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ABSTRACT

SIMD organizations amortize the area and power of fetch,
decode, and issue logic across multiple processing units in or-
der to maximize throughput for a given area and power bud-
get. However, throughput is reduced when a set of threads
operating in lockstep (a warp) are stalled due to long latency
memory accesses. The resulting idle cycles are extremely
costly. Multi-threading can hide latencies by interleaving the
execution of multiple warps, but deep multi-threading using
many warps dramatically increases the cost of the register
files (multi-threading depth x SIMD width), and cache con-
tention can make performance worse. Instead, intra-warp
latency hiding should first be exploited. This allows threads
that are ready but stalled by SIMD restrictions to use these
idle cycles and reduces the need for multi-threading among
warps. This paper introduces dynamic warp subdivision
(DWS), which allows a single warp to occupy more than
one slot in the scheduler without requiring extra register
file space. Independent scheduling entities allow divergent
branch paths to interleave their execution, and allow threads
that hit to run ahead. The result is improved latency hiding
and memory level parallelism (MLP). We evaluate the tech-
nique on a coherent cache hierarchy with private L1 caches
and a shared L2 cache. With an area overhead of less than
1%, experiments with eight data-parallel benchmarks show
our technique improves performance on average by 1.7X.

Categories and Subject Descriptors: C.1.2 PROCES-
SOR ARCHITECTURES: Multiple Data Stream Architec-
tures (Multiprocessors)

General Terms: Design, Performance

Keywords: SIMD, Branch Divergence, Latency Hiding,
Memory Divergence, Warp

1. INTRODUCTION

Single instruction, multiple data (SIMD) organizations use
a single instruction sequencer to operate multiple datap-
aths or “lanes” in lockstep. SIMD is generally more efficient
than multiple instruction, multiple data (MIMD) in exploit-
ing data parallelism, because it allows greater throughput
within a given area and power budget by amortizing the cost
of the instruction sequencing over multiple datapaths. This
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observation is becoming important, both because data par-
allelism is common across a wide range of applications; and
because data-parallel throughput is increasingly important
for high performance as single-thread performance improve-
ment slows.

SIMD lockstep operation of multiple datapaths can be im-
plemented with vector units, where the SIMD operation is
explicit in the instruction set and a single thread operates on
wide vector registers. SIMD lockstep can also be implicit,
where each lane executes distinct threads that operate on
scalar registers, but the threads progress in lockstep. The
latter is also referred to by NVIDIA as single instruction
multiple threads (SIMT). For purpose of generality in this
paper, we refer to the set of operations happening in lock-
step as a warp and the application of an instruction sequence
to a single lane as a thread. We refer to a set of hard-
ware units under SIMD control as a warp processing unit or
WPU.! SIMD organizations of both types are increasingly
common in architectures for high throughput computing, ex-
emplified today in STT’s Cell Broadband Engine (CBE) [11],
Clearspeed’s CSX600 [20], Intel’s Larrabee [27], Cray [26],
and Tarantula [9]. Graphics processors (GPUs), including
NVIDIA’s Tesla [8] and Fermi [1], and AMD/ATT’s recent
architectures [2] also employ SIMD organizations and are
increasingly used for general-purpose computing. Academic
researchers have also proposed stream architectures that em-
ploy SIMD organizations [13, 25|, and in fact this history
goes back to the Illiac project [21]. For both productivity
and performance purposes, an increasing number of SIMD
organizations support gather and scatter, where each lane
can load from or store to unrelated addresses. (Vector ar-
chitectures implement this by loading or storing a vector of
data from or to a vector of addresses [7, 8, 27].) This intro-
duces the possibility of “divergent” memory access latency,
because a SIMD gather or scatter may access a set of data
that is not fully in a particular level of the cache.

As in other throughput-oriented organizations that try to
maximize thread concurrency and hence do not waste area
on discovering instruction level parallelism, WPUs typically
employ in-order pipelines that have limited ability to exe-
cute past L1 cache misses or other long latency events. To
hide memory latencies, WPUs instead time-multiplex among
multiple concurrent warps, each with their own PCs and reg-
isters. However, the multi-threading depth (i.e., number of
warps) is limited because adding more warps multiplies the
area overhead in register files, and may increase cache con-
tention as well. As a result of this limited multi-threading
depth, the WPU may run out of work. This can occur even
when there are runnable threads that are stalled only due to
SIMD lockstep restrictions. For example, some threads in a

"'We invent a new term here to distinguish it from “cores”,
“lanes” or “PEs,” terms which are sometimes used to refer to
individual scalar pipelines that constitutes the WPU.



warp may be ready while others are still stalled on a cache
miss.

This paper observes that when a WPU does not have
enough warps with all threads ready to execute, some in-
dividual threads may still be able to proceed. This occurs
in two cases:

e Branch divergence: Branch divergence occurs when
threads in the same warp take different paths upon
a conditional branch. In current organizations, the
WPU can only execute one path of the branch at a
time for a given warp, with some threads masked off
if they took the branch in the alternate direction. In
array organizations, this is handled in hardware by a
re-convergence stack [10] or conditional streams [12];
in vector organizations, this is handled in software by
using the branch outcomes as a set of predicates [15,
28, 29]. In either case, allowing both paths to run
creates problems in re-converging the warp.

e Memory latency divergence: Memory latency diver-
gence occurs when threads from a single warp expe-
rience different memory-reference latencies caused by
cache misses or accessing different DRAM banks. In
current organizations, the entire warp must wait until
the last thread has its reference satisfied. This occurs
in both array and vector organizations (if the vector
instruction set allows gather/scatter).

We propose dynamic warp subdivision (DWS) to utilize
both thread categories. Warps are selectively subdivided
into warp-splits. Each has fewer threads than the avail-
able SIMD width, but can be individually regarded as an
additional scheduling entity to hide latency and can both be
active:

e Upon branch divergence, a warp can be divided into
two active warp-splits, each representing threads that
fall into one of the branch paths. The WPU can then
interleave the computation of different branch paths to
hide memory latency.

e Upon memory latency divergence, a warp can be di-
vided into two warp-splits as well: one represents
threads whose memory operations have completed, the
other represents threads that are still stalled (e.g., on
a cache miss). The former warp-split need not sus-
pend; it can run ahead non-speculatively and in the
process touch and potentially prefetch cache lines that
may also be needed by threads that fell behind.

In both cases, stall cycles are reduced, latency hiding is
improved, and the ability to overlap more outgoing mem-
ory requests increases memory level parallelism (MLP). The
challenge is to manage this process without reducing over-
all throughput: aggressive subdivision may result in perfor-
mance degradation because it may lead to a large number of
narrow warp-splits that only exploit a fraction of the SIMD
computation resources. A dynamic mechanism is needed be-
cause the divergence pattern depends on run-time dynam-
ics such as cache misses and may vary across applications,
phases of execution, and even different inputs.

We evaluate several strategies for dynamic warp subdi-
vision based upon eight distinct data-parallel benchmarks.
Experiments are conducted by simulating WPUs operating
over a two-level cache hierarchy that has private L1 caches
sharing an inclusive, on-chip L2. The results show that our
technique improves the average performance across a diverse
set of parallel benchmarks by 1.7X. It is robust and shows
no performance degradation on the benchmarks that were
tested. We estimate that dynamic warp subdivision adds
less than 1% area overhead to a WPU.

2. IMPACT OF MEMORY LATENCY
DIVERGENCE
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Figure 1: (a) A wider SIMD organization does not always
improve performance due to increased time spent waiting for
memory. The number of warps is fixed at four. (b) 16-wide
WPUs with 4 warps even suffer from highly associative D-
caches. (c) A few 8-wide warps can beneficially hide latency,

but too many warps eventually exacerbates cache contention
and increases the time spent waiting for memory. Results
are harmonic means across the benchmarks listed in Table 2
on the system configuration in Table 3.

As SIMD width increases, the likelihood that at least
one thread will stall the entire warp increases. However,
inter-warp latency tolerance (i.e., deeper multi-threading
via more warps) is not sufficient to hide these latencies. The
number of threads whose state fits in an L1 cache is limited.
That is why intra-warp latency tolerance is needed. Intra-
warp latency also provides opportunities for memory-level
parallelism (MLP) that conventional SIMD organizations do
not.

In order to illustrate the impact of memory latency diver-
gence, the limitations on warp count, and the need for intra-
warp latency tolerance, Figure la shows the performance
scaling when varying the SIMD width from 1 to 16 with
four warps sharing a 32 KB L1 D-cache. As the SIMD width
grows, the overall execution time first improves (thanks to
greater throughput) but eventually starts to get worse even
though this experiment is increasing the total computation
resources; although the time spent in SIMD computation
keeps decreasing, the time spent waiting for memory dras-
tically increases and eventually dominates. The reasons for
this trend are two-fold: first, a wider SIMD organization in-
corporates more threads, which increase D-cache contention;
second, wider warps are more likely to incur memory di-
vergence and suspend due to individual cache misses. The
overall effect is fewer active warps but more latency to hide.
Figure 1c shows that adding more warps does exacerbate
L1 contention. This is a capacity limitation, not just an
associativity problem, as shown in Figure 1b, where time
Waitin§ on memory is still significant even with full associa-
tivity.” These results are all averages across the benchmarks
described in Section 3.2 and obtained with the configuration
described in Section 3.

Intra-warp latency tolerance hides latencies without re-
quiring extra threads. However, intra-warp latency toler-
ance is only beneficial when threads within the same warp

2Tt is true that current GPU architectures such as Tesla [8]
and Fermi [1] have much higher warp counts because they
reference global memory frequently (no L2 for Tesla and L2
is only a victim cache in Fermi), and have very long WPU

latencies to issue back to back instructions from the same
thread. If we increase L1 miss latency to 300 cycles (similar

to having no L2), our architecture’s optimal warp count also

‘um%s to 8 or 16; the extra cache contention is now justified
vy the dramatic need for extra latency hiding. Intra-warp
latency hiding is still beneficial in this case, of course.



[ [ FFT [ Filter [ HotSpot | LU [ Merge | Short [ KMeans | SVM |
Avg. instruction count between branches 59 12 16 53 9 19 10 12
Percentage of divergent branches 3.4% 0% 1.4% 4.3% [ 13.1% | 22.0% 2.0% 4.3%
Avg. instruction count between misses 7 27 7 5 45 6 47 11
Avg. instruction count between div. misses 10 30 10 6 75 8 57 17
Percentage of divergent memory accesses 69% 38% 7% 81% 60% 79% 33% 62%

Table 1: Characterization of the frequency of branch divergence and SIMD cache misses.

exhibit divergent behavior. Table 1 shows that many bench-
marks exhibit frequent memory divergence. A further ad-
vantage of intra-warp latency tolerance is that the same
mechanisms also improve throughput in the presence of
branch divergence.

In summary, scaling SIMD width is not always benefi-
cial in systems with limited on-chip storage capacity. In or-
der to host wider SIMD organizations and further improve
throughput, it is necessary to hide such latency without ad-
ditional threads. Section 4 and Section 5 show how DWS can
address both branch and memory divergence. DWS is the
first technique that can address both sources of divergence
using the same hardware mechanism.

3. METHODOLOGY
3.1 Opverall Architecture

Branch and memory-latency divergence can affect a va-
riety of architectures. In order to draw more general con-
clusions, this paper models a general system that blends
important aspects of modern CPU and GPU architectures:
general-purpose [SAs (represented here by the Alpha ISA),
SIMD organization, multi-threading, and a cache-coherent
memory hierarchy. We model implicit, array-style SIMD in-
stead of a vector architecture because this places fewer bur-
dens on software. While there are simulators available for
vector architectures, traditional CPUs, and GPUs, we are
not aware of any that combine these aspects. We therefore
developed MV5 [17] to simulate WPUs. MV5 is a cycle-
accurate, event-driven simulator based on M5 [3]. Because
existing thread schedulers do not directly support the man-
agement of SIMD threads, applications are simulated in sys-
tem emulation mode with a set of primitives to create and
schedule threads on SIMD resources.

The simulated applications are programmed in an
OpenMP-style API implemented in MV5, where data par-
allelism is expressed in parallel for loops. Applications
are cross-compiled to the Alpha ISA using G++ 4.1.0, with
new instructions recognized by MV5 inserted to signal SIMD
thread management to the simulator. The code for a thread
is compiled as a scalar code, and the programming model
then launches multiple copies for SIMD execution. Neigh-
boring tasks are assigned to threads in the same warp in
a way that exploits both spatial and temporal data local-
ity [16].

3.2 Benchmarks

We simulate a set of benchmarks shown in Table 2. The
benchmarks are selected from several benchmark suites in-
cluding MineBench [19], Splash2 [32], and Rodinia [4]. No
consideration of SIMD divergence was present in selecting
the benchmarks. The benchmarks are the same as those
used to study thread scheduling when many threads share
a cache [16]. These benchmarks are common, data-parallel
kernels and applications. They cover the application do-
mains of scientific computing, image processing, physics sim-
ulation, machine learning and data mining. They demon-
strate varied data access and communication patterns. We
increase the input sizes from the original benchmarks so that

Benchmark Description

FFT Fast Fourier Transform (Splash2 [32]).
Spectral methods. Butterfly computation

Input: a 1-D array of 65,536 (2'®) numbers

Filter Edge Detection of an Input Image.
Convolution. Gathering a 3-by-3 neighborhood

Input: a gray scale image of size 500 x 500

HotSpot | Thermal Simulation (Rodinia [4]).
Iterative partial differential equation solver

Input: a 300 x 300 2-D grid, 100 iterations

LU LU Decomposition (Splash2 [32]). Dense linear algebra.
Alternating row-major and column-major computation

Input: a 300 x 300 matrix

Merge Merge Sort. Element aggregation and reordering

Input: a 1-D array of 300,000 integers

Short ‘Winning Path Search for Chess. Dynamic programming.
Neighborhood calculation based on the the previous row

Input: 6 steps each with 150,000 choices

KMeans | Unsupervised Classification (MineBench [19]).
Distance aggregation using Map-Reduce.

Input: 10,000 points in a 20-D space

SVM Supervised Learning (MineBench [19]).

Support vector machine’s kernel computation.

Input: 100,000 vectors with a 20-D space

Table 2: Simulated benchmarks with descriptions and input
sizes.

we have reasonable simulation times of within six hours. All
means reported in this paper are harmonic means.

3.3 Architecture Details

The baseline SIMD architecture used in this study is illus-
trated in Figure 2. The system has a two level coherent cache
hierarchy. Each WPU has private I- and D-caches which in-
teract with an on-chip, shared, last-level cache (LLC). Only
the LLC communicates with the off-chip memory. Exam-
ples of SIMD organizations that use cache hierarchies in-
clude Larrabee [27] and Fermi [1], both of which support
general purpose computation. (Fermi’s caches, however, are
not cache-coherent). WPUs are simulated with up to 64
thread contexts and 16 lanes. The experiments in this paper
are limited to four WPUs because this provide reasonable
simulation time.

A WPU groups scalar threads into warps. A fetched in-
struction is executed by threads within the same (active por-
tion of a) warp simultaneously. Each thread’s register state
resides in a particular lane and the thread must execute in
the corresponding lane. The register file is highly banked,
with banks corresponding to lanes, so that multiple threads
can access their operands at the same time without requiring
deep multi-porting. Branch divergence is enabled by a re-
convergence stack [10] — using a bit mask, threads that do
not fall into the current control path are not executed. The
mechanism is described in more detail in Section 4.1. Due
to the lack of compiler support, we manually instrument the
application code with post-dominators to signal control flow
re-convergence after branches.

For the WPU lanes, we model in-order issue of one in-
struction per cycle. All instructions have latency of one
except for memory references, which are modeled faithfully
through the memory hierarchy (although we do not model
memory controller reordering effects). The 4-way 16 KB L1
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Figure 2: The baseline SIMD architecture groups scalar
threads into warps and executes them using the same in-
struction sequencer. A thread operates over a scalar pipeline
or lane that consists of register files, ALUs, and memory
units.

I-cache has a 1-cycle latency, while the baseline 8-way, 32
KB, L1 D-cache has a 3-cycle latency. Both caches use 128-
byte lines. To hide latency on cache misses, a WPU switches
to execute a different warp when the current warp accesses
the cache. Switching warps takes no extra latency; the next
warp is scheduled while the current warp issues.

This study does not model non-blocking loads whose ben-
efits are limited with in-order issue. The hardware over-
head is also considerable as the number of threads (SIMD
width x multi-threading depth) goes up. DWS would fur-
ther increase the state for tracking non-blocking loads by
the number of warp-splits allowed. These considerations are
interesting areas for future work.

Each WPU has a private I-cache and D-cache. I-caches
are not banked because only one instruction is fetched every
cycle and distributed across all lanes. D-caches are always
banked according to the number of lanes to cater to the high
bandwidth demand of memory accesses. We assume there
is a crossbar connecting the lanes with the D-cache banks.
If bank conflicts occur, these memory requests are serial-
ized and a small queuing overhead (one cycle) is charged.
The queuing overhead can be smaller than the hit latency
because we assume requests can be pipelined. Each cache
bank performs its own tag match to support gather and scat-
ter. All caches are physically indexed and physically tagged
and use an LRU replacement policy. Memory coalescing is
performed at the L1. All requests from a warp to the same
cache line are coalesced in the MSHR. Otherwise, requests to
the L2 are serialized. Each MSHR hosts a cache line and can
track as many requests to that line as the SIMD width re-
quires. Because the WPU supports gather/scatter, the TLB
is multi-ported according to the number of lanes. The L1
caches connect to L2 banks through a crossbar. Coherence
uses a directory-based MESI protocol.

Table 3 summarizes the main architectural parameters.
Note that the aggregate L2 access latency is broken down
into L1 lookup latency, crossbar latency, and the L2 tag and
data lookup. The L2 then connects to the main memory
through a 266 MHz memory bus with a bandwidth of 16
GB/s. The latency in accessing the main memory is as-
sumed to be 100 cycles, and the memory controller is able
to pipeline the requests.

4. DYNAMIC WARP SUBDIVISION UPON
BRANCH DIVERGENCE

To hide more latency in the case of insufficient warps, we

Tech. Node | 65 nm

WPU 1 GHz, 0.9 V Vdd, Alpha ISA; in-order

64 hardware thread contexts

4 warps with a SIMD width of 16

SIMD threads translate addresses simultaneously
16 KB, 4-way associative, 128 B line size

1 cycle hit latency, 4 MSHRs, LRU, write-back
physically tagged, physically indexed

32 KB, 8-way associative, 128 B Iline size
MESI directory-based coherence

3 cycle hit latency, LRU, write-back

32 MSHRs each hosts up to 8 requests
physically tagged, physically indexed

4096 KB, 16-way associative, 128 B line size
30 cycle hit latency, LRU, write-back

256 MSHRs each hosts up to 8 requests

300 MHz, 57 Gbytes/s

100 cycles access latency

T-Cache

D-Cache

L2 Cache

Crossbar
Memory

Table 3: Parameters for the two-level coherent cache hierar-
chy.

identify two categories of threads that may be unnecessar-
ily suspended and can actually continue to execute. In this
section, we discuss threads suspended due to branch diver-
gence. Section 5 discusses threads suspended due to memory
divergence.

4.1 Branch Divergence, Memory Latency and
MLP

Figure 3 illustrates the conventional mechanism presented
by Fung et al. [10] to handle divergent branches. Assume
that a warp with a SIMD width of eight encounters a condi-
tional branch at the end of code block A. Six of the threads
branch to code block B (indicated by bit mask 11111001
in Figure 3), while the other two threads branch to code
block C (indicated by bit mask 00000110 in Figure 3). The
WPU first chooses to execute code block B. It then pushes
the warp’s re-convergence stack with the above two sets of
bit masks, with the one that corresponds to code block B
on the top of the stack (TOS). The first PC in code block
D becomes the immediate post-dominator of B. Not until
this post-dominator is reached can the re-convergence stack
pop and switch to activate threads executing the alternate
path (code block C) — in this way, the re-convergence stack
is able to handle potentially nested branches within code
block B. Eventually code block C re-converges at the same
post-dominator into code block D.

The fact that the re-convergence stack can only activate
one branch path at a time may limit a WPU’s ability to hide
latency and leverage MLP. Figure 4 illustrates this scenario.
If threads executing code block B miss the cache and all
other warps are waiting for memory as well, the WPU has to
stall even though the threads that branched into code block
C do not suffer from cache misses; these threads could actu-
ally continue to execute if it were not for the re-convergence
mechanism.

The post-dominator based re-convergence may also un-
dermine MLP when threads that have reached their post-
dominator have to wait for those that have not. As shown
in Figure 5, if threads executing code block C miss the cache
and all other warps are waiting for memory as well, the WPU
has to stall even though the threads that finished code block
B do not suffer from cache misses. If re-convergence can be
relaxed, these threads can make progress themselves, get-
ting their own memory requests issued earlier, as well as
prefetching for the others.

It is important to note that DWS upon branch divergence
can hide latency and improve MLP with or without the pres-
ence of memory divergence. As we will discuss in Section 5,
DWS upon branch divergence and DWS upon memory di-
vergence are independent, complementary techniques, but
DWS allows them to be integrated using the same hard-
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Figure 3: Conventional mechanism to handle branch divergence and re-convergence for a SIMD organization. (a) An example
program; (b) the execution trace of diverged threads; (c)-(f) the state of the re-convergence stack. This is adapted from a

figure by Fung et al. [10].

Running: Outgoing miss for cache block X:
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Time:
(a) Conventional execution for a diverged branch
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Time: -

(b) Ideal execution for a diverged branch

Figure 4: (a) The conventional mechanism serializes the ex-
ecution of different branch paths. (b) By allowing threads
that take different paths to interleave their execution, more
latency can be hidden and memory level parallelism can be
improved.
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A
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Time:

(a) Conventional execution for a diverged branch

Thread 1:
Thread 2:

2> = =P

End of one path

A
Branch Diverge

Time:

Delayed Re-converge

(b) Ideal execution for a diverged branch

Figure 5: (a) The conventional mechanism forces diverged
threads to re-converge at the post-dominator. (b) By allow-
ing threads that reach the post-dominator first to run ahead,
they can issue more outgoing requests to leverage memory
level parallelism.

ware mechanisms and re-convergence policies. In order to
isolate the role of branch divergence, results in this section
disable the ability to perform DWS on memory divergence
(i.e., warps cannot proceed until all threads’ memory oper-
ations have completed).

4.2 Relaxing the Re-convergence Stack for
Memory Throughput

‘We propose to subdivide a warp into two warp-splits upon
branch divergence. Warp-splits are independent scheduling
entities and are treated equally as warps by the scheduler.
A warp-split can conceivably be recursively subdivided in
future divergence events until it consists of only one thread.
A full warp can be viewed as a root warp-split with full SIMD
width. We use the term SIMD groups to refer to both full
warps and warp-splits in the rest of the paper.

After a divergent branch subdivides a warp, the resulting
warp-splits can interleave their computation to hide latency
and improve memory level parallelism. This is demonstrated
by an example in Figure 6. After a divergent branch in code
block B, the conventional approach uses the re-convergence
stack to serialize different branch paths (Figure 6b). Alter-
natively, dynamic warp subdivision uses a warp-split table
described in Section 4.4 so that a warp can progress like
a binary tree with simultaneously active warp-splits (Fig-
ure 6d).

4.3 Over-subdivision

Warps may not benefit from subdivision upon every di-
vergent branch — such aggressive subdivision may lead to
a large number of narrow warp-splits, which can otherwise
run altogether in a wider SIMD group. This phenomenon is
referred to in the rest of the paper as over-subdivision. Due
to the potential for over-subdivision, we subdivide warps
conditionally upon selected branches.

A static approach is used to select which branches are
allowed to subdivide warps. As a side effect of subdivi-
sion, SIMD resources may be under-utilized if warp-splits
are not re-converged in time. This occurs when two warp-
splits have both passed their common post-dominator, but
are not able to re-converge. This is illustrated in Figure 6
when the execution reaches time T2. We therefore use the
heuristic that warps only subdivide upon branches whose as-
sociate post-dominator is followed up by a short basic block
(F in the example of Figure 6) of no more than 50 instruc-
tions. This value was chosen because it takes roughly the
same time to execute that many instructions as to handle an
L1 miss, so run-ahead threads resulting from subdivision can
hide some latency and initiate some further memory requests
without running too far ahead and potentially inhibiting re-
convergence. We manually instrumented the code to identify
branches that subdivide warps, but in practice this process
would be automated by the compiler.

4.4 Unrelenting Subdivision

When warp-splits independently execute the same instruc-
tion sequence while there is not much latency to hide, SIMD
resources are under-utilized for little benefit. This scenario
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Figure 6: An example of dynamic warp subdivision upon branch divergence. Conventionally, different branch paths in the
example program (a) are pushed to different layers in the re-convergence stack (c) and the execution of different paths is
serialized (b). With dynamic warp subdivision, branch paths create entries in the warp-split table instead (e), denoting SIMD
thread groups that can be simultaneously active. Their immediate post-dominator is ignored as well and no longer enforces
re-convergence. As a result, diverged threads can interleave their execution (d), and they no longer have to re-converge at
the beginning of code block F. Therefore, F is executed twice by different warp-splits; this may improve MLP but it also risks

pipeline under-utilization.

is referred to in the rest of the paper as unrelenting sub-
division. Under such circumstances, it may be better to
re-converge the warp-splits as soon as possible so they can
execute together as a wider SIMD group. Therefore it is im-
portant both to create warp-splits and to re-converge them
appropriately.

To meet such requirement, a warp-split table (WST) is
introduced in addition to the re-convergence stack to keep
track of subdivision while preserving the re-convergence
mechanism. Each entry in the WST corresponds to a warp-
split. It records the warp-split’s parent warp, the current

PC, and the active mask that indicates the associated threads.

Figure 6 illustrates an example of warp subdivision. Upon
a divergent branch at the end of code block B, the warp can
choose to push the re-convergence stack to serialize code
blocks E and D (Figure 6b, c), or it can choose to be subdi-
vided according to the branch outcome so that code blocks
E and D can be interleaved (Figure 6d, e). If a warp is
subdivided, two additional entries are created in the warp-
split table. The re-convergence stack remains intact to avoid
imposing a particular execution order of the paths; it can
therefore no longer keep track of this and future branches
nested within the branch registered on its TOS. As a result,
future nested branches as well as their post-dominators are
ignored by the re-convergence stack; warp-splits continue ex-
ecuting asynchronously and keep being subdivided upon fu-
ture divergent branches until they reach the post-dominator
associated with the top of the re-convergence stack. At this
point, the warp-split stalls waiting to be re-united with other
warp-splits once they reach the same post-dominator. The
re-convergence is performed by the re-convergence stack in
the conventional manner. We name this scheme stack-based
re-convergence.

4.5 PC-based Re-convergence

Using stack-based re-convergence, warp-splits can eventu-
ally re-converge; however, they can re-converge earlier when
they happen to execute the same instruction. For example,
at time T2 in Figure 6d, both warp-splits are asynchronously
executing the same code block and they might arrive at the
same PC. In such cases, the two warp-splits can be re-united
naturally without stalling any of them.

By recording the PC of each warp-split in the warp-split
table, the WPU can identify and re-unite warp-splits belong-
ing to the same warp that are ready to execute and share the
same PC. We name this scheme PC-based re-convergence.
Note that stack-based re-convergence is still used if PC-
based re-convergence does not occur. A similar principle
has been used in Fung et al.’s dynamic warp formation, al-
though it was used to group any threads from different warps
that execute the same branch path [10].

While comparing multiple PCs may take three to four
cycles, such PC-based re-convergence does not have to be
checked every cycle, and the latency can usually be hid-
den. Because the scheduler only switches SIMD groups upon
cache accesses, resumed warp-splits from the ready queue al-
ways start with memory instructions. As a result, PCs need
only be compared when the running warp-split executes a
memory instruction. Furthermore, because re-convergence
takes place only when there are one or more SIMD groups in
the ready queue, the WPU can immediately switch to exe-
cute another SIMD group, preferably from a different warp,
to hide the latency PC comparisons.

4.6 Results
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Figure 7: Performance gained by dynamic warp subdivision
uFon branch divergence. S%ee ups are normalized to that
of the equivalent VéPUS without DWS. Compared to stack-
based re-convergence, PC-based re-convergence reduces un-
relenting subdivision and improves performance significantly
without ever making performance worse.

Dynamic warp subdivision upon branch divergence is eval-
uated with both stack-based re-convergence and PC-based



re-convergence. Figure 7 compares their speedups over a
conventional architecture with no DWS. While stack-based
re-convergence demonstrates performance gains for some ap-
plications, it penalizes the performance of KMeans signifi-
cantly due to over-subdivision and unrelenting subdivision
— the average SIMD width for executed instructions are
reduced to 4 for 16-wide WPUs. By introducing PC-based
re-convergence, the average SIMD width for executed in-
structions increases to 9. This drastically reduces the under-
utilization of SIMD resources. However, without memory di-
vergence handling, warp-splits re-converged upon the same
PC are not able to split again upon cache misses to hide
intra-warp latency. As a result, for some applications, stack-
based re-convergence performs slightly better than PC-based
re-convergence. Overall, PC-based re-convergence outper-
forms stack-based re-convergence and it generates an aver-
age speedup of 1.13X.

Not all benchmarks are sensitive to branch divergence.
Table 1 shows that the benchmarks benefiting from DWS
frequently encounter conditional branches and the branch
outcomes exhibit a significant fraction of divergence. Besides
the occurrence of divergent branches, the benefit of DWS is
also affected by other run-time dynamics. In the case of
KMeans and Merge, memory divergence occurs frequently
and there are usually ample instructions for latency hiding
between cache misses. Therefore, they benefit significantly
from having more warp-splits to hide latency.

S. DYNAMIC WARP SUBDIVISION UPON
MEMORY DIVERGENCE

In conventional SIMD implementations, memory diver-
gence stalls an entire warp. We propose to dynamically
subdivide warps upon memory divergence so threads that
hit can continue execution to hide latency for the threads
that missed. This also offers the possibility for run-ahead
threads to bring in cache lines that the fall-behind threads
will also need. Warp-splits can be subdivided recursively
upon future memory divergence.

5.1 Improve Performance upon Memory
Divergence

Running: == Outgoing miss for cache block Y: = m |
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(a) Conventional execution for a memory divergence
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(b) Ideal execution for a memory divergence

Figure 8: Dynamic warp subdivision upon memory diver-
%ence can reduce pipeline stalls and improve MLP. For il-
ustration purposes, the SIMD width is shown as two but
similar scenarios exist for wider SIMD organizations as well.

Figures 8 and 9 compare conventional SIMD execution
with dynamic warp subdivision upon memory divergence.
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Figure 9: Dynamic warp subdivision upon memory diver-
gence allows run-ahead threads to prefetch cache blocks for
the fall-behind.

Consider a warp with two memory instructions (not neces-
sarily consecutive). Assuming all other warps have been sus-
pended already, DWS can reduce pipeline stalls and leverage
MLP in two scenarios:

e Threads that miss upon the former instruction hit the
cache with the latter instruction, while threads that hit
first later miss the cache. In this case, DWS allows run-
ahead threads to initiate their misses earlier (Figure 8).

e Some threads hit and some miss on the first instruc-
tion, but all threads miss on the same cache block
with the latter instruction. In this case, the run-ahead
warp-splits in DWS not only initiate their misses ear-
lier; they also prefetch data for the fall-behind warp-
split (Figure 9). In contrast to speculative precompu-
tation [6] or run-ahead simultaneous threads [23], the
run-ahead warp-split always performs useful computa-
tion and threads’ states are saved right away, requiring
no ROB or dependency analysis that would otherwise
complicate the design of the simple, in-order WPU.

The above scenario is applicable to both array and vector
organizations if they support gather loads or scatter stores.
Using the same principle as DWS in array organizations, a
WPU can use a set of bit masks to mark out vector com-
ponents that hit the cache so that they can continue their
execution and issue more memory requests. The PC upon
which the memory divergence occurs can be stored in a table
so that those vector components that miss can resume later
at the recorded PC afterwards.

However, DWS may not improve performance if the same
subset of threads keep missing the cache and requesting dis-
parate addresses. If other SIMD groups are not able to hide
sufficient memory latency, the computation and the mem-
ory latency incurred by those fall-behind threads become
the critical path of the execution. As a result, the over-
all execution time would stay the same even if DWS allows
other threads to run ahead.

Similar to branch divergence, unconstrained warp subdivi-
sion may lead to over-subdivision. Therefore, we investigate
several methods in Section 5.2 to selectively subdivide warps
upon memory divergence. On the other hand, to reduce
unrelenting subdivision, we exploit different mechanisms in
Section 5.3.1 to re-converge warp-splits. Finally, it is im-
portant to handle branch divergence correctly even with the
introduction of warp subdivision upon memory divergence.
This is ensured by re-convergence techniques described in
Section 5.3.1.
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Figure 10: Performance may degrade if the run-ahead warp-
spﬁt does not generate long latency memory requests before
any outgoing request completes. Such case may take place
with LazySplit and ReviveSplit. We demonstrate the case
with two warps with arrows pointing to the warp-split that
the WPU executes.

5.2 Preventing Over-subdivision

Warp subdivision is not likely to provide benefits when
there are already sufficient active warps to hide latency.
Aggressively subdividing warps upon every memory diver-
gence regardless of the existence of other active SIMD groups
may unnecessarily generate many narrow warp-splits which
under-utilize SIMD resources. This brute force subdivision
scheme is referred to in the rest of the paper as AggressSplit.

To lower the chance of unnecessary warp subdivision, the
WPU can create more warp-splits only when there are no
other SIMD groups to hide latency. Upon memory diver-
gence, the WPU checks whether all other SIMD groups are
waiting for memory. If so, the WPU subdivides the current
active warp or warp-split to allow threads that hit to run
ahead. This subdivision scheme is referred to as LazySplit.

However, LazySplit risks the inability to effectively subdi-
vide warps. If the last active SIMD group has all its threads
miss the cache, LazySplit has to stall the WPU’s pipeline
even though there may be other SIMD groups that have
previously incurred memory divergence but were not sub-
divided and are waiting for memory. We therefore extend
LazySplit by allowing it to look for those suspended SIMD
groups that are eligible for subdivision when the pipeline
is stalled. To avoid over-subdivision, only one SIMD group
is subdivided at a time. We name this subdivision scheme
ReviveSplit.

While ReviveSplit can leverage all SIMD groups that can
be subdivided upon memory divergence, its performance
may still be suboptimal. Since ReviveSplit attempts to sub-
divide warps whenever the pipeline is stalled, performance
may degrade if the resulting run-ahead warp-split is not able
to issue subsequent long latency memory requests in time
(i.e., before a suspended SIMD group is resumed by a com-
pleted request), as illustrated in Figure 10. In this case,
the run-ahead warp-split may occupy the pipeline, keep-
ing those resumed warp-splits from making progress while
exploiting no more MLP. Afterwards, the same instruction
stream will be executed again by the fall-behind warp-split,
increasing the number of executed cycles. However, to make
an optimal decision to subdivide warps, foreknowledge or
speculation is required to estimate how soon a run-ahead
warp-split will encounter another cache miss and how soon
outgoing requests will complete and resume awaiting SIMD
groups. Compiler analysis, dynamic optimization, or pre-
diction hardware may be able to provide such information,
and this is an interesting area for future work.

AggressSplit+BL LazySplit+BL _ReviveSplit+BL

Figure 11: Harmonic means of speedups across all bench-
marks. Dynamic warp subdivision upon memory divergence
alone has limited benefits due to frequent branches. The
BranchLimited re-convergence (specified by BL) results in
little performance gains for all subdivision schemes, includ-
ing AggressSplit, LazySplit, and ReviveSplit.

5.3 To Re-converge or To Run Ahead

If warp-splits are not re-converged, they will individually
execute the same instruction sequence that could otherwise
be run together in a wider warp. If such overhead out-
weighs the benefits of latency hiding and MLP brought by
warp-slits, warp subdivision may penalize performance. On
the other hand, if re-convergence is enforced too early, the
run-ahead warp-split is likely to stall waiting for the fall-
behind warp-split before it can beneficially issue another
memory request to overlap outgoing requests. Nevertheless,
PC-based re-convergence introduced in Section 4.5 allows
multiple warp-splits to run together as a wider SIMD group
without the cost of stalling any warp-split. Therefore it is
always used in DWS upon memory divergence. However,
since PC-based re-convergence does not force a run-ahead
warp-split to wait for the fall-behind, it alone may still lead
to unrelenting subdivision.

Similar to the process of subdivision, determining the op-
timal timing to enforce re-converge requires foreknowledge
about whether future cache misses can occur in time to over-
lap with outgoing requests. In this paper, we exploit several
heuristics to effectively address re-convergence; some natu-
ral places to force warp-splits to re-converge are branches
and post-dominators, as discussed below.

5.3.1 Branch Handling after Memory Divergence
Branches may interfere with the re-convergence process
of warp-splits that divided upon memory divergence. Upon
branches or post-dominators, the re-convergence stack acts
implicitly as a barrier for the subdivided warp-splits to re-
converge; when warp-splits are synchronized and re-
converged, the re-convergence stack can be pushed or popped
in a conventional manner. Afterwards, the warp can be sub-
divided again upon future memory divergence. In other
words, only those threads masked on the TOS are subdi-
vided into warp-splits. Since this re-convergence scheme
limits a warp-split’s lifespan between branches and post-
dominators, we name it BranchLimited re-convergence.
Although BranchLimited re-convergence allows DWS upon
memory divergence while preserving the structure of the re-
convergence stack, characterizations show it is likely to limit
the benefit in latency hiding and MLP. As shown in Table 1,
most benchmarks experience frequent branch instructions
with only tens of instructions in between. Given such small
basic blocks, a run-ahead warp-split is likely to reach the end
of the basic block immediately and stall waiting for the fall-
behind warp-split before beneficially issuing further memory
requests. As a result, the performance gains from Branch-
Limited re-convergence are limited, as shown in Figure 11.

5.3.2  Run Ahead Beyond Branches and Loops

If run-ahead warp-splits can proceed beyond branches,
they would have a better chance of issuing and overlap-



ping further memory requests with the stall experienced
by the fall-behind threads. Fortunately, we have already
discussed in Section 4.2 how to use DWS to relax the re-
convergence stack for branch divergence. Upon a future di-
vergent branch, the run-ahead warp-split is subdivided into
two warp-splits. As a result, the status of the re-convergence
stack remains intact while more entries are added to the
warp-split table. These warp-splits re-converge when their
PCs met. Otherwise, they are forced to wait for others to re-
converge once they hit the post-dominator denoted by the
re-convergence stack’s TOS. We name this re-convergence
scheme BranchBypass. Note that with BranchBypass, warps
can be subdivided upon both memory divergence and branch
divergence.

By allowing run-ahead warp-splits to proceed beyond
branches, it may appear harder for the fall-behind warp-split
to catch up with the run-ahead. However, it is important to
note that the ability to bypass branches naturally entitles
the run-ahead warp-split to bypass loop boundaries into the
next iteration. In such cases, the fall-behind warp-split may
not have to execute the same number of instructions as the
run-ahead to get re-united with it, especially if the loop
body is short (i.e., contains only a few instructions). In
such a scenario, the run-ahead warp-split may frequently
revisit the PC at which the fall-behind warp-split stopped.
Once this PC is revisited and the run-ahead warp-split finds
the fall-behind split is ready to execute, it re-unites with the
fall-behind split immediately, despite potentially being a few
iterations ahead of the fall-behind. In contrast to adaptive
slip [30], which exploits this same opportunity, DWS warp-
splits do not rely on short loops to re-converge: the fall-
behind warp-split always resumes itself upon completion of
data requests so that it can catch up with the run-ahead
split in the case of a large loop body.

5.4 Implementation

Dynamic warp subdivision upon memory divergence is
handled in the same way as DWS for branch divergence, ex-
cept that the branch outcome that is used to divide threads
is replaced by a hit mask that marks threads that hit the
cache. Figure 12 illustrates the process. After memory
divergence, two warp-splits are created: one with threads
that hit and are ready to execute; another with threads that
miss and are waiting for memory. Note that after subdi-
vision, the entry of the obsolete parent warp-split is over-
written by one of the resulting child warp-splits so that the
WST only records existing warp-splits. Moreover, creating a
new scheduling entity does not require any other new state.
Warp-splits still share the same register file resources, etc.
Once the two warp-splits re-unite, their WST entries are
merged into one by taking an “or” operation on their active
masks. The hardware overhead is discussed in more detail
in Section 5.6. There is no need to differentiate warp-splits
resulting from memory divergence with those resulting from
branch divergence. Any warp-split can be further subdivided
upon either branch or memory divergence.

Divergence does not break synchronization or commu-
nication semantics if programming models do not implic-
itly guarantee threads in a warp to operate in lockstep.
Otherwise, DWS is not compatible because it allows warp-
splits to proceed asynchronously for variable periods of time.
With DWS;, inter-thread synchronization or communication
is only guaranteed through the use of explicit synchroniza-
tion primitives, upon which warp-splits simply re-converge.
Of course, frequent synchronization will limit intra-warp la-
tency tolerance.

Compared to the baseline architecture, warp-splits merely
change the ordering of execution for threads within the same
warp. This does not affect memory exceptions. It only af-
fects consistency for threads within the same warp. How-

ever, most SIMD programming models do not impose such
sequential consistency. Finally, precise traps can still be
handled for each individual warp-split.

5.5 Results

In Figure 13, we compare variations of dynamic warp sub-
division and characterize the benefits of individual optimiza-
tions. DWS upon branch divergence (DWS.BranchOnly)
alone reaches a speedup of 1.13X. DWS upon memory diver-
gence alone using ReviveSplit (DWS. ReviveSplit. Mem Only)
achieves a speedup of 1.20X. While DWS for branch and
memory divergence are complementary and can be inte-
grated, the overall benefit of DWS is sensitive to the combi-
nation of specific subdivision and re-convergence schemes.
For example, DWS.AggressSplit and DWS. LazySplit com-
bine BranchBypass with AggressSplit and LazySplit respec-
tively, and they both lead to performance degradation. Nev-
ertheless, the combination of the best subdivision scheme
(ReviveSplit) and re-convergence scheme (BranchBypass)
does not harm performance in any case and it achieves an
overall speedup of 1.71X (DWS.ReviveSplit). On average,
DWS. ReviveSplit reduces the percentage of time in which
WPUs stall waiting for memory from 76% to 36%; in the
mean time, the average SIMD width per instruction drops
from 14 to 4.

Different benchmarks exhibit different responses to dy-
namic warp subdivision. Merge benefits mainly from DWS
upon branch divergence. KMeans, HotSpot, LU, and Filter
benefit mainly from DWS upon memory divergence. FFT
and SVM, on the other hand, have many cache misses but
a large portion of these misses are not divergent, therefore
warp subdivision occurs less often compared to other bench-
marks. It is also observed that memory divergence may not
be uniformly distributed across SIMD threads due to run-
time dynamics. In fact, the pattern varies across bench-
marks or even phases of execution. It is therefore difficult
to statically pinpoint threads or lanes for warp subdivision.
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Figure 13: Comparing various DWS schemes. Speedups
are normalized to that of equivalent baseline WPUs with-
out DWS. Modest speedups are achieved when DWS applies

to branch divergence alone (DWS.BranchOnly) or memory
divergence alone (DWS.ReviveSplit. MemOnly). However,
the combination of the two achieves a speedup of 1.71X
(DWS. ReviveSplit). Slip only outperforms DWS in Filter
and it is often subject to performance degradation, even af-
ter being modified to bypass branches (Slip. BranchBypass).

The harmonic mean of the speedups for all benchmarks is
shown as h-mean.

5.6 Hardware Overhead

Because DWS does not increase the demand for tags and
TLB ports, the hardware cost only lies in the WST and the
scheduler. For a given WPU, the maximum number of warp-
splits may become as large as the number of threads if each
warp-split consists of a single thread. With a large number
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Figure 12: An example of dynamic warp subdivision upon memory divergence. While divergent branches can still be handled
using the re-convergence stack (b, f), the warp-split table can be used to create warp-splits using the hit mask that marks

threads that hit the cache (c-e).

of threads per WPU, this may drastically increase the com-
plexity of the hardware scheduler (e.g., a priority encoder)
in order to identify the next ready SIMD group in one cy-
cle. We therefore model a scheduler that only doubles the
number of entries in a conventional setting. This approxi-
mately doubles the cost of any scheduling structure, but can
accommodate more scheduling entities resulting from DWS.
In case there are more warp-splits than scheduling slots, the
extra warp-splits sit idle until a scheduling slot is available.
We also limit the number of WST entries to 16 to reduce its
storage cost; warps are not able to be subdivided when the
WST is already full. Sensitivity study shows that the above
limitations only cost less than 1% of the overall performance.

To estimate area overhead, we measure the realistic sizes
for the different units of a core according to a publicly avail-
able die photo of the AMD Opteron processor in 130nm
technology. We scale the functional unit areas to 65nm, as-
suming a 0.7 scaling factor per generation. We assume each
SIMD lane has a 32 bit data path (adjacent lanes are com-
bined if 64 bit results are needed). We also measure the
cache area per 1 KB of capacity and scale that according
to the cache capacity. If the WPU has four warps with a
SIMD width of 16, each entry needs 16 bits for the active
mask, 2 bits for the warp ID, 64 bits for the PC, and 2 bits
for the warp status. The resulting size for each WST en-
try is then 84 bits or 11B. With up to 16 WST entries, the
WST state consumes less than 1% of the storage area in a
WPU, assuming the WPU has a 32 KB D-cache and a 16
KB I-cache.

5.7 Comparison with Adaptive Slip

Tarjan et al. [30] proposed adaptive slip, which allows a
subset of threads to continue while other threads in the same
warp are waiting for memory. Those threads that wait for
memory stay suspended until the run-ahead threads in that
warp revisit the same memory instruction again, presum-
ing memory divergence mainly occurs within iterative short
loops. Their approach presumes aggressive predication so
that run-ahead threads can always “slip” into the next iter-
ation regardless of branch divergence.

We compare the performance of DWS to that of adaptive
slip without aggressive branch predication, which we refer
to in Figure 13 as Slip. To adaptively find out the maxi-
mum allowed thread divergence for adaptive slip, an interval
of 100,000 cycles is used for dynamic profiling. The maxi-
mum allowed thread divergence is incremented if the WPU
spends more than 70% of the time waiting for memory, and
it is decremented if the pipeline actively executes for more
than 50% of the time. These thresholds are obtained by
experimenting with various combinations and selecting the
combination that yields the best performance.

While adaptive slip leads to significant speedup for Fil-
ter, it results in performance degradation for many other
benchmarks. The reasons are three-fold:

e Without aggressive predication, the run-ahead threads
have to stall waiting for the fall-behind upon a condi-
tional branch. This is because the re-convergence stack
needs to generate the branch outcome for all threads
masked by the TOS. As a result, adaptive slip is hardly
effective when the main computation involves frequent
conditional branches inside loops. Such is the case with
HotSpot, Merge and Short.

e A diverged warp may not be re-united in time. This
can be caused by long loops (i.e., loops with a large
section of code in each iteration) where slipping into
the next iteration may take a long time (e.g., FFT).
The same situation may also occur in the case of nested
loops where memory divergence takes place inside the
outer loop but outside of the inner loop; the fall-behind
threads cannot be resumed until the run-ahead threads
jump out of the inner loop (e.g., KMeans).

e The appropriate thresholds to increase or decrease the
maximum allowed thread divergence vary across bench-
marks and hardware configurations. The same thresh-
olds may work well for Filter while penalizing the per-
formances of SVM.

We also attempt to combine adaptive slip with DWS upon
branch divergence so that run-ahead threads can continue
beyond branches to “slip” into subsequent iterations. This
scheme is referred to in Figure 13 as Slip. BranchBypass.
While this scheme significantly improves performance for
many benchmarks, it does not address all the issues with
adaptive slip and still harms performance for KMeans, Short,
and FFT. Moreover, if memory divergence occurs within a
branch path that is rarely visited and the run-ahead threads
proceed to the next iteration, it may take a long time be-
fore the run-ahead can branch into the same path and re-
converge with the fall-behind threads. In this case, this
scheme can even perform worse than adaptive slip, as can
be observed from KMeans.

6. SENSITIVITY ANALYSIS

The benefit of dynamic warp subdivision in latency hid-
ing and memory level parallelism depends on various fac-
tors: the frequency of branch and memory divergence, the
length of memory latencies, and the WPU’s ability to hide
latency with existing warps. We study its sensitivity to var-
ious architectural factors. We show that DWS can bring



performance gains in a wide range of configurations. In this
section, we use the configuration DWS. ReviveSplit to rep-
resent the performance of DWS which can subdivide warps
upon both branch and memory divergence. We refer to the
conventional architecture without DWS as Conv. Further
sensitivity analysis results appear in an extended, technical
report version of this paper [18].

6.1 Cache Misses and Memory Divergence
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Figure 14: Speedup vs. D-cache associativity. DWS refers
to DWS.ReviveSplit in Figure 13. Systems are configured
according to Table 3. Performance is normalized to each
benchmark’s execution time under Conv. The harmonic
mean for the normalized speedup of all benchmarks is shown
as h-mean. Several individual applications with diverse be-
havior are also shown.

With larger D-cache associativity, both cache miss rate
and memory divergence tend to decrease, and hence there
is less latency to hide and less memory level parallelism to
exploit. As a result, DWS may occur less often and its
benefit may decrease. Figure 14 demonstrates this trend
when the D-cache associativity is varied from four to fully-
associative.

It can also be observed from Figure 14 that the benefit
from DWS does not always increase with smaller D-cache
associativity. Because small D-cache associativity leads to
more cache misses, threads in a SIMD group are more likely
to miss the cache simultaneously, and therefore the the oc-
currence of divergent memory accesses may decrease. As a
result, DWS upon memory divergence is less likely to take
effect — in benchmarks such HotSpot, performance of DWS
drops more than that of the conventional architecture when
the D-cache associativity decreases to four.

6.2 Miss Latency

The amount of latency to hide also affects the effective-
ness of DWS. The D-cache miss latency is largely dependent
on the memory hierarchy. While most of the evaluation in
this paper is based upon a shared L2 cache as the last-level
cache, there are various alternatives. Some architectures use
private L2 caches while others do not have L2 caches at all
and L1 misses are sent directly to the main memory [§].
The L1 miss latency can therefore vary from a few cycles to
hundreds of cycles.

We study the sensitivity of the L.1 miss latency by varying
the L2 lookup latency from 10 cycles to 300 cycles. Results
in Figure 15 shows that while DWS also suffers from longer
miss latency, its speedup compared to the equivalent conven-
tional architecture increases. This is not surprising because
more SIMD groups are needed to hide longer latency; DWS
achieves this by generating more warp-splits on demand.

7. RELATED WORK

Fung et al. [10] addressed the under-utilization of the
SIMD resources due to branch divergence. They proposed
dynamic warp formation (DWF) in which diverged threads
that happen to arrive at the same PC, even though they be-
long to different warps, can be grouped and run together as
a wider SIMD group. However, if a subset of threads in a
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Figure 15: Speedup vs. L2 lookup latency. DWS refers to
D%I/S.Revive plit in Figure 13. Tﬁe speedup of DWS com-
pared to Conv increases with longer L2 latency. Systems are
configured according to Table 3. Performance is normalized
to each benchmark’s execution time under Conv with an L2
lookup latency of 10 cycles. The harmonic mean for the
normalized speedup of all benchmarks is shown as h-mean.

warp miss the cache and stall, there is still no way to allow
the threads that hit to continue: this behavior is not com-
patible with the active mask on top of the re-convergence
stack. As Table 1 has shown, divergent memory accesses
can be more common than divergent branches in some appli-
cations. Furthermore, dynamic warp formation only occurs
when multiple warps arrive at the same PC; if such condi-
tion is not met, the conventional re-convergence stack still
prevents threads in the same warp from hiding each other’s
latency upon branch divergence. Our approach instead cre-
ates separate scheduling entities so that each warp-split can
execute independently. This means that even after a diver-
gent branch, threads on both paths are able to make progress
and hide each others’ latency. By creating new scheduling
entities after each branch or miss divergence, our approach
fully integrates branch and miss handling.

Similar to dynamic warp formation, stream processors
such as Imagine can split streams conditionally according
to branch outcomes [12], and each resulting stream follows
the same control flow. Although conditional streams reduce
unnecessarily predicated computation and communication,
they do not address latency hiding. In fact, latency hiding is
not necessary for stream processors; data is always available
through the stream register file. For this reason, memory
divergence never occurs as well.

Our technique is complementary to Vector Lane Thread-
ing (VLT) [24] and the Vector-Thread (VT) Architecture [14].
VLT assigns groups of lanes to different user-level threads;
lanes belonging to the same user-level thread execute in
SIMD, but they do not need to execute in lockstep with lanes
in other groups. However, lanes belonging to the same SIMD
group may still stall unnecessarily due to branch and mem-
ory divergence. VT is a MIMD implementation of vector
semantics, where each lane has the autonomy and overhead
of its own fetch/decode/scoreboard logic. It is therefore not
a strict SIMD organization and not subject to the diver-
gence phenomena addressed in this paper. Nevertheless, the
principles of DWS may also apply to VT when it executes
data-parallel applications.

Adaptive slip [30] addresses memory divergence to im-
prove latency hiding for SIMD organizations. It employs
a mechanism that is similar to a re-convergence stack, by
simply using the cache access outcome instead of branch
outcome so that threads that hit can continue. Similar to
using the re-convergence stack, threads exhibiting divergent
behavior cannot interleave their execution to hide latency,
which limits benefits. It also assumes aggressive branch
predication to avoid forced re-convergence at conditional
branches within a loop body. Section 5.7 compares adap-
tive slip with DWS in more detail.

Existing techniques that address long latency memory ac-
cesses in the context of simultaneous multi-threading (SMT)
do not help in the case of SIMD because SMT threads share



a single datapath. With SMT, the problem is resource con-
tention and reduced instruction level parallelism (ILP), since
a stalled thread occupies expensive issue queues, rename-
registers, and reorder-buffer entries, which limits ILP dis-
covery for the other thread. Techniques for SMT resource
distribution [5, 31] do not apply to in-order SIMD organiza-
tions, since SIMD threads operating on different lanes do not
compete for pipeline resources. Instead, the main problem
raised by long latency memory accesses is the risk of stall
cycles due to inadequate latency hiding. Pre-computation
using speculative threads [6] or runahead threads [23] im-
proves MLP. However, these speculative approaches require
run-time dependency analysis among instructions as well as
the ability for out-of-order execution and commit. These re-
quirements are usually not met with simple, in-order SIMD
hardware. We provide a solution designed specifically for
SIMD hardware that allows it to exploit more MLP without
speculative execution.

We have not considered the effect of prefetching or non-
blocking loads. Nevertheless, DWS is complementary to
both. It helps even in cases where the access pattern is
not easily prefetched. Moreover, prefetching may increase
contention for cache and bandwidth, especially when con-
tention among many threads is severe. On the other hand,
non-blocking loads employed by Tesla [8] and Fermi [1] are
still in-order issue so they improve MLP but provide min-
imal latency hiding benefit. In both cases, memory diver-
gence still occurs if threads in a warp are not all runnable
at the same time.

Dynamic warp subdivision is also complementary to MLP-
aware cache replacement [22]. While DWS creates addi-
tional scheduling entities to hide latency and issue more
over-lapping requests, MLP-aware cache replacement
smartly prioritizes these outgoing requests to reduce their
aggregate latency.

8. CONCLUSIONS & FUTURE WORK

This paper proposes dynamic warp subdivision to cre-
ate warp-splits in the case that the SIMD processor does
not have sufficient warps to hide latency and leverage MLP.
Warp-splits are simply extra schedulable entities that do not
require extra register file state. They can be generated upon
branch divergence or memory divergence. The conventional
re-convergence stack is amended with a warp-split table to
relax the serialization of different branch paths and it allows
threads in the same warp to interleave their execution in an
asynchronous manner.

We evaluate the technique using a general purpose multi-
core processor with four 16-wide WPUs, each with four
warps operating over a coherent cache hierarchy. Using a
two level cache hierarchy, DWS generates an average speedup
of 1.7X. We further study the sensitivity of DWS to various
architectural parameters and demonstrate that the perfor-
mance of DWS is robust and it does not degrade perfor-
mance on any of the benchmarks tested.

One opportunity for future work is to integrate DWS with
dynamic warp formation [10]. It may further improve per-
formance by speculating cache miss frequency and miss la-
tencies in order to better decide when to subdivide warps.
Finally, it would be interesting to study applications quanti-
tatively to identify those that would benefit from particular
SIMD architectures according to their degree of divergence.
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