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1. Introduction

It is well-known that the information-theoretic lower bound for comparison-based sort-
ing algorithms is [Ig nl]= Q(n logn) comparisons, for n keys. We ask whether or not
we can expect those comparisons to be evenly distributed over the keys. Clearly some
algorithms on some inputs will use fewer total comparisons and some keys can be rarely
used. However we want to know if every sorting algorithm has some inputs which cause
the distribution of comparisons to be “equitable”. We restrict our attention to pair-wise
comparisons and assume the algorithms are presenied as decision trees. If some Keys are
more costly, e.g. lengthy or inaccessible, then we would favor an algorithm that is biased
against them. While it is possible a set of keys may be avoided it is clear that no partic-

ular key can be uniformly ignored.

Lemma 1: For every sorting algorithm any particular key will be involved in Q(logn)

comparisons for some input.

Proof: Suppose some key x was ignored. Assume an arbitrary total ordering for the other
n-1 keys. Modify the decision tree by removing all unnecessary comparisons. What
remains must be the tree for an algorithm for inserting x into a sorted list of n—1 keys,
with x involved in every comparison. It is well known that such a tree has a path of

length QQogn). O

Our original goal was to establish the following conjecture, which seems to be the best

possible uniform conjecture.



Conjecture: Every sorting algorithm for some input will involve every key in Q(logn)

comparisons.

The reason we say it is best possible is because of the result of Ajtai, Komlos, and
Szemeredi [AIrA83]. They gave a sorting network that used only O{logn) time and O(n)
processors. It is an immediate consequence that a serialization of the network will involve
every key in only O(logn) comparisons. Their result is of course much stronger so it is

surprising it is the first serial algorithm with this property we have seen.

The conjecture is false. After investigating various complicated lower bound arguments
we discovered a sorting algorithm which guarantees one key will be involved in at most 3
comparisons! This algorithm and its generalizations will be discussed in section 5. Our
“partial results” in sections 2, 3, and 4 turned out to be close to the upper bounds. The
main proof technique we have tried is the use of adversaries or oracles. Many different
mechanisms for the adversaries have been tried and some will be described below. In sec~

tion 6 we discuss the validity of the conjecture for “natural algorithms™.

2. A Siml’;le Adversary

We can show that most of the keys must satisfy the conjecture. We extend the argu-
ments of Atallah and Kosaraju [ATAL81] First the adversary partitions the keys and
assumes some total ordering on the first £ keys (ie. a;<az< - - - <) while the rest (ie.
bbby - .b,3) are free to be in any of the k+1 intervals defined by the a's. The
adversary dynamically associates with each b; a range of intervals that are still candidates
for b;. It tries to have the number of intervals in b;’s range shrink from %+1 to 1

slowly (by at most balf per comparison).

There are three types of comparisons - a;:q;, a;:b;, and b;:56;. The first case is trivi-
ally answered. The a;:b; case is easy if a; is not in the range of b;. If it is then answer
so that the resulting range of b; is as large as possible. The last case is best handled by
cases. There are essentially four cases and it is an easy exercise to give the answer

required.



The original range of each b; is k+1 and the number of intervals in the range of b;
is at most halved after each comparison involving b and must eventually become 1.
Therefore each &; is in at least lg (k+1) comparisons giving an Q((n—%) log k) lower
bound for sorting. Setting k =n/2 gives yet another proof of the Q(n logn) bound for
sorting, though it is one of the few constructive adversary-based proofs. Those comparisons
among the a’s, which the adversary considers redundant, and among the b’s that end in the

same interval are not considered in the analysis.

Theorem 1: Every sorting algorithm for some inputs will involve n —n®+ 1 keys in at

least €lg n comparisons, €>0.

Proof: Note that if k=n/g(n)—~1 we have n —n/g(n)+1 b’s each involved in
lg n —1g g(n) comparisons. (In [ATAL81] g(r)=1gn.) We let glr)=nl" So

n = n®4 1 keys are each in €lg n comparisons. [J

So as € decreases more keys satisfy the conjecture, albeit more weakly. The same

result will be independently derived in the next section.

3. Poset-Based Adversaries

In this section we consider adversaries that make use of the poset formed by their
prior answers to comparisons. Note that “adversaries” are cooperating in that they answer
in a way that will hopefully send us down the best branch of the decision tree. It can
inspect the two possible posets resulting from a comparison and choose, by some criterion,

the poset that promises to be the most “eguitable”.

We have investigated several functions the adversary could use based on known tech-
niques, e.g. [SAKS85] and [FuUss79]. These attempts, detailed in [RICH84], were not success-
ful as we found no mechanisms for isolating the direct and indirect effects on individual

keys over time.

Griggs [GriG82] studied certain functions on the elements of posets. In particular for

the poset P, he considered h{x) where x €P and O0Sh(x)S€1. Let A(S) = T, csh(x), where



S is some subset of P. A condition in his paper is that A(C) €[ for every chain C in
P, where I is a constant. We do not use his theorems. However a desire to find such an
h(.) for dynamically changing posets led naturally to the adversary described in the next

paragraph.

Initially P is an antichain and A(x) =1 for each x €P. We want to continue to have
R(C) €1 for all (maximal) chains as we sort. When we answer a:b we halve h(a) and
h(b); therefore if A{a) =27 we know @ has been in k comparisons. Further we look at
P. and P, the two possible resulting posets, and choose the one with the lightest (i.e.
least A(C)) chain through ¢ and &. If, inductively, A(C) € 1 for all C in P, then it will

be true in the poset chosen.

Lemma 2: Each comparison a:b can be answered so that A(C) € 1 for each chain C in the

resulting poset.

Proof: The basis of inductive argument is clear. Consider the maxzimal chains above and
below a and & before the comparison. Let U, be the maximum cost of a chain with a as
it least element with the cost of @, A(a), subtracted out. Let D, be the maximum cost of
a chain with a as it greatest element, again with h(e) subtracted out. Suppose that there

must be a chain € with A(C) > 1, then it follows

hia) . h(b) hla) . A(d)
e 5t +Up) > 2.

Therefore there was a chain through a or b before that violates the inductive assertion. [J

w, + + D)+, +

Clearly when we are done we have just one chain and A(P) € 1. Alternatively,
Tocpr 2% €1 where x was involved in ¢(x) comparisons. This is a interesting inequal-
ity. As an aside we note it provides yet another constructive adversary-based proof of the
lower bound for sorting, due to the following observation.

Lemma 3: ¥ ¢, 27°% € 1 implies Y ¢p c(x) = Q(n logn).

Proof: A familiar result relating the geometric and arithmetic means (e.g. [WILF85]) states
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Assume n = 2F. We know
(Zk...c(xl) o 2Ic-c(xn) .
e
n
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and

nlgn € Jelx)
The case of n % 2% is similar. [
This inequality alone states that not many elements can have small ¢(x)’s but does
not disallow a few. It gives us the following result which improves the result in section 2

only by a constant.

Theorem 2: Every sorting algorithm for some input will involve n —n%2 + 1 keys in at

least €lg n comparisons, €>0.

Proof: Note that only one c(x) could be 1 since it contributes % to the sum Y 27°&),
More “harm” could be done by 3 c(x)’s being 2 with a net contribution of %. Clearly
the maximum number of keys With c(x) < elgn is achieved if each such key has
c(x)=€lgn —1. The number of such keys is bounded by 2°%87*~1_—1 which gives the

result. O

If we could show that A(P)} € n™° then the conjecture would follow. However the

following result shows that this is not nearly true.
Lemma 4: For some sorting algorithms we can have

1

h@)>§+OQ“@

for the total order P.

Proof: Consider the following algorithm which begins by sorting a set § of 3 keys. After

some processing we will increase the size of § to 5 sorted keys. then 7, and so on. For



each size of § we compare all the keys not in § to the second smallest key of S, and, in
all cases, the second smallest key wins the comparison. This is consistent with lemma 2.
After that we increase the size of § by two by sorting the smallest key of § with two

keys not in §. Iterate until S contains all n keys.

Because of the regularity of the algorithm we can easily predict the final values of the
A(x)s and sum them. The important point is that ~(x) remains comparatively large for

the largest, the third largest., and so on. For n odd we get

(1 —?:’?,“”) 4920 g3 4 (32

We get a similar expression for n even. O

h(P)=

It is possible to generalize this approach to take into account how the comparisons
were resolved [PLES85]. In particular, let w(x) be the number of comparisons x “‘won”
and [(x) be the number of losses; c(x) =w(x)+I(x). Of course J wix)=73 1(x).
Define A, (x) = r*®)(1—¥®), 0<r <1, so that Ag(x) =h(x). A result analogous to lemma
2 can devised, i.e. we can maintain A,(C)€1 for all C. However it is not clear how to

take advantage of this formulation.

4. Binary Tree Based Adversaries

We can derive the result in theorem 2 by yet another approach. We present an
adversary that responds in an automatic faf.shion based on a binary tree data structure it
maintains. Since a sorting algorithm could take advantage of the adversary’s determinism it
is surprising that we can get stronger results than with the poset~based adversary. This
adversary was independently used to prove (unrelated) results about searching with prepro-

cessing [BOorR081, LYNC78].

The data structure is an infinite binary tree with tokens distributed over the nodes.
It is convenient to regard the infinite subirees without any tokens as being pruned away.
The tokens, labeled 1,2, ', n, are identified with the keys. Initially all n tokens are at

the root. Let n(i) be the node containing token i. To answer a comparison about the i th



and jth keys the adversary locates the tokens labeled i and j in the tree. It maintains

the following invariant:

If n(i) is an ancestor of n(j) then the corresponding keys are incomparable. Other-
wise, if n{(i) is to the left of n(j). relative to their least common ancestor, then the

i th key is less than jth key.

The adversary does not move any tokens if the comparison is already answered by the
invariant. If, say, n(i) is a proper ancestor of n{j) then the token j is not moved and
the token ¢ is moved to the right (left) son of n(i) if n(j) is in its left (right) subtree.
If n(i)=n(j) then, arbitrarily, token { is moved to its left son and token j is moved to

its right son.

As the sorting process progresses the tokens move down away from the root. It is
clear that the invariant is maintained. Therefore, when sorting is done no token can be the
ancestor of another. The following claim is easily verified: No node has tokens in one of
its subtree while having no tokens in its other subtree. We can now give an alternate

proof of theorem 2.

Proof (Theorem 2): From the above claim we see that the infinite tree when pruned after
sorting gives a full binary tree with n—1 internal nodes and n leaves; each leaf with a
single token on it. Let depth(v) be the depth of a node v in the tree. Since a token
only moves during a comparison we have ¢(i) 2 depth(n(i)), where c¢(i) is the number of
comparisons the £ th key is involved in, much as before.

It is known (e.g.. [KNUT68], problem 2.3.4.5-3) that if I;,1,. ***,, are the leaves of

~depth {1,)

a full binary tree then ¥ 2 =1, Therefore it follows that Y 2% < 1. The

remainder of the proof follows as before. O

It is bothersome, due to the definition of the adversary, that ¢(i) can be much greater
than depth(n(i)). One attempt to correct for this is to have a token move after every
comparison involving it. Unfortunately this causes more difficulties than it resolves. How-

ever we can go further than the above proof.



Let v be a node in the tree and L{v) and R(v) be the set of tokens in its left and
right subtrees, respectively. For a set of tokens T, let C(T) be the sum of the comparison
counts for the keys associated with those tokens, ie. C(Z)= T,e;c(@). The following
theorem states that while the resulting binary tree can be skewed, with perhaps only a few
tokens in the left subtree, the distribution of comparisons is not as skewed. One, of many
possible, corollaries is given to show how to apply the result. Let S(n) be the number of

comparisons needed to sort n keys.

Theorem 3: For any node v in the binary tree after the sorting process

CLGN 2 RG] +2SULG)]) + depth (W HL (V)]

as well as with L and R interchanged.

Proof : Every comparison for a key now in the left subtree of v involved a second key
that is now in the right subtree, the left subtree, or elsewhere in the tree. Every key now
in the right subtree got there by a comparison of the first type. This gives the |R(v)]
term. Only keys in the left subtree are relevant in sorting those keys, hence the second
term. Note that each such comparison is double-counted in the summation. Finally, the
total number of comparisons answered before the tokens arrived at node v is bounded by

the third term. O

Corollary 1. If one key was involved in only 2 comparisons then another key was

involved in at least n—2 comparisons.

Proof : Let the i th key be involved in just two comparisons, i.e. ¢(i)=2. By the theorem
n(i) can not be a son of the root, so n{i) is at depth 2. The sibling node of n{i) must
contain a token i'. Otherwise the theorem would be violated at their mutual parent v.

Hence ¢ +c(G) 2 (n~2) + 24 0, since SQ)=1. O

5. Upper Bounds

We begin by showing that there exists an algoritbm that can effectively avoid one of

its keys. The algorithm sorts by repeatedly inserting a new key into a previously sorted



sublist §. Initially § is created by sorting three keys; obviously not using more than two
comparisons per key. The algorithm finds the least used key x in S and compares the
new key z with the keys w and y which are just less and greater than x in S. respec-
tively. If w<z <y then compare z with x and stop, otherwise avoid x. Note that w or

¥ may not exist creating simpler special cases.

Theorem 4: There exists a sorting algorithm that involves at least one key in at most

three comparisons for every input.

Proof: A simple inductive proof can be based on the above algorithm. By hypothesis x
has been in at most 3 comparisons. If z is compared against x then z assumes x's role in

the hypothesis. {0

We have been able to show that even more keys can be “shy”. The following lemma

for f(n) keys, f(n) an arbitrary function, is the principle result.

Lemma 5: There exists a sorting algorithm which will involve at least f(n) > 1 keys in

0(og f(n)) comparisons.

Proof: We will show that some f{(n) iteys will be in at most ¢;1g f(n) comparisons, ¢,
a constant, for the following insertion sorting algorithm. As above, the algorithm, after
some preprocessing, has a sorted sublist S. On each iteration it picks a previously unused
key and inserts it into S. We identify § with its total order and speak of a key being
(immediatedly) above or below another. It is convenient to add the two keys oo and oo

to S.

First sort 2 f(n) keys. (The case n < 2 f{n) follows directly from the following dis-
cussion.) Recall there exists a sorting algorithm for m keys that does not involve any key
in more than cplg m comparisons, ¢, a constant [AJTa83]. Using that algorithm during
preprocessing we will not use more than ey lg f{n) + ¢, comparisons per key. This pro-
vides the basis, with ¢i > 2c¢,, for our inductive assertion: After each insertion there are
f(r) keys in S, each involved in at most cylg f{n) comparisons and, further, they are

separated in § by other keys.



The algorithm identifies these keys, x;<x2< -+ <xf¢,) and for each x; it knows w;
and y;, the keys immediatedly below and above x;, respectively. Note that y; may be
wizt. A binary search with an unused key is conducted over the w's and y's. This
requires at most lg f(n) + 2 comparisons. If the final interval contains an x; then do a
final comparison with it, and the new key replaces x; in the inductive assertion. Otherwise
proceed with the insertion leaving the x’s unaffected. We see the inductive assertion con-
tinues to hold. 0O

The next theorem follows directly from the previous result by setting f(n) = n,

where ¢; is the constant in the above proof.

Theorem J5: There exists a sorting algorithm that will for every input involve at most

n —n® keys in at least € Ig n comparisons, where ¢ is a constant and €>0.

6. Known Algorithms

In this section we discuss “natural algorithms”, ie. algorithms in the literature, as
opposed to those in the previous section which were designed to defeat the conjecture. All
the natural algorithms we have analyzed have satisfied the conjecture. We will restrict our
attention to the simplest presentation of an algorithm (e.g., in [KNUT73]) since further ela-

borations were not intended to defeat the conjecture.

The class of adjacent-interchange algorithms clearly satisfy the conjecture. In the same
spirit, Quicksort supports the conjecture for those inputs which give rise to the ©(n2)
worst-case performance. Mergesort is trivially seen to satisfy the conjecture, since each key

cannot be avoided on each phase and there are Q(logn) phases.

The proofs for Heapsort and Binary Insertion Sort are less obvious. With Binary-
insertion Sort it seems some keys might be ignored. A generalization of this theorem

applies to the Ford-Johnson algorithm.

Theorem 6: Binary-insertion Sort satisfies the conjecture.



Proof : A basis for an induction proof is trivial. Assume after 2F—1 keys have been
inserted, those Kkeys bhave been in at least £—1 comparisons each. Now as we insert the
next 2% elements, each time “target” one of the original 2*—1 keys (and one twice) to be
compared. Hence all the original elements will have been in & comparisons, and each of

the new keys have been k& comparisons too. [

Heapsort is an algorithm in which it can be hard to keep track of each key. It is
important to initially arrange the keys on the tree of the heap so that each key travels a

distance equal to the height of the tree cumulatively over the “heapify” and sorting stages.
Theorem 7: Heapsort satisfies the conjecture.

Proof : We sketch the proof for n =2%f—1. Start with the keys in sorted order (so that,
for example, the smallest is at the root and the largest are at the leaves) and then heapify.
The effect is that the 2*/>~1 smallest keys have gone from the internal nodes to the leaves
while the 2%/2 largest keys have moved up, one level at a time, to the internal nodes.
(Actually two of the large keys did not move but their subsequent behaviors are the same

as the other large keys.)

The theorem follows from the following observations: During the first 2%/2 steps, ie.
deletermax’s, in every case the key brought to the root percolates back to a leaf. An induc-
tion proof can be built on the fact that after these 2“/? steps the resulting heap is identical
to the original heap constructed in the case of n =2%2—1, and therefore the observation
above can be applied again. It follows that every key is at some point at a leaf node and
does not decrease its depth without being in a comparison. The proof for other values of

n is similar. O

Finally we consider the class of non-adaptive sorting algorithms and sorting networks;
these satisfy the conjecture. Recall that lemma 1 states that we can force any particular
key to be involved in Q(logn) comparisons. Since these algorithms are unresponsive they
must have that property for every key. Another more complex proof using the results of

Yao and Yao [YAO76] can be devised.



7. Conclusions

Theorems 2 and 5 show that there is only a small gap between the upper and lower
bounds. Further, we conjecture that the constant in theorem 5 can be much smaller than

the constructive proof might indicate. In fact it may be 1.

The most interesting avenue is to determine the “profiles” of sorting algorithms. The
profile is the sequence of n iniegers: how often the most compared key is wvsed, -+ , how
often the least compared key is used. What we have presented are two-step characteriza-
tions of these profiles. More complete characterizations should be investigated, possibly

using theorem 3.
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