Workload End-to-end Delay Distribution
at 300 requests/min

do not include a display, we turn off the LCD back-
lighting, which drains a significant amount of power.
We do not, however, turn off the display adapter, by
which our power savings could be improved even a
little further without affecting performance.

Current readings for all three laptops are per-
formed simultaneously at a rate of 2000 samples
per second per channel, using three channels of a
Texas Instruments PCI-6034E data acquisition card
installed in a separate computer. The average stage
power consumptions for the test duration are then
calculated offline. Performance data, such as the
deadline miss ratio, is collected from the output of
the workload generator tool.

5.3 Choosing The Delay Thresholds

To evaluate the performance of our DVS algorithm,
we must first make an appropriate choice of the upper
and lower delay thresholds, αhi and αlo, described in
Section 3.4. Violations of these thresholds trigger re-
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Figure 3: Chosing the Delay Threshold

actions to overload and underutilization respectively.
As mentioned in Section 3.4, the upper threshold is
chosen such that P (D[k + 1] > L|D[k] < αhiL) = r,
where L is the end-to-end deadline, D[k + 1] is the
end-to-end delay in the next sampling period, D[k]
is the maximum end-to-end delay measured in the
current sampling period, and r is the maximum tol-
erable deadline miss ratio. In other words, we would
like the DVS algorithm to increase CPU speed when
the conditional probability of a future deadline miss
reaches the maximum tolerable miss ratio. Figure 3
plots the aforementioned conditional probability for
our workload as a function of the delay threshold.
This curve was obtained empirically by observing the
delays in every two successive sampling times. The
conditional probability of a future deadline miss de-
pends on CPU speed because at lower speeds individ-
ual requests contribute more to server delay, hence
causing a larger delay variability. We imagine that in
high performance servers where individual requests
are very small compared to server capacity, the gran-
ularity of individual requests will play a smaller role.
Let us take 5% to be the largest tolerable miss ratio.
From Figure (3), we see that a threshold of αhi = 0.7
guarantees that the maximum miss ratio will remain
below 5%.

The choice of the lower threshold determines how
aggressive power management will be. Empirical
data shown in Figures 4 and 5 suggests that αlo = 0.4
is a good low threshold in the sense of saving the
most power without impacting the miss ratio. Hence,
we use 0.7L and 0.4L are the upper and lower delay
thresholds respectively.

5.4 Performance Results

Next, we evaluate the energy savings and deadline
miss ratio of the 3-tier service that runs our DVS al-
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Figure 5: Power Savings of Different Low Thresholds
(High Threshold=0.9, L=10s)

gorithm. Each data point in our results is obtained
by running an experiment for 3–5 minutes, repeating
and averaging as necessary. Since we want to show
the stable behavior of the system, we eliminate tran-
sient cold-start effects by running a short (18–30s)
lead-in workload prior to starting each experiment.

Figure 6 plots the deadline miss ratio as a function
of the average request rate, which we vary from 0 (no
load) to 700 requests/minute (severe overload). We
perform several sets of experiments for different dead-
lines ranging from 4 to 10 seconds. We choose these
deadlines because given that more than 20% of the
response delays in our workload are inherently over
200ms, a deadline below 4 seconds would be hard to
achieve while saving power. Obviously, on a faster
machine shorter deadlines are possible. The eight-
second rule [24] tells us that users are generally not
willing to wait more than 8 seconds for a web page
to load. Therefore we should not target much higher
deadlines. The graph shows that the system begins
to saturate at 450 requests/minute in each case, and
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Figure 6: Baseline Performance

that saturation is naturally slower with higher dead-
lines.
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Figure 7: Feedback DVS Performance

Figure 7 presents the miss ratio of two versions of
our DVS algorithms. The first version is one were
all weights Wi as assumed to be equal (as an ap-
proximation). The advantage of this version is that
it does not require knowledge of the power caharac-
teristics of the CPUs, and characteristics of machine
workload. If such information is available, however,
it is possible to compute the coefficients Wi derived
in Section 3.4. Figure 8 shows the resulting improved
(optimal) algorithm using weights derived from em-
pirical measurements. We can see that both systems
successfully control the end-to-end delays so that at
least 95% of the deadlines are met when the system is
underloaded. Even when it is overloaded, the dead-
line miss ratio still closely follows that of the base
case. As we see next the improved DVS algorithm
saves more power.

To illustrate what energy savings are achieved, in
Figure 9, the total power consumption of the three
servers using the feedback DVS policies is compared
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to the total power consumption using the baseline
policy. For each load level, the power samples are
obtained by performing individual measurements for
each deadline. The lines connect the averages of
these samples, while the error bars show the mini-
mum and maximum values. We can verify that the
baseline power saving policy in fact saves a consid-
erable amount of power in itself when the system is
underutilized.

Finally, Figure 10 displays the overall power sav-
ings attained by the two feedback DVS policies. We
can see that both of our algorithms can achieve above
30% total power savings under medium load. The
graph also demonstrates that the improved algorithm
in fact slightly outperforms the original algorithm.
Let us observe that approximately 20% power is saved
even when the system is idle, because background
processes and periodic kernel operations such as the
timer handlers all run at lower frequency. The high-
est relative power savings are realized at medium load
(150–225 requests/min). The shape of the curves
is explained by the fact that in light load (0–75 re-
quests/min), the CPU is often idle making the orig-
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Figure 10: Feedback DVS Power Savings

inal Linux policy more efficient at power saving. As
load increases, there is less chance for the hlt instruc-
tion to be performed. Our policy wins because it
can run the processor at a lower frequency. Progress-
ing towards heavier loads (above 300 requests/min),
there is no longer much opportunity to lower pro-
cessor frequencies. Therefore the power savings di-
minish. Since most server farms are normally over-
provisioned, a substantial power reduction is possible
using our schemes.

Four important points are made from the experi-
mental results. First, non-trivial power savings can
be achieved using our DVS scheme while maintaining
the miss ratio at a low rate. Second, the optimal sav-
ings occur when the weighted utilizations of all ma-
chines are equal and not when utilizations are per-
fectly balanced. This interesting obsevation is con-
firmed both theoretically and experimentally. Third,
balancing machine utilizations is an adequately good
heuristic that is very easy to implement largely in-
dependently of load and machine characteristics. Fi-
nally, the scheme does not require any modifications
to server code. We therefore believe that our algo-
rithms are both practical and efficient, which makes
them a good candidate for implementation in real-life
systems.

6 Conclusions

In this paper, we presented a DVS control algo-
rithm that mimimizes power consumption in a server
pipeline subject to end-to-end latency constraints.
While the algorithm was described for a single class of
clients, straightforward extensions to multiple classes
are possible. A formal derivation of optimality con-
ditions was given, together with a feedback control
architecture that drives the system to satisfy these

10



conditions. Interestingly, it was shown that the op-
timal power savings to do not always coincide with
the load balanced condition of equal utilization on
all servers. However, in practice such load balanc-
ing is a good approximation. A functional prototype
of this system was implemented and experimentally
evaluated. Emprical measurements confirm theoret-
ical results and show that our system consumes up
to 30% less energy than the default Linux power sav-
ing mode. These savings have a significant effect on
the operation cost of large server farms. This work
will be extended to larger server clusters with multi-
ple machines per stage and multiple classes of clients
with different timing constraint.
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