
0

Consistency Maintenance in the Design
of Autonomous Agent Representations

Glenn Wasson, Anand Natrajan, Jim
Gunderson, Gabriel Ferrer, Worthy Martin,

Paul F. Reynolds, Jr.

Technical Report No. CS-98-06
March 18, 1998

Contact: wasson@virginia.edu

Web: ftp://ftp.cs.virginia.edu/pub/techreports/CS-98-06.ps.Z



1

 Abstract

 Multi-representation models are an attractive design solution
for layered autonomous agent architectures in terms of man-
aging complexity of internal representations and separation
of design concerns. However, the representations maintained
by the multiple layers can become inconsistent with one
another due to the nature of the layers’ concerns and capabil-
ities. Consistency maintenance in multi-representation mod-
els is an emerging concern in many domains, such as military
simulations. We present an approach to consistency mainte-
nance in multi-tier agent architectures. We draw on experi-
ence and techniques from the multi-representation modeling
community. The benefit of this approach for autonomous
agent designers is a conceptual framework through which to
organize systems that must deal with temporal and mapping
inconsistencies.

 Introduction
This paper provides a conceptual framework for design-

ing autonomous agents which maintain multiple internal
representations. Many of today’s agents are designed in ac-
cordance with the principles of various robot architectures
(Bonassoet al 1997)(Gat 1992)(Wassonet al 1997). Such
architectures adopt a multi-tier strategy in which different
operations take place at different layers of the architecture
based on the operation’s time scale, and detail of informa-
tion required. While we will state briefly what makes a par-
ticular representation effective for use by a particular level
of an agent’s architecture, the thrust of this paper is mainte-
nance of internal consistency between the differing repre-
sentations of the environment that exist within the agent, not
the issue of maintaining consistency between internal repre-
sentation and the world (Brillet al 1998).

The discussion of our design framework has been inspired
by principles used by the multi-representation modeling
community (Davis & Hillestad 1993)(Reynoldset al 1997).
We will describe parallels between the needs of agent de-
signers and those of multi-representation modelers. We be-
gin by describing the needs of various layers of an agent
architecture and what impact this has on the representation
used by that layer. Next, we introduce similar issues con-
fronted by the multi-representation modeling community.
Lastly, we present design solutions from this community in
the context of an example agent designed to operate in a sim-
ulated domain called BridgeWorld.

 Multi-Layered Representation
The concerns and capabilities of agents operating in dy-

namic environments have led designers to create multi-lay-
ered architectures. A particular task may be divided into
sub-tasks that can be assigned to specific layers of the archi-
tecture, based on amount of inference required, time-scale,
level of abstraction, bandwidth, etc. (Bonassoet al 1997).
Although the number and nature of layers differs between
various architectures, typicallythere is some inference en-
gine or planner, and some perception/action (PA) layer.

While there has been debate about the role of state, or rep-
resentation in the PA layer of an architecture (Brooks 1986),
previous work has shown that a PA layer can be more effec-
tive with representation (Brillet al 1998). However, the
planner and PA layer representations are epistemologically
linked, i.e., the representations of the planner are “ground-
ed” in the representations of the PA layer (Agre & Chapman
1987). The representations of the PA layer are abstracted
into the representations used by the planner. When we say
“the representation used by a layer of an architecture”, we
refer to the data structures that the layer uses to describe its
environment. For example, a planner’s representation could
be the encoding of a map. Examples of representations used
by other layers of various architectures include lisp-like
predicate structures (Firby 1987) and indexical-functional
identifiers (Agre & Chapman 1987)(Wassonet al 1997).

The PA layer “binds” abstract representations currently
needed by the planner to entities in the world via the PA’s
well-maintained representation. Maintaining representation
means keeping it up-to-date with the state of the world, i.e.,
continually checking the data’s validity. Note that this is dif-
ferent than merely storing the representation, which allows
the information to become stale. It is this dependency be-
tween planner and PA layer representation that allows in-
consistencies to arise.

An important consideration in designing a system of rep-
resentation for an agent is that representations used by the
PA layer must be time-efficient, i.e., contain specific infor-
mation and be straightforward to update. Representation for
the planner must be algorithmically efficient, that is, specif-
ically geared toward the planning algorithm to be used. In
the remainder of this section, we will discuss the character-
istics of planner and PA representations in more detail and
show various inconsistencies that can arise between the two.

Consistency Maintenance in the Design of Autonomous Agent
Representations

G. S. Wasson, A. Natrajan, J. P. Gunderson, G. J. Ferrer, W. N. Martin, P. F. Reynolds Jr.

{wasson, anand, gunders, ferrer, martin, reynolds}@virginia.edu

keywords: agent architectures, plan execution, reactive control, situated reasoning, robotics



2

 Representation Requirements
It is computationally infeasible for a planner to have a

complete model of its world and all operations that might
change that world, represented at sufficient detail to allow
optimum planning. One traditional approach to this problem
is to develop a hierarchical plan using fewer, more compre-
hensive operators applied to abstract entities (Sacerdoti
1974). Planner representation must express enough detail
for the planner to be aware of important environmental
changes, yet be abstract enough to make planning both fea-
sible and effective.

The perception/action layer is the primary interface be-
tween the agent and the world it inhabits. It senses the envi-
ronment and uses effectors to modify it. This requires that
the PA layer’s representation be maintained using current
sensor values and little inference. Exactly what can be rep-
resented and how that representation can be maintained de-
pends on the sensor capabilities of the agent.

Maintaining representation places a heavy computational
burden on the PA layer and so its representation can not be
as abstract/comprehensive as the planner’s representation.
PA representation must be simple and direct, often repre-
senting details that are not considered important to the plan-
ning process, yet are crucial for controlling effectors.

 Inconsistencies Between Representations
The planner and PA layer operate with different represen-

tations of time, and use significantly different representa-
tions of the world. Potentially the two world views can
become inconsistent. Consider the following example of
how inconsistency can result in plan failure. The planner is-
sues instructions to open a door. Its representation of “door”
is based on the domain knowledge that doors are a certain
height and width and have handles in a certain position. The
PA layer may locate an object of appropriate height and
width, but may not locate a handle if it is angled from its as-
sumed position. The representations are inconsistent be-
cause the planner has beliefs about this door, yet the
representation of the PA layer does not substantiate those
beliefs. Communication is required to resolve whether the
PA layer should treat this object as a door. As another exam-
ple, the planner issues instructions for an assembly to be at-
tached to the center of a base plate. However, the actual
attachment turns out to be off-center. The PA layer can rep-
resent this fact via the positions of the individual parts. How-
ever, the planner can only represent “attached” or
“unattached”. Here the inconsistency is with the spatial res-
olution to which the two layers understand attachment.
Clearly, the planner’s representation of the world can be-
come inconsistent with that of the PA layer. In the next sec-
tion we will see how similar inconsistencies arise from the
coupling of differing types of simulations used in the multi-
representation modeling community.

 Multi-Representation Modeling
Multi-Representation Modeling (MRM) or Cross-Reso-

lution Modeling is concerned with resolving conceptual and
representational differences that arise from multiple repre-
sentations joined for a common objective (Davis & Hillestad
1993). Much work has been done on MRM in military sim-
ulations, primarily training simulations. A common scenario
is the coupling of a simulation that models military forces at
an abstract level, (e.g. platoons, battalions or corps), with a
simulation that models individual battlefield entities (e.g.
tanks or wheeled vehicles). The MRM problem arises if sim-
ulation A models a given platoon that is also modeled as its
constituent tanks in simulation B. If there is a way to main-
tain consistency within multiple, concurrent representation
levels of an abstraction, Reynolds et al recommend Multiple
Representation Entities (MREs) as the approach for captur-
ing it accurately (Reynolds et al 1997).

A number of problems arise when multiple representa-
tions co-exist, many of which are eliminated by the MRE ap-
proach to MRM (Reynolds et al 1997). However, the
remaining key issues that are addressed by this paper are
mapping inconsistency and temporal inconsistency. Tempo-
ral inconsistency arises in military simulations in a number
of ways. If a tank is perceived to have fired in two directions
simultaneously, there is a temporal inconsistency since the
tank’s turret could not have possibly faced two directions at
any time. If an entity expends ammunition on another dead
entity because it did not perceive that the second entity was
dead, there exists a simulation error arising from a temporal
inconsistency. Mapping inconsistency occurs in military
simulations due to a loss of information between two levels.
For example, when tank positions are instantiated from a
platoon’s positions, the tanks are placed according to mili-
tary doctrine. However, a rapid aggregation-disaggregation
sequence may cause the tanks to “jump” position in a phys-
ically infeasible manner.

The MRE approach advocates representing an entity at all
levels at all times. While Reynolds et al discuss the notion
of a core set of components from which complete represen-
tations can be generated on demand (Reynolds et al 1997),
here we use a scheme that stores all components at all layers
at all times (note: this does not imply maintenance of all in-
formation at all times).

 A Design Example: BridgeWorld
In this section we will use MRM techniques to design an

agent that maintains internal consistency between its repre-
sentations. Our agent’s task is to build a bridge in a simulat-
ed, but dynamic and unpredictable domain, called
BridgeWorld. BridgeWorld is populated with boards, nails,
screws, nuts, brackets and tools such as hammers and screw-
drivers. The agent creates a plan to build a bridge, including



3

fetching raw materials, constructing small assemblies and
combining them into larger assemblies. The agent is
equipped with two arm/hand-like effectors and a toolbelt ca-
pable of holding a number of small objects, such as nails and
screws. The agent’s vision system is simulated, but subject
to noise. While the agent’s actions can fail and its percep-
tions can be incorrect, the fidelity of the simulated environ-
ment is not of primary importance here; we focus on
maintaining internal consistency.

Various inconsistencies can occur in the agent’s represen-
tation of the BridgeWorld domain. Temporal inconsistency
occurs when two layers of the architecture have differing
views of some aspect of the simulation at the same time. For
example, if the agent has nailed two boards together, its
planner will have a connected-boards representation, al-
lowing it to reference the entire assembly. However, manip-
ulating the assembly requires the PA to have representations
of the individual boards in order to place its effectors prop-
erly. Now suppose the boards were not nailed together se-
curely and when the agent lifts the assembly, it falls apart.
The PA layer is tracking the positions of the individual
boards in its hands, and the information is present in the
board representations to realize that they are no longer prox-
imate. However, the planner still has the connected-boards
representation. This represents a temporal inconsistency,
which requires planner/PA layer communication to resolve.

Mapping inconsistencies arise when one layer represents
some fact which another layer does not (or cannot). For ex-
ample, consider the task of screwing a bracket to a board.
Suppose the planner represents the necessary tool merely as
screwdriver. The PA layer needs to know about specific
perceptual qualities of the screwdriver (to find and grasp it)
which may require the PA system to know the screwdriver’s
head style, phillips or flat. Even if the types of screwdrivers
were differentiated by handle color, the PA layer would be
representing head style, but in a less direct way. A mapping
inconsistency exists here because one layer (the PA layer)
represents a fact that another layer (the planner) does not. In
other words, there is information loss between representa-
tions of the same object at different layers. If the screw to be
used is a phillips head screw, then either a phillips or flat
head screwdriver may be used and this information loss does
not affect the agent. However, if the plan calls for a flat head
screw, then only a flat head screwdriver can be used. The
agent must use a specific tool and so the planner’s represen-
tation is inadequate. We will discuss how to resolve both of
these mapping inconsistencies in the next section.

Another kind of mapping inconsistency arises from the
difficulty of maintaining state in a dynamic world. If the
agent nails together two boards as above, it will have a plan-
ner representation of connected-boards and PA layer repre-
sentation for each board. However, any differences between
the actual positions of the connected boards and the posi-

tions ascribed to connected-boards cannot be captured in
the planner’s representation. This represents a mapping in-
consistency. The difficulty is if the agent subsequently
moves to perform another task, say to find more lumber, the
agent no longer needs to maintain the representation for the
individual boards it just nailed together. Since the task has
changed (from a hammering task, to a navigation task) the
PA layer will not expend the computational resources to
maintain the representations from the last task. When the
agent returns with more lumber, the agent’s task will again
require it to manipulate the connected boards. The planner
can tell the PA layer about the connected-boards, but to
create representations for the individual boards again, the
planner must use domain knowledge of the meaning of con-
nected-boards to initialize the PA layer representation.
However, this domain knowledge will not necessarily corre-
spond to the information that was lost when the original
board representations were dropped. This may cause the PA
layer to be unable to recognize the individual components
because the PA layer’s perception system may require pose
information for identification.

 Task Analysis
Dealing with representational inconsistencies begins with

the agent’s design. The first step is to identify what the agent
will represent at each level and what inconsistencies exist
between these representations. This is determined by start-
ing with a task analysis. In layered agent architectures, tasks
are decomposed into more and more concrete sub-tasks at
each layer. This decomposition is partially based on the ca-
pabilities of the agent’s sensors/effectors and the amount of
autonomy that the planner is able to give to the other layers.
The BridgeWorld agent has a three-layered system where
the planner specifies a series of steps to achieve some goal,
and each of those is broken into a set of actions by a middle
layer (called the task executor or TE). Each action is per-
formed by the PA layer. For each task (or sub-task) that a
layer performs, there exist various roles in that task, which
the agent must fulfill. Each of these roles forms an entity that
should be represented by that layer.

For example, suppose the planner generated the step “as-
semble T-joint2”. The TE may decompose this task into the
sub-tasks of placing a board appropriately, placing another
board across one end of the first board at a right angle, and
nailing the boards together. In the planner’s notion of the
task, something must play the role of T-joint2. Once the T-
joint is assembled, it can be “bound” to T-joint2 (the plan-
ner’s representation) via the PA layer’s representation. Each
of the sub-tasks also contain roles. For example, nailing the
boards together requires objects to fulfill the roles of
board1, board2, hammer, and nail. Each of the roles in the
tasks executed by the PA layer can be represented. Using the
planner and PA layer representations, the designer can de-



4

termine where inconsistencies can exist. For example, the
agent must maintain internal consistency between the repre-
sentations for the components that make up the assembled
T-joint and the planner’s representation for T-joint2.

Since the representational needs of the different layers of
the architecture differ significantly, some amount of incon-
sistency is inevitable, and not necessarily undesirable.
Therefore, when the designer decomposes the agent’s task
and analyses the task roles, the design goal is not total elim-
ination of inconsistency, but rather “bounded inconsisten-
cy”. This means the agent designer must decide which
potential inconsistencies between the different layer’s repre-
sentations are tolerable given the application, and which are
not. Consider the task of hammering a nail. Since the PA
layer can use either a claw or ballpeen hammer to pound the
nail, it is reasonable for the planner to not represent types of
hammers, even though the PA layer may need to know such
facts to identify and manipulate actual hammers that exist in
the environment. However, in the previous example of se-
lecting an appropriate screwdriver for a flat head screw, the
planner did need to represent the type of screwdriver. In that
case, the inconsistency was outside of acceptable bounds.

 Dependency Graphs
Once the entities to be represented at the various layers

are known, potential inconsistencies must be identified. We
propose the use of dependency graphs (DGs) as a tool for
capturing consistency in multiple representations (Natrajan
et al 1995). Our DGs are conceptual tools that focus a de-
signer’s attention on consistency maintenance aspects of
multiple representations through a set of dependencies
called accumulative, distributive and interaction.

Figure 1 depicts a simple sub-assembly (a T-joint) from
BridgeWorld as well as representations used by the planner
and PA layer. Figure 1a shows the configuration of the T-
joint (two boards that have been nailed together). The plan-
ner maintains a representation of the T-joint that it can rea-
son about and treat as a single object. However, the PA layer
deals only with the environmental aspects which its sensors
can directly acquire: boards, brackets, nails, screws, etc.

Figures 1b and 1c show the same DG with various depen-
dencies highlighted. In the DG, the planner and PA layer
have different representations of the T-joint that must be
maintained consistent with each other. The components of
the representation are the nodes of the DG and the depen-
dencies between components are the arcs between the
nodes. We use the notation object{property list} to denote
the attributes that a particular layer stores for a particular ob-
ject.

Figure 1b highlights some interaction dependencies be-
low the PA layer’s representation. Interaction dependencies
capture changes to the representation from the environment
or other objects. Also, Figure 1b highlights accumulative de-

pendencies between the PA layer’s representation and the
planner’s representation. Accumulative dependencies cap-
ture the notion that a certain node is the accumulation of
some other nodes. For example, T-joint{position} may be
regarded as an accumulation of board1{position} and
board2{position}. In this case, the accumulating function
may be a bounding box, but there may exist other compo-
nents with different accumulating functions such as summa-
tion, averaging or centroid. Figure 1c highlights distributive
dependencies. Distributive dependencies capture the notion
that if an action is required on a planner node, that may re-
quire actions on a set of PA layer nodes. Some nodes may be
the distribution of a single node. The accumulative and dis-
tributive dependencies capture the notions of “is-part-of”
and “has-part”, respectively. Changes to the multiple repre-
sentations originate from the interaction dependencies and
propagate via the directed graph to other components. Con-
ceptually, each node is affected by an incoming dependency.
The node’s effects are propagated via outgoing dependen-
cies to other nodes with different semantics depending on
which kind of dependency is followed. The result of this

Figure 1. Dependency Graphs for an object

T-joint

board1

board2

nail

[board1{position}, board2{position}, nail{position}]

Planner

PA

[T-joint{position, angle}]

[board1{position}, board2{position}, nail{position}]

Planner

PA

[T-joint{position, angle}]

(a)

(c)

(b)



5

graph traversal is to keep the representations internally con-
sistent in the face of dynamic changes to the components of
the representation.

Figure 2 depicts the autonomous agent for BridgeWorld
as a Multiple Representation Entity. The planner’s represen-
tation includes T-joint and some other objects that the plan-
ner must know about in BridgeWorld. The TE maintains a
dependency graph (DG) for the two representations. The bi-
directional arrows from the planner to the TE and the PA
layer to the TE imply that the corresponding attributes are
the same and need not be duplicated in implementation. The
PA layer represents only those entities important to its cur-
rent task. In figure 2, only a portion of the planner’s repre-
sentation is being maintained by virtue of the PA layer’s
current task and hence its current representation. The main-
tenance of planner representation is facilitated by the DGs
stored in the TE.

 Consistency Maintenance with DGs
As outlined earlier, changes to representations originate

from interaction dependencies. These changes are propagat-
ed to other representations via the other dependencies. In
this respect, consistency maintenance resembles a graph tra-
versal. The origin of the traversal is when one or more rep-
resentation components are affected by changes in the
environment detected by the PA layer’s sensors. The tra-
versal is continued along accumulative or distributive de-
pendencies. Whenever an accumulative dependency is
traversed, the corresponding accumulative function must be
applied in order to gain the new state of the affected repre-
sentation. The accumulative function might use the state of
other representations. For example, when the accumulative
dependency between board1{position} and T-joint{posi-
tion} is traversed, an accumulative function that computes

the new position of the T-joint may be invoked. This func-
tion may require the position of the second board and the po-
sition of the nail. Whenever a distributive dependency is
traversed, the corresponding distributive function is applied
in order to gain the new state of the affected representations.
When designing a means for a planner to have a T-joint
moved, the distributive dependency maps the desired T-joint
location to desired locations for the individual components.
It is clear then that the DG maintains temporal consistency
between the two representations by virtue of propagating ev-
ery change to all representations.

Mapping inconsistency is harder to solve without do-
main-specific information. In many cases, mapping incon-
sistency may be resolved by proper partitioning of the
domain space. For example, in figure 2, if the planner never
cares about the type of screwdriver, then the mapping incon-
sistency between the PA layer’s and the planner’s represen-
tations of the screwdriver does not matter. In other words,
the planner must never alter its behavior based on the kind
of the screwdriver, though the PA layer may. In other cases,
a mapping inconsistency may be turned into a temporal con-
sistency issue by representation augmentation. If the planner
did not store T-joint{angle}, there would be no way to re-
flect the angle between boards at that level. This loss of in-
formation represents a mapping inconsistency since this fact
is easily computable at the PA layer. However, if we aug-
ment the planner’s T-joint representation to contain the
board angle attribute (and add appropriate accumulative and
distributive dependencies), we have changed a mapping in-
consistency to a temporal one. Note that we used domain
specific information to resolve this inconsistency; under our
current understanding, generally this is true.

Figure 2. Correlation between planner and PA layer representations

board1{position}, board2{position}, nail{position}[pylon{position} (screwdriver{position, kind}]

Planner

TE

PA

[pylon{position}, T-joint{position, angle}, screwdriver{position}, map]

[pylon{position}, T-joint{position, angle}, screwdriver{position}]

[board1{position}, board2{position}, nail{position}]



6

 Related Work
A number of agent architectures have relied on represen-

tational abstraction. The first of these, ABSTRIPS (Sacerdo-
ti 1974), was designed to address the combinatorial
explosion resulting from representing the world in as de-
tailed a manner as possible. The model of maximum detail
was referred to as the ground space, and the spaces of de-
creasing detail were called the abstraction spaces. Each level
in the abstraction space hierarchy was characterized by the
level of detail used to specify preconditions for operators.
Plans were generated by first planning in the more abstract
space, and then adding preconditions at each level down in
the hierarchy. Any inconsistencies that existed got resolved
as the plan got refined in each abstraction space. Similar
ideas are found in numerous other planners from the litera-
ture (see (Tate et al 1990) for a review). Note that the repre-
sentations in different abstraction spaces are qualitatively
different from the representations that exist at different lev-
els of a combined planning/PA architecture. The different
abstraction spaces still share the same fundamental assump-
tions of the planner representation, that is, they assume per-
fect knowledge, a discrete time scale, that operators always
succeed, and that changes in the world state are solely the re-
sult of operators. None of these assumptions are held by a
PA system.

Davis and Hillestad (Davis & Hillestad 1993), Reynolds
et al (Reynolds et al 1997) and Natrajan et al (Natrajan et al
1995) have explored issues of consistency maintenance for
conjoined military simulations. We believe ours to be the
first work to address these concerns for autonomous agents
with multi-layered architectures.

 Conclusions
The design of multi-tier autonomous agents presents

many challenges due to the nature of inconsistencies that can
arise between the multiple representations within the agent.
These representations must be reconciled with each other
despite the different characteristics of the different layers.
We drew on the experience of the multi-representation mod-
eling community to show that representation inconsistencies
can be categorized as either temporal or mapping inconsis-
tencies. Our design framework shows how these inconsis-
tencies can be found and addressed.

Multiple Representation Entities have been used with
military simulations to internalize consistency maintenance
among multiple representations of the same entity. Depen-
dency Graphs encode solutions by making the relationships
between representation components explicit. Dependency
Graphs have proven useful in identifying potential temporal
and mapping inconsistencies in BridgeWorld and other ex-
amples. This paper identifies important components of a de-
sign strategy (task analysis and dependency identification)

that reduce or eliminate inconsistency in autonomous
agents.

 References
[1] Agre, P.E. and Chapman, D. 1987. Pengi: An Implemen-

tation of a Theory of Activity. AAAI-87: 268-272.

[2] Brill, F., Wasson, G., Ferrer, G. and Martin W. 1998. The

Effective Field of View Paradigm: Adding Representa-

tion to a Reactive System. Engineering Applications of

Artificial Intelligence issue on Machine Vision for Intel-

ligent Vehicles and Autonomous Robots. to appear.

[3] Bonasso, R., Firby, R., Gat, E., Kortenkamp, D., Miller,

D. and Slack, M. 1997. Experiences with an Architecture

for Intelligent, Reactive Agents. Journal of Experimen-

tal and Theoretical Artificial Intelligence, 9(2).

[4] Brooks, R.A. 1986. A Robust Layered Control System

for a Mobile Robot, IEEE Journal of Robotics and Auto-

mation, RA-2(1):14-23.

[5] Davis, P.K. and Hillestad, R.J. 1993. Families of Models

that Cross Levels of Resolution: Issues for Design, Cali-

bration and Management. Proceedings of 1993 Winter

Simulation Conference.

[6] Firby, R.J. 1987. An Investigation into Reactive Planning

in Complex Domains. AAAI-87:202-206.

[7] Gat, E. 1992. Integrating Planning and Execution in a

Heterogeneous Asychronous Architecture for Control-

ling Real-World Mobile Robots. AAAI-92: 809-815.

[8] Natrajan, A., Reynolds Jr., P.F. and Srinivasan, S. 1995.

Consistency Maintenance Using UNIFY, UVa Computer

Science Technical Report 95-28.

[9] Reynolds Jr., P.F., Natrajan, A. and Srinivasan, S. 1997.

Consistency Maintenance in Multi-Resolution Simula-

tions. ACM TOMACS, July 1997, 7(3): 368-392.

[10] Sacerdoti, E.D. 1974. Planning in a Hierarchy of

Abstraction Spaces. Artificial Intelligence 5: 115-135.

[11] Tate, A., Hendler J. and Drummond, M. 1990. A

Review of AI Planning Techniques. In Readings in Plan-

ning: 26-49.

[12] Wasson, G., Ferrer, G. and Martin, W. 1997. Systems

for Perception, Action and Effective Representation.

FLAIRS-97: 352-356.


