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Abstract:

Any closure operator ¢¢ on a set S can be made to induce a partial order $¢ on its power
set P(S). In this paper we describe the properties of such an induced order. In particular,
we will show that given minimal constraints on ¢, (P(S), Sy) is a semi-modular lattice. If
S is itself a partially ordered set, it is shown that $y will "preserve” the order £ on S if
and only if ¢ is the ideal operator on (S, € ). This development is a generalization of several
other approaches to the structure of partially ordered sets and graphs, whose results fali out
as corollaries,
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1. Background

Originally, the authors sought to answer the question "suppose (S,€) is a partially
ordered set, can the partial order relation be extended to P(S) in a 'natural’ way?". This
question appears in a number of applications such as [Day85] and [Esta80]. Similarly, in
computer science one often seeks to partition a network into subsets that in some inherent
fashion preserves the underlying structure of the network. The answer, which will appears
as a proposition near the middle of this paper, is "yes'. However, in the course of obtain-
ing this result, a number of more fundamental relationships between closure operators (on
either ordered or unordered sets) and partial orders on the power sel were uncovered. These

are covered in the next section.

The major result, showing that the partial order relation induced by a closure operator
is a2 lower semi-modular lattice, is then developed in section 3. Demonstration of the same
semi-modular lattice, but with respect to a particular "closure concept’, are major steps in

both [Koh84] and [Pfal73].

In a variety of computer science problems, it is often easier to define a closure concept
than to demonstrate an explicit partial order. Imstances include denotational semantics
[Plot76], distributed concurrency control [Kane85]., and communications protocols [Choi85].
That, under such situations, a partial order with regular lattice properties can be induced is
often important. The authors, in particular, are using a closure operator and its induced

semi-modular lattice to attack the classic grammar acquisition problem.



2. Partial Orders on a Power Set

Let S be any set with power set P(S) consisting of all subsets of 8. Let
¢ P(S)— P(S) be a closure operator on P(S). Recall that a function ¢ is a closure operator

if the following three closure axioms hold for all X, Y & §

C1 X € ¢(X)
C2 X € Y implies ¢(X) € (YD
C3 (X)) = ¢*(X) = ¢(X)

In addition to these three standard closure properties, one can impose extra restrictions on

the ¢ operator as follows

Ca (X)) = ¢{Y) implies (X N Y) = d(X) = ¢(Y)
C5" X NY)=¢(X)N (Y)
C6' X UY) = ¢(X)Ug(Y)

The first of these additional restrictions, which asserts that if two sets have the same clo-
sure then their intersection must as well, is relatively weak. It is freguently satisfied.
However, it will be reguired later to insure that maximal elements exist in an induced lat-
tice. The latter two conditions, that ¢ preserve unions and/or intersections, are rather strong
restrictions. By way of example, the only closure operator that can simultaneously satisfy
both C5 and C6' is the U, operator defined by U (X)=XUA where A is any fixed
subset. Most commonly A =@ so that U, is just the "identity" operator. Few familiar
closure operators possess either of these properties. We will make little use of these two
conditions, except to poinl out an occasional stromger result when one or the other holds.

Readily C5' implies C4'. Finally, we point out that the two relationships

HXIUMY) C dXUY)
X NY) C o(X)NHY)

which follow directly from C2 are used repeatedly.

Let § be any set and let ¢ be any closure operator defined on 8. For all X, Y € §

we say that X €4, if
YNo(X) € X C (YD (2.1)

We call this the order induced on P(S) by ¢. Of course, we must first show that €4 so



defined really is an order relation.

Theorem 2.1: € is a partial order relation on P(S).

Proof: We use the definition X K4V =y YN G(X) € X € H(Y) repeatedly in all of the
proofs of this section. We provide a bit more detail for this first typical proof. For
example, using C1 we have for all X, X N¢(X) € X C ¢(X) implying that X £4X,
or reflexivity.

If X€4Y and YS4X then YE(X) and YNHX)EX which implies that YEX.
Similarly X &Y so that X = Y and weak anti-symmetry follows.

Let X€,Y and Y&,Z X<,Y impliess XC¢(Y) so that by {(C2)
ZNGXICZNGHY)CY because Y S4Z. Consequenily, ZNHXISYNHX)CX.

Further X C¢(Y) and YCEHZ) imply that X S dp(Z) = $(Z). So X €47 yielding
transitivity. O

We are so accustomed to thinking of X as "smaller" (or less than) Y if X €,Y, that
one expects XC Y to imply X €4Y. or conversely. But this is not, in general, true. The
following proposition develops relationships that do hold between the induced partial order,

4. and set containment, €, in 8.

Proposition 2.2: Let X, Y, Z € S and let ¢ be a closure operator on S.
(1) XCYC Zand X $4Z, imply X €, Y
() XCYCZand Z< X, imply Z<,Y and Y $,X

Proof: 1let XCYCZ
(1) XCY implies X C(Y). Since X $4Z, ZNHXICX, which with YEZ implies
YNHXICX, so X£,Y. (Note that Y €47, need not in general be true since
Z N ¢(Y) need not be contained in Y:)
(2) XCY implies XN$(YICY, and YEZ implies YNHZ)&Z.  From ZS.?X we
(X

have Z S ¢(X) whick yields ZE YY) from XCY and {(C2); and YC ¢ from
YCZ [

Notice that we can use containment properties to infer ordering relationships only in con-
junction with other information concerning the induced order. Later theorem 2.5 will
expand this theme to establish covering relationships based on single element membership

and the closure operator, ¢.

Unions and intersections of subsets of S can be related to €4 by the following two

propositions.



Proposition 2.3t Let X, Y, Z € S and let ¢ be a closure operator on S.
(1) X€,Yand X §,Z imply X $,YUZ
(2) X<4Zand YS$4Z imply XNY S, Z
If ¢ preserves intersections, that is C5' above, then
(VX €Y and X $4Z imply X $,YNZ
while if ¢ preserves unions, that is C6¢' above, then
(X €yZand Y S4Z imply XU Y S,2

Proof: (1) and (1°).
X €4Y implies X E¢(Y), and similarly we have XS ¢(Z). Thus X S ¢(Y) U &(Z).
(And X ECd(YING(Z).) From the former, X CHYUZ). Also YUSX)IEX and
ZUHXICX, implying (YUZ)NHX)EX; hence X LY U Z

If ¢ preserves intersections then X CH(YNZ) moreover YNZCEYUZ insures the
second containment. Thus X S4YNZ.

(2) and (27) are demonstrated similarly. O

Proposition 2.4: Let X, Y, Z C S and let ¢ be a closure cperator on S.
(1) X<€,Y implies X $4X UY S, Y
(2) X<,Y implies X NY §,Y
(3) X<4YSyZimpliesXNZ € Y

Proof: The first inequality in (1) and all of (2) follow directly from the preceding proposi-
tion, and the reflexivity of €4, XUYS,Y because YNSHX UYICXUY trivially,
and X UYC@(Y) because YCE (YY) and X K,Y implies that XCo(Y). In (3)
X €4 Y implies X € ¢(Y), consequently XNZ EC ZNG(Y) C Y, (since YE,Z). O

Z is said to cover X if X €47 and there exists no distinct Y such that X $4Y €47
The following theorem provides conditions under which a subset X of S can be covered by
a subset Y that has exactly one more, or one less, element. It is fundamental to several
dimension results, and alsc yields the immediate corollary that sets which differ by exactly

one element are always comparable.

Theorem 2.5: If x ¢ X then
(D X €4X U {x} if and only if x € ¢(X)
(2) X Ul{x} €4Xif and only if x € ¢(X)
where (1) is a cover if and only if ¢(X U {x}) C¢(X) U {x}, and
(2) is always a covering relationship.

Moreover, if ¢ on § satisfies C4' then (1} and (2) characterize all covering relations in
(P(S), Sy

Proof:
(1) Readily X C (X U {x}); thus X €4X U {x} if XU NGXICEX iff x ¢ $(X).
The issue is to establish the covering relationship. Let (X U{x}) C(X) U {x}
and let Y be such that X €,Y £5X U{x}. By the preceding proposition, X Y.
We assume that X # Y, else we are done. For y €Y—X, y ¢ $(X) since X €,Y.



Y CopX U xS X)) U {x} oy assumption. Thus, if y€Y-X, y€lx} that is y =
x. Hence X is covered by X U {x} in <,.

(2) Readily X N(X U {x}CX; thusy X U {x} Co(X) iff x €p(X).

Let Y be such that X U{x}S,YS4X. Again XEY. Assume X=Y. Let
yEY—X. YE4X implies YC qbg)X) so in particular y€@p(X). X U{x}S,Y
implies YNAX U{xDEXU{x}. So yeXU{x}. Thus y = x

Now assume that C4' is satisfied, and that ¥ covers X. By the preceding proposi-
tion, we know X €,XUY S,Y, and thus either X=X UY or Y=XUY by the cover-
ing property. Simplifying, either Y& X or XCY.

In the first case. suppose Jx€X—Y. Let Z=YU{x} so that YCZ&GX. Since
X €4Y, by Proposition 22, X£,Z%,Y. Thus by the covering assumption,
Z=X=YUlx}

Consequently, case (2) of the proposition holds immediately.

For the case X C Y, assume that [Y - X| 2 2. Our goal is to show that Y can not
cover X. Suppose for some y;.y; €Y—X that ¢(X Uy} =d(XUly;}. By C4,
HX Uy D =X Uy D=¢X). Let Z=XUly} XcXU{ylcY. By proposi-
tion 2.2, X€,XUly} and YNoXUyD=YNdx)CXCXUy}GoY). So
X U{y;} €4Y contradicting the covering assumption.

On the other hand, if ¢p(X U{y;} = ¢(X U {y;}) for all i, j, then by the pigeon hole
principle, for at least one y;, (X U{y;}) = d(X)U {y;}. Now apply case (1) to

XcXUfylcocy
to establish K4 and contradict the initial covering assumption.

Hence, if Y covers X either |[Y - X| = 1 or X - ¥| = 1. O

For most closure operators, ¢(X U{x}) Co(X) U {x} will not generally be true. But for
many individual elements x €S and sets X€P(S) it will be true, thus leading to the cover-

ing relationships in Kg4.

It is customary to say that a set X is closed if X =¢(X). Of the following corol-
laries, the first is immediate, and the second is a well known fact about closure operators.
Corollary 2.6: f X is closed and X C Y then X <, Y.

Corollary 2.7: The arbitrary intersection of closed sets is closed.
Corollary 2.8: If Y is closed and X is covered by Y then Y = X U {x} and X is closed.

(The case X = Y U {x} is impossible.)
Proof: Let Y cover X with respect to €y, and let Y be closed.

If Y=XUi{x}, then Y=(Y) =X U{xDCHXIU{x} by (1) of the preceding
theorem. Hence ¢(X)CHXINYEX implying X is closed.

If X=YU{x} then by (2) x€¢(Y). But this immeditely contradicts the assump-
tion that Y is closed. O



There are many closure operators that can be defined on arbitrary sets (which need
not be posets). To get some intutive sense of the nature of <, we consider a small par-
tially ordered set S of 4 elements and three different closure operators ¢. Let S be the

poset

a

A vpartially ordered set (S, <)

First, observe that if ¢ is simply the identity operator, that is
HX)=i(X)=X, XCS

then ¢ satisfies all of the closure axioms including C4', C5¥, and C6. In this case
(P(8), €;) is just the power set partially ordered by inclusion, &. It is worth reviewing

all of the preceding results using this special case in which ¢ = id and €4 = C.

A second more interesting example is generated if we let ¢ be the familiar ideal opera-

1or, in which
H(X) = ideal(X) = {y :Ix €X, y Sx}

Again it is easy to verify the basic closure axioms. If § is finite, then readily C4' and C6'
hold, but C5° does not. The induced partial order (P(S), €4) is shown below. In the

literature of denotational semantics this is called a Milner order [Plot76].

A third, and different, order S, is induced if we let ¢ be the comvex hull operator,

which can be denoted by ch, c.f. [Pfal71]. That is,
HX)=ch(X)={Y:XCY and Y is convex in S }.

This too is a closure operator. It satisfies C4' and C5, but not C6. It induces the
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The induced order (P(S), €4)
where ¢(X) = ideal(X)

following partial order. In this paper, the semi-modular sub-lattice comprised of only the

convex subsets of S was shown to have significent properties relative to the order, <, on S.

If S is itself a partially ordered set, as in the examples above, it is reasonable to want
the induced partial order £, on P(S) to preserve the original partial order € on 8. That

is, for all elements x. y € S
{x} <4{y}if and only if x Sy.

Observe that for singleton elements of S, the relationship {x} S€g4{y} if and only if
x €d({y}) is an immediate corollary of the definition of %4. Conseguently, if ¢ is an
order perserving closure operator, then x €y if and only if x€¢(y). Equivalently, one
may observe that ¢ is order preserving whenever the comparability graph of (S,<) is an
induced subgraph of the comparability graph of (P(8), €4) in the sense of [Kell§5] or

[Gali68].
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The induced order (P(S). €4)
where ¢{(X) = ch(X)

Proposition 2.9: If the induced partial order <y on P(S) preserves the partial order < on S

Proof:

then ¢ contains the ideal operator on S. If, in addition, ¢ preserves unions, C6', then
¢ is the ideal operator.

Readily, if ¢ = ideal operator then ¢ preserves unions. Moreover, it is easily shown
that €, on P(S) preserves € on § in the sense that x €y if and only if
{X} $¢, {y}

Now let ¢ be any closure operator that preserves & as above. In particular, we
use the observation that x Sy if x€¢({y}). Let Y be any set, so ideal(Y) =
x13yeY.x Syl = U,eydl}) € (U, eyy) = ¢(Y) Thus, ideal(Y) & $(Y).

And if ¢ satisfies C6', the containment can not be proper. [I

Given the ordering defined by (2.1), there is unigue closure operator with will extend

an ordering € on S to an ordering €, on P(S). But there can be other extensions of S

to P(S). For example, a dual definition of the induced order using

X€YIE X NHHYICY E H(X),

can be of considerable practical interest. All of the preceding propositions (or slight vari-

ants) can be proven using this alternative dual definition. In this case. the unique closure



operator that extends ¥ will be the upper ideal operator, which defines the set of all ele-
ments "greater than" a set X. Other "dual' properties are evident. "Duality” was first
investigated in [Pfal73], which also first posed the question of extending partial orders from

a set to its power set.

Often, one can define several arbitrary extensions to P(S) which preserve &, while
satisfying the reflexive, anti-symmetric, and transitive properties expected of a partial order.
A natural constraint on any extension of € to P(S) would be to require that "if for all
x€X, there exists a y€Y such that x € y, then it would follow that X €4Y". Based on
the work in [Pfal73} it is conjectured that any extension of € to P(S) which has this pro-

perty must contain either £, or its dual as a sub order.



3. The Induced Lattice of Subsets

Before establishing the lattice properties of (S,<,). we first develop a concept of
"maximal” elements with respect to the closure operator, ¢. In fact, these are analogous to
maximal elements with respect to the order, ¥, and they will be used in this fashion.

This development, however, is a little bit cleaner and more basic.
Let X be any subset of S. The set of maximal elements with respect to X and ¢ on
S is
maxg(X) = [}, {Z; :(Z)=(X)}
One may also regard maxg(X) as the minimal set of generators for ¢(X).

It may be easier to visualize maxy by considering the case where 8§ is a poset and ¢ is
the ideal operator. Then maxg(X) is precisely those elements which are maximal in X.
(Had we developed the dual formulation, we would have called it min¢.) it is clear that
we have chosen our notation to continue this intuitive imagery, even when S is not par-
tially ordered or ¢ is some other closure operator. While this intuitive view can be help-

ful, the max, operator is really characterized by the following propositions.

Proposition 3.1: Let X, Y € S and let ¢ be a closure operator on S.
(1 maxg(X)EX
(2) dmaxs(X)) € $(X)
with equality if ¢ satisfies C4'
(3)  maxy(X) = max,($(X))
4 maxy(X) = maxg(maxyg(X)) if ¢ satisfies C4'

Proof: Part (1) is evident from the definition. Application of (C2) to (1) immediately
yields (2). However, an alternative derivation may be more illustrative.
Hmaxy(X)) = ¢( N Z ) E N HZ,) = p(X) where $(Z,) =d(X). Since for all Z,
d(Z, ) = ¢(X), with C4' equality readily follows.

maxg{p(X)) = N {Z, :HZ,)=p(p(X)) =¢(X)} where the latter expression is just
maxg(X).

maxg{maxg(X)) = N {Z; :¢(Z, ) =p(maxy(X)) where using (2) yields maxyg(X) for
the latter term. 0O

Note that the condition C4', ¢(X)=e¢(Y) implies HX NY)=¢(X)=¢(Y), is very much less

stringent that C5', the preservation of intersections by ¢, which implies it. Relatively few

10



closure operators satisfy C5', while the majority will satisfy C4'"

Proposition 3.2: Let X, Y C S and let ¢ be a closure operator on S.

Proof:

(1) Y € X implies Y N maxy(X) € maxy(Y)
(20 maxy(X) N maxg(Y)CX N maxy(Y) € max (X NY)
B mangX) € {x€X x €d(X~{x )0}

with equality if ¢ satisfies C4'.

(1) Let W, be the generators of maxy(Y), so that ¢(W,)=¢(Y). It suffices to show
that for all j, YN max,(X)CW;, or equivalently, that maxg(X)CW; U (X-Y).
In fact, we claim that ¢(X)=g(W; U(X-Y)). To see this, note that
X=¢d(W;) U (X~Y) so XCH(W; UX=Y)). thus $(X)C (W, UX~Y)). Simi-
larly, W; U (XY} S ¢(X), and thus ¢(W; U{(X-Y)) C¢(X), and we are done.

(2) The first inequality follows from maxx(X)EX. By part (1), we have
XNY NmaxgY) S maxgXNY) But XNYNmaxg(Y) =X Nmaxy(Y), so the
second inequality is proven.

(3) Let x€maxy{(X). For any Z; such that ¢(Z;) = ¢X) we have x€Z, implying
H(X—{x}) is a proper subset of H(X). So x€p(X—{x}) or
maxg(X) € {x €X:x €p(X—{x}).

Let us denote the latter set above by B, and let A = {x €X :x ¢dp(X)—{x]D}.
Now let x€A. x€X and x€¢d(d(X)—{x}). Again let Z; be such that
&7 ) =d(X), Z, CSH(X) If x€7Z, then ¢(Z,) C HHX)—{x]). so x€d(Z;). a
contradiction. So x €Z, for all Z, implying x €maxy(X).

Thus we have proven that A & maxy(X)& B, which is a slightly stronger result
than asserted in the proposition itself.

Now, if (C4) bolds we can show that A = B. Suppose x ¢4, we will show
that x§B. x ¢A implies either x X, in which case x € B follows immediately,
or x€X and x€@d(HX)—{x}). These imply HX) = d(HX)—{x}). By (C4).
G(X) = (X N{H(X)—{x}) = X —{x}), thus x EH(X—{x}) or x¢B. D

Theorem 3.3: I ¢ satisfies C4', then (P(S), €,) is a lattice with

Proof:

nf(Xgy o X)) = 10U, X0 N (N $ED] U mang( ;X))

Let 1 = [(U;X;0 N (N;oX00) U maxgl N;¢(X;)).  Since the finite intersection
of closed sets, M d(X), is closed, (1) = N, (X;), because
95[( U iXi) N ( N ,¢(Xg))] cn ;¢(X;) and ¢(max¢( n f¢(Xj))] = N ;¢’(X;)

Now, 1€ N.¢(X,) implies IS@H(X;), while X, NG(DCI follows from
Xk ﬂgb(l) = Xk M ( N ,(jb(Xz)) c ( U iXi) N ( 8 l(}s(X,)) €31 Thus, for all Xk, I‘{(ﬁXk.

Suppose now that for all k Y&,X;. Then X; Nd(YIEYCH(X;), so that
YC Np(X;), and (U, X)NG(Y)EY. We must show that YS4I that is
d(YINICYC (). The latter contzinment was just shown, as well as
VI N[UX; NN, eX; NICY.

It remains only to show that ¢(Y)Nmaxy( N;¢(X;))&Y. By proposition 3.2,
S(Y) N maxg{ N ;d(X;) € maxy(G(Y) N (N ;H (XD Now  o&(Y)E n;dX,;), so

11



maxg{p(Y) N (N (X)) = maxg(@(¥) = maxa(YIC Y.

Having demonstrated that the finite inf operator exists we need only establish the
existence of a maximal element. We claim it is maxg(S), where S is the entire set.
Let XC8  ¢(X) N maxy(S) C maxy(p{X) NS) = maxy(d(X)) = maxy(X)EX and
readily X € ¢p(maxy(S)) =8, So X §ymaxy(S). O

Note that from the definition, X N Y € inf(X,Y).

The preceding theorem is conditioned on ¢ satisfying C4' on S. For the remainder of

the paper we assume this is the case. If not, S may be partitioned into subsets A, ..., 4,

for which C4' is satisfied. The equivalence classes, Ay, of the finest such partition are called

atoms

of § with respect to the closure operator. {(c.f. [Pfal71])

Theorem 3.4: The lattice (P(S), <) is lower semi-modular.

Proof: let Z cover X and Y in (P(S), §,), where X and Y are not comparable wrt. <.

Let I = inf(X, Y).

Case (1) Z=Y U {x}.
We will show that X =IU{x}. By theorem 2.5, ¢(Y U {x})CH(¥Y)Uix] and
x €p(Y) implying that x €L

1ICX. If x¢X then since x€Z and Z cover X, Z=XU{x} or X=Y, a con-
tradiction. So x€X and IUx}1 G X.

If X4Q1U{x}, there exists y€Y, y¢l. FEither y€Z or it isn’t. In the former
case we derive a contradiction since y€Z implies y€Y implies y€l. In the
latter case, if y§Z then X =ZU{y} {since Z covers X) implying that
YCZCXCL I%,Y so by proposition 2.2, X £,Y contradicting non compara-
bility.

Thus X =1U{x}, so X covers L
Case (2) Z=Y—{x}.
One shows in a very similar manner that X =1—{x}. O

Proposition 3.5: Let C € P(S) be the collection of all subsets of § which are closed with

Proof:

respect to ¢. If ¢ satisfies C4' then (P(S), €,) restricted to C is a lower semi-modular
sublattice (C, €4). Moreover, this sublattice of closed sets is always partially
ordered by set containment, C,

The entire set S is closed. Since ¢ satisfies C4, all covering relationships are
governed by theorem 2.5 and its corollaries.

Readily, if S covers X, then X is closed. By a simple induction one obtains that
X €4S implies X is closed. Thus (C, £4) is the sublattice of all sets X, X £,8

and it is readily semi-modular.

Moreover, only rule (1) of the theorem is ever applicable, so the partial order <4
is equivalent to simple containment, .

12



Alternatively, one can see that for closed sets X and Y, inf(X,Y)=XNY. O

Both [Koh84] and [Pfal71] describe the properties of certain subsets of a graph in
terms of a lattice of such subsets. In both papers, proof of lower semi-modularity is a
major step. Since Koh's "closed set" readily defines a closure operator, as does the the "con-
vex hull" operator, these results could equally well be asserted as corollaries of the preced-

ing theorem.

It ig frequently fairly easy to demonstrate that closure properties C1 through C3 hold
for interesting substructures of various discrete structures, such as directed and undirected
graphs, or computer program units. With the preceding results, one can immediately induce
a partial order on these sub-structures which is quite rich mathematically. There are a

number of applications in which this partial order is of considerable interest.

We close the paper with a corollary that illusirates one such simple application. By
definition, @ is always the least element of (P(S), €4). Let the height of X in S, denoted
ht(X), be the length of a chain from @ to X in (P(S), €4). Because this lattice is semi-
modular, it satisfies the Dedekind Chain Condition and all such chains have the same

length. Thus height is a well defined concept.

Corollary 3.6: If ¢ satisfies C4' then in (P(S), €4),
he(X) = 2| (XD |~ | X |

Proof: We must show that Y covers X iff X €,Y and ht(Y)=ht(X)+1. This follows as a
corrolary of theorem 2.5.
In the forward direction, theorem 2.5 gives us two cases. In case (1), Y=X U {x},
with x€¢(X) and HY)=¢X U {xD=(X)U {x}. Thus |Y]=[|X]|+1. and
(Y| = |$(D] + 1, so ht(Y)=nt(X)+1.
in case (2), X=Y Uy}, with y€d(Y). Thus ¢(X)=¢(Y), and so ht(X)=ht(¥)—1,
and we are done.
For necessity, notice that the cardinality conditions above yield the containment con-
ditions of theorem 2.5. O
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