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Abstract

The demand for real-time database services has been increasing recently. Examples include sensor data
fusion, decision support, web information services, e-commerce, online trading, and data-intensive smart
spaces. A real-time database, a core component of many information systems for real-time applications, can be
a main service bottleneck. To address this problem, we present a real-time database QoS management scheme
that provides guarantees on deadline miss ratio and data freshness, which are considered two fundamental
performance metrics for real-time database services. Using our approach, admitted user transactions can be
processed in a timely manner and data freshness can be guaranteed even in the presence of unpredictable
workloads and data access patterns. A simulation study shows that our QoS-sensitive approach can achieve a
significant performance improvement, in terms of deadline miss ratio and data freshness, compared to several
baseline approaches. Furthermore, our approach shows a comparable performance to the theoretical oracle
that is privileged by the complete future knowledge of data accesses.

1 Introduction

The demand for real-time information services has been increasing recently. Many real-time applications are
becoming very sophisticated in their data needs. Applications such as agile manufacturing and air traffic con-
trol have data that span the spectrum from low level control data, typically acquired from sensors, to high level
management and business data. Other examples include sensor data fusion, decision support, web informa-
tion services, e-commerce, and data-intensive smart spaces. A real-time database, a core component of many
information services for real-time applications, can be a main service bottleneck. Current databases are not time-
cognizant, are poor in supporting temporal consistency of real-time data and real-time access with guarantees,
and therefore they do not perform well in these applications.

In real-time databases, it is essential both to minimize the deadline miss ratio of transactions and provide
the temporal consistency between the data in databases and continuously changing external environments, e.g.,
current temperature or stock prices [3, 25]. In this paper we present QMF, a real-time database QoS management
scheme which can provide a certain deadline Miss ratio and data Freshness (temporal consistency) guarantees
for admitted transactions even in the presence of unpredictable workloads and data access patterns1 . Our scheme
�
Supported in part by NSF grant EIA-9900895 and CCR-0098269, and contract IJRP-9803-6 from the Ministry of Information and

Communication of Korea.
1In this paper, we assume that some deadline misses are inevitable due to the potential unpredictability in workloads and data access

patterns. Also, a deadline miss does not incur a catastrophic result. A few deadline misses or temporal consistency violations are
considered tolerable as long as they do not exceed certain thresholds.
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is important to applications which require timely transaction execution using fresh data. For example, in the
on-line stock trading and agile manufacturing transactions should be processed within their deadlines before the
current market conditions or process states change. In these applications, a deadline miss or a stale (temporally
inconsistent) data access may lead to a loss of profit or a reduction in the product quality.

Unfortunately, timeliness and data freshness requirements can conflict with each other. The deadline miss ratio
of user transactions can be decreased by giving a higher priority to user requests. In contrast, better freshness
can be achieved by favoring data updates [3]. Effective balancing between the user transactions and update
workload is the key to provide a satisfactory service, which can meet both the specified deadline miss ratio
and data freshness constraints. For this purpose, we propose a dynamic balancing scheme to balance the user
transaction and update workloads in a QoS-sensitive manner. Main challenges include the unpredictability of
workloads/data access patterns and the potential conflict between the timeliness and freshness requirements. To
handle the unpredictability and potential conflict effectively, we introduce a cost-benefit model for updates and
derive the adaptive update policy from the model to perform the dynamic balancing.

We apply a feedback control scheduling policy [19] to provide robustness against unpredictable workloads.
In a feedback control system, target performance can be achieved by dynamically adjusting the system behavior
based on the error measured in the feedback loop. QoS is managed by a novel adaptive update policy. In this way,
we can provide the guaranteed real-time database services in terms of the deadline miss ratio and data freshness
perceived by users.

To show the effectiveness of QMF, we compare its performance � in terms of deadline miss ratio and data
freshness � to that of several baselines including a theoretical oracle. Given a complete future knowledge of
data accesses, the oracle can update each data only if necessary, i.e., the corresponding data will be accessed
before the next update. Otherwise, the update will not be scheduled to minimize the deadline miss ratio of user
transactions. In this way, the oracle can provide a perfect data freshness and minimal deadline miss ratio.

The rest of this paper is organized as follows. In Section 2, the data and transaction model for real-time
databases is discussed. Section 3 introduces main performance metrics and the notion of database QoS adapta-
tions. In Section 4, the dynamic balancing problem is discussed to manage the transient overload. By dynami-
cally adapting the update policy, transaction timeliness can be improved without affecting the user perceived data
freshness. In Section 5, the performance evaluation is presented. Section 6 describes the related work. Section 7
concludes the paper and discusses the future work.

2 Data and Transaction Model

In this section, our real-time database model and temporal consistency requirements are described. Data and
transaction types are given. We also describe the admission control, scheduling, and concurrency control mech-
anisms used in our approach.

2.1 Real-Time Database Model and Data Types

We consider a firm real-time database system, in which tardy transactions � transactions that have missed their
deadlines � add no value to the system, and therefore, are aborted. In this paper, we consider the main memory
database model to reduce the unpredictability due to I/O. Main memory databases have been increasingly applied
to real-time data management such as online auction/stock trading, e-commerce and voice/data networking [3, 6,
27]. In our main memory database model, the CPU is the main system resource for consideration.

Data can be classified into two classes: temporal and non-temporal. A non-temporal data object does not
become outdated due to the passage of time, e.g., PIN numbers. In contrast, a temporal data object may change
continuously to reflect the real world state, e.g., current temperature or stock prices. Each temporal data object
has a timestamp indicating the latest observation of the real-world state.
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2.2 Temporal Data Management Issues

Temporal consistency was defined using validity intervals in a real-time database to address the consistency
issue between the real world state and the reflected value in the database. A temporal data object X is considered
temporally inconsistent or stale if � current time � timestamp � X �
	 avi � X ��� , where avi � X � is the absolute validity
interval of X . Therefore, absolute validity interval is the length of the time a temporal data object remains fresh
or temporally consistent [25].

Temporal data can be further classified into base data and derived data. Base data objects import the view
of the outside environment. A derived data object can be derived from possibly multiple base/derived data. For
example, a composite index can be derived from various stock prices. A base data item is directly associated with
an absolute validity interval. A derived data object is associated with absolute and relative validity intervals [25].
We focus on the base data freshness issues in this paper. Derived data management is reserved for future work.
Hence, in this paper only the absolute validity interval is used.

Temporal data can be updated periodically or aperiodically: a periodic update occurs at fixed intervals, while
an aperiodic update is not predictable and occurs only if the data value is changed. Only periodic updates are
considered in this paper. Periodic updates are common in real-time applications. Our QoS management scheme
can be easily extended to handle aperiodic updates. A detailed discussion is given in Section 4.2.1.

2.3 Transaction Types

Currently, our real-time database model includes two classes of transactions:

� Update Transactions: In a real-time database, base data objects should be updated periodically to reflect the
current status of the real-world environment, e.g., sensor data updates. Update transactions are write-only
transactions specially designed for this purpose. For brevity, we call them updates.

� User Transactions: A user-level transaction can be submitted to the real-time database with a deadline.
User transactions arrive aperiodically. User transactions are not allowed to write any temporal data object
such as a sensor data object, but they can read/write non-temporal data. For example, user transactions
are not allowed to change the currently measured temperature or stock prices, whereas they can change
PIN numbers or change the default temperature metric from Fahrenheit to Centigrade. A user transaction
can perform arithmetic/logical operations based on a set of temporal/non-temporal data. User transaction
execution time and data access pattern can be time-varying. For example, in a decision support system a
transaction can read different sets of data and perform different operations according to the situation. User
transactions are called transactions for short in the remainder of this paper.

2.4 Admission Control, Scheduling and Concurrency Control

In our model, each user transaction has a deadline. The deadline of an update is set to the update period. A tardy
transaction or an outdated update is aborted upon its deadline miss. For scheduling, we apply earliest deadline
first (EDF) algorithm [17] combined with our adaptive update scheduling policy.

Admission control is applied to user transactions. A newly arriving user transaction can be admitted to the
system if the requested CPU utilization is currently available. The current utilization can be examined by aggre-
gating the utilization estimates of the previously admitted transactions.

For concurrency control, we employ two phase locking high priority (2PL-HP) [1, 11], in which a low priority
transaction is aborted and restarted upon a conflict. 2PL-HP is selected, since it is free of priority inversion.
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3 QoS Model

In this section, we introduce the main performance metrics for QoS management in real-time databases. We also
discuss the notion of database QoS adaptations specifically considered in this paper.

3.1 Main Performance Metrics

Two performance metrics are considered from the user’s perspective for QoS specification:

� User Transaction Deadline Miss Ratio: In a QoS specification, a database administrator can specify the
target deadline miss ratio that can be tolerated for a specific real-time application.

� Data Freshness: We categorize data freshness into database freshness and perceived freshness. Database
freshness is the ratio of fresh data to the entire temporal data in a database. Perceived freshness is the ratio
of fresh data accessed to the total data accessed by timely transactions. To measure the current perceived
freshness, we exclusively consider timely transactions. This is because tardy transactions, which missed
their deadlines, add no value to our firm real-time database model as described in Section 2. Note that
only the perceived freshness can be specified in the QoS contract. Our QoS-sensitive approach provides
the perceived freshness guarantee while managing the database freshness internally (hidden to the users).

For example, in a QoS contract 5% deadline miss ratio and 98% perceived freshness can be specified.

3.2 Transient Performance Metrics

Long-term performance metrics such as average deadline miss ratio are not sufficient for performance specifi-
cation of dynamic systems, in which the workloads/system performance can be widely time-varying. For this
reason, transient performance metrics such as overshoot and settling time are adopted from control theory for
real-time system performance specification [18]:

� Overshoot is the worst-case system performance in the transient system state.

� Settling time is the time for the transient overshoot to decay and reach the steady state performance.

Similar transient performance metrics are proposed in [26] to capture the responsiveness of adaptive resource
allocation in real-time systems. In Section 5, we compare our approach to several baselines in terms of average
performance for different workloads and data access patterns. We also compare the transient performance of our
approach to the baseline approaches.

3.3 Database QoS Adaptations

In our QoS model, the current database freshness is considered the current quality of service, i.e., the real-time
database QoS is proportional to the database freshness. We say that the database QoS is degraded when the
database freshness is reduced. In contrast, we say that the database QoS is upgraded when the database freshness
is increased. In fact, with a high (low) database freshness user transactions can have a more (less) chance to
access fresh temporal data objects2 .

In our approach, the database QoS can be dynamically adjusted by applying either a lazy or an aggressive
update policy based on the current system behavior. A lazy update policy can be applied for a fraction of temporal

2This definition of database QoS is similar to the notion of Quality of Data proposed in [15]. However, in this paper we intentionally
use QoS instead of QoD since we are also investigating other real-time database QoS issues such as adaptable security [28]. We are
currently identifying and classifying various database QoS issues under a unifying database QoS management framework.
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Figure 1: Database Snapshot Sorted by Access Update Ratio

data in the real-time database under overload. The update policy can be switched back to an aggressive one for
some temporal data when the perceived freshness requirement is violated. We trade off database freshness to
provide guarantees on miss ratio and perceived freshness in a cost-effective manner. A detailed description is
given in Section 4.

4 QoS Management

In this section, we first introduce a cost-benefit model to quantify the utility of an update for a specific temporal
data object. Using this model, a database QoS adaptation technique is derived. Generally the update policy is not
dynamically adaptable in databases. In contrast, our QoS adaptation technique can dynamically adjust the update
policy based on the current workload and system behavior. In an unpredictable operating environment, it is very
hard, if not impossible, to design the system such that all the updates and transactions can be executed within
their deadlines.

4.1 Cost-Benefit Model of Updates

In a real-time database, the temporal data update workload might be high. For example, in the NYSE trace the
update stream can reach up to 696 updates/sec [15]. If updates receive higher priority, there may not be enough
time left to finish transactions in time. In contrast, if the transactions are scheduled in a preferred manner, they
may have to read stale data [3]. To balance the update and transaction workload efficiently, one must estimate
the update utility which can capture the cost-benefit relation of temporal data updates. The cost is defined as the
update frequency of a temporal data object. Intuitively, the more frequent is the update, the higher is the cost. We
assume that the frequency of periodic updates is known to the database system. To consider the benefit, access
frequency is measured for each data object. If a data object is accessed frequently, e.g., a popular stock price, an
update of the object can produce a relatively high benefit. To quantify the cost-benefit relationship, we define the
update utility, called Access Update Ratio (AUR), for a data object Oi as follows:

AUR  i ��� Access Frequency  i �
Update Frequency  i � (1)

The notion of AUR has several interesting features. It can be a guideline to decide a proper update policy for
a certain data object. A pictorial description is given in Figure 1, which is a snapshot of a real-time database. In
the figure, the data objects in the database are ordered by non-increasing value of AUR3. If a data object is on or

3To reduce the overhead of sorting, the granularity of data unit can be increased. AUR can be measured for a block of data with a
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Figure 2: Update Policy Adaptations

above the horizontal line of AUR = 1, the benefit of the corresponding data update is worth the cost, since it is
accessed at least as frequently as it is updated. Otherwise, it is not cost-effective. For simplicity, let us call the
corresponding data hot, and the data below the horizontal line (AUR = 1) cold, respectively.

It is reasonable to update hot data in an aggressive manner. If a hot data object is out-of-date when accessed,
potentially a multitude of transactions may miss the deadline waiting for the update. Alternatively, it may not be
necessary to update cold data aggressively when overloaded. Only a few transactions may miss deadlines waiting
for the update. For cold data, we may be able to save CPU utilization by applying a lazy update policy under
overload. In fact, cold data could always be updated by a lazy update policy regardless of the current system
load. However, that approach may increase the response time of the accessing transaction. We choose immediate
and on-demand policy as the aggressive and lazy update policy, respectively. Notice that our QoS management
approach is relatively coarse grained. A more fine grained approach can dynamically increase the update periods
for cold data. However, this approach may incur more overhead, since the appropriate update period and the
corresponding temporal validity interval should be dynamically managed per data object.

An immediate update receives a higher priority than user transactions and on-demand updates. Conceptually,
there are separate scheduling queues for immediate updates and for user transactions/on-demand updates, re-
spectively. Immediate updates in the high priority queue are scheduled before user transactions and on-demand
updates in the low priority queue. In each queue, transactions are scheduled by EDF scheduling algorithm. As a
result, the freshness of cold data can be relatively low compared to hot data, if a lazy update policy is applied for
cold data.

Note that the notion of AUR does not depend on a specific access pattern or popularity model. It can be derived
simply from the known update frequency and monitored access frequency. Therefore, it greatly simplifies our
QoS model and makes the model robust against potential unpredictability in data access patterns.

4.2 Dynamic Adaptation of Update Policy

Figure 2 gives a pictorial example of the dynamic update policy adaptations based on the cost-benefit model.
In Figure 2, D represents the set of the all temporal base data in the database. Dimm is the set of data updated
immediately, and Dod stands for the set of data updated on demand. Since a data object is updated either imme-
diately or on demand in our approach, D � Dimm � Dod and Dimm � Dod � Ø. Initially, every data is updated
immediately. As the load increases, a larger fraction of cold data objects are updated on demand. This is called
degradation, since it may potentially degrade data freshness. In Figure 2(c), the update policy degradation stops

common update period. Also, sorting can be avoided by classifying data into two classes, hot (AUR � 1) and cold (AUR � 1), and by
randomly selecting a data object from a certain class to adapt the corresponding update policy. This can be considered a trade-off between
QoS management overhead and accuracy of QoS adaptations.
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1. Collect access statistics and compute AUR.

2. Monitor deadline miss ratio, CPU utilization, and perceived freshness.

3. At each sampling period, compute the miss ratio and utilization control signals based on the current miss ratio
and utilization error, respectively. Get the utilization adjustment ∆U = Minimum(miss ratio control signal,
utilization control signal) for a smooth transition from a system state to another. Based on ∆U and the current
system behavior, perform one of the following alternative actions.

4. If the measured miss ratio is below the target (i.e., ∆U � 0 � and the perceived freshness requirement is
satisfied, no QoS adaptation is required. Inform the admission controller of ∆U to admit more transactions to
prevent a potential under-utilization.

5. If the measured miss ratio is over the target miss ratio (i.e., ∆U � 0) and the current perceived freshness is
above the target, degrade the QoS. Increase ∆U by the utilization saved from a QoS degradation. Repeat until
∆U � 0 or the degradation bound is reached. Inform the admission controller of the new ∆U .

6. If the current perceived freshness is below the target and ∆U � 0, the QoS will be upgraded. Subtract the
required utilization for an upgrade from ∆U . Repeat until ∆U � 0 or a certain upgrade bound is reached.
Inform the admission controller of the new ∆U .

7. If the specified miss ratio is violated (i.e., ∆U � 0) and so is the perceived freshness requirement, do not
admit any incoming transaction until a fraction of currently running transactions terminate, i.e., commit or
abort upon their deadline misses, and ∆U becomes positive as a result.

Figure 3: Database QoS Management Scheme

once it reaches a certain degradation bound, namely AUR � 1. This will be revisited for detailed explanation of
our adaptation policy later in this section.

The database QoS management scheme is summarized in Figure 3. The access/update statistics collection
process is described in Section 4.2.1. The relation between the feedback control and QoS management is ex-
plained in Section 4.2.2. QoS degradation and upgrade techniques are described in Sections 4.2.3 and 4.2.4,
respectively, together with the notion of QoS degradation/upgrade bounds.

4.2.1 Access/Update Statistics

Temporal data access statistics are collected to compute AUR  i � for each data object Oi in the database. On each
access of Oi, the access counter ACCESS  i � is incremented. Unfortunately, the access frequency may have a large
deviation from one sampling period to another. To smooth the potentially large deviation, we take a moving
average in the kth sampling period:

SACCESSk  i ��� a � SACCESSk � 1  i ����� 1 � a ��� ACCESSk  i � (2)

where 0  a  1. As the value of a gets closer to 0, only the recent access frequencies are considered to compute
the moving average. In contrast, the wider horizon will be considered to compute the moving average as a get
closer to 1.

7



Transactions

(a) Utilization Control Loop

Target Miss
Ratio
       +

(b) Miss Ratio Control Loop

Measured
Miss Ratio

Miss Ratio
Controller RTDB

error ∆U

-

Utilization
Controller RTDB

Target
Utilization

       + error ∆U

Measured
Utilzation

Transactions

-

Figure 4: Miss Ratio/Utilization Controllers

Since the update frequency UPDATES ! i " in a sampling period is known for periodic updates of Oi, we can
compute Access Update Ratio for Oi:

AUR ! i "�# SACCESSk ! i "
UPDATES ! i " (3)

To handle aperiodic updates, the update frequency can be monitored and smoothed in the same way as the
access frequency. For aperiodic updates the definition of data freshness may have to change, since there might
be no explicit notion of validity interval related with aperiodic updates. In that case, a temporal data object can
be considered stale upon the arrival of the corresponding update, which is not applied yet [4].

4.2.2 Feedback Control Scheduling and QoS Management

We apply a feedback control real-time scheduling policy, called FC-UM [19], to control the miss ratio without
under-utilizing the CPU in the presence of unpredictable workloads. As shown in Figure 4, FC-UM employs two
control loops, one for miss ratio and one for CPU utilization management to avoid the control saturation problem.
A utilization controller may saturate at utilization 100%. In contrast, a miss ratio controller can saturate when
the real-time system is underutilized (0 miss ratio as a result). Each control loop generates a control signal to
achieve the target utilization or miss ratio based on the current performance error, which is the difference between
the target miss ratio (utilization) and the currently measured miss ratio (utilization). Each controller computes
the control signal, called requested CPU utilization adjustment ∆U , to achieve the target miss ratio (or target
utilization).

We have selected FC-UM, since it can meet our basic requirements for real-time scheduling: providing a
certain miss ratio guarantee while not under-utilizing the CPU given a mix of periodic and aperiodic workloads.
Another advantage of FC-UM is that it works well even without a precise workload model. We adapt and tune
the feedback controllers as described in Appendix A. For detailed modeling and controller design, refer to [19].

In our model, data freshness is managed by an actuator (i.e., database QoS manager) in the real-time database.
We do not consider designing a separate feedback controller for freshness management since timeliness and
freshness can pose conflicting requirements leading to a potentially unstable feedback control system.

The interactions between FC-UM and our QoS management scheme are described in Figure 3. When ∆U
is negative, QoS can be degraded to improve the miss ratio if two conditions are met, i.e., the current perceived
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freshness is above the target and the degradation bound is not reached yet. When the perceived freshness is vio-
lated, QoS will be upgraded as long as ∆U 	 0 and a certain upgrade bound is not exceeded. The corresponding
QoS upgrade/degradation stops as soon as whichever condition is not satisfied first. These conditions for a QoS
degradation/upgrade are required to prevent possible oscillations between many deadline misses and data fresh-
ness violations. Without these conditions, a QoS degradation (upgrade) could adversely affect freshness (miss
ratio) in the next sampling period.

In an extreme case, not only miss ratio but also freshness constraints can be violated. In this case, incoming
transactions will be rejected until a fraction of currently running transactions terminate and ∆U becomes positive
as a result. The chance of an extreme case is reduced by enforcing the QoS adaptation conditions as described
before. Furthermore, feedback control scheduling and admission control can prevent a severe overload by dy-
namically adjusting the CPU utilization based on the current system behavior and avoiding excessive admissions
of user transactions to the system.

4.2.3 Miss Ratio Adjustment

For a QoS degradation, the update policy is switched to the on-demand policy to reduce the number of updates
for a certain temporal data object Oi currently in Dimm with the least AUR in Dimm. An important question is
how to estimate the CPU utilization saved from the degradation. The main interest is the difference between the
required CPU utilization for purely immediate updates and for adaptive updates. The number of saved updates
due to the degradation for Oi is approximately:

N � UPDATES  i �$� SACCESS  i � (4)

Given the average CPU utilization per single update transaction, σU , the saved CPU utilization from the update
policy degradation for Oi is approximately:

δU � N � σU (5)

Average per update utilization, σU , can be either pre-profiled before the database service initiation, or mea-
sured at run time. Either approach may not introduce a considerable error, since each update transaction is known
a priori and fixed in our real-time database model.

After the update policy degradation for a single data object, the new CPU utilization adjustment is:

∆U � ∆Uold � δU (6)

The degradation continues for the next data object in Dimm with the least AUR until ∆U % 0 or the degradation
bound is reached. The horizontal line at AUR = 1 in Figure 1 and Figure 2(c) is the update policy degradation
bound, which limits the degradation within a certain range of AUR. Further degradation past the degradation
bound is meaningless due to the following reason. If a hot data object with AUR % 1 is updated on demand,
the number of updates may not be reduced, but a transaction may have to suffer the potential delay for the
corresponding update. An example of update policy degradations is shown in Figure 2. Initially, every update is
performed immediately. The update policy is gradually degraded as the load increases. The degradation stops if
no more adaptation is allowed either by the violation of perceived freshness or reaching the degradation bound.

4.2.4 Freshness Adjustment

In QoS upgrades, the update policy is switched back to the immediate policy for certain data objects to ensure
that timely transactions access fresh data. A key issue in QoS upgrades is to avoid a potential miss ratio overshoot
in the next sampling period improving the perceived freshness as needed at the same time. For this purpose, we
define the perceived freshness error and derive the upgrade bound as follows.
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The perceived freshness error is defined as follows. Given a target perceived freshness Ftarget , the current
perceived freshness Fcurrent can be measured in a sampling period. The performance error in terms of perceived
freshness in a sampling period is:

Ferror �
&

0 if Fcurrent % Ftarget ;
Ftarget � Fcurrent if Fcurrent ' Ftarget ( (7)

Given a non-zero Ferror, it is clear that on-demand updates have failed to provide the target perceived freshness
in the current sampling period. Therefore, some of these data should be updated immediately in the next sampling
period. The freshness can be improved approximately in proportion to the number of data moved from Dod to
Dimm. We can improve the perceived freshness by moving from Dod to Dimm a certain number of data with the
highest AUR in Dod .

An upgrade bound K is derived in terms of the number of data for update policy upgrades. It is determined in
proportion to the current freshness error and the cardinality of the set Dod:

K �*)D +imm ),�-)Dimm )/. Ferror �0)Dod ) (8)

where D +imm is the set of data to be updated immediately in the next sampling period after the corresponding
number of upgrades.

By moving one data object Oi from Dod to Dimm, the number of updates and the corresponding CPU utilization
may increase. The potential increase in the number of updates can be approximated from Eq. 4. We can estimate
the required extra CPU utilization for the increase by Eq. 5. The QoS upgrade is repeated until the upgrade
bound in Eq. 8 is reached, or the available CPU utilization becomes not enough, i.e., ∆U  0.

In summary, the QoS level in terms of database freshness is dynamically adjusted based on the current miss
ratio or perceived freshness. Due to the approximation, unpredictable workloads and access patterns, our QoS
adaptation may not be precise. However, the target performance can be achieved by continuously adjusting the
QoS level based on the performance error measured in the feedback loop. By balancing update and transaction
workload efficiently, a target deadline miss ratio and perceived freshness can be achieved at the same time.

5 Performance Evaluation

In this section, we analyze the performance of the QoS-sensitive approach in terms of miss ratio and freshness
by a simulation study. We show that our QoS-sensitive approach can support both the miss ratio and freshness
guarantees while non-adaptive approaches fail to guarantee the two performance metrics at the same time. In this
section, we describe our simulation model, present the simulation settings, define the baselines for performance
comparisons, and finally present detailed performance evaluation results.

5.1 Simulation Model

We have developed a real-time database simulator to evaluate the performance of our QoS-sensitive approach. A
block diagram of the simulator architecture is shown in Figure 5. It consists of several main components:

Sources generate user transactions to be submitted to the system. The transaction inter-arrival time is expo-
nentially distributed. Each Update Stream periodically submits an update for a certain temporal data object.

Admission control is applied to user transactions. It can be turned on/off for performance evaluation. If turned
off, all incoming transactions will be simply admitted. Update scheduler decides whether or not to schedule
an incoming update depending on the selected update policy. Immediate updates will be always scheduled.
On-demand updates will be scheduled, if any transaction is blocking for the update to access the fresh data.

Executor consists of concurrency controller (CC), freshness manager (FM) and basic scheduler. As described
in Section 4, immediate updates are scheduled in the high priority ready queue while user transactions and on-
demand updates are scheduled in the low priority queue. In each queue, transactions are scheduled in EDF
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Figure 5: Simulator Architecture

manner. A transaction can be aborted and restarted by CC. It can also be preempted by a higher priority trans-
action. Freshness manager (FM) checks the freshness of temporal data before the initiation of a user transaction.
FM blocks the corresponding transaction if an accessing data is currently stale. The blocked transaction(s) will
be transferred from the block queue to the ready queue as soon as the corresponding update commits.

Monitor periodically measures miss ratio, utilization and perceived freshness and reports the statistics to the
feedback controllers and QoS manager. MR/Utilization Controllers compute the miss ratio and utilization control
signals based on the current performance error. QoS Manager adapts the update policy, if necessary. It informs
the admission controller of ∆Unew after potential QoS adaptations. It can be turned on/off for performance
evaluation. If turned off, the update policy is not adapted based on the current system behavior.

5.2 Simulation Set-Up

The general simulation settings are summarized in Table 1. One simulation run lasts for 10 minutes of simulated
time. For all performance data, we have taken the average of 10 simulation runs and derived 90% confidence
interval except that of the theoretical oracle’s. In the figures showing the performance evaluation results, confi-
dence intervals are plotted as vertical bars. (For some performance data, the vertical bars may not be noticeable
due to the small confidence intervals.)

Sampling period for feedback control is set to 5sec. A frequent sampling and the corresponding adaptations
can improve transient performance of feedback controllers such as settling time [10, 23]. However, this sampling
period is selected to collect enough access statistics needed for potential QoS adaptations. Without reliable
statistics, QoS management (i.e., database freshness management in this paper) could be jittery.

The target miss ratio of user transaction deadlines is set to 5% and the target perceived data freshness is set to
98%. To avoid underutilization, we aim the desired utilization to be at least 80%. Note that our main purpose
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Table 1: General Simulator Settings

Parameter Value
A Simulation Run Length 10min
#Simulations Runs/Performance Data 10
Confidence Interval 90%
Sampling Period 5sec
Target Miss Ratio 5%
Target Perceived Freshness 98%
Desired Utilization 80%

is providing guarantees on miss ratio and freshness avoiding severe underutilization. Utilization can vary by
applying different update policies. An update can be either scheduled or dropped depending on different update
policies and the current system behavior.

We set Deadline � Arrival Time � Execution Time � Slack Factor for a user transaction. A slack factor is
uniformly distributed in a range (20, 40). For an update, we set Deadline = Next Update Period. Generation of
execution time is described next for updates and user transactions, respectively.

5.2.1 Set-Up for Data and Updates

The data and update transaction parameters are summarized in Table 2. The modeled database includes 1000
temporal data objects. We assume user transactions access only the temporal data to focus on the trade-off issues
between the data freshness and timeliness. Non-temporal data updates are assumed infrequent and do not affect
the performance considerably. Non-temporal data reads/writes can be easily included by adjusting the probability
P � temporal data access � in Table 2, if necessary.

An update stream, Si, is dedicated to a certain temporal data object i in the modeled database. Si is defined
by 1 update period (Pi), estimated execution time (EETi), actual execution time( 2AETi) 3 . Update period (Pi) is
uniformly distributed in the range (100ms, 50s). Upon a periodic generation of an update, Si gives the update an
actual execution time ( 2AETi), which is Normal � EETi 465 EETi � , to introduce execution time variances. Simulator
is only aware of EETi, but not 2AETi. Aggregate periodic load is manipulated to require approximately 50% of
the total CPU utilization.

It is known that the database performance can vary significantly as the hot spot size (i.e., degree of access
skews) changes [1, 31]. To model the hot spot, we apply the X � Y access scheme [31], in which X% of data
accesses are directed to Y% of database granules, i.e., hot spot (X � Y � 100%). For example, in the 90 � 10
access scheme 90% of accesses are directed to 10% of the entire temporal data in the database. In this paper, we
call a certain Y a hot spot size. Note that under this scheme, X � Y � 50% leads to uniform access pattern and
Y 	 50% is meaningless. We have performed the evaluation with different hot spot sizes, i.e., Y = 10%, 20%,
30%, 40% and 50% (uniform access).

5.2.2 Set-Up for User Transactions

Simulation settings for user transactions are summarized in Table 3. It is assumed that user transactions generally
execute longer than temporal data updates since it may perform arithmetic/logical operations based on a set of
temporal data. For user transactions, accessing data sets and and execution times may vary as discussed in Section
2. Neither the accessing data set nor actual execution time is known to the simulator.
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Table 2: Simulation Settings for Data and Updates

Parameter Value
#Temporal Data Objects 1000
P(temporal data access) 1
Update Period Uni f orm � 100ms 4 50s �
EETi (Estimated Execution Time) Uni f orm � 1ms 4 8ms �
2AETi (Actual Execution Time) Normal � EETi 465 EETi �

Total Update Load . 50%
Hot Spot Size 10%, 20%, 30%, 40%, 50%

Table 3: Simulation Settings for User Transactions

Parameter Value
EETi (Estimated Execution Time) Uni f orm � 20ms 4 80ms �
AETi (Average Execution Time) EETi �7� 1 � EstErri �
2AETi (Actual Execution Time) Normal � AETi 4 5 AETi �

NDATAi (#Average Data Accesses) EETi � Data Access Factor �8� 10 4 40 �
2NDATAi (#Actual Data Accesses) Normal � NDATAi 4:9 NDATAi �

To model the user transaction workload, Sourcei generates a group of transactions with an average number of
data accesses and average execution time. By generating multiple sources, we can derive transaction groups with
different average execution time and average number of data accesses in a statistical manner. Each Sourcei has an
estimated execution time (EETi) and an average execution time (AETi). AETi �;� 1 � EstErr ��� EETi, in which
EstErr is used to introduce the execution time estimation error. Upon the generation of a transaction, Sourcei

associates an actual execution time 2AETi to the transaction, which is Normal � AETi 4 5 AETi � . This is to introduce
the variance of the execution time among transactions in a transaction group.

It is assumed that the number of data accesses (NDATAi) for Sourcei is proportional to the length of EETi. As
a result, longer transactions access more data in general. Upon a transaction generation, Sourcei associates the
actual number of data accesses 2NDATAi to the transaction, which is Normal � NDATAi 4 9 NDATAi � , to introduce the
variance.

5.3 Baselines

For completeness of performance analysis, we compare the relative miss ratio and perceived freshness received
by QMF (our QoS-sensitive approach that employs feedback control scheduling, adaptive update policy and
admission control for Miss ratio and Freshness guarantees) with the several baselines as follows:

� Open-IMU: Admission control and the closed loop scheduling by feedback control are turned off. All data
are updated immediately. Update policy is not adapted in this open-loop scheduling framework.

� Open-IMU-AC: This is a variant of Open-IMU, for which admission control is applied.

� Open-ODU: This is similar to Open-IMU, but on-demand policy is applied for all updates.

� Open-ODU-AC: This is a variant of Open-ODU, for which admission control is turned on.
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� Theoretical Oracle: For the purpose of performance evaluation, we assume the existence of a theoretical
oracle that has the complete future knowledge of data accesses. The clairvoyant oracle can schedule
updates only if necessary. That is, an update is scheduled if any transaction will access the corresponding
data before the next update. In this way, the update workload can be minimized providing the perfect
perceived freshness. To implement it, we divided an experiment into two passes. (Each pass is a complete
simulation run.) In the first pass, which may include unnecessary updates, the data access history of user
transactions is recorded in a form of (time, accessed data). In the second pass, the same simulation set-up
and seed number are applied to generate the same set of transactions and data accesses. Hence, the update
scheduler can utilize the access history collected in the first pass 4.

To compare the relative performance of our approach with the various baselines, we measure the miss ratio and
perceived freshness for increasing workloads and execution time estimation errors, respectively. We also evaluate
the relative performance for different hot spot sizes. In this paper, we take a stepwise approach for performance
evaluation. We first compare the performance of QMF to the open-loop approaches for increasing loads. From
the first experiment, we select the best performing open-loop baselines for the further performance comparison
with QMF while increasing the execution time estimation error. Finally, we compare the performance of our
approach under overload with the theoretical oracle for different access patterns.

Our approach is considered successful, if it can consistently provide guarantees on miss ratio and perceived
freshness against increasing load/execution time estimation errors and different degrees of data/resource con-
tentions.

5.4 Experiment 1: Effects of Increasing Load

Computational systems may show different performance for different loads, especially when the system is over-
loaded. Therefore, it is important to compare the relative performance of our approach to the baselines as the
load increases. For this purpose, we give the simulated real-time database different loads: 70%, 100%, 150%
and 200% which represent the loads assuming that all incoming user transactions are admitted and every tempo-
ral data object is updated immediately. The tested approaches may actually reduce the given loads by applying
admission control and/or QoS adaptations (update policy adaptations). Also, it is important to note that in this
experiment no execution time estimation error is assumed, i.e., EstErr � 0. For data accesses, uniform access
pattern is applied.

In Figure 6, Open-IMU (the top curve) shows the highest miss ratio reaching 83 ( 6 < 1 ( 65% given 200% load.
Open-IMU-AC reduced miss ratio by admission control, however, the miss ratio is 50 ( 74 < 5 ( 28% for 200% load.

Open-ODU shows the reasonable miss ratio up to 150% load. However, its miss ratio exceeds 40% for 200%
load possibly due to the increased waiting time for on-demand updates. As shown in Figure 7, the perceived
freshness of Open-ODU drops significantly as the load increases. In contrast, all the other approaches provide
100% freshness. (For this reason, the top four curves of all the other approaches overlap in Figure 7. Open-ODU
is the only exception.)

As shown in Figures 6 and 7, admission control has significantly improved the performance of ODU approach.
Open-ODU-AC shows a similar performance (near 0% miss ratio and 100% freshness) to that of QMF. (See
the two bottom miss ratio curves for Open-ODU-AC and QMF overlap in Figure 6.) This is mainly because
EstErr � 0, which is ideal, for this experiment. In Section 5.5, we show that Open-ODU-AC fails to guarantee
miss ratio and perceived freshness when only rough execution time estimates are available.

Figure 8 plots the average utilization measured for different workloads. We observe that our approach (QMF)
shows relatively steady utilization ranging from 69 ( 47 < 1 ( 2% to 88 ( 46 < 0 ( 12% for the given loads (70%, 100%,

4Admission control is turned off to reproduce the exactly same workload. If admission control is turned on, a user transaction might
be rejected in the first pass, but could be admitted in the second pass due to the reduced update workload. As a result, the corresponding
data accesses are unknown a priori.
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Figure 6: Average Miss Ratio (EstErr = 0, Uniform Ac-
cess Pattern)
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Figure 7: Average Perceived Freshness (EstErr = 0, Uni-
form Access Pattern)
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Figure 8: Average Utilization (EstErr = 0, Uniform Ac-
cess Pattern)
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Figure 9: Average Miss Ratio (Load = 200% , Uniform
Access Pattern)
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Figure 10: Average Perceived Freshness (Load = 200%
, Uniform Access Pattern)
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150%, 200%). Note that Open-ODU and Open-ODU-AC show severe underutilization before the load reaches
150% due to unscheduled updates. To verify this, we have measured the average database freshness for Open-
ODU and Open-ODU-AC. The average database freshness is below 10% at every load both for Open-ODU and
Open-ODU-AC as a result of lazy updates. Even though the system is underutilized, all updates are scheduled on
demand in Open-ODU and Open-ODU-AC. In contrast, all updates are scheduled in a preferred manner to user
transactions in Open-IMU and Open-IMU-AC despite the high deadline miss ratio of user transactions. QMF
shows the relatively stable performance by dynamically adapting the update policy considering the system status,
if necessary. It is further aided by feedback control.

We have dropped Open-IMU and Open-ODU from further performance evaluation due to their relatively poor
performance. It is simply not feasible for these approaches to provide guarantees on miss ratio and freshness
under overload.

5.5 Experiment 2: Effects of Increasing Execution Time Estimation Error

5.5.1 Average Performance

In the previous section, we assumed that EstErr � 0 (i.e., no execution time estimation error). However, precise
execution time estimates are generally not available. To compare the performance of various approaches, we
introduce estimation errors in this section. We show that our approach provides performance guarantees both in
terms of (long-term) average and transient performance metrics while other approaches fail in the presence of
execution time estimation errors. For this set of experiments, 200% load is given. Uniform data access pattern
is assumed. The average miss ratio, perceived freshness and utilization are measured for different EstErr values
ranging from 0 to 1 increased by 0.25 as shown in Figure 9, 10 and 11, respectively. In this way, we can observe
the effects of the increasing execution time estimation error to the performance when overloaded.

As shown in Figure 9, miss ratio increases sharply for Open-IMU-AC as EstErr increases exceeding 80%
when EstErr � 1. This is mainly due to the increased error in admission control and the corresponding overload.
Open-ODU-AC shows 6 ( 03 < 0 ( 67% miss ratio violating the target miss ratio 5% for EstErr � 1. In contrast,
QMF shows near 0 deadline miss ratio.

In Figure 10, the average freshness is 100% for Open-IMU-AC and QMF for all EstErr values. However,
Open-ODU-AC violates the target perceived freshness. When EstErr � 1, perceived freshness drops to 96 ( 19 <
0 ( 69% violating the target freshness of 98%. Observe that from the algorithms tested only our approach can meet
both miss ratio and freshness requirements when only a rough estimation is available.

Average utilization is plotted in Figure 11. For other approaches, CPU is overloaded leading to the perfor-
mance violations in terms of miss ratio and/or freshness. In contrast, QMF can avoid potential overload even in
the presence of large execution time estimation errors.

One can argue that the average performance improvement of our approach is marginal compared to Open-
ODU-AC. However, Open-ODU-AC actually suffers relatively big variations of transient miss ratio and fresh-
ness. A detailed transient performance comparison is given next.

5.5.2 Transient Performance

It is desirable for real-time databases to provide guarantees on miss ratio and data freshness in a continuous
manner even in the presence of unpredictable workloads. To this end, we measured instantaneous miss ratio and
freshness for Open-ODU-AC and QMF at each sampling point. 200% load is applied for the experiment and
EstErr is set to 1. Data access pattern is assumed uniform. The average miss ratio, freshness and utilization of
10 runs are plotted at each sampling period. The target miss ratio 5% is drawn as a horizontal dashed line in
Figures 12 and 13.
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Figure 12: Transient Performance of Open-ODU-AC (EstErr = 1, Load = 200%, Uniform Access Pattern)

0 50 100 150 200 250 300 350 400 450 500 550 600

Time (sec)

0

20

40

60

80

100

M
iss

 R
at

io
; F

re
sh

ne
ss

; U
til

iz
at

io
n 

(%
)

Utilization
Miss Ratio
Freshness

Figure 13: Transient Performance of QMF (EstErr = 1, Load = 200%, Uniform Access Pattern)
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Figure 14: Average Miss Ratio (EstErr = 1, Load = 200%)
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Figure 15: Average Perceived Freshness (EstErr = 1, Load = 200%)
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Figure 16: Average Utilization (EstErr = 1, Load = 200%)
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As shown in Figure 12, Open-ODU-AC violates miss ratio and freshness requirements significantly5 . For
example, perceived freshness is 80 < 24 ( 44% at 170sec. The miss ratio overshoot is over 13% at 10sec. More
importantly, the miss ratio and freshness violations do not decay as time increases.

In contrast, QMF shows 100% freshness throughout the experiment and shows a relatively low miss ratio
overshoot (10% at 55sec) compared to Open-ODU-AC (Figure 13). Furthermore, the initial miss ratio overshoot
at 55sec decays in one sampling period achieving near 0 deadline miss ratio from 60sec through 600sec. Hence, it
meets the theoretical settling time, 45sec, derived from the controller tuning (Appendix A) by Root Locus design
[10, 23]. Unfortunately, the miss ratio overshoot (10%) has slightly exceeded the theoretical overshoot (6.35%)
derived from the Root Locus design. This is mainly because the unit step load of Matlab is a deterministic load,
whereas the exponential arrival pattern used to model the database workload is stochastic.

5.6 Experiment 3: Effects of Varying Access Patterns

Database performance can vary as the hot spot size (access skewness) changes [1, 31]. Even if the typical database
hot spot and the corresponding performance impacts are known, the degree of access skew can be time-varying.
For this reason, it is important to measure the database performance for different hot spot sizes. In this section, we
change the database hot spot size to observe whether or not performance guarantees can be provided even in the
presence of potentially varying data/resource conflicts. When applying the X � Y access scheme [31], different
hot spot sizes (Y values) are considered: 10%, 20%, 30%, 40% and 50% (uniform access). In the experiment, we
set EstErr � 1 and load = 200%, which is the worst case set-up in our simulation study, for Open-ODU-AC and
QMF.

In this section, Open-IMU-AC is dropped due to its relatively poor performance as shown in the previous
section. Instead, we include the theoretical oracle for performance comparison. The theoretical oracle is given
the future knowledge of data accesses, therefore, it is least affected by different hot spot sizes.

In Figures 14 and 15, we observe that Open-ODU-AC violates the required miss ratio (5%) and perceived
freshness (98%) for every hot spot size. In contrast, our QoS-sensitive approach satisfied the requirements. We
have also collected the transient performance statistics in this experiment. It has shown similar trends in transient
performance for Open-ODU-AC and QMF, respectively, as presented in the previous section. Open-ODU-AC
has shown wide performance fluctuations in terms of miss ratio and freshness, whereas QMF has shown near 0
miss ratio and 100% freshness at each sampling point. We do not include the results here to avoid repetition.

Observe that our approach shows a comparable performance to the theoretical oracle in terms of miss ratio and
perceived freshness while achieving the reasonable CPU utilization as shown in Figure 16. To summarize, our
approach can provide guarantees on miss ratio and perceived freshness by dynamic QoS adaptations supported by
feedback/admission control even in the presence of unpredictable workloads and access patterns. This is a crucial
result for real-time databases, in which the freshness and miss ratio guarantees are essential for the success of the
service.

6 Related Work

Previous research work has shown that QoS-sensitive approaches can improve system performance in a cost-
effective manner [2, 7, 9, 12, 13]. Despite the abundance of the QoS research, QoS-related work is relatively
scarce in database systems. Priority Adaptation Query Resource Scheduling (PAQRS) provided timeliness dif-
ferentiation of query processing in a memory-constrained environment [22]. From the observation that the per-
formance of queries can vary significantly depending on the available memory, per-class query response time
was differentiated by an appropriate memory management and scheduling. Given enough memory, queries can
read the operand relations at once to produce the result immediately. If less memory is allocated, they have

5Confidence intervals are derived, but not plotted in transient performance evaluations for the clarity of presentation.
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to use temporary files to save the intermediate results, therefore, the query processing may slow down. In this
way, query deadline miss ratios were differentiated between the classes. However, the performance could easily
fluctuate under the workload changes. Neither any data freshness issue was considered.

A novel on-line update scheduling policy has been proposed in the context of the web server [15]. The
performance of a web server can be improved by caching dynamically generated data at the web server and the
back-end database continuously updates them. Given the views to materialize, the proposed update scheduling
policy can significantly improve the data freshness compared to FIFO scheduling. They discuss a complementary
problem in [14], i.e., view selection problem to materialize. Trade-off issues between response time and data
freshness are considered in their work. However, they provide neither miss ratio nor data freshness guarantee.

Stanford Real-Time Information Processor (STRIP) addressed the problem of balancing between the freshness
and transaction timeliness [3]. In a real-time database, data should be maintained fresh to correctly reflect the
status of the real-world environment, also transactions should be processed in a timely manner. To study the
trade-off between freshness and timeliness, four scheduling algorithms were introduced to schedule updates and
transactions, and the performance was compared. In their later work, a similar trade-off problem was studied for
derived data [4]. Ahmed et al proposed a new approach to maintain the temporal consistency of derived data [5].
Different from STRIP, an update of a derived data object is explicitly associated with a certain timing constraint,
and is triggered by the database system only if the timing constraint could be met. By a simulation study, the
relative performance improvement was shown compared to the forced delay scheme of STRIP. None of the two
approaches considers dynamic adaptations of update policy. Also, performance guarantee is not provided.

The correctness of answers to database queries can be traded off to enhance the timeliness. A query processor,
called APPROXIMATE [30], can provide approximate answers depending on the availability of data or time.
An imprecise computation technique (milestone approach [16]) is applied by APPROXIMATE. In the milestone
approach, the accuracy of the intermediate result increases monotonically as the computation progresses. There-
fore, the correctness of answers to the query could monotonically increase as the query processing progresses.
A relational database system called CASE-DB [21] can produce approximate answers to queries within certain
deadlines. Approximate answers are provided processing a segment of the database by sampling, and the cor-
rectness of answers can improve as more data are processed. Before beginning each data processing, CASE-DB
determines if the segment processing can be finished in time. In replicated databases, consistency can be traded
off for shorter response time. For example, epsilon serializability [24] allows a query processing despite the
concurrent updates. Notably, the deviation of the answer to the query can be bounded, different from a simi-
lar approach called quasi serializability [8]. An adaptable security manager is proposed in [28], in which the
database security level can be temporarily degraded to enhance timeliness. These performance trade-off schemes
lack a systematic QoS management architecture and none of them consider providing guarantee for both miss
ratio and freshness.

Recently, feedback control has been widely applied to QoS management and real-time scheduling [2, 19, 29,
20]. However, to our best knowledge none of them considered QoS management issues in real-time databases
considering timing and data freshness constraints.

7 Conclusions and Future Work

The demand for real-time information services is rising in several new applications. Databases, the core com-
ponents of many information systems, could be a service bottleneck in the upcoming information era due to
their relatively low predictability. In this paper, we presented a QoS-sensitive approach to meet the fundamental
requirements for real-time database services, i.e., deadline miss ratio and data freshness guarantees, even in the
presence of unpredictable workloads and data access patterns.

By adopting QMF in real-time databases, updates and user service requests can be dynamically balanced to
guarantee potentially conflicting miss ratio and freshness requirements at the same time. A cost-benefit model
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is derived to measure the update utility. A novel database QoS management scheme is developed based on
the model. Combined with the feedback control scheduling and admission control, our QoS-sensitive approach
can provide guarantees on miss ratio and perceived freshness while other non-adaptive approaches fail. In the
performance evaluation, we have shown that our approach can achieve the similar performance, in terms of miss
ratio and data freshness, with the clairvoyant oracle which is privileged by the complete future knowledge of data
accesses.

For future work, the current state-of-the-art from the real-time database and QoS research will be integrated
and further enhanced. To enable QoS-sensitive real-time database services in various aspects, database spe-
cific QoS issues will be investigated. While there are numerous related research issues, we list only a few:
further investigation of the trade-off issues between timeliness and freshness, effective management of derived
data freshness, a feedback control framework for disk-resident real-time databases, differentiation of transaction
timeliness, and a real-time database middleware to provide the performance guarantee/differentiated service. The
impact of the database QoS research can be dramatic considering the importance of real-time database services
in the upcoming information era. To this end, we will endeavor further research in the related area.
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Appendix A Feedback Controller Tuning
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Figure 17: System Profiling Results

To tune the controllers of FC-UM, the performance of the controlled system, i.e., a simulated real-time database
in this paper, should be profiled under the worst case set-up that can cause the highest miss ratio [19]. The
worst case should be considered to provide a certain miss ratio guarantee. For the profiling under the worst
case set-up, we turned off admission control and QoS management. All updates are applied immediately in a
preferred manner to user transactions. As a result, the user transaction deadline miss ratio increases sharply as
load increases (Figure 17). Average deadline miss ratio and utilization are measured for loads increasing from
60% to 200% by 10%. Execution time estimation error � EstErr � is set to 1. Each simulation run lasts for 10 min.
Update workload is designed to be about 50% of the total CPU utilization for each load. Uniform access pattern
is assumed for data accesses. For each load, 10 simulation runs are performed and 90% confidence intervals are
derived (vertical bars in Figure 17).

The miss ratio gain, GM � Max 1 Miss Ratio Increase
Unit Load Increase 3 , should be derived to tune the controllers [19]. According

to our profiling results shown in Figure 17, the miss ratio gain is approximately 1.1682 when the load increases
from 110% to 120%. We set the sampling period to 5sec for feedback control. Given the sampling period and
miss ratio gain GM, Root Locus method [10, 23] of Matlab can be used to tune the controllers to support 0 steady
state error. The closed loop poles are p0 4 p1 � 0 ( 552 < 0 ( 153i. The feedback control system is stable, since the
closed loop poles are inside the unit circle. The tuned feedback control system can provide the following transient
performance:

� The theoretical overshoot (the worst case performance, e.g., highest deadline miss ratio) is 27% for a unit
step input. For example, if the target deadline miss ratio is 5%, the theoretical miss ratio overshoot is
5% �7� 1 � 0 ( 27 ��� 6 ( 35%.

� From the Root Locus design, the theoretical settling time (the time for system transients to decay) is 45sec
(i.e., 9 sampling periods). In the previous example, the miss ratio overshoot should decay within 45sec for
a unit step input.

Careful readers may have noticed that the measured average utilization tends to be higher than the load applied
to the simulated real-time database before it saturates as shown in Figure 17. This is because the data/resource
conflicts increase between updates and user transactions as load increases. (More transactions access temporal
data updated by update transactions increasing potential read/write conflicts). From Figure 17, we can observe
that the wasted utilization increases until the system saturates. (It decreases after the system is saturated, since
tardy transactions can be aborted even before accessing temporal data). The increase of wasted utilization ad-
versely affects the total utilization and miss ratio. This observation motivates the necessity of dynamic balancing
between updates and user transactions considering the current system status.
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