

On the Effectiveness of the Metamorphic Shield
The effects of continuously changing the attack surface

Anh Nguyen-Tuong, Andrew Wang, Jason D. Hiser, John C. Knight and Jack W. Davidson

Department of Computer Science

University of Virginia

Charlottesville VA 22904

{nguyen | aaw6f | hiser | knight | jwd}@virginia.edu

http://helix.cs.virginia.edu/

Abstract—In this paper we analyze the effectiveness of dynamic

artificial diversity, i.e., artificial diversity in which the subject of

the diversity is re-randomized periodically. We refer to a

mechanism that implements dynamic diversity as a Metamorphic

Shield since this mechanism applies metamorphosis to the

system’s attack surface to try to shield the system from certain

attacks. Contrary to intuition, our analysis reveals that dynamic

diversity provides limited benefit except in special cases. In

particular, it offers benefit for attacks that seek to leak

information. We present a case study of the use of dynamic

diversity applied to Instruction Set Randomization that is subject

to an incremental attack on the key.

Keywords: dynamic diversity, temporal diversity, virtual

machine, attack surface

I. INTRODUCTION

Artificial diversity algorithmically sets the value of some
attribute of a system to a random value where knowledge of the
value is needed for a successful security attack. Having to
determine the value of the attribute is an impediment to an
adversary who has access to the system, and artificial diversity

has proven to be an attractive security technology.

In principle, many characteristics of a system can be subject
to artificial diversity. The effectiveness of artificial diversity
rests upon the size of the space from which the instance of the
attribute in use was selected. Unless the adversary can gain
access to both the randomization function and the key that was

used, defeating artificial diversity requires a state-space search.

To improve the strength of an artificially diverse system in
which searching the state space can be accomplished relatively
rapidly, an intuitive approach is to frequently re-randomize the
system attribute subject to diversity, i.e., to effect dynamic
artificial diversity. Applying dynamic artificial diversity
effectively changes the attack surface seen by the adversary,
and we have coined the phrase Metamorphic Shield (MMS) to
describe the approach. The intuition of many people is that an
MMS would provide considerable protection even in a context
of low entropy because of the re-randomization. The idea of
using an MMS in a general way by varying a variety of system

characteristics over time is tempting.

In this paper we build upon a result by Shacham et al. [9] to
show that this common intuition is misleading. The MMS

varies the attack surface presented to the attacker such that the
state space that the attacker has to search on average is only
twice as large. However we find that the MMS provides
significant benefits for other aspects of security, in particular,
information leakage. We analyze the performance of a
Metamorphic Shield on an arbitrary incremental attack against
a system’s key, and show the effect of re-randomization and of
varying the rate at which re-randomization is effected. Finally,
we present a case study in which we implemented a
Metamorphic Shield for a particular instance of Instruction Set
Randomization (ISR) of program binaries to demonstrate the

feasibility of an MMS and to measure the MMS’ overhead.

II. DYNAMIC DIVERSITY

We characterize diversity techniques by a function f that
takes as input some aspects of a program P, a key K, and
transforms P into a semantically equivalent program P’ in
normal use. Defenders should select a function f that maps to a
large range so as to make brute-force attacks infeasible and
should keep the key K a secret. The goal of attackers is to
discover the value of f(K, P) so as to mount a successful attack.
This goal can be achieved by directly guessing either f(K, P) or
K (we assume that f and P are known to the attacker). Dynamic
diversity adds a temporal component to the defender’s arsenal.
The hope is to vary f(K, P) at a “fast enough” rate to prevent

attackers from discovering f(K, P).

In the following discussion we assume that dynamic
diversity is applied to the key K (most automated diversity
defenses fall under this category). The possibility of applying

dynamic diversity to f itself is outside the scope of this paper.

Shacham et al. showed that re-randomization of the
memory layout used in Address Space Randomization (ASR)
only provides one extra bit of entropy, i.e., re-randomization of
the address space in ASR at best only doubles the expected
time to carry out a brute-force attack rather than the orders of
magnitude that one might intuit [9]. Their analysis is based on
modeling the state-space search in ASR as a sampling problem.
Static diversity corresponds to sampling without replacement
from the state space, whereas dynamic diversity corresponds to
sampling with replacement. Even though the original analysis
focused on the effect of re-randomization for ASR, the analysis

generalizes to arbitrary f(K, P).

Table I summarizes the effect of dynamic diversity in the
general case. The columns of the table correspond to the
amount of entropy for f(K, P), low vs. high. The rows

distinguish the cases of the key K being revealed or kept secret.

TABLE I. EFFECT OF THE METAMORPHIC SHIELD

Revealed
Limits window of

vulnerability

Limits Window of

Vulnerability
Key

Secret
Increases attacker

workload by 2x

Increases attacker

workoad by 2x

Low High

Entropy

In the case where the key remains secret and an attacker is
forced to carry out a brute-force attack against f(K, P), the strict
upper bound is a factor of two on the attacker’s workload
(bottom row in the table). This result is a direct consequence of

the analysis of Shacham et al.

Under the secret key assumption, the factor of two upper
bound on the benefit of an MMS indicates that dynamic
diversity provides little benefit as a defense mechanism above
and beyond the baseline diversity technique. When entropy is
low, the expected time to mount a successful attack would be
relatively short, and therefore a factor of two would be of little
value. When entropy is high, the expected time to mount a
successful attack would be long, and again a factor of two

would not provide any significant benefit.

The factor of two might be of value if an attack required
that an adversary determine details of n separate applications of
diversity about a program. If dynamic diversity were applied to
all n diversity randomizations, the maximum aggregate effect
of dynamic diversity would be to increase the attacker’s
workload by 2n. While a factor of 2n (when n is small) is a
marginal improvement on a relative basis, it may still be useful
on an absolute basis. For example, with n=2, if it takes 12
minutes to carry out an attack instead of just three minutes, the

additional nine minutes provides additional reaction time.

The effectiveness of artificial diversity relies on key
secrecy. Information leakage attacks in which the key can be
revealed all at once or incrementally as a series of parts reduces
the effective entropy and obviates the need for a brute-force
search against the entire state space of f(K, P) [3][11].
Examples of such attacks include those that exploit format
string vulnerabilities, buffer overflows, and the predictable
generation of random numbers. Assuming that attackers require
knowledge of K to mount an attack, an MMS could limit the
window of vulnerability in the case of an incremental attack by
voiding partial information about K obtained by the adversary
(top row of Table I). Provided K was changed before all of K

was obtained, the adversary’s efforts would be of no use.

An example of an incremental attack was reported by
Sovarel et al. [10]. In that work, an instance of ISR that
employed a long key was shown to be vulnerable to an attack
in which small fractions of the key were determined
sequentially. Each fraction required only a small amount of

computation thereby bypassing the entropy of the long key

upon which the owners of the system might rely.

In the next section, we present a model for analyzing the
effectiveness of a Metamorphic Shield against an incremental

attack.

III. MODELLING OF THE METAMORPHIC SHIELD FOR THE

INCREMENTAL ATTACK MODEL

We model an incremental attack as a series of b state-space
searches where the states are of the same size s. A state-space
search is carried out as a series of probes, and each state-space
search is designed to reveal a single key fragment. Hence the
key length is b fragments. We define a successful attack as a
sequence of successful state-space searches of the b spaces. We

assume that:

• the adversary proceeds sequentially from space to

space determining one fragment for each space,

• the adversary knows when a fragment has been

revealed, and

• each probe of a space requires the same time.

In this case, the quantity of interest is the probability of a
successful attack occurring in some specific number of probes,
say k, or less. With that probability known, a Metamorphic
Shield could re-randomize after the adversary had an
opportunity to perform k probes and thereby limit the
probability of a successful attack. Thus, our first goal in the
analysis is to determine this probability. Clearly, we cannot
know how many probes have occurred, but we can estimate the

number of opportunities that the adversary had.

Searching each space will terminate with a successful
probe, and each successful probe will be preceded by from zero
to s-1 probes that fail. The initial step in the model is to
determine the probability of a successful attack in exactly k
probes. Such an attack will experience a total of k-b probe
failures across all b spaces together with b successful probes.
Thus, the total number of different sequences of probes that can
lead to a successful attack in k probes is the number of ways
that k-b failing probes can be distributed across b spaces with
no more than s-1 occurring in any single space. This number is

[1]:

In this expression, binomial coefficients are defined to be

zero if the upper operand is smaller than the lower operand.

The probability of a successful attack occurring in exactly k

probes for b ! k ! sb is:

The probability of a successful attack occurring in k probes

or less for b ! k ! sb is:

This is the probability we sought, and with this probability
we can determine the effect of a Metamorphic Shield operating
against an incremental attack in which the MMS re-randomizes

periodically.

We model the effect of a Metamorphic Shield by treating
an attack as a series of independent trials by the adversary each
of length m probes where the key is changed after each trial,
i.e., after m probes. Thus, the effect of the Metamorphic Shield
is to force the adversary to restart the attack after each series of

m probes if the attack was not successful at that point.

The probability of a successful attack in m probes or fewer
is P(m). With a Metamorphic Shield re-randomizing after each
trial (each m probes), the probability of an attack succeeding in

jm probes or fewer is:

Note that this probability is defined only for every m
probes. In order to derive the probability of a successful attack
in k or fewer probes, we need to add the probability of a
successful trial (determining a single fragment of the key) in k-
jm probes where k-jm lies between 0 and m-1, i.e., between the

points at which the key is changed. Adding this yields:

M(k) is the probability of a successful attack in k or less
probes with a Metamorphic Shield re-randomizing every m
probes and P(k) is that probability without a Metamorphic
Shield. With these two probabilities, we can determine the

effectiveness of a Metamorphic Shield.

As an example, consider the case in which b = 4 and s =
256. This corresponds to a key that is four bytes long which
would be expected to have a search space of size 232. However,
the incremental attack proceeds one byte at a time so that there
are four searches each of spaces of size 256. Obviously, the

probability of success in 1024 probes or less is one.

Figure 1 shows M(k) for this example for values of m = 4,
25, 50, and 100. Note that the Y axis is a logarithmic scale. The
dashed vertical line is 1024 on the X axis. This is the point at
which an attack is bound to succeed without an MMS, and the
intersection of the dashed line with the four curves shows the
relative advantage of the MMS. The case in which m is set to 4
is the limiting case in this example. Four is the least number of
probes within which an attack might succeed since there are
four bytes in the key and the adversary has to determine all four
in sequence. Thus, the curve in Figure 1 for m=4 is the best that

a Metamorphic Shield can do in this example.

As can be seen from the example, the effectiveness of a
Metamorphic Shield against incremental attacks in this case
depends critically on the rate of re-randomization. Varying this
rate from every 100th probe to every 4th probe spans 6 orders of

magnitude.

IV. CASE STUDY: INSTRUCTION SET RANDOMIZATION

Instruction Set Randomization (ISR) is a diversity
technique introduced by Barrantes et al. and Kc et al. that
randomizes the instruction set of a target machine [2][8]. Since
an attacker does not know the randomized instruction set,
attempts at code injections will fail. While the idea is
applicable to instruction sets for a variety of machines and
interpreters, including SQL, Perl, PHP and XML [5][6], we

focus on the application of ISR to the X86 architecture.

A simple implementation of ISR is to encode at load time
(or earlier) the native binary form of a program using an XOR
key [2][8]. Just prior to execution, the program is decoded
using the same XOR key to recover the original instruction
stream. Injected code that is not encoded will likely result in
the execution of random instructions that will lead to the target

program crashing.

Sovarel et al. demonstrated an incremental attack against
ISR using a deliberately crippled version of an XOR-based ISR
implementation [2]. Their attack illustrates the potential pitfalls
of relying on seemingly high entropy defense techniques or on
the assumption of key secrecy. Sovarel et al. obtained a 4-byte
key in approximately 20 seconds and a 64-byte key in

approximately one minute.

We set out the following requirements for the design of the

Metamorphic Shield for this instance of ISR:

• The shield should operate on arbitrary x86 binaries,

similarly to the widely deployed ASR technique.

• The shield should not require re-randomization using a

shutdown/restart sequence.

• The architecture of the Metamorphic Shield should be
flexible and allow a wide range of possible diversity

transformations.

• The Metamorphic Shield should be able to operate
efficiently at the rates determined to be necessary to

provide useful protection against incremental attacks.

Figure 1. Cumulative distribution as a function of the rate of

metamorphosis of the shield.

Figure 2. Strata Virtual Machine.

To our knowledge, the work by Bhatkar et al. on self-
randomizing programs comes closest to fulfilling these
requirements [4]. That approach requires access to source code
and provides protection using fine-grained, address-space

randomization with a reported overhead of 11%.

The Metamorphic Shield we developed to support ISR is
implemented using the Strata software dynamic-translation
system [7][12]. As shown in Figure 2, Strata is organized as a
virtual machine that operates between an application and the
host system. Strata loads a binary application dynamically and
mediates application execution by examining and possibly
translating the application’s instructions before they execute.
Blocks of translated application instructions are held in a

Strata-managed code cache to improve efficiency.

We developed a tool to analyze ELF binary programs and
to identify the ranges where executable instructions can exist.
These instruction ranges are added to a new section in the ELF
binary. When Strata starts up, it reads this new section at load-
time and encrypts the sections using a simple XOR scheme

with an n-byte key, where n = 4 by default:

P’ = K " P

To recover the original program’s instruction stream, we
add a decryption module between the fetch and decode
modules of the Strata virtual machine, and apply the following

transformation:

P = K " P’

To rekey the text segment of the program during execution,
we apply the old XOR key, followed by a new random XOR

key:

P’ = Knew " K " P’

K = Knew

Our current prototype implementation has the following

limitations:

• The prototype handles statically and dynamically-
linked libraries but not preloaded libraries such as

libnss.

• The prototype does not support self-modifying code.
This is the case with all ISR implementations of which

we are aware.

V. EVALUATION

We evaluated the performance of our XOR-based ISR
implementation of a Metamorphic Shield using the SPEC2000
benchmark. We present performance results for a re-
randomization rate of 100 milliseconds. All performance
numbers were averaged over three runs for each of the program
in SPEC2000. These numbers were obtained using version 8 of
Fedora Core Linux, running in a VMWare image on a

dedicated Mac Pro.

Figure 3 shows the performance of executing the
benchmarks with and without the metamorphic shield. For a
rekeying rate of 100 msec, the performance of the metamorphic
shield is essentially the same as that of running the Strata
virtual machine. This result is encouraging because it indicates
that the metamorphic shield adds virtually no overhead beyond
that of Strata itself. Despite measuring the performance on an
unoptimized configuration of Strata, the overall average

performance overhead of the metamorphic shield is only 14%.

Our concern with this work is to determine whether this
Metamorphic Shield can compensate for a weak encoding
mechanism and a short key length for ISR. If so, what is the

appropriate re-randomization rate?

Answering these questions requires making real-time
assumptions about the probing rate. For example, the average
probe time in the attack by Sovarel et al. is approximately 20
msec. This time would translate to a re-randomization rate of
every fifth probe in our analytical model (Figure 1). However,
one could argue that the attack understates the capability of a
motivated adversary. For example, an adversary could control a
botnet and issue probes in parallel. The maximum scaleup
factor would then depend on the number of concurrent requests
that the targeted program could handle. If we assumed a
scaleup factor of 100X, then a 100 msec re-randomization rate
would correspond to the case where the shield was re-

randomized every 100th probe.

Instead of re-randomizing based on a real-time trigger, we
plan on investigating the performance of re-randomizing the
shield based on the number of probes. Since we cannot readily
distinguish between normal traffic and attack probing traffic,
we need to assume conservatively that every packet read over
the network is potentially a probe. While re-randomizing
programs on every four read system calls may seem excessive,
whether this will turn out to be the case is unclear.
Furthermore, we will investigate the use of anomaly detection
techniques to distinguish between normal traffic and attack
probes and thereby reduce the required rate of re-

randomization.

VI. CONCLUSION

Artificial diversity is an effective security technology
provided the randomization used yields a search space of
sufficient size and the key cannot be recovered by an
adversary. Dynamic artificial diversity adds the notion of

periodic re-randomization to artificial diversity. We refer to the
mechanism that implements dynamic diversity as a
Metamorphic Shield because the mechanism applies
metamorphosis to the attack surface and thereby offers the

potential to shield the adversary from some forms of attack.

We have developed a general model of dynamic diversity
and applied it to an incremental attack against instruction set
randomization. In that case, re-randomization restores lost
entropy provided re-randomization occurs at a rate that is fast
enough. The model we have developed predicts the probability
of a successful attack with a certain number of state space
probes, and so the model allows the rate of re-randomization

necessary for a predefined level of protection to be determined.

Finally, we note that any dynamic variation of a system’s
characteristics designed to vary the attack surface and thereby
thwart an adversary is, in practice, an example of dynamic
artificial diversity and is, therefore limited in effect to the

extent predicted by our model.

ACKNOWLEDGMENT

This work was funded in part by the National Science
Foundation under grant CNS-0524432 and in part by DoD
AFOSR MURI grant FA9550-07-1-0532. Any opinions,
findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect
the views of the National Science Foundation or the

Department of Defense.

REFERENCES

[1] “Balls In Bins with Limited Capacity,”
http://www.mathpages.com/home/kmath337.htm

[2] G. Barrantes, D. Ackley, S. Forrest, and D. Stefanovic, "Randomized
Instruction Set Emulation," ACM Transactions on Information Systems
Security (TISSEC), Vol 8, No 1 pp. 3-40 (2005).

[3] D. J. Bernstein, “Cache-timing attacks on AES,”
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf

[4] S. Bhatkar, R. Sekar and Daniel DuVarney, “Efficient Techniques for
Comprehensive Protection from Memory Error Exploits,” USENIX
Security Symposium (USENIX Security) August, 2005.

[5] S. W. Boyd, G. S. Kc, M. E. Locasto, A. D. Keromytis and V.
Prevelakis, “On the General Applicability of Instruction Set
Randomization,” IEEE Trans. On Dependable and Secure Computing,
07 Oct. 2008. IEEE computer Society Digital Library.

[6] M. Van Gundy and H. Chen, “Noncespaces: Using randomization to
enforce information flowtracking and thwart cross-site scripting attacks,”
Proceedings of the 16th Annual Network and Distributed System
Security Symposium (NDSS), San Diego, CA, February 8-11, 2009

[7] W. Hu, J. D. Hiser, D. Williams, A. Filipi, J. W. Davidson, D. Evans, J.
C. Knight, A. Nguyen-Tuong and J. Rowanhill, “Secure and Practical
Defense Against Code-injection Attacks Using Software Dynamic
Translation,” Second International Conference on Virtual Execution
Environments. Ottawa, Canada, June 14-16, 2006.

[8] G. S. Kc, A. D. Keromytis, and V. Prevelakis, “Countering code-
injection attacks with instruction-set randomization,” Proceedings of the
10th ACM Conference on Computer and Communications Security, pp.
272–280.

[9] H. Shacham, M. Page, B. Pfaff, E. Goh, N. Modadugu and Dan Boneh,
“On the Effectiveness of Address-Space Randomization,” Proceedings
of CCS 2004, pp. 298-307, ACM Press.

[10] N. Sovarel, N. Paul and D. Evans, “Where's the FEEB?: The
Effectiveness of Instruction Set Randomization,” USENIX Security
2005, August 2005.

[11] R. Strackx, Y. Younan, P. Philippaerts, F. Piessens, S. Lachmund, and
Thomas Walter, “Breaking the memory secrecy assumption,”
Proceedings of the Second European Workshop on System Security,
Nuremburg, Germany, 2009.

[12] D. Williams, W. Hu, J. W. Davidson, J. D. Hiser, J. C. Knight, A.
Nguyen-Tuong, “Security through Diversity: Leveraging Virtual
Machine Technology,” IEEE Security and Privacy, vol. 7, no. 1, pp. 26-
33, Jan./Feb. 2009.

Figure 3. SPEC cpu2000 benchmark. Performance normalized to native execution.

