
STAR: Secure Real-Time Transaction Processing with Timeliness Guarantees
�

Kyoung-Don Kang Sang H. Son John A. Stankovic
Department of Computer Science

University of Virginia�
kk7v, son, stankovic � @cs.virginia.edu

Abstract

Real-time databases are needed in security-critical ap-
plications, e.g., e-commerce, agile manufacturing, and mil-
itary applications. In these applications, transactions and
data items can be classified into several security levels ac-
cording to their clearance and sensitivity levels. It is essen-
tial for real-time databases to prevent illegal direct/indirect
transfer of sensitive data, e.g., secret trade, manufacturing,
or operational data, between transactions belonging to dif-
ferent security levels. Further, transactions should be com-
mitted within their deadlines, i.e., before the market, man-
ufacturing, or battle field status changes. In this paper, we
present a novel real-time database architecture, in which
illegal direct/indirect inter-level information flows are pre-
vented while controlling the deadline miss ratio for admit-
ted transactions to remain below a certain threshold. In
our approach, mandatory access control mechanisms are
applied for security purposes. QoS management, admis-
sion control, and feedback control schemes are applied to
support certain guarantees on miss ratio against potential
overload and data conflicts. A detailed simulation study
shows that our approach can support the specified miss ra-
tio preventing illegal information flows even in the presence
of unpredictable workloads and varying degrees of data
contention, whereas baseline approaches fail.

1 Introduction

Real-time databases are needed in many security-critical
applications, e.g., e-commerce, online stock trading, agile
manufacturing, and military applications. In these appli-
cations, transactions and data items can be classified ac-
cording to their clearance and sensitivity levels. It is essen-
tial to prevent unlawful information flows between different
security levels to protect important data related to trading,
manufacturing, and military operations. It is also important

�
Supported, in part, by NSF grants EIA-9900895 and CCR-0098269.

for real-time databases to process transactions within their
deadlines, i.e., before the market, manufacturing, or battle
filed status changes. Current solutions focus on preventing
information leakage between different security levels at the
cost of providing no performance guarantees. This paper
presents a solution which does not only maintain the secu-
rity property but also gives real-time performance guaran-
tees.

Most of secure database systems apply a mandatory ac-
cess control mechanism based on the Bell-LaPadula model
[6], which is described in terms of subjects and objects. Ob-
jects are data items and subjects are active processes, i.e.,
transactions in databases, which request access to objects.
Data and transactions are classified into several security lev-
els, e.g., Top Secret, Secret, Classified, and Unclassified.
In the Bell-LaPadula model, two main restrictions are im-
posed on all data accesses. A transaction can read an object
only if the transaction’s security (clearance) level is equal
to or higher than the object’s security (sensitivity) level. A
transaction can write an object only if its security level is
equal to or lower than the object’s security level. Infor-
mally, these access restrictions are called “read-below” and
“write-above” restrictions, respectively.

The Bell-LaPadula access restrictions can prevent direct
information flows between transactions belonging to differ-
ent security levels. However, it is not sufficient to prevent
indirect information flows, called covert channels [14], in
which transactions can conspire for an illegal inter-level in-
formation transfer. A higher (security) level transaction can
either hold or release an exclusive resource or lock on a
data item. A conspiring lower level transaction requests the
same resource or data item. As a result, the lower level
transaction is delayed when the higher level one holds the
corresponding resource or lock. The lower level transaction
can interpret the presence and absence of the delay as 0 and
1, respectively.

Covert channels based on data and resources can be pre-
vented by favoring lower level transactions in the resolution
of inter-level data/resource conflicts, which occur between
transactions belonging to different security levels. In this

way, lower level transactions can not know the presence of
higher level transactions, i.e., no covert channel. This no-
tion of non-interference should be satisfied to prevent covert
channels [9]. However, this may increase the deadline miss
ratio, especially for high security level transactions. This is
because high security level transactions will be preempted,
aborted, and restarted for security purposes in case of inter-
level data/resource conflicts. This can be a serious prob-
lem, possibly leading to a system failure in secure real-time
databases, in which timely transaction processing is essen-
tial.

In this paper, we present a novel real-time main mem-
ory database architecture, called STAR (Security and Time-
liness Assurance in Real-time databases). STAR fully
supports the Bell-LaPadula model and notion of non-
interference to prevent direct/indirect information leakage
between different security levels. At the same time, our
approach provides certain guarantees on average/transient
miss ratio for admitted transactions, regardless of their se-
curity levels. To our best knowledge, this is the first ap-
proach, which prevents illegal direct/indirect information
flows while providing timeliness guarantees in real-time
databases.

In this paper, transactions are classified into two security
levels. In the remainder of this paper, we follow a con-
vention in which low and high security classes are called
Classes 0 and 1, respectively. In the CPU scheduling and
concurrency control, Class 0 transactions are always treated
in a preferred manner to prevent both resource and data
based covert channels. We apply QoS management, ad-
mission control, and feedback control schemes to support
the specified average/transient (deadline) miss ratio for both
Classes 0 and 1. Based on the current performance error,
i.e., the difference between the specified miss ratio and cur-
rently measured one, the feedback control loop computes
the required CPU utilization adjustment. QoS manage-
ment and admission control schemes enforce the required
CPU utilization adjustment to support the specified aver-
age/transient miss ratio.

In a simulation study, we show that our approach can
achieve a significant performance improvement, in terms of
miss ratio, compared to several baseline approaches. For
a large range of workloads and different degrees of data
contention, our approach can support the specified aver-
age/transient miss ratio preventing illegal direct/indirect in-
formation flows, while other approaches fail.

The rest of this paper is organized as follows. In Section
2, our real-time database model is discussed. Main perfor-
mance metrics and performance specification issues are also
described. Section 3 discusses our real-time database archi-
tecture for security (in terms of access control) and miss
ratio guarantees in detail. The performance evaluation re-
sults are presented in Section 4. Related work is discussed

in Section 5. Finally, Section 6 concludes the paper and
discusses the avenues for future work.

2 Database Model and Performance Metrics

In this section, our real-time database model is discussed
and main performance metrics are described. Performance
specification issues are discussed in terms of main perfor-
mance metrics.

2.1 Real-Time Database Model

In our approach, a main memory database model, in
which the CPU is considered the main system resource, is
applied. Main memory databases have been increasingly
used for real-time data management such as online auction,
stocking trades, e-commerce, and voice/data networking.
This is mainly because of their relatively high performance
and decreasing main memory cost [2, 5, 24]. We consider
firm deadline semantics. Tardy transactions � transactions
that have missed their deadlines � are considered valueless,
and therefore, are aborted upon their deadline misses.

Class 1

Class 0

Class 1

Class 0

Transaction
Clearance

Data
Sensitivity

R/W

R/W

W

R

Figure 1. Access Restrictions in the Bell-
LaPadula Model

In our approach, all transactions and data items are clas-
sified into either Class 0 or 1 (i.e., the low or high security
class). Transactions can read/write data items according to
the access restrictions required by the Bell-LaPadula model
as shown in Figure 1. Note that transactions can read/write
any data at the same security class. However, Class 1 trans-
actions can not write Class 0 data. In contrast, Class 0 trans-
actions can can not read Class 1 data items. In this way, di-
rect information flows between Classes 0 and 1 can be pre-
vented. We also prevent indirect information flows between
the two classes.

Separate from the security classes, we also assume that
each transaction has two versions, which support different
QoS levels, i.e., level 0 and 1. At QoS level 1 (i.e., the

higher QoS level), a transaction requires more CPU cycles.
When overloaded, some transactions’ QoS can be degraded
from level 1 to level 0 to reduce the CPU utilization. For
the clarity of presentation, a detailed discussion about the
security support and QoS management including their in-
teractions with other components in our real-time database
architecture is given in Section 3.

2.2 Main Performance Metrics

We consider security an all-or-nothing correctness crite-
rion rather than a performance metric, similar to [8]. Un-
like several real-time database research projects such as
[3, 21, 22], in which covert channels can be momentarily
allowed to improve the miss ratio, we do not consider se-
curity a trade-off item for performance reasons. Therefore,
deadline miss ratio is considered a single performance met-
ric in our approach:

� Average Miss Ratio: For the admitted transactions in
Class

���������	��
�
, let ������������� and ��� ������ ���

represent the number of transactions that have missed
their deadlines and the number of transactions that
have finished within their deadlines, respectively. The
miss ratio of the transactions belonging to Class

�
mea-

sured within a certain time interval is:

�! �#"
$���&% �������������
�������������(')��� ������ ���

��*&�

In STAR, the average miss ratio for Classes 0 and 1
should be below a certain miss ratio threshold, e.g.,
5%. Note that we manage

�! ,+
and

�! .-
separately

instead of considering the aggregate miss ratio. This is
to prevent an undesirable situation, in which one secu-
rity class suffers a high miss ratio, whereas the aggre-
gate miss ratio is below the specified value.

� Transient Miss Ratio: Long-term performance metrics
such as average miss ratio are not sufficient for the
performance specification of dynamic systems, since
their performance can widely vary in a short time in-
terval. To address this problem, transient performance
metrics are adopted from control theory for a real-
time system performance specification [16]. Over-
shoot (

�0/
) is the worst-case system performance in

the transient system state, i.e., the highest miss ratio
over the specified threshold in the transient state. Set-
tling time (132) is the time for a transient overshoot to
decay and reach the steady state performance, in which�&� �! � �54 �6' �87 �9
:%;4 � where

�! � (
�&�5�<�=

) is
the miss ratio of Class i transactions, and

4 � is the miss
ratio threshold required for Class i.

2.3 Performance Specification

In this paper, we consider the following performance
specification as an example to illustrate the applicability of
our approach for secure transaction processing with miss ra-
tio guarantees: > Perf-Spec "�? �! ,+�@:�! .- �BA�* @C��/ �D6�E* @ 1F2 �HG���I$�J @�KML;NON 1 �P�Q�PR �E1 �PSTVUHG��E*XW�Y Y

. This
specification requires us to limit the average miss ratio be-
low 5% for Classes 0 and 1, respectively. We also set

�Z/
= 20%, therefore, an

�! ,+
or
�! .-

overshoot should not
exceed [* " A�*=%\�F
 ' �87 D�� . A potential overshoot should
decay within 80sec. Given a sampling rate, the overshoot
and settling time have a trade-off relation with each other.
It is very hard, if at all possible, to minimize both the over-
shoot and settling time for a given sampling rate [20]. In
this paper, we consider a somewhat long settling time, e.g.,
think time between trades, is tolerable as long as the cor-
responding overshoot is low. We also require the CPU uti-
lization to be at least 80% to avoid a trivial case in which
average/transient

�! ,+
and

�! .-
are satisfied due to the

underutilization. In summary, this entire set of performance
specification is the performance guarantee supported by our
approach.

3 An Architecture for Security and Timeli-
ness Guarantees

In this section, we present our real-time database archi-
tecture for security and timeliness assurance as shown in
Figure 2. Incoming real-time transactions with firm dead-
lines are scheduled in one of the two ready queues accord-
ing to their security classes. Scheduling and concurrency
control policies are provided for transaction processing. At
each sampling instant,

�! ,+
,
�! .-

, and the CPU utilization
are monitored. The miss ratio and utilization controllers
compute the required CPU utilization adjustment (] N in
Figure 2) based on the current performance error such as
the miss ratio overshoot or CPU underutilization. When
] N_^ � (i.e., overloaded), the QoS manager degrades the
transaction QoS. The admission controller enforces the re-
maining utilization adjustment after potential QoS degra-
dation, i.e.,] N<`6aFb , to prevent overload. In the following
subsections, each component is discussed in detail.

3.1 Transaction Handler

The transaction handler is a fundamental component for
real-time database services. It consists of a concurrency
controller (CC) and a basic scheduler. The basic sched-
uler schedules transactions in either c + or c - according to
their security classes, i.e., Class 0 (Class 1) transactions are
scheduled in c + (c -). The Bell-LaPadula access restric-
tions are applied for data accesses. CPU scheduling and

QoS
Manager

∆ U

Admission
Controller

Ready Queue

Real-Time
Transasctions

Transaction Handler

Monitor

Terminated

Miss Ratio 0

Preempt
Abort/Restart

Dispatched

∆ U new

Q 0

Q 1

MR Controller 0

MR Controller 1

. . .

Util. Controller

. . .

Miss Ratio 1

Utilization

Utilization
Threshold
Manager

CC Sch.

Figure 2. STAR Architecture

concurrency control are performed in a manner to support
the notion of non-interference as follows.

To prevent covert channels, Class 0 transactions (sched-
uled in c +) always receive a higher priority than Class 1
transactions. A transaction in c - can be scheduled if there
is no ready transaction in c + . Also, a Class 1 transac-
tion is preempted upon the arrival of a Class 0 transac-
tion. In this way, Class 0 transactions can not know the
presence of Class 1 transactions, therefore, the notion of
non-interference is supported. In each queue, transactions
are scheduled in an EDF manner. Since illegal information
flows are not applicable inside each security class, the EDF
scheduling policy can be applied to improve the miss ratio
in each class.

For concurrency control, we use two phase locking high
priority (2PL-HP) [1], in which a low priority transaction is
aborted upon a conflict. 2PL-HP is well studied in real-time
database research and it is free of a priority inversion. In
our approach, upon an inter-level (i.e., between Classes 0
and 1) data conflict a Class 0 transaction always receive a
higher priority. In this way, we support the notion of non-
interference. Class 0 transactions can not know the presence
of Class 1 transactions, since Class 0 transactions are never
delayed by Class 1 transactions due to inter-level data con-
flicts. (We assume the delay for aborting a transaction is
negligible. Hence, we assume a covert channel can not be
established using the abort delay.) Note that intra-level data
conflicts are resolved in favor of a transaction with the ear-
liest deadline, since there is no security problem (in terms
of mandatory access control) within one security class.

Note that STAR provides guarantees on aver-
age/transient miss ratio for both Classes 0 and 1. In
real-time databases, it is essential to support consistent
timing guarantees in terms of both long-run average and
transient miss ratio, regardless of security classes. In this
way, users can be assured of secure transaction processing
with consistent timing guarantees even when the system is
in the transient state. For several reasons, it is very chal-
lenging to support the specified average/transient miss ratio

guarantees for both Classes 0 and 1, especially for Class 1.
As the Class 0 workload increases, a multitude of Class 1
transactions can be preempted, aborted, and restarted due to
possible inter-level data/resource conflicts. This is because
the CPU scheduling and concurrency control schemes are
performed in favor of Class 0 to support the notion of non-
interference as discussed before. Further, precise workload
models and possible data/resource conflicts are usually
unknown a priori in database applications. To provide�! �+

and
�! .-

guarantees despite these challenges, we
apply a feedback-based approach depicted in Figure 3, and
described in the following subsections.

Transactions

(a) Utilization Control Loop

MR s

(b) MR - Loop k

MR kMiss Ratio
Controller k

RTDB
E k ∆U k

-

Utilization
Controller RTDB

Target
Utilization

 + error ∆U util

Measured
Utilization

Transactions

-

+

Figure 3. Miss Ratio/Utilization Controllers

3.2 Feedback Control

Feedback control is well known for its effectiveness to
support a specified performance when the system model
may include uncertainties [20]. The specified performance
can be achieved by dynamically adapting the system be-
havior considering the current performance error measured
in the feedback control loop. In this paper, we adapt and
extend a feedback control scheduling policy for service
differentiation in real-time databases [13] to provide aver-
age/transient guarantees for both

�! M+
and

�! .-
as fol-

lows.

3.2.1 Miss Ratio Controllers

In our approach, digital PI (proportional and integral) con-
trollers are employed to control average/transient

�! .+
and�! .-

.1 As shown in Figure 3, a miss ratio control loop�!
������� L�� belonging to Class � ���Z� � �
�

com-
putes a miss ratio control signal] N�� based on the current
performance error, � � " �! 2 �

�! 	�
, i.e., the difference

between the specified miss ratio and the currently measured

1A P controller alone can not eliminate a constant steady state error
[20]. We verified that P controllers can not meet Perf-Spec, i.e., the CPU
is underutilized in our experiments. In this paper, we do not consider more
complex controllers, since PI controllers closely meet Perf-Spec.

miss ratio for Class � . Let � � �Q�F� represent the miss ratio
error for Class k at the

�����
sampling instant. At the

T����
sampling instant, the miss ratio control signal for Class k is:

] N � " � L % � � �QT#� ' ��� %
`
�
� 	 - �

� �Q�F�
(1)

When overloaded,] N � can become negative to request
the reduction of the CPU utilization via QoS management
and/or admission control. KP and KI stand for proportional
and integral controller gains to be tuned to support the spec-
ified average/transient miss ratio.

3.2.2 Profiling and Controller Tuning

To support the specified average/transient miss ratio, miss
ratio controllers are tuned as follows.

� �!
� ����� L#+ : To tune a miss ratio controller, the

miss ratio gain,
���!" � ��� ? �;� 2F2���
� � ��� `���� a � 2 a� ` � ��� ������� `���� a � 2 a W ,

should be derived under the worst case set-up to sup-
port a certain miss ratio guarantee [17]. To derive

��� , the performance of the controlled system, i.e., a
real-time database, should be profiled. Average

�! M+
was measured for loads increasing from 60% to 200%
by 10%. To consider the worst case, all incoming
transactions are admitted, and all transactions are pro-
cessed at QoS level 1. From this, we derived the

�! M+
gain
���� B"
67 D�!�A

when the load increases from
120% to 130%. We set the sampling period to 5sec
(for both miss ratio and utilization control). According
to control theory, frequent sampling could improve the
transient performance such as overshoot and settling
time. However, too frequent sampling could incur the
sudden QoS degradation in our approach. For this rea-
son, we selected the longest sampling period among
several tested values, which can support the required
overshoot and settling time. (To do this, we measured
the overshoot and settling time in Matlab by increas-
ing the sampling period by 1sec starting from 1sec.)
Using
���� and the sampling period, we applied the
Root Locus design method in Matlab [20] to tune KP
and KI to satisfy the average/transient

�! M+
specified

in Perf-Spec. We have selected the closed loop poles
at " +6@ " - " �87 #$#�G @ �87 A�%$! . The feedback control system
is stable, since the closed loop poles are inside the unit
circle. The corresponding values are KP = 0.224 and
KI = 0.176.

� �!
�	����� L - : For

�!
�	����� L - , we also measured�! .-

for loads increasing from 60% to 200%. For�! .-
, the gain
���'& = 2.288 when the load increases

from 80% to 90%. It is necessary to profile
�! ;-

as
well, since we aim to support not only the average, but

also the transient miss ratio specification for Class 1.
Note that
��� & is higher than
���(, and the sharpest�! .-

increase is observed at lower loads (
G��E*

�

!��E*
)

compared to Class 0. This is mainly because the CPU
scheduling and concurrency control are performed in
favor of Class 0 for security reasons. To tune

�!
�

����� L - , we applied the Root Locus method to support
the average/transient miss ratio specified in Perf-Spec,
similar to the tuning process of

�!
� ����� L + . The

closed loop poles are located inside the unit circle for
the stability of

�!
� ����� L<- . The corresponding

values are KP = 0.127 and KI = 0.176.

3.2.3 Utilization Controller

To prevent a potential underutilization, one utilization con-
trol loop is employed. Note that it is necessary to use both
miss ratio and utilization controllers to avoid control sat-
uration problems. A utilization controller saturates at uti-
lization 100%. In contrast, a miss ratio controller saturates
when the system is underutilized (0 miss ratio as a result).
The miss ratio (utilization) controller is activated when the
system is overloaded (underutilized) to support the stability
of the feedback control system by avoiding the controller
saturation problems, similar to [16, 17].

At each sampling instant, a PI controller derives the uti-
lization control signal] N*) � � + based on the current utiliza-
tion error, i.e., the difference between the target and current
utilization as shown in Figure 3. The utilization control sig-
nal is derived in a PI controller, similar to Eq. 1. The utiliza-
tion controller is also tuned using the Root Locus method,
but we do not discuss the details due to space limitations.
To further improve the CPU utilization, we also employ a
utilization threshold manager as follows.

3.2.4 Utilization Threshold Manager

For many complex real-time systems, e.g., real-time
databases, the schedulable utilization bound is unknown or
can be very pessimistic [17]. In real-time databases, the uti-
lization bound is hard to derive, if at all possible. This is
partly because database applications usually include unpre-
dictable aborts/restarts due to data/resource conflicts. It is a
hard problem to decide a proper utilization threshold, which
can avoid both the possible underutilization and excessive
deadline misses due to an overly pessimistic and optimistic
utilization threshold, respectively.

For this reason, we apply an online approach in which
the utilization threshold (the target utilization in Figure 3
(a)) is dynamically adjusted considering the current real-
time system behavior. The utilization threshold is initialized
at a relatively low set point (

N + � b), e.g., 80%. If
�! ,+

and�! .-
are currently zero, the utilization threshold is incre-

mented by a certain step size, e.g., 2%, unless the new uti-

lization threshold exceeds 100%. The utilization threshold
will be continuously increased as long as

�! M+
and

�! .-
are zero. The utilization threshold will be switched back toN + � b when the miss ratio controller takes control. This can
be considered a somewhat conservative approach, since the
utilization threshold could be decreased to the initial value
upon a few deadline misses. The main objective of this
back-off scheme is to prevent a potential miss ratio over-
shoot in real-time databases because of an overly optimistic
utilization threshold. In some applications where a transient
miss ratio overshoot can be considered relatively tolerable,
e.g., web information systems, the utilization back-off can
be performed in a stepwise manner.

Note that our approach is computationally lightweight
and self-adaptive requiring no a priori knowledge about a
specific workload model. Using this approach, the poten-
tially time-varying utilization threshold can be closely ap-
proximated [13].

3.2.5 Derivation of a Single Control Signal

For the sake of consistency in control, we derive a single
control signal out of two miss ratio signals and one uti-
lization control signal. We first derive a single miss ra-
tio control signal,] N �� from] N + and] N - . For this
derivation, we need to consider two cases: (1) both] N +
and] N - are negative at the current sampling instant, (2)
only one of the two is negative or none of them is nega-
tive. In the first case, both

�! M+
and

�! .-
are violated.

Thus, we set] N �� "��
-� 	 +] N � to require the enough

CPU utilization reduction to avoid a significant miss ra-
tio increase in the consecutive sampling instants. Other-
wise, we set] N ��Z" � ��T ����� �0�] N +@] N - � to support
a smooth transition from one system state to another, simi-
lar to [17]. After deriving] N �� , we set the current con-
trol signal] N " � ��T ����� �0�] N*) � � + @] N �� � for a simi-
lar reason.

3.2.6 Integrator Antiwindup

All feedback controllers in Figure 3 are digital PI con-
trollers. An integral controller can improve the performance
of the feedback control system when used with a propor-
tional controller. However, it is necessary to avoid for the
integrator to erroneously accumulate control signals, since
this can lead to a substantial overshoot later [20]. For this
reason, we apply the integrator antiwindup technique [20]
as follows.

� Case 1 (] N ����] N) � � +): Turn on the integrator for
the utilization controller, but turn off all integrators of�!

� ����� L�� ���X� � �=
� , since the current] N "
] N) � � + . This prevents an erroneous accumulation of
miss ratio control signals.

� Case 2 (] N �� �] N) � � +): In this case, turn off
the integrator for the utilization controller, since the
current] N "] N �� . This prevents an erroneous
accumulation of the utilization control signal. For
miss ratio controllers, if] N<+�^ �

and] N -B^ �
,

turn on the integrators for both
�!

� ����� L + and�!
� ����� L - . This is because the current] N "

�
-� 	 +] N � . Otherwise, only turn on the integrator

of
�!

� ����� L�� whose miss ratio control signal is
smaller than the other. This prevents an erroneous ac-
cumulation of the miss ratio control signal by one of
the two miss ratio controllers whose signal is greater
than the other.

3.3 QoS Manager and Admission Controller

When the system is overloaded, i.e.,] N ^ � , the CPU
utilization can be reduced by degrading the QoS level from
1 to 0 for some transactions in the system. More specifi-
cally, QoS degradations are performed by applying an im-
precise computation technique, called milestone approach
[15].

The admission controller is another system component
that can enforce the control signal together with the QoS
Manager, if necessary. As shown in Figure 2, the QoS Man-
ager informs the admission controller of the new control
signal, called] N<`6aFb , adjusted after possible QoS degrada-
tions. Admission control is necessary, since under severely
overloaded conditions the QoS Manager itself might not be
able to enforce the current] N entirely. In contrast, more
transactions should be admitted when underutilized. (We
assume that all incoming transactions are already authen-
ticated, therefore, our admission controller only considers
workload adjustments instead of dealing with security prob-
lems such as denial of service attacks.)

In our approach, a newly incoming transaction can be ad-
mitted, if its estimated CPU utilization requirement is cur-
rently available. The current utilization is examined by ag-
gregating the utilization estimates of the previously admit-
ted transactions.

4 Performance Evaluation

In this section, we analyze the performance of our ap-
proach. The main objective of the performance evaluation
is to observe whether or not STAR can support Perf-Spec,
while supporting the Bell-LaPadula access restrictions and
notion of non-interference. For this, we have developed a
real-time database simulator. Baseline approaches are intro-
duced for performance comparisons. We describe workload
variables and performed sets of experiments, and present
the performance evaluation results.

4.1 Simulation Model

Our simulation model is described as follows.

� Execution Time and Deadline A source, � S � � J � � ,
generates a group of real-time transactions whose
inter-arrival time is exponentially distributed. � S � � J � �
is associated with an estimated execution time (� �.�#�)
and an average execution time (� �.� �). We set
� �.� �#" N T ��� S � �0� A�� I @ D6�6� I� . By generating mul-
tiple sources, we can derive transaction groups with
different average execution time and average number
of data accesses in a statistical manner. By increasing
the number of sources, we can also increase the work-
load applied to the simulated real-time database. This
is because more transactions will be generated in a cer-
tain time interval. We set � �.� ��" �F
 ' � I 1 �.�� �M%
� �.� � , in which � I 1 �.�� is used to introduce the exe-
cution time estimation errors. Note that STAR and all
baseline approaches are only aware of the estimated
execution time. Upon the generation of a transaction,
� S � � J � � generates an actual execution time by apply-
ing the normal distribution � S � � � �3� � �.�#� @�� � �.� � �
to introduce the execution time variance in the corre-
sponding transaction group. We set deadline = arrival
time + average execution time

%
slack factor. A slack

factor is uniformly distributed in a range (10, 20).

� QoS: Transactions at QoS level 0 are as-
sumed to require a half of the original exe-
cution time, i.e., � J 1 � � � � � �J � 1 �PST 1 ����� + "�87 A % � J 1 � � ��� � �J � 1 �PST 1 ����� - . In our performance
evaluation, we directly relate QoS levels 0 and 1 to
numeric values 0 and 1, respectively. By taking the
average of QoS levels for all processed transactions,
we can observe the fraction of transactions serviced
at their full QoS levels. For example, when the
measured average QoS = 0.6, 60% of the transactions
are processed at QoS level 1 (and 40% of transactions
are processed at QoS level 0).

� Number of Data Accesses: The number of data ac-
cesses for � S � � J � � is derived in proportion to the
length of � �.� � , i.e., ���
	���	� " data access factor

%
� �.� � " � A @ D6���

. Therefore, longer transactions
access more data in general. Upon the generation
of a transaction, � S � � J � � associates the actual num-
ber of data accesses with the transaction by applying
� S � � � �3� ���
	���	� @�� ���
	���	� � to introduce the vari-
ance in the transaction group.

� Security and Data: Each source is associated with a
security class, i.e., Class 0 or 1, and transactions gen-
erated from a source are accordingly scheduled in c +
or c - as shown in Figure 2. All data items in the

database are also classified into Classes 0 and 1. When
accessing data, each transaction follows the access re-
strictions imposed by the Bell-LaPadula model, i.e.,
read-below and write-above. We also vary the database
size from 1,000 to 100,000 data items to vary the de-
gree of data contention. A more detailed discussion is
given in Section 4.3.

4.2 Baselines

We have developed three baseline approaches to com-
pare with STAR:

� Open: In this approach, all incoming transactions are
admitted and serviced with the full QoS regardless of
the current miss ratio. The closed-loop scheduling is
not employed. Hence, all the shaded components in
Figure 2 are turned off. Note that most database sys-
tems take this open-loop and non-adaptive approach.

� Open-AC: This is similar to Open except that admis-
sion control is applied in this approach. Hence, poten-
tial overloads can be partially managed by admission
control.

� Covert-AC: This approach is similar to Open-AC,
however, the notion of non-interference is not sup-
ported for performance reasons. This approach only
considers transaction deadlines to resolve both intra-
and inter-level data/resource conflicts. A mandatory
access control mechanism based on Bell-LaPadula
model is applied to prevent illegal direct information
transfer between Classes 0 and 1. However, the in-
direct information transfer using covert channels are
not prevented at all. By considering this baseline
approach, we can measure the performance penalty,
if any, required to fully support the notion of non-
interference in our approach. Note that Covert-AC
could show a better performance, especially in terms
of
�! .-

, compared to existing approaches such as
[3, 21, 22], in which inter-level data/resource conflicts
are temporarily resolved in terms of deadlines instead
of security levels, to trade off security to improve the
miss ratio, if necessary.

4.3 Workload Variables

In this section, we describe the workload variables used
in the performance evaluation.

� AppLoad (Applied Load): In general, computational
systems may show different, possibly worse, perfor-
mance for increasing loads, especially when over-
loaded. We use a variable, called �*"$" � S �E� , to apply

Table 1. Load Relieved by QoS degradation
Avg. QoS 0.5 0.6 0.7 0.8 0.9 1
Rel. Load 37.5% 30% 22.5% 15% 7.5% 0%
Rel. Load 50% 40% 30% 20% 10% 0%

different workloads in the simulation. Note that this
variable indicates the load assuming that all incom-
ing transactions are admitted and all transactions are
serviced at their full QoS levels. The actual load can
be reduced in a tested approach by applying admis-
sion control and degrading the QoS, if necessary. The
workload relieved from QoS degradation (Rel. Load)
=
�87 A<%;�F

� Average QoS
�9% �*"$" � S �E� , since the trans-

action execution time at QoS level 0 is a half of that at
level 1 as discussed before. Table 1 presents the loads
relieved from QoS degradation when �*"$" � S �E� "
A6�E*

and 200%, respectively. Remaining potential
overload, if any, should be managed by admission con-
trol to prevent a miss ratio overshoot.

� EstErr (Execution Time Estimation Error): In our ex-
periments, � I 1 �.�� is used to introduce errors in ex-
ecution time estimates as described in Section 4.1. A
high execution time estimation error could generally
induce a difficulty in real-time scheduling.

� HCR (High Priority Class Ratio): As the Class 0
workload increases, it could be more challenging to
support the specified average/transient miss ratio, es-
pecially for

�! �-
. This is because Class 0 transac-

tions receive a higher priority in the CPU scheduling
and concurrency control to prevent covert channels in
all tested approaches except Covert-AC. To adjust the
Class 0 workload, we define a workload variable:

� KM "
$���&% #Class 0 Transactions

�
-
� 	 + #Class i Transactions

��*&� 7

� DB SIZE (Database Size): Database performance can
vary as the degree of the data contention changes
[1, 10]. To model this, we applied our approach for dif-
ferent ��� � ��� � (database sizes), i.e., 1,000, 10,000
and 100,000 data items. In general, a small database
size may incur a higher degree of data contention for
given a set of transactions [1]. In � ��" � � �����$T 1 � � 1 I 1

� 3 (discussed in the next subsection), we only present
the case of 1,000 data items, which may have the high-
est data contention due to the smallest database size
among the tested ones. In � ��" � � �����$T 1 � � 1 4, we
show that our approach can support Perf-Spec for a dif-
ferent database size, i.e., 100,000. (We have also mea-
sured the performance of our approach for the size of

10,000 and found similar performance result. To avoid
repetition, we only present the performance results for
the two ends of the spectrum, i.e., 1,000 and 100,000.)

4.4 Experiments

Using the workload variables, the most representative
sets of experiments performed in our simulation study are
described as follows.

� Experiment Set 1: For performance evaluation, we
applied �*"$" � S �E� " #��E* @
$���E* @
A6�E* @

and
D6���E*

and we set
� KM " D6�E*

. We set � I 1 �.�� " �
in

this set of experiments. This is the best case set-up in
our experiments.

� Experiment Set 2: To show the applicability of our
approach against inaccurate execution time estimates,
we have evaluated the performance for � I 1 �.�� = 0,
0.25, 0.5, 0.75, and 1. We set �*"$" � S �E�\" D6���E* and� KM " D6�E* .

� Experiment Set 3: We evaluate the performance for� KM " 20%, 40%, 60%, 80%, and 100%. We set
�*"$" � S �E�5" D6���E*

and � I 1 �.�� "

for this set of

experiments. This is the worst case set-up in our ex-
periments due to the increasing

� KM
in addition to

the highest �*"$" � S �E� and � I 1 �.�� among the tested
values.

� Experiment Set 4: In this set of experiments, we
show that our approach can also support the speci-
fied average/transient

�! ,+
and

�! .-
for the other

database sizes tested. Other workload variables except
��� � ��� � are equal to � ��" � � �����$T 1 � � 1 3. In this
way, we can show the general applicability of our ap-
proach for different sizes of databases under the worst
case set-up among the tested settings.

In our experiments, one simulation run lasts for 10 min-
utes of simulated time. For all performance data, we have
taken the average of 10 simulation runs and derived the 90%
confidence intervals. Confidence intervals are plotted as
vertical bars in the graphs showing the performance evalu-
ation results. (For some performance data, the vertical bars
may not be noticeable due to the small confidence intervals.)

4.5 Experiment Set 1: Effects of Increasing Loads

In this section, we compare the performance of Open,
Open-AC, Covert-AC, and � � � for increasing �*"$" � S �E� .
We compare the average performance of all tested ap-
proaches and present the transient miss ratio of STAR.

60 80 100 120 140 160 180 200

AppLoad (%)

0

20

40

60

80

100
A

ve
ra

ge
 M

is
s

R
at

io
 (

%
)

Class 0

Class 1

Figure 4. Average Miss Ratio for Open

60 80 100 120 140 160 180 200

AppLoad (%)

0

2

4

6

8

10

A
ve

ra
ge

 M
is

s
R

at
io

 (
%

)

Class 0

Class 1

Figure 5. Average Miss Ratio for Open-AC

4.5.1 Average Performance

As shown in Figures 4 � 7, all tested approaches (i.e., all
baseline approaches and STAR) show near zero

�! M+
(miss

ratio for Class 0) for increasing �*"$" � S �E� . However, tested
approaches showed different

�! ;-
as follows.

As shown in Figure 4, for � " �$T �! ;- is approximately
80% when �*"$" � S �E��" D6���E*

. As shown in Figure 5,
by applying admission control Open-AC significantly im-
proved

�! .-
compared to � " �$T :

�! �-
is
G87 A�!��V
67 # !E*

when �*"$" � S �E�5" D6���E*
. However, this exceeds the av-

erage miss ratio 5% specified in Perf-Spec. As shown in

60 80 100 120 140 160 180 200

AppLoad (%)

0

2

4

6

8

10

A
ve

ra
ge

 M
is

s
R

at
io

 (
%

)

Class 0

Class 1

Figure 6. Average Miss Ratio for Covert-AC

60 80 100 120 140 160 180 200

AppLoad (%)

0

2

4

6

8

10

A
ve

ra
ge

 M
is

s
R

at
io

 (
%

)

Class 0

Class 1

Figure 7. Average Miss Ratio for STAR

60 80 100 120 140 160 180 200

AppLoad (%)

0

20

40

60

80

100

A
ve

ra
ge

 U
ti

liz
at

io
n

(%
)

Open

Open-AC

Covert-AC

STAR

Figure 8. Average Utilization

Figure 6, Cover-AC shows near zero
�! M+

and
�! .-

by
allowing potential covert channels. As shown in Figure 7,
STAR shows

�! �-
of
DE7 D8
��!�87 A�!E*

when �*"$" � S �E�!"D6���E*
, which meets Perf-Spec but this is slightly worse than

Covert-AC. This is because Covert-AC only considers trans-
action deadlines for scheduling and concurrency control.
As a result, sensitive information in real-time databases may
not be protected. Also, in this set of experiments we set
� I 1 �.�� " �

. However, precise execution time estimates
are generally not available. In fact, Covert-AC showed a
relatively poor performance when only approximate execu-
tion time estimates are available. It did not satisfy even the

60 80 100 120 140 160 180 200

AppLoad (%)

0

20

40

60

80

100

A
ve

ra
ge

 T
h.

 (
%

)

Open

Open-AC

Covert-AC

STAR

Figure 9. Average Throughput

0 50 100 150 200 250 300 350 400 450 500 550 600

Time (sec)

0

2

4

6

8
T

ra
ns

ie
nt

 M
is

s
R

at
io

 (
%

)

Class 0
Class 1

Figure 10. Transient
�! M+

and
�! .-

for STAR

average miss ratio specification, which can be considered
relatively easy to meet than the specified transient miss ra-
tio. (A detailed discussion is given in Section 4.6.)

As shown in Figure 8, for Open, Open-AC, and Covert-
AC the utilization quickly reaches 100% as �*"$" � S �E� in-
creases leading to potential overload and the resulting miss
ratio increase. In comparison, for � � � the utilization
ranges between

#��E*
�

!��E*
for increasing �*"$" � S �E� as

shown in Figure 8. This is because in our approach the
CPU utilization is controlled in the feedback control loop
to avoid both overload and underutilization. Under over-
load, the CPU utilization is reduced by admission control
and QoS degradation, if necessary.

One may argue that STAR can provide a good miss
ratio, since admission control drops many transactions.
However, we show that admission control can actually
improve the real-time database throughput " ���������	��

����	�	�����	�����
where ����������� � and �"!$#�%&�'�$(�()�&* represent the number of
transactions which commit within their deadlines and that
submitted to system (before admission control).

As shown in Figure 9, � " �$T shows the lowest through-
put among the tested approaches as �*"$" � S �E� increases.
Since � " �$T simply admits all incoming transactions, the
simulated real-time database is overloaded incurring many
deadline misses. As a result, the throughput of � " �$T is be-
low 40% when �*"$" � S �E�&" D6���E* . By applying admission
control (and allowing potential covert channels in Covert-
AC), Open-AC and Covert-AC improve the throughput by
approximately 10% compared to � " �$T when �*"$" � S �E��"D6���E*

. From these results, observe that admission control
is a sensible approach to prevent overload (and improve the
throughput) in real-time databases.

Compared to Open, Open-AC, and Covert-AC, STAR
shows a relatively high throughput especially given a high
�*"$" � S �E� as shown in Figure 9. When �*"$" � S �E�;" D6���E* ,
the throughput of STAR is [�[7 [# � %87 [#�* achieving more
than 25% throughput improvement compared to � " �$T at
the expense of the degraded QoS. For STAR, the average
QoS decreases from 100% (when �*"$" � S �E� " #��E*

) down

to [%87
 # � #�7 �$%E*
when �*"$" � S �E�Z" D6���E*

, i.e., approx-
imately 55% of transactions are processed at QoS level 1.
(In Experiment Sets

D
�,+ , STAR showed the average QoS

between 50% � 60%, while achieving the throughput be-
tween [�E* �

#��E*
, similar to the results presented in this

section. We do not include the results due to space limita-
tions.)

In all baseline approaches, the average QoS is 100%,
since they do not adapt the QoS regardless of the current
system status such as miss ratio. In real-time systems, QoS
degradation using some techniques such as the mile stone
approach [15] is generally considered more tolerable than
deadline misses. For example, it might be better to degrade
the resolution of radar images rather than having lots of
deadline misses in target tracking. Also, it was empirically
observed that in web-based e-commerce systems a signif-
icant fraction of potential clients leave the corresponding
web sites if responses for queries take longer than a certain
time, e.g., 5sec [7]. In this case, the QoS of the web page
can be degraded by only returning the textual information
to improve the response time. Large objects such as images
can be transmitted later when the network and server loads
are low.

4.5.2 Transient Miss Ratio of STAR

In this section, we present the transient miss ratio observed
for our approach. We do not present the transient miss ratio
for baseline approaches, since they can not even support the
specified average miss ratio under many simulation settings
as discussed before. In Figure 10, transient

�! .+
and

�! .-
are presented for our approach when �*"$" � S �E�5" D6���E*

,
i.e., the highest load tested. A dotted horizontal line in the
figure represents the specified miss ratio threshold, i.e., 5%.�! �+

is near zero through the experiment. The
�! ;-

over-
shoot of

#�7 + %E* is observed at 395sec slightly exceeding the
specified overshoot

�0/ " [* . Since the feedback con-
trol system is reactive to the performance error, some over-
shoot might be inevitable [20]. Especially, it is hard to meet
the transient

�! �-
specification in our approach due to the

scheduling and concurrency control favoring Class 0 to sup-
port the notion of non-interference. For this set of experi-
ments, the degree of data conflicts can also be very high due
to the smallest database size among the tested ones. In Sec-
tion 4.8, we show that the transient miss ratio is improved
for larger database sizes. A further investigation is reserved
for future work.

In terms of settling time, the specified settling time of
80sec is satisfied; a few miss ratio overshoots exceeding��/ � " [*&� first observed at 360sec decays until 400sec.
Therefore, we may consider that our approach has closely
satisfied the transient miss ratio specification.

4.6 Experiment Set 2: Effects of Increasing Exe-
cution Time Estimation Error

In this section, we compare the performance of Open-
AC, Covert-AC, and STAR for increasing � I 1 �.�� . � " �$T is
dropped due to its poor performance as discussed in Section
4.5. We set �*"$" � S �E�&" D6���E* .

0.00 0.25 0.50 0.75 1.00

EstErr

0

20

40

60

80

100

A
ve

ra
ge

 M
is

s
R

at
io

 (
%

)

Open-AC

Covert-AC

STAR

Figure 11. Average
�! ,+

0.00 0.25 0.50 0.75 1.00

EstErr

0

20

40

60

80

100

A
ve

ra
ge

 M
is

s
R

at
io

 (
%

)

Open-AC

Covert-AC

STAR

Figure 12. Average
�! �-

0.00 0.25 0.50 0.75 1.00

EstErr

60

80

100

A
ve

ra
ge

 U
ti

liz
at

io
n

(%
)

Open-AC

Covert-AC

STAR

Figure 13. Average Utilization

4.6.1 Average Performance

Covert-AC, which showed the best performance in
� ��" � � �����$T 1�� � 1 1, shows over 30% of

�! ,+
and

�! .-
as

0 50 100 150 200 250 300 350 400 450 500 550 600

Time (sec)

0

2

4

6

8

T
ra

ns
ie

nt
 M

is
s

R
at

io
 (

%
)

Class 0
Class 1

Figure 14. Transient Miss Ratio for STAR

shown in Figures 11 and 12. This is mainly because there
can be non-trivial errors in admission control for increasing
� I 1 �.�� ; too many transactions are admitted to the system
and eventually miss their deadlines. As shown in Figures
11 and 12, for Covert-AC deadline misses are equally di-
vided into Classes 0 and 1 in an approximate sense. This
is because Covert-AC only considers transaction deadlines
for scheduling and concurrency control. For Open-AC and
� � � ,

�! .-
is relatively high compared to

�! M+
, since

they support the notion of non-interference via scheduling
and concurrency in favor of Class 0 as discussed before.

In Figure 11, Open-AC shows near zero
�! M+

. How-
ever,

�! .-
exceeds 60% when � I 1 �.��0"

as shown in
Figure 12. Even though Open-AC might be considered se-
cure in terms of database access control, such a high miss
ratio is not acceptable for real-time database applications.
In contrast, STAR shows near zero

�! M+
, and

�! .-
is only
67 #6D�* � �87 + !E* when � I 1 �.���"
 as shown in Figures 11

and 12. This is because in our approach the system per-
formance, in terms of miss ratio and the CPU utilization,
is periodically monitored, and admission control and QoS
degradation are applied, if necessary. For STAR, the average
QoS ranged between

A6�E*
��[�E* for this set of experiments.

As shown in Figure 13, for Open-AC and Covert-AC
the CPU is saturated leading to significant violations of the
specified miss ratio. � � � managed the utilization around
90% without violating the specified miss ratio.

4.6.2 Transient Miss Ratio of STAR

In Figure 14, we present transient
�! M+

and
�! .-

ob-
served for STAR when � I 1 �.�� "

, i.e., the highest
� I 1 �.�� tested. Similar to Figure 10,

�! M+
is near

zero through the experiment. The highest
�! ;-

is 5.6%
at 160sec and it decays in 10sec (two sampling periods).
Therefore, the overshoot and settling time specified in Perf-
Spec are satisfied. One can observe that

�! ;-
overshoot

is slightly lower than that presented in Figure 10. This is
mainly due to the relatively low QoS observed in this set

of experiments (approximately 50% when � I 1 �.��B"

)

compared to that measured in � ��" � � �����$T 1 � � 1 1 (approx-
imately 63% when �*"$" � S �E�0" D6���E*). In this set of ex-
periments, the feedback controller becomes more reactive
for increasing � I 1 �.�� requiring a relatively large CPU uti-
lization reduction under overload.

4.7 Experiment Set 3: Effects of Increasing the
Class 0 Workload

In this section, we measure the performance of our ap-
proach for increasing

� KM
, i.e., the increasing Class 0

workload compared to Class 1. We have also measured the
performance for Open-AC and Covert-AC, however, we do
not include the results due to space limitations. In these ap-
proaches, the specified miss ratio is significantly violated
showing the miss ratio even worse than the case where
� I 1 �.���"
 presented in Section 4.6.

0 20 40 60 80 100

HCR (%)

0

2

4

M
is

s
R

at
io

 (
%

)

Class 0

Class 1

Figure 15. Average Miss Ratio for STAR

0 50 100 150 200 250 300 350 400 450 500 550 600

Time (sec)

0

2

4

6

8

T
ra

ns
ie

nt
 M

is
s

R
at

io
 (

%
)

Class 0
Class 1

Figure 16. Transient Miss Ratio for STAR

4.7.1 Average Performance

As shown in Figure 15,
�! ,+

is below 1% when
� KM "
$���E*

.
�! .-

is also below 3% when
� KM " G��E*

, the
worst case set-up for

�! �-
tested. (

�! �-
is not plotted

for
� KM "
$���E*

, since this workload does not include

any Class 1 transaction.) The average utilization ranged
between

G�#�*
�

!$%E*
. The average QoS ranged betweenA6�E*

�0[A�* , similar to � ��" � � �����$T 1 � � 1 2.

4.7.2 Transient Miss Ratio of STAR

As shown in Figure 16, when
� KM " G��E* the miss ratio

overshoot of 7.39% is observed at 130sec. This slightly ex-
ceed the allowed overshoot

�0/ "B[* , however, overshoots
exceeding

��/
in Figure 16 decayed within at most three

sampling instants, i.e., between 130sec � 145sec. Note that
we measured the transient miss ratio for other

� KM
val-

ues, but only present the result for the worst case set-up,
i.e.,

� KM " G��E*
, due to space limitations. We verified

that STAR shows the better average/transient miss ratio for
other values of

� KM
.

4.8 Experiment Set 4: Effects of Data Contention

We also applied our approach for different sizes of sim-
ulated real-time databases to show the general applicabil-
ity against varying degrees of data contention. In Figures
17 and 18, we show the performance of our approach for
a modeled database of the largest size, i.e., 100,000 data
items. Other workload variables including the increasing� KM

are same with the � ��" � � �����$T 1 � � 1 3. For the base-
line approaches, we have also performed the same set of ex-
periments, but we do not include their performance results
due to space limitations. In the baseline approaches, the
specified miss ratio

�! ,+
and/or

�! .-
are violated similar

to the previous experiments.

0 20 40 60 80 100

HCR (%)

0

2

4

M
is

s
R

at
io

 (
%

)

Class 0

Class 1

Figure 17. Average Miss Ratio for STAR

4.8.1 Average Performance

As shown in Figure 17,
�! ,+

is near zero except when� KM "
$���E* . Also,
�! �-

is below 3% for all
� KM

val-
ues tested. The average utilization ranged between

G�GE*
�!�D�*

and the average QoS ranged between
A6�E*

�![�E* .
From this, we can conclude that our approach can support
the average performance specified in Perf-Spec.

0 50 100 150 200 250 300 350 400 450 500 550 600

Time (sec)

0

2

4

6

8
T

ra
ns

ie
nt

 M
is

s
R

at
io

 (
%

)

Class 0
Class 1

Figure 18. Transient Miss Ratio for STAR

4.8.2 Transient Miss Ratio of STAR

Transient
�! ,+

and
�! .-

for
� KM " G��E* , the worst case

HCR for
�! �-

among the tested values, are presented in
Figure 18. As shown in Figure 18,

�! M+
is near zero.�! .-

violates the specified miss ratio less frequently com-
pared to Figures 10 and 16. Also, the only overshoot of
7.15% exceeding the specified

�0/ � "B[*&� at 250sec decays
within one sampling period. This is because the degree of
data contention could be relatively low in a larger database
[1]. In this paper, we mainly presented the performance re-
sults for the smallest database size among the tested ones,
since it can model the highest degree of data contention.
We also verified that our approach can support the speci-
fied performance for different database sizes under general
workload settings applied for our experiments presented in
this paper.

5 Related Work

Recently, transaction processing in (non-real-time)
multi-level secure databases has been actively studied [4,
12]. As a result, some commercial products such as
Sybase Secure SQL Server [23], Trusted Oracle [18], and
Informix-OnLine/Secure [11] can partially prevent covert
channels. However, secure transaction processing in real-
time databases, which are needed in security-critical envi-
ronments, has attracted relatively little research efforts de-
spite its importance.

Several research work such as [3, 21, 22] considered
the security of real-time database a performance criterion,
which can be traded off under overloaded conditions. In
their approach, illegal direct information flows between dif-
ferent security levels are prevented by applying the ac-
cess restrictions based on the Bell-LaPadula model. How-
ever, they did not completely prevent the illegal informa-
tion transfer using covert channels. In their approaches, it
was assumed that temporary trade-off of security is accept-
able to improve the deadline miss ratio. However, this type

of approaches can face a significant problem by allowing
a security hole; sensitive information can be illegally dis-
closed to transactions without appropriate levels of security
clearance. This possible leakage of important trading, man-
ufacturing, and operational data might adversely affect the
success of e-commerce, agile manufacturing, and military
operations.

In [8], George et al. addressed this problem by prevent-
ing the illegal information transfer, both direct and indirect
ones. In their approach, the Bell-LaPadula access restric-
tions and notion of non-interference are always enforced
regardless of the current deadline miss ratio. They pre-
sented a novel concurrency control policy called dual ap-
proach. Among different security levels, data conflicts are
resolved in favor of lower security level transactions to sup-
port the notion of non-interference. At each security level,
data conflicts are resolved in favor of transaction deadlines
to improve the miss ratio, since there is no possibility of an
illegal inter-level information flow within one security level.

Our approach is similar to [8] in the sense that we do not
allow illegal intra- and inter-level information flows. How-
ever, unlike their approach we provide guarantees on aver-
age/transient miss ratio. By preventing covert channels, we
exceed the US military’s security standards defined in the
Orange Book [19]. In that specification, covert channels of
bandwidth of less than one bit per second, which could be
hard to measure, are typically considered acceptable. Fur-
thermore, we provide guarantees on average/transient miss
ratio considering timing constraints prevalent in real-time
database applications. To our best knowledge, no previous
work has considered providing miss ratio guarantees while
preventing the illegal direct/indirect inter-level information
transfer in real-time databases.

6 Conclusions and Future Work

In this paper, we presented a novel real-time database
architecture for secure transaction processing with certain
miss ratio guarantees. Considering the importance of secu-
rity and transaction timeliness in many real-time database
applications, e.g., e-commerce, online stock trading, agile
manufacturing, and military operations, the contribution of
our work could be significant. Our contribution might in-
crease as the demand for secure real-time transaction pro-
cessing increases. In a simulation study, we showed that
our approach can significantly improve the miss ratio com-
pared to several baselines, while supporting the mandatory
access control mechanism based on Bell-LaPadula model
and the notion of non-interference to prevent the illegal
direct/indirect information transfer between different secu-
rity classes. According to the performance evaluation re-
sults, our approach was able to support the specified av-
erage/transient miss ratio. In contrast, the baseline ap-

proaches failed to support the specified miss ratio. In the
future, we are interested in supporting multiple security lev-
els and considering other security models, which are more
flexible than the multilevel security model.

References

[1] R. Abbott and H. Garcia-Molina. Scheduling Real-Time
Transactions: A Performance Evaluation. ACM Transac-
tions on Database System, 17:513–560, 1992.

[2] B. Adelberg, H. Garcia-Molina, and B. Kao. Applying Up-
date Streams in a Soft Real-Time Database System. In ACM
SIGMOD, 1995.

[3] Q. Ahmed and S. Vrbsky. Maintaining Security in Firm
Real-Time Database Systems. In 14th Annual Computer Se-
curity Applications Conference, 1998.

[4] Atluri et al. Multilevel Secure Transaction Processing: Sta-
tus and Prospects. In IFIP Workshop on Database Security,
1997.

[5] Baulier et al. DataBlitz Storage Manager: Main Memory
Database Performance for Critical Applications . In ACM
SIGMOD - Industrial Session: Database Storage Manage-
ment, 2000.

[6] D. E. Bell and L. J. LaPadula. Secure Computer Systems:
Unified Exposition and Multics Interpretation. Technical re-
port, The Multics Corp., 1976.

[7] N. Bhatti, A. Bouch, and A. Kuchinsky. Integrating User-
Perceived Quality into Web Server Design. In 9th Interna-
tional World Wide Web Conference, 2000.

[8] B. George and J. R. Haritsa. Secure Concurrency Control in
Firm Real-Time Database Systems. Distributed and Parallel
Databases, 5:275–320, 1997.

[9] J. Goguen and J. Meseguer. Security Policy and Security
Models. In IEEE Symposium on Security and Privacy, 1982.

[10] M. Hsu and B. Zhang. Performance Evaluation of Cau-
tious Waiting. ACM Transactions on Database Systems,
17(3):477–512, 1992.

[11] Informix Software, Inc. Informix-OnLine/Secure Adminis-
trator’s Guide, 1993.

[12] S. Jajodia. Database Security and Privacy. ACM Computing
Surveys, 28(1), March 1996.

[13] K. D. Kang, S. H. Son, and J. A. Stankovic. Service Dif-
ferentiation in Real-Time Main Memory Databases. In the
5th IEEE International Symposium on Object-oriented Real-
time Distributed Computing, April 2002.

[14] B. W. Lampson. A Note on the Confinement Problem. Com-
munications of the ACM, 16(10):613–615, 1973.

[15] K. J. Lin, S. Natarajan, and J. W. S. Liu. Imprecise Results:
Utilizing Partial Computations in Real-Time Systems. In
Real-Time System Symposium, December 1987.

[16] C. Lu, J. Stankovic, T. Abdelzaher, G. Tao, S. H. Son, and
M. Marley. Performance Specifications and Metrics for
Adaptive Real-Time Systems. In Real-Time Systems Sym-
posium, Orlando, Florida, November 2000.

[17] C. Lu, J. A. Stankovic, G. Tao, and S. H. Son. Feedback
Control Real-Time Scheduling: Framework, Modeling and
Algorithms. Journal of Real-Time Systems, Special Issue
on Control-Theoretical Approaches to Real-Time Comput-
ing, 23(1/2), May 2002.

[18] Oracle, Corp. Trusted Oracle Administrator’s Guide, 1992.
[19] DoD Trusted Computer System Evaluation Criteria. Depart-

ment of Defense Standard, DoD 5200.28-STD, 1985.
[20] C. L. Phillips and H. T. Nagle. Digital Control System Anal-

ysis and Design (3rd edition). Prentice Hall, 1995.
[21] S. H. Son, R. Mukkamala, and R. David. Integrating Se-

curity and Real-Time Requirements using Covert Channel
Capacity. IEEE Transactions on Knowledge and Data Engi-
neering, 12(6), Dec 2000.

[22] S. H. Son, R. Zimmerman, and J. Hansson. An Adaptable
Security Manager for Real-Time Transactions. In Euromicro
Conference on Real-Time Systems, pages 63–70, Stockholm,
Sweden, June 2000.

[23] Sybase, Inc. Sybase Secure SQL Server Security Adminis-
trator’s Guide, 1993.

[24] TimesTen Performance Software. TimesTen
White Paper. Available in the World Wide Web,
http://www.timesten.com/library/index.html, 2001.

