
A Global Time Reference for Hypercube Multicomputers

James C. French

IPC-TR-88-10
October 10, 1988

Institute for Parallel Computation
School of Engineering and Applied Science

University of Virginia
Charlottesville, VA 22903

This research was supported in part by JPL Contract
#957721 and by the Department of Energy under Grant
DE-FG05-88ER25063.

Abstract

This report describes a simple but effective technique for achiev-
ing a global time reference on hypercube multicomputers. The
synchronization algorithm presented runs in O (log N) time where
N = 2n is the number of processors in an order n hypercube.
Empirical evidence is given to show that the expected clock agree-
ment is n / 2 ticks. Since the synchronization algorithm does not
depend on particular parameters of the underlying hardware, it is
inherently portable.

A sampling technique for testing the agreement of the processor
clocks in O (N) time is also presented. This technique assumes
that the internode message transit time, m, is constant but
unknown.

One unexpected outcome of this work was the discovery that, in
general, timing information cannot be reliably obtained on the
NCUBE/AT system except perhaps in the total absence of message
traffic.

1. Introduction

This report describes a simple but effective technique for achieving a global time reference

on hypercube multicomputers. Citing variable message transmission times, queuing delays, and

crystals running at different rates, Tanenbaum [TANE85] states that for large distributed systems

"having a single global time is impossible." The situation is quite different when considering a

tightly coupled network of homogeneous processors. For example, all the nodes of the

NCUBE/ten hypercube receive their timing signal from a single crystal through the backplane.

This implies that the clock ensemble (the processor clock on each node) will run at the same rate

with a drift proportional to signal propagation delays. A reliable global time reference would be

achieved if all processor clocks were started at the same instant with the same initial value. This

is clearly not feasible. We can, however arrive at a reasonable global time reference by synchron-

izing the processor clocks. A very simple clock synchronization algorithm which provides a

stable, high quality global time reference on the NCUBE/ten hypercube is described below.

In this report, we are concerned with the synchronization of a properly functioning set of

processor clocks to form a globally distributed time service. The major issues involved with syn-

chronizing clocks in a distributed system are covered in the seminal paper by Lamport [LAMP78].

Other researchers ([LAMP85, SHIN87, SRIK87, VASA88]) have considered clock synchronization

in the presence of faults.

Examples of the utility of global time are abundant. A global time reference would be

invaluable for many parallel simulation protocols. It can be used to generate unique identifiers as

in C.mmp [JONE80] and timestamps in database applications. The ability to log asynchronous

events and retain their temporal relationship is a necessary debugging aid for parallel programs.

A global time reference can be useful in building system diagnostic software. A novel method

for process synchronization using global time has also been proposed by Lamport [LAMP84] . It

would also be useful for automatically scheduling checkpoints in long running jobs. This small

1

sampling of applications should be sufficient to justify some effort toward providing a global

time reference on parallel machines.

The remainder of this paper is organized as follows. A brief description of hypercube mul-

ticomputers is given in the next section. The synchronization algorithm is described in section 3.

Empirical results obtained from measurements on NCUBE hardware concerning clock stability

and agreement are given in section 4. This section also presents an efficient clock sampling tech-

nique and discusses timing anomalies associated with the NCUBE/AT hypercube. Section 5 con-

tains concluding remarks.

2

2. The Hypercube Multicomputer

The hypercube multicomputer is a message passing (as distinct from shared memory)

MIMD computer. A hypercube multicomputer of order n is a collection of N = 2n homogeneous

processors interconnected to form a boolean n-cube. The processors are customarily called nodes

and are conceptually placed at the vertices of the n-cube. Thus, each node is directly connected

to n neighbors, but may communicate with every other node. The nodes of the hypercube are

labeled from 0 through 2n− 1 in such a way that the binary representations of adjacent node labels

differ in exactly one bit. An example of the processor interconnection for an order 3 hypercube is

shown in Figure 1.

The properties of the hypercube topology are well known and a good summary can be

found in [SAAD88]. The regularity of the hypercube gives rise to many desirable properties. The

hypercube has excellent connectivity with a maximum internode distance of n hops and has sim-

ple message routing and broadcast algorithms. Many other topological structures (e.g., rings,

trees, meshes) can be embedded in the hypercube. It is this latter property that gives the hyper-

cube much of its versatility and computational flexibility.

The work reported in this paper was done on NCUBE hardware, specifically the

NCUBE/ten and NCUBE/AT hypercubes. The NCUBE/ten system used has 64 nodes each with

512 Kb of memory. The NCUBE/AT system uses an Intel 80386 based PC as a host processor

000

100 101

001

010

110 111

011

Figure 1: Order 3 Hypercube

3

with a 4 node hypercube processor array on a separate board. Each node of this NCUBE/AT sys-

tem has 128 Kb of memory. The NCUBE/AT and the NCUBE/ten use the same node processor

chips.

Both the NCUBE/ten and the NCUBE/AT run the AXIS operating system on their host pro-

cessors. On the NCUBE/ten communication is done via VORTEX, the host I/O board node

operating system, and VERTEX, the compute node operating system, while the NCUBE/AT

communicates using VOERTEX which supports the combined functionality of VORTEX and

VERTEX. More detail on the NCUBE hardware and software can be found in

[HAYE86a, HAYE86b].

4

3. Synchronization Algorithm

Each node k is assumed to have a physical clock PCk. For our purposes, this physical clock

is the timing mechanism available to an application program (e.g., ntime() on the NCUBE sys-

tems); it is not the hardware clock or crystal generating the timing pulse for the processor,

although it is derived from this timing source. The physical clock measures time in ticks, the

duration of which is determined by the particular hardware at hand. The NCUBE/ten

(NCUBE/AT) is clocked at 7 MHz (6 MHz) and increments its physical clock every 1024

pulses.1 This equates to .146 msec (.171 msec) per tick.

Define a virtual clock for each node as follows

VCk(t) = PCk(t) + δk .

Here PCk(t) denotes the value read from clock PCk at real time t.

To provide a global time reference, it is necessary to find (for each node k) a suitable con-

stant, δk, which corrects the local clock and such that

(1)| VC j(t) − VCk(t) | ≤ ε, for all j, k

where ε is a sufficiently small constant. When condition (1) holds, the clocks are said to be in

agreement [SRIK87]. Note that condition (1) is just Lamport’s [LAMP78] condition PC2.

3.1. Synchronizing a Pair of Clocks

Consider first the problem of synchronizing a pair of processor clocks. Assume that node j

has knowledge of the global time through VC j . The goal is for node k to acquire knowledge of

the global time reference using PCk and local computations to deduce δk. The algorithm

proceeds as follows:

���

1Personal communication with NCUBE Corp. customer service and engineering staff.

5

(1) Node j sends a message to node k telling node k to synchronize its clock. Node j then
awaits a time request from node k.

(2) At time t 0 = PCk(t), node k sends a message to node j requesting the current global time.

(3) At time T = VCj(t+m) node j receives the request and sends the value T to node k.

(4) At time t 1 = PCk(t+2m) node k receives the response from node j, the value T.

This sequence of events is shown in Figure 2.

Now to compute δk note that when node j’s global time was T, node k’s local clock was at

t 1− m where m denotes the message transit time. The difference in these two clock values is δk,

that is,

(2)δk = T − (t 1− m) .

Assuming that the message requesting the time from node j and the message carrying the

response both took the same time m to deliver, we have 2m = (t 1− t 0) which gives the following

approximation for m,

(3)m =
2

t 1− t 0
����������� .

3

2

1

The time is

What time is it?

Sync to me

kj

Figure 2: Clock Synchronization Message Protocol

6

Substituting (3) into (2) yields the desired expression for δk,

(4)δk = T −
2

t 1+ t 0
����������� .

The basic assumption underlying the synchronization algorithm is that the unknown time,

m, required to send and receive the synchronization message is constant or nearly so. This is a

reasonable assumption if: (1) the length of the messages is the same; and (2) the communication

channel is dedicated. Both these conditions are easily achieved on a hypercube if pairwise clock

synchronizations are between adjacent nodes. We can assess the effect of this assumption as fol-

lows. Let m0 be the transit time of the message requesting the current time and let m1 denote the

transit time of the reply. Now since

δk = T − (t 1− m1) = T − (t 0+ m0) ,

we have

2δk = 2T − (t 1+ t 0) + (m1− m0)

or equivalently,

δk = T −
2

t 1+ t 0
����������� +

2

m1− m0
� ������������� .

We have assumed that m0 = m1 = m. To the extent that this assumption is inaccurate, we will

incur an error of 1⁄2(m1− m0).

Since message transmission time will dominate the synchronization algorithm, it is easy to

see that the execution time, Τ1 , of the algorithm is bounded from above by Τ1≤ 3m ticks. Equal-

ity holds when the message in step 1 of the algorithm takes m ticks; in general, it will take less

time.

7

3.2. Synchronizing all the Clocks

We now wish to synchronize all the processor clocks using the pairwise synchronization

algorithm of the last section. The most efficient way to propagate the algorithm through all the

nodes of the hypercube is to use a spanning tree. (The topological properties of hypercubes, par-

ticularly as they relate to communication, are well covered in [HO86, JOHN87, SAAD85].) This

also guarantees that pairwise clock synchronizations will occur between adjacent nodes. An

example of a spanning tree embedded in an order three hypercube is shown in Figure 3. The

order in which the clocks of Figure 3 would be synchronized is given by the sequence

< (0,4), { (0,2), (4,6) }, { (0,1), (2,3), (4,5), (6,7) } >

where (i, j) signifies that node j synchronizes its clock with node i and the events in braces can

occur in parallel. Notice that the algorithm terminates in n = log N 2 steps and 2k −1 , k = 1, . . . ,n

clocks are synchronized at step k.

Figure 4 illustrates a typical timing sequence resulting from running the synchronization

algorithm on an order 2 cube. The vertical lines represent time as measured by each processor.

For simplicity, all the clocks are shown running in phase. The directed arcs represent messages

passed between the processors and correspond directly to the first three steps of the synchroniza-

tion algorithm. The value in parentheses labeling the last arc of the protocol is the time T sent in

0

4 5

1

2

6 7

3

0

4 2 1

6 5 3

7

Figure 3: Spanning Tree Embedded in 3-cube

���

2Throughout, log x means log2 x.

8

62

61

60

59

58

57

56

55

54

53

52

51

50

62

61

60

53

51

49

47

45

62

61

60

59

58

57

64

63

62

60

59

62

42

40

38

36

34

32

(57)

(54)

(59)

0 1 2 3

δ0 = 0 δ1 = 5 δ2 = −9 δ3 = 18

Processor Clocks

Figure 4: 2-cube Clock Synchronization Example

step 3 of the algorithm. The small time increment between the termination of one synchroniza-

tion and the initiation of the next is meant to suggest a small computation (e.g., the calculation of

δk) occurring between messages. The order in which the clock synchronizations occur is given

by

< (0,2), { (0,1), (2,3) } >

and the calculated values for the δk are shown at the bottom of the figure. The values shown can

easily be verified from the diagram, for example,

δ1 = 57 −
2

54 + 50
������������� = 5 .

Let Τn denote the time required to execute the n stages of the synchronization algorithm.

Since Τ1≤ 3m, it follows that Τn≤ 3mlog N = 3mn. In the example of Fig. 4, Τn= 11 ≤ 3mn = 12.

Notice that although the time line for node 0 in Figure 4 suggests that the nodes are capable of

9

simultaneous message transmission along multiple channels, this is not a requirement of the algo-

rithm. The algorithm executes in the same time even when messages on the same processor can-

not be overlapped.

3.3. Establishing a Base for the Time Reference

VC 0 , the clock on node 0 3, is the clock to which all other clocks are ultimately synchron-

ized. Therefore, the value of VC 0 determines the base of the global time reference. Since

VC 0 = PC 0 + δ0 , we can easily determine the base of the time reference by appropriate choice of

the initial value for δ0 . Several possibilities exist. If we wish to bring the remaining clocks into

synchrony with the current local time on node 0, we would choose δ0 = 0. If, however, we

wanted to start a new epoch at time 0, we would set δ0 = −PC 0(t).

Another possibility results from the desire to resynchronize the system of clocks. If for

some reason the clocks have drifted away from an acceptable state, we could reset them to some

time in the virtual future. One way to do this is to find
k

max VCk and assign the role of node 0 to

that node. The synchronization algorithm is then run with δ0 = VC 0 + 3mn. Although this

creates a discontinuity in the virtual time sequence, it safely avoids unintentionally reproducing

the virtual past on any node.

One final note. Since the node clocks are implemented by fixed length integer counters,

they have a period determined by their update rate. This will typically be in the 5 to 50 day

range. The global time reference may have a period substantially shorter than the underlying

clock depending on the choice of δ0 and the current value of the system clock. This is not a seri-

ous problem and can be easily worked around.

���

3Note that the node chosen to be node 0 is quite arbitrary; it is the role of node 0 which is important not the particular processor.

10

3.4. Clock Agreement

When discussing clock agreement, we should distinguish between (a) the agreement attain-

able immediately after running a synchronization algorithm, and (b) the instantaneous agreement

of the clock ensemble, that is, the observable agreement of the clocks after the passage of an arbi-

trary interval of time. The initial agreement of the clocks will be due to the synchronization algo-

rithm while the ability to maintain this agreement will depend on the drift characteristics of the

clocks.

Lamport [LAMP78] has characterized a discrete clock as "a continuous one in which there is

an error of up to 1⁄2 tick in reading it." Thus, when reading a discrete clock we have an error

bounded by

0 ≤ t − VCk(t) < 1 .

This means that the best agreement we can expect is

(5)| VC j(t) − VCk(t) | ≤ 1 .

Since the longest path in the spanning tree is log N, we would expect the worst case clock

agreement to be

| VC j(t) − VCk(t) | ≤ log N, for all j, k .

This follows from (5) where we consider that an error of one tick is introduced at each synchroni-

zation step. However, since the probability that a one tick error will be introduced is independent

of the accumulated error, the expected agreement of the clocks should be

(6)| VC j(t) − VCk(t) | ∼∼
2

log N
� ��������� , for all j, k .

Empirical evidence is given in the next section to support this conjecture. A more formal

justification of (6) and a general analysis of error propagation will be the subject of a later paper.

11

4. Accuracy and Stability - Empirical Results

We now turn our attention to the evaluation of the quality of the global time reference

achieved by using the algorithm of the last section. Two properties of interest are the stability

and accuracy of the clock ensemble. By stability we mean the relative immunity of the separate

clocks to drift relative to one another. Clearly this is a property of the hardware timing mechan-

ism and is independent of the synchronization algorithm. The accuracy of the global time refer-

ence is an evaluation of the pairwise agreement (cf. inequality 1) of the individual clocks. In

order to assess these properties, we must sample the individual processor clocks.

4.1. Sampling the Processor Clocks

After we have run the clock synchronization protocol, it is no longer necessary to preserve

the distinction between the physical and virtual clocks. We simply assume a single clock, Ck, on

each node k and denote the reading of the clock at time t by ck(t). Ideally, we would like to read

all the processor clocks at exactly the same instant in time, that is, at time t we read all the ck(t).

Because we have to ask each processor to report its time and messages incur delays, this clearly

cannot be done on a message passing multicomputer. Accordingly, each clock must be sampled

individually and message latencies must be accounted for in the sampling procedure. A ring

topology was chosen for this sampling for two reasons. First, to minimize experimental bias a

topology different from that used to propagate the synchronization protocol is desirable.

Secondly, a ring topology is easy to analyze and does not introduce timing side effects (such as

overlapped message transmission) which might occur using other interconnection schemes.

A ring topology is easy to embed in a hypercube by using a gray code to construct the ring.

Figure 5 illustrates such an embedding arising from a simple binary reflected gray code. For sim-

plicity of notation, we will regard node k (k = 0,1, . . . ,n −1) in the ring topology to be the k th

node in the ring, that is, at distance k from node 0, and ignore the actual processor labels shown in

Figure 5. For example, node 0 is processor 0, node 3 is processor 2, node 5 is processor 7, etc.

12

0

4 5

1

2

6 7

3

0 1 3 2

4 5 7 6

Figure 5: Ring Topology Embedded in 3-cube

The sampling method consists of first sending a message from node 0 around the ring

requesting that each processor record the message arrival time. In the second step, a request for

the sampled values is broadcast to all nodes and finally, in the third step, all the values are sent to

node 0 for analysis.

The outcome of one such trial on an order 3 cube is shown in Table 1. The values shown in

Table 1(a) were sampled immediately after the synchronization protocol was run. The values in

Table 1(b) were sampled 12 hours later. (Note that the actual values shown in Table 1(b) have

been reduced by 307576093 ticks for easier visual comparison.) The actual clock values sam-

pled, denoted by ck(t +km), are shown in the second column of the table. The remaining entries

in the table are described below.

For any node k, we have

(7)ck(t +km) = ck(t) + km .

Since the internode message transit time, m, is unknown, we use the following estimate

(8)m
� � =

N

c 0(t+Nm) − c 0(t)
�����������������������������

where c 0(t+Nm) is the time the sampling message returns to node 0. One is tempted to estimate

13

k ck(t +km) ĉk(t +km)
�
+.5 � ĉk(t) � −.5 �

0 146 146 146 146 146
1 154 154.125 154 145.875 146
2 163 162.25 162 146.75 147
3 171 170.375 170 146.625 147
4 179 178.5 179 146.5 146
5 188 186.625 187 147.375 147
6 195 194.75 195 146.25 146
7 203 202.875 203 146.125 146

m
� � = 8.125, range = 1.5

(a) Sample Immediately after Synchronization

k ck(t +km) ĉk(t +km)
�
+.5 � ĉk(t) � −.5 �

0 146 146 146 146 146
1 155 154.25 154 146.75 147
2 163 162.5 163 146.5 146
3 171 170.75 171 146.25 146
4 180 179 179 147 147
5 188 187.25 187 146.75 147
6 196 195.5 196 146.5 146
7 204 203.75 204 146.25 146

m
� � = 8.25, range = 1.0

(b) Sample 12 Hours Later

Table 1: Clock Stability and Accuracy

m locally on each node as

m
� �

k =
k

ck(t +km) − c 0(t)� ��������������������������� .

But notice that, together with eqn. (7), this guarantees that ck(t) = c 0(t) by construction. This

emphasizes the importance of measuring intervals with respect to the same clock.

Now if the clocks are truly synchronized, we have by hypothesis ck(t) = c 0(t) for all k.

Hence, we can estimate the message arrival time on any node k by

ĉk(t +km) = c 0(t) + km
� �

.

14

This expression estimates the time at which the sampling message arrived at node k relative to the

clock on node 0. Similarly, we can estimate the time the sampling message left node 0 relative to

node k’s clock by

ĉk(t) = ck(t +km) − km
� �

.

We obtain integer estimates of the clock readings by rounding the estimates of ĉk(t +km)

and ĉk(t). This rounding is motivated by the fact that although we regard m as constant, it need

not be integral. The rounding strategy used is as follows:

ĉk(t +km) =
��
c 0(t) + km

� � +.5
�� and ĉk(t) =

�� ck(t +km) − km
� � − .5

� � .

The only difference in the rounding method for these quantities is that .5 is rounded up in one

direction and down in the other.

Table 1 shows the calculated values of these clock estimates together with the observed

values of ck(t +km). A glance at the last column of Table 1(a) and 1(b) should convince the

reader that the clock ensemble was maintaining an extremely accurate global time reference for

the 12 hour time period monitored. This behavior was consistently observed for all cube orders

tested.

As we mentioned in the beginning of this section, stability is a hardware property. Our

investigation showed that the NCUBE/ten provides a very stable timing source and we could find

no statistically significant difference in the behavior of the clock ensemble when sampling the

clocks every 10 minutes for 12 hours and when sampling every 10 seconds for 12 minutes.

To test the agreement of the clock ensemble it is necessary to calculate the sample range of

the ck(t), which is given by

k
max ĉk(t) −

k
min ĉk(t) .

15

This has been done for the data of Table 1 and is shown in the table.

In order to get a feel for the expected agreement of the clock ensemble the following experi-

ment was conducted. For each order n hypercube (1 ≤ n ≤ 6), a program was run to synchronize

the clocks and then sample the clocks every 10 seconds for 12 minutes. For each clock sample,

the sample range was calculated. This procedure was repeated 10 times resulting in 720 observa-

tions from which a pooled estimate of the expected value of the range was calculated.

The results of these calculations are shown in the plot of Figure 6. The line n/2 is shown as

a dashed line in the figure for comparison. The data give strong empirical evidence to the conjec-

ture (see (6) in Section 3) that the expected agreement of the clocks is
2

log N
��������� =

2
n
��� ticks.

-0 2 4 6

-0

1

2

3

4

Range
(in ticks)

Hypercube Dimension, n

�

�

�

�

�

�

2
n
���

Figure 6: Expected Clock Agreement

16

4.2. One Pass Sampling Technique

The detailed sampling of the last section is far too expensive to use as the basis of a deci-

sion procedure for ascertaining whether or not the agreement of a system of clocks is "good

enough." The sampling method used involves passing at least 3N −2 messages and takes at least

N +2 log N steps to complete.4 This would be acceptable if the need to sample was infrequent.

However, in systems with more clock drift, the need to sample frequently demands an efficient

procedure in order to be viable. In this section, we describe a method for computing the mean,

c
�

(t), and variance, s 2 , of the ck(t), which passes N messages in N steps around a ring.

The idea is to collect enough summary information in one pass around a ring to be able to

deduce c
�

(t) and s 2 when the message returns to node 0. Clearly this is trivial if the internode

message transit time, m, is known. Here we treat the case where m is constant but unknown. The

basis of the method is as follows. First, let ∆k = ck(t +km) − c 0(t) and define the statistics S 1 , S 2 ,

and S 3 as

S 1 =
k =0
Σ

N−1
∆k , S 2 =

k =0
Σ

N−1
k∆k , and S 3 =

k =0
Σ

N−1
∆k

2 .

Given knowledge of these sums, it can be shown that

c
�

(t) = c 0(t) +
N

S 1����� −
2

(N−1)����������� m

and

s 2 =
N(N−1)

NS 3 − S 1
2� ����������������� + m

��
� S 1 −

N−1

2S 2� ������� +
12

mN(N+1)� ���������������
	 �

 .

The derivation of these quantities is straightforward, but tedious. The details can be found in

Appendix A.

���
4It takes N messages (N steps) to propagate the sampling packet around the ring. After the packet arrives back at node 0, N −1

messages are sent (log N steps) to request the sampled values. Finally, N −1 messages (log N steps) are required to report the sampled
values to node 0.

17

The method is now simply: initiate a message from node 0 containing the value c 0(t) and

initial values of 0 for the sums S 1 , S 2 , and S 3; as the message arrives at each node k, the clock is

sampled and the values of the partial sums updated. When the message arrives back at node 0,

the sums can be used, together with the estimate of m
� �

given in equation (8), to compute the sam-

ple mean and variance. An example of these calculations is shown in Table 2. The entries in

Table 2 derive from the data in Table 1 and can be verified by independent calculation using that

data.

Some justification should be given for the choice of ∆k. This quantity was defined simply

to slow the growth of the sum S 3 . It is easy to see that S 3 is O (m2N 3) and a quick calculation

shows that for reasonable values of m, this algorithm can be used on systems of up to N = 512

processors using unsigned 32 bit arithmetic. On systems with more than 512 processors we

would have to use floating point arithmetic which would increase the size of the message, the

length of the computation, and hence, increase the message latency.

We have experimented with some decision procedures based on the sample mean and vari-

ance defined above. In addition, we are looking at simpler procedures which exploit particular

properties (see Appendix B) of the underlying distribution. The basic idea is to bound the sample

range so that a particular level of clock agreement is achieved with some confidence. We antici-

pate that results on distribution-free bounds of order statistics [DAVI81] can be used to refine the

decision procedure. This work is continuing and will be covered in a subsequent report.

m
� �

S 1 S 2 S 3 c
�

(t) s

8.125 231 1152 9481 146.4375 .486
8.25 235 1170 9779 146.5 .327

Table 2: Sample Calculations from Table 1 Data

18

4.3. NCUBE/AT Timing Anomalies

As a practical example of the utility of a global clock as a diagnostic tool, this section

describes some timing anomalies associated with the NCUBE/AT hypercube which were

uncovered with the aid of the global clock service described in this paper.

Two test programs were run on the NCUBE/AT to gather clock samples under slightly dif-

ferent conditions. These programs sampled the global clock five times at 10 second intervals.

The clock samples obtained at each sampling interval were normalized by subtracting the sample

minimum from all the sample values. The results of these tests from two different NCUBE/AT

order 2 hypercubes are summarized in Table 3 and described below. The rows in the table

correspond to one sample of all the node clocks; the columns show the times recorded for a single

node. Note that the ideal case (i.e., a perfectly synchronized system of clocks) would yield zero

for all the normalized clock values.

The first test program (A) is simply the sampling program described earlier. Recall that the

sampling method consists of first sending a message around the ring requesting that each proces-

NCUBE/AT Timing Anomalies
Machine 1 Machine 2Test

0 1 2 3 0 1 2 3

0 1 1 0 0 0 0 1
0 3 3 3 0 3 3 3
0 6 5 6 0 5 5 6
0 9 8 9 0 7 9 8

A

0 11 11 11 0 9 11 11

0 0 0 1 0 0 1 1
43 0 0 0 43 0 0 1
88 1 0 1 87 1 1 0

132 0 1 0 131 1 1 0
B

177 1 2 0 176 1 1 0

Table 3: NCUBE/AT Timing Anomalies

19

sor record the message arrival time. A request for the sampled values is then broadcast to all

nodes and finally, in the last step, all the sampled values are sent to node 0 for analysis.

From the table we see that: (1) node 0 consistently has the minimum clock value; and (2)

the remaining three nodes are synchronized with respect to one another, but are apparently

advancing (running faster than node 0) at a rate of approximately 2 ticks per sample. The only

difference between the processing on node 0 and the remaining nodes is in the last step where

node 0 is the recipient of all the sampled values. Apparently this burst of message activity is

causing node 0 to fail to update its clock appropriately. One possible explanation for this

phenomenon is that node 0 may be operating with its clock interrupt disabled for all or some por-

tion of the message receiving process.

The second test program (B) is just a modification of program A. Program A was modified

so that in addition to the behavior described above, each node sends its sampled value to the

display screen. From the table we see that: (1) node 0 is apparently running faster than the

remaining nodes at a rate of approximately 44 ticks per sample; and (2) the remaining three nodes

are synchronized. Apparently the clocks on nodes 2-3 are disabled for 44 ticks during each sam-

ple period. This discrepancy can only be attributed to the screen I/O since test programs A and B

differ only in this respect.

Since the node clocks seem to be affected by (1) message loads and (2) interactions with

AXIS, the conclusion to be drawn from the data of Table 3 is inescapable: in general, no timing

information can be reliably obtained from the NCUBE/AT. This means that simple interval tim-

ing can not be done accurately unless there is no message traffic.

Recall that the NCUBE/AT and the NCUBE/ten use the same node processor chips. Also,

the NCUBE/ten communication is done via VORTEX and VERTEX, while the NCUBE/AT uses

a combination node OS called VOERTEX. Since the NCUBE/ten does not exhibit the same tim-

ing anomalies, it seems reasonable to infer that VOERTEX is responsible for the problem.

20

5. Conclusions and Future Work

The simple clock synchronization algorithm described in this paper was shown to provide a

very high quality global time reference on the NCUBE/ten hypercube. The stability of the clock

is due to the single timing source provided on the NCUBE. The excellent agreement of the clock

ensemble is due to the synchronization algorithm. Empirical evidence was given to support the

conjecture that the expected agreement of the clock ensemble after synchronization is
2

log N
��������� =

2
n
���

ticks.

The algorithm is efficient enough to be used as part of the normal node program load

sequence to provide application programs with a global clock initialized to time 0. At the very

least, it could be used during the node bootstrap process (ninit on the NCUBE hardware) to

establish a single system wide time base.

The utility of a global time reference as a diagnostic tool was also demonstrated when tim-

ing anomalies in the NCUBE/AT were uncovered. We speculate that the NCUBE/AT node OS,

VOERTEX, is causing the problems.

We intend to duplicate the experiments described in this report on the Intel iPSC/2 hyper-

cube as well as on an order-2 cube made up of PC’s cabled together through serial ports. Each

node of the Intel hypercube has its own crystal and therefore, the clock ensemble should exhibit

much more drift than the NCUBE hardware. In addition to separately clocked nodes, the PC sys-

tem will offer more variability in message transmission time. These new environments will pro-

vide valuable insight into the clock synchronization problem. They will enable us to access the

effects of more loosely coupled systems with greater potential for clock drift and variability in

message latency, on the maintenance of a global time service.

Finally, the techniques described in this paper should be applicable to multicomputers using

different communication topologies. If the graph of the communication network has diameter D,

the expected agreement of the clocks after synchronization should be 1⁄2Dε where ε is an upper

21

bound on the pairwise agreement of the individual clocks. In the case of the hypercube, D = n

and we have given empirical evidence to support the claim that ε = 1 .

22

APPENDIX A

When sampling the clocks in a hypercube multicomputer using a ring topology, each node k

will record the observation ck(t +km), which is the time of arrival of the sampling message with

respect to node k’s clock. Now ck(t +km) = ck(t) + km, where ck(t) is the time the message left

node 0 with respect to node k’s clock and m is the internode message transit time. We want to

evaluate the sample mean, c
�

(t), and the sample variance, s 2 , of the ck(t). In this appendix we

show how to derive c
�

(t) and s 2 from information gathered in one pass around the ring when the

message transit time, m, is unknown.

Let ∆k = ck(t +km) − c 0(t) and consider the statistics

S 1 =
k =0
Σ

N−1
∆k , S 2 =

k =0
Σ

N−1
k∆k , and S 3 =

k =0
Σ

N−1
∆k

2 .

If ck(t) = c 0(t), then ∆k can be interpreted as the elapsed time of the message since it left node 0.

Alternatively, ∆k can be interpreted as a scaling operation designed to keep the sums S 1 , S 2 , and

S 3 from growing too rapidly.

The sample mean can be derived as follows:

S 1 =
k =0
Σ

N−1
∆k

=
k =0
Σ

N−1
��
ck(t +km) − c 0(t)

��

=
k =0
Σ

N−1
��
ck(t) + km

��
− Nc 0(t)

(A-1)=
k =0
Σ

N−1
ck(t) + m

k =0
Σ

N−1
k − Nc 0(t)

=
k =0
Σ

N−1
ck(t) +

2
N(N−1)� ������������� m − Nc 0(t) = N

���
c
�

(t) +
2

(N−1)�	��������� m − c 0(t)

� ��

23

from which it follows that

(A-2)c
�

(t) = c 0(t) +
N

S 1����� −
2

(N−1)����������� m .

We now derive the sample variance. We begin by expanding the sum S 2 . This sum is used

later to simplify S 3 .

S 2 =
k =0
Σ

N−1
k∆k

=
k =0
Σ

N−1
k
��
ck(t +km) − c 0(t)

��

=
k =0
Σ

N−1
k
��
ck(t) + km − c 0(t)

��

(A-3)=
k =0
Σ

N−1
kck(t) + m

k =0
Σ

N−1
k 2 − c 0(t)

k =0
Σ

N−1
k

Turning now to S 3 we have

S 3 =
k =0
Σ

N−1
∆k

2

=
k =0
Σ

N−1
��
ck(t +km) − c 0(t)

��
2

=
k =0
Σ

N−1
��
ck(t +km)2 − 2ck(t +km)c 0(t) + c 0(t)2

��

=
k =0
Σ

N−1
��
[ck(t) + km]2 − 2[ck(t) + km]c 0(t) + c 0(t)2

��

=
k =0
Σ

N−1
��
ck(t)2 + 2kmck(t) + (km)2 − 2c 0(t)ck(t) − 2kmc0(t) + c 0(t)2

��

=
k =0
Σ

N−1
ck(t)2 + 2m

k =0
Σ

N−1
kck(t) + m2

k =0
Σ

N−1
k 2 − 2c 0(t)

k =0
Σ

N−1
ck(t) − 2mc0(t)

k =0
Σ

N−1
k + Nc 0(t)2

=
k =0
Σ

N−1
ck(t)2 + 2m

�	�
k =0
Σ

N−1
kck(t) + m

k =0
Σ

N−1
k 2 − c 0(t)

k =0
Σ

N−1
k

� 	�
− m2

k =0
Σ

N−1
k 2 − 2c 0(t)

k =0
Σ

N−1
ck(t) + Nc 0(t)2

Substituting (A-3) gives

24

S 3 =
k =0
Σ

N−1
ck(t)2 + 2mS2 − m2

k =0
Σ

N−1
k 2 − 2c 0(t)

k =0
Σ

N−1
ck(t) + Nc 0(t)2

We can now remove the
k =0
Σ

N−1
ck(t) term using (A-1) to get

S 3 =
k =0
Σ

N−1
ck(t)2 + 2mS2 − m2

k =0
Σ

N−1
k 2 − 2c 0(t)

��
� S 1 − m

k =0
Σ

N−1
k + Nc 0(t)

� �
� + Nc 0(t)2

(A-4)=
k =0
Σ

N−1
ck(t)2 + 2mS2 − m2

k =0
Σ

N−1
k 2 − 2c 0(t)

��
� S 1 − m

k =0
Σ

N−1
k

� �
� − Nc 0(t)2

The sample variance, s 2 , is given by

s 2 =
N(N−1)

N
k =0
Σ

N−1
ck(t)2 −

��
�

k =0
Σ

N−1
ck(t)

� �
�

2

� ��� .

Multiplying (A-4) by N and rearranging gives

(A-5)N
k =0
Σ

N−1
ck(t)2 = NS 3 − 2mNS 2 + m2N

k =0
Σ

N−1
k 2 + 2Nc 0(t)

��
� S 1 − m

k =0
Σ

N−1
k

� �
� + N 2c 0(t)2

From (A-1) we have

��
�

k =0
Σ

N−1
ck(t)

� �
�

2

=

��
� S 1 − m

k =0
Σ

N−1
k + Nc 0(t)

� �
�

2

(A-6)= S 1
2 − 2mS1

k =0
Σ

N−1
k +

��
� m

k =0
Σ

N−1
k

� �
�

2

+ 2Nc 0(t)

��
� S 1 − m

k =0
Σ

N−1
k

� �
� + N 2c 0(t)2

Subtracting (A-6) from (A-5) yields

N(N−1)s 2 = N
k =0
Σ

N−1
ck(t)2 −

��
�
k =0
Σ

N−1
ck(t)

� �
�

2

= NS 3 − S 1
2 − 2mNS 2 + 2mS1

k =0
Σ

N−1
k + m2N

k =0
Σ

N−1
k 2 −

��
� m

k =0
Σ

N−1
k

� �
�

2

(A-7)= NS 3 − S 1
2 − 2m

��
� NS 2 − S 1

k =0
Σ

N−1
k

� �
� + m2

��
� N

k =0
Σ

N−1
k 2 −

��
�

k =0
Σ

N−1
k

� �
�

2
� �
�

25

Equation (A-7) can be simplified using the identities

k =1
Σ
N

k =
2

N(N+1)� ������������� and
k =1
Σ
N

k 2 =
6

N(N+1)(2N+1)������������������������� ,

so that

N
k =0
Σ

N−1
k 2 −

��
�
k =0
Σ

N−1
k

� �
�

2

=
6

N 2(N−1)(2N−1)��������������������������� −

	�

 2

N(N−1)� �������������
� �
�

2

= N 2(N−1)

	�

 6

2N−1� ��������� −
4

N−1� �������
� �
�

=
12

N 2(N−1)(N+1)�������������������������

and

S 1
k =0
Σ

N−1
k =

2
N(N−1)� ������������� S 1 .

Now equation (A-7) can be written as

N(N−1)s 2 = NS 3 − S 1
2 − 2m

��
� NS 2 −

2
N(N−1)� ������������� S 1

� �
� +

12
m2N 2(N−1)(N+1)� �����������������������������

= NS 3 − S 1
2 + mN(N−1)S 1 − 2mNS 2 +

12
m2N 2(N−1)(N+1)� �����������������������������

from which it follows that

(A-8)s 2 =
N(N−1)

NS 3 − S 1
2� ����������������� + m

	�

 S 1 −

N−1

2S 2� ������� +
12

mN(N+1)� ���������������
� �
� .

In both (A-2) and (A-8) we use the following estimate for the unknown internode message

transit time, m,

m
 =

N

c 0(t+Nm) − c 0(t)����������������������������� .

26

APPENDIX B

In this appendix, we develop the relationship between the observed clock values and the

estimated values given by

(B-1)ĉk(t +km) = c 0(t) + km ,

the estimated clock value on node k relative to node 0’s clock, and

(B-2)ĉk(t) = ck(t +km) − km ,

the estimated value of node k’s clock at time t. Consider the sum of the differences between each

clock’s observed and estimated value.

k =0
Σ

N−1 ��
ck(t +km) − ĉk(t +km)

��
=

k =0
Σ

N−1 ��
ck(t +km) − c 0(t)

��
− m

k =0
Σ

N−1
k

(B-3)= S 1 − m
k =0
Σ

N−1
k

where S 1 is just the sum defined in Appendix A. Comparing (B-3) with (A-1) we find that

k =0
Σ

N−1 ��
ck(t +km) − ĉk(t +km)

��
=

k =0
Σ

N−1
ck(t) − Nc 0(t)

(B-4)= N[c
�

(t) − c 0(t)]

From (B-1) and (B-2), we also have that

ck(t +km) − ĉk(t +km) = ck(t +km) − [c 0(t) + km] = ĉk(t) − c 0(t)

which, together with (B-4), implies that

(B-5)
k =0
Σ

N−1 ��
ĉk(t) − c 0(t)

��
= N[c

�
(t) − c 0(t)]

This expression is the sum of the individual clock deviations from c 0(t).

27

From (B-4) and (B-5) we see that the expression

(B-6)c
�

(t) − c 0(t)

can be interpreted as: (1) the average deviation between the observed and estimated values of any

particular clock; or (2) the average deviation of any clock from c 0(t). More generally, we can

regard (B-6) as the average deviation of the entire clock ensemble from the hypothetically true

clock time c 0(t).

28

References:

[DAVI81] H. A. David, Order Statistics, John Wiley & Sons, Inc., New York, NY, second
edition 1981.

[HAYE86a] J. P. Hayes, T. N. Mudge, Q. F. Stout, S. Colley and J. Palmer, ‘‘Architecture of a
Hypercube Supercomputer’’, Proc. of the International Conference on Parallel
Processing, Aug. 1986, 653-660.

[HAYE86b] J. P. Hayes, T. N. Mudge, Q. F. Stout, S. Colley and J. Palmer, ‘‘A Microprocessor-
based Hypercube Supercomputer’’, IEEE Micro, Oct. 1986, 6-17.

[HO86] C. T. Ho and S. L. Johnsson, ‘‘Distributed Routing Algorithms for Broadcasting and
Personalized Communication in Hypercubes’’, Proc. of the International Conference
on Parallel Processing, Aug. 1986, 640-648.

[JOHN87] S. L. Johnsson and C. T. Ho, ‘‘Optimum Broadcasting and Personalized
Communication in Hypercubes’’, Tech. Rep. YALEU/DCS/RR-610, Dept. of
Computer Science, Yale University, Dec. 1987.

[JONE80] A. K. Jones and P. Schwarz, ‘‘Experience Using Multiprocessor Systems - A Status
Report’’, Computing Surveys 12, 2 (June 1980), 121-164.

[LAMP78] L. Lamport, ‘‘Time, Clocks, and the Ordering of Events in a Distributed System’’,
Comm. ACM 21, 7 (July 1978), 558-565.

[LAMP84] L. Lamport, ‘‘Using Time Instead of Timeout for Fault-Tolerant Distributed
Systems’’, ACM Trans. Prog. Lang. and Systems 6, 2 (Apr. 1984), 254-280.

[LAMP85] L. Lamport and P. M. Melliar-Smith, ‘‘Synchronizing Clocks in the Presence of
Faults’’, J. ACM 32, 1 (Jan. 1985), 52-78.

[SAAD85] Y. Saad and M. H. Schultz, ‘‘Data Communication in Hypercubes’’, Tech. Rep.
YALEU/DCS/RR-428, Dept. of Computer Science, Yale University, Oct. 1985.

[SAAD88] Y. Saad and M. H. Schultz, ‘‘Topological Properties of Hypercubes’’, IEEE Trans.
on Computers 37, 7 (July 1988), 867-872.

[SHIN87] K. G. Shin and P. Ramanathan, ‘‘Clock Synchronization of a Large Multiprocessor
System in the Presence of Malicious Faults’’, IEEE Trans. on Computers C-36, 1
(Jan. 1987), 2-12.

[SRIK87] T. K. Srikanth and S. Toueg, ‘‘Optimal Clock Synchronization’’, J. ACM 34, 3 (July
1987), 626-645.

[TANE85] A. S. Tanenbaum and R. van Renesse, ‘‘Distributed Operating Systems’’,
Computing Surveys 17, 4 (Dec. 1985), 419-470.

[VASA88] N. Vasanthavada and P. N. Marinos, ‘‘Synchronization of Fault-Tolerant Clocks in
the Presence of Malicious Failures’’, IEEE Trans. on Computers 37, 4 (Apr. 1988),
440-448.

29

Table of Contents

1. Introduction ... 1

2. The Hypercube Multicomputer ... 3

3. Synchronization Algorithm ... 5

3.1. Synchronizing a Pair of Clocks .. 5

3.2. Synchronizing all the Clocks .. 8

3.3. Establishing a Base for the Time Reference 10

3.4. Clock Agreement .. 11

4. Accuracy and Stability - Empirical Results .. 12

4.1. Sampling the Processor Clocks .. 12

4.2. One Pass Sampling Technique ... 17

4.3. NCUBE/AT Timing Anomalies ... 19

5. Conclusions and Future Work .. 21

Appendix A ... 23

Appendix B ... 27

References ... 29

