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Abstract—In this paper we analyze the effectiveness of dynamic 

artificial diversity, i.e., artificial diversity in which the subject of 

the diversity is re-randomized periodically. We refer to a 

mechanism that implements dynamic diversity as a Metamorphic 

Shield since this mechanism applies metamorphosis to the 

system’s attack surface to try to shield the system from certain 

attacks. Contrary to intuition, our analysis reveals that dynamic 

diversity provides limited benefit except in special cases. In 

particular, it offers benefit for attacks that seek to leak 

information. We present a case study of the use of dynamic 

diversity applied to Instruction Set Randomization that is subject 

to an incremental attack on the key. 

Keywords: dynamic diversity, temporal diversity, virtual 

machine, attack surface 

I. INTRODUCTION 

Artificial diversity algorithmically sets the value of some 
attribute of a system to a random value where knowledge of the 
value is needed for a successful security attack. Having to 
determine the value of the attribute is an impediment to an 
adversary who has access to the system, and artificial diversity 

has proven to be an attractive security technology. 

In principle, many characteristics of a system can be subject 
to artificial diversity. The effectiveness of artificial diversity 
rests upon the size of the space from which the instance of the 
attribute in use was selected. Unless the adversary can gain 
access to both the randomization function and the key that was 

used, defeating artificial diversity requires a state-space search. 

To improve the strength of an artificially diverse system in 
which searching the state space can be accomplished relatively 
rapidly, an intuitive approach is to frequently re-randomize the 
system attribute subject to diversity, i.e., to effect dynamic 
artificial diversity. Applying dynamic artificial diversity 
effectively changes the attack surface seen by the adversary, 
and we have coined the phrase Metamorphic Shield (MMS) to 
describe the approach. The intuition of many people is that an 
MMS would provide considerable protection even in a context 
of low entropy because of the re-randomization. The idea of 
using an MMS in a general way by varying a variety of system 

characteristics over time is tempting. 

In this paper we build upon a result by Shacham et al. [9] to 
show that this common intuition is misleading. The MMS 

varies the attack surface presented to the attacker such that the 
state space that the attacker has to search on average is only 
twice as large. However we find that the MMS provides 
significant benefits for other aspects of security, in particular, 
information leakage. We analyze the performance of a 
Metamorphic Shield on an arbitrary incremental attack against 
a system’s key, and show the effect of re-randomization and of 
varying the rate at which re-randomization is effected. Finally, 
we present a case study in which we implemented a 
Metamorphic Shield for a particular instance of Instruction Set 
Randomization (ISR) of program binaries to demonstrate the 

feasibility of an MMS and to measure the MMS’ overhead. 

II. DYNAMIC DIVERSITY 

We characterize diversity techniques by a function f that 
takes as input some aspects of a program P, a key K, and 
transforms P into a semantically equivalent program P’ in 
normal use. Defenders should select a function f that maps to a 
large range so as to make brute-force attacks infeasible and 
should keep the key K a secret. The goal of attackers is to 
discover the value of f(K, P) so as to mount a successful attack. 
This goal can be achieved by directly guessing either f(K, P) or 
K (we assume that f and P are known to the attacker). Dynamic 
diversity adds a temporal component to the defender’s arsenal. 
The hope is to vary f(K, P) at a “fast enough” rate to prevent 

attackers from discovering f(K, P). 

In the following discussion we assume that dynamic 
diversity is applied to the key K (most automated diversity 
defenses fall under this category). The possibility of applying 

dynamic diversity to f itself is outside the scope of this paper.  

Shacham et al. showed that re-randomization of the 
memory layout used in Address Space Randomization (ASR) 
only provides one extra bit of entropy, i.e., re-randomization of 
the address space in ASR at best only doubles the expected 
time to carry out a brute-force attack rather than the orders of 
magnitude that one might intuit [9]. Their analysis is based on 
modeling the state-space search in ASR as a sampling problem. 
Static diversity corresponds to sampling without replacement 
from the state space, whereas dynamic diversity corresponds to 
sampling with replacement. Even though the original analysis 
focused on the effect of re-randomization for ASR, the analysis 

generalizes to arbitrary f(K, P). 



 

Table I summarizes the effect of dynamic diversity in the 
general case. The columns of the table correspond to the 
amount of entropy for f(K, P), low vs. high. The rows 

distinguish the cases of the key K being revealed or kept secret. 

TABLE I.  EFFECT OF THE METAMORPHIC SHIELD 

Revealed 
Limits window of 

vulnerability 

Limits Window of 

Vulnerability 
Key 

Secret 
Increases attacker 

workload by 2x 

Increases attacker 

workoad by 2x 

Low High 
 

Entropy 

 

In the case where the key remains secret and an attacker is 
forced to carry out a brute-force attack against f(K, P), the strict 
upper bound is a factor of two on the attacker’s workload 
(bottom row in the table). This result is a direct consequence of 

the analysis of Shacham et al. 

Under the secret key assumption, the factor of two upper 
bound on the benefit of an MMS indicates that dynamic 
diversity provides little benefit as a defense mechanism above 
and beyond the baseline diversity technique. When entropy is 
low, the expected time to mount a successful attack would be 
relatively short, and therefore a factor of two would be of little 
value. When entropy is high, the expected time to mount a 
successful attack would be long, and again a factor of two 

would not provide any significant benefit. 

The factor of two might be of value if an attack required 
that an adversary determine details of n separate applications of 
diversity about a program. If dynamic diversity were applied to 
all n diversity randomizations, the maximum aggregate effect 
of dynamic diversity would be to increase the attacker’s 
workload by 2n. While a factor of 2n (when n is small) is a 
marginal improvement on a relative basis, it may still be useful 
on an absolute basis. For example, with n=2, if it takes 12 
minutes to carry out an attack instead of just three minutes, the 

additional nine minutes provides additional reaction time. 

The effectiveness of artificial diversity relies on key 
secrecy. Information leakage attacks in which the key can be 
revealed all at once or incrementally as a series of parts reduces 
the effective entropy and obviates the need for a brute-force 
search against the entire state space of f(K, P) [3][11]. 
Examples of such attacks include those that exploit format 
string vulnerabilities, buffer overflows, and the predictable 
generation of random numbers. Assuming that attackers require 
knowledge of K to mount an attack, an MMS could limit the 
window of vulnerability in the case of an incremental attack by 
voiding partial information about K obtained by the adversary 
(top row of Table I). Provided K was changed before all of K 

was obtained, the adversary’s efforts would be of no use. 

An example of an incremental attack was reported by 
Sovarel et al. [10]. In that work, an instance of ISR that 
employed a long key was shown to be vulnerable to an attack 
in which small fractions of the key were determined 
sequentially. Each fraction required only a small amount of 

computation thereby bypassing the entropy of the long key 

upon which the owners of the system might rely. 

In the next section, we present a model for analyzing the 
effectiveness of a Metamorphic Shield against an incremental 

attack. 

III. MODELLING OF THE METAMORPHIC SHIELD FOR THE 

INCREMENTAL ATTACK MODEL 

We model an incremental attack as a series of b state-space 
searches where the states are of the same size s. A state-space 
search is carried out as a series of probes, and each state-space 
search is designed to reveal a single key fragment. Hence the 
key length is b fragments. We define a successful attack as a 
sequence of successful state-space searches of the b spaces. We 

assume that: 

• the adversary proceeds sequentially from space to 

space determining one fragment for each space, 

• the adversary knows when a fragment has been 

revealed, and 

• each probe of a space requires the same time. 

In this case, the quantity of interest is the probability of a 
successful attack occurring in some specific number of probes, 
say k, or less. With that probability known, a Metamorphic 
Shield could re-randomize after the adversary had an 
opportunity to perform k probes and thereby limit the 
probability of a successful attack. Thus, our first goal in the 
analysis is to determine this probability. Clearly, we cannot 
know how many probes have occurred, but we can estimate the 

number of opportunities that the adversary had. 

Searching each space will terminate with a successful 
probe, and each successful probe will be preceded by from zero 
to s-1 probes that fail. The initial step in the model is to 
determine the probability of a successful attack in exactly k 
probes. Such an attack will experience a total of k-b probe 
failures across all b spaces together with b successful probes. 
Thus, the total number of different sequences of probes that can 
lead to a successful attack in k probes is the number of ways 
that k-b failing probes can be distributed across b spaces with 
no more than s-1 occurring in any single space. This number is 

[1]: 

 

In this expression, binomial coefficients are defined to be 

zero if the upper operand is smaller than the lower operand. 

The probability of a successful attack occurring in exactly k 

probes for b  ! k  !  sb is: 

 

The probability of a successful attack occurring in k probes 

or less for b  ! k  !  sb is: 



 

 

This is the probability we sought, and with this probability 
we can determine the effect of a Metamorphic Shield operating 
against an incremental attack in which the MMS re-randomizes 

periodically. 

We model the effect of a Metamorphic Shield by treating 
an attack as a series of independent trials by the adversary each 
of length m probes where the key is changed after each trial, 
i.e., after m probes. Thus, the effect of the Metamorphic Shield 
is to force the adversary to restart the attack after each series of 

m probes if the attack was not successful at that point. 

The probability of a successful attack in m probes or fewer 
is P(m). With a Metamorphic Shield re-randomizing after each 
trial (each m probes), the probability of an attack succeeding in 

jm probes or fewer is: 

 

Note that this probability is defined only for every m 
probes. In order to derive the probability of a successful attack 
in k or fewer probes, we need to add the probability of a 
successful trial (determining a single fragment of the key) in k-
jm probes where k-jm lies between 0 and m-1, i.e., between the 

points at which the key is changed. Adding this yields: 

 

M(k) is the probability of a successful attack in k or less 
probes with a Metamorphic Shield re-randomizing every m 
probes and P(k) is that probability without a Metamorphic 
Shield. With these two probabilities, we can determine the 

effectiveness of a Metamorphic Shield. 

As an example, consider the case in which b = 4 and s = 
256. This corresponds to a key that is four bytes long which 
would be expected to have a search space of size 232. However, 
the incremental attack proceeds one byte at a time so that there 
are four searches each of spaces of size 256. Obviously, the 

probability of success in 1024 probes or less is one. 

Figure 1 shows M(k) for this example for values of m = 4, 
25, 50, and 100. Note that the Y axis is a logarithmic scale. The 
dashed vertical line is 1024 on the X axis. This is the point at 
which an attack is bound to succeed without an MMS, and the 
intersection of the dashed line with the four curves shows the 
relative advantage of the MMS. The case in which m is set to 4 
is the limiting case in this example. Four is the least number of 
probes within which an attack might succeed since there are 
four bytes in the key and the adversary has to determine all four 
in sequence. Thus, the curve in Figure 1 for m=4 is the best that 

a Metamorphic Shield can do in this example. 

As can be seen from the example, the effectiveness of a 
Metamorphic Shield against incremental attacks in this case 
depends critically on the rate of re-randomization. Varying this 
rate from every 100th probe to every 4th probe spans 6 orders of 

magnitude. 

IV. CASE STUDY: INSTRUCTION SET RANDOMIZATION 

Instruction Set Randomization (ISR) is a diversity 
technique introduced by Barrantes et al. and Kc et al. that 
randomizes the instruction set of a target machine [2][8]. Since 
an attacker does not know the randomized instruction set, 
attempts at code injections will fail. While the idea is 
applicable to instruction sets for a variety of machines and 
interpreters, including SQL, Perl, PHP and XML [5][6], we 

focus on the application of ISR to the X86 architecture. 

A simple implementation of ISR is to encode at load time 
(or earlier) the native binary form of a program using an XOR 
key [2][8]. Just prior to execution, the program is decoded 
using the same XOR key to recover the original instruction 
stream. Injected code that is not encoded will likely result in 
the execution of random instructions that will lead to the target 

program crashing. 

Sovarel et al. demonstrated an incremental attack against 
ISR using a deliberately crippled version of an XOR-based ISR 
implementation [2]. Their attack illustrates the potential pitfalls 
of relying on seemingly high entropy defense techniques or on 
the assumption of key secrecy. Sovarel et al. obtained a 4-byte 
key in approximately 20 seconds and a 64-byte key in 

approximately one minute. 

We set out the following requirements for the design of the 

Metamorphic Shield for this instance of ISR: 

• The shield should operate on arbitrary x86 binaries, 

similarly to the widely deployed ASR technique. 

• The shield should not require re-randomization using a 

shutdown/restart sequence.  

• The architecture of the Metamorphic Shield should be 
flexible and allow a wide range of possible diversity 

transformations. 

• The Metamorphic Shield should be able to operate 
efficiently at the rates determined to be necessary to 

provide useful protection against incremental attacks. 

 

Figure 1.  Cumulative distribution as a function of the rate of 

metamorphosis of the shield. 



 

 

Figure 2. Strata Virtual Machine. 

To our knowledge, the work by Bhatkar et al. on self-
randomizing programs comes closest to fulfilling these 
requirements [4]. That approach requires access to source code 
and provides protection using fine-grained, address-space 

randomization with a reported overhead of 11%. 

The Metamorphic Shield we developed to support ISR is 
implemented using the Strata software dynamic-translation 
system [7][12]. As shown in Figure 2, Strata is organized as a 
virtual machine that operates between an application and the 
host system. Strata loads a binary application dynamically and 
mediates application execution by examining and possibly 
translating the application’s instructions before they execute. 
Blocks of translated application instructions are held in a 

Strata-managed code cache to improve efficiency. 

We developed a tool to analyze ELF binary programs and 
to identify the ranges where executable instructions can exist. 
These instruction ranges are added to a new section in the ELF 
binary. When Strata starts up, it reads this new section at load-
time and encrypts the sections using a simple XOR scheme 

with an n-byte key, where n = 4 by default: 

P’ = K " P 

To recover the original program’s instruction stream, we 
add a decryption module between the fetch and decode 
modules of the Strata virtual machine, and apply the following 

transformation: 

P = K " P’ 

To rekey the text segment of the program during execution, 
we apply the old XOR key, followed by a new random XOR 

key: 

P’ =  Knew  " K  " P’ 

K = Knew  

Our current prototype implementation has the following 

limitations: 

• The prototype handles statically and dynamically-
linked libraries but not preloaded libraries such as 

libnss. 

• The prototype does not support self-modifying code. 
This is the case with all ISR implementations of which 

we are aware. 

V. EVALUATION 

We evaluated the performance of our XOR-based ISR 
implementation of a Metamorphic Shield using the SPEC2000 
benchmark. We present performance results for a re-
randomization rate of 100 milliseconds. All performance 
numbers were averaged over three runs for each of the program 
in SPEC2000. These numbers were obtained using version 8 of 
Fedora Core Linux, running in a VMWare image on a 

dedicated Mac Pro. 

Figure 3 shows the performance of executing the 
benchmarks with and without the metamorphic shield. For a 
rekeying rate of 100 msec, the performance of the metamorphic 
shield is essentially the same as that of running the Strata 
virtual machine. This result is encouraging because it indicates 
that the metamorphic shield adds virtually no overhead beyond 
that of Strata itself. Despite measuring the performance on an 
unoptimized configuration of Strata, the overall average 

performance overhead of the metamorphic shield is only 14%.  

Our concern with this work is to determine whether this 
Metamorphic Shield can compensate for a weak encoding 
mechanism and a short key length for ISR. If so, what is the 

appropriate re-randomization rate? 

Answering these questions requires making real-time 
assumptions about the probing rate. For example, the average 
probe time in the attack by Sovarel et al. is approximately 20 
msec. This time would translate to a re-randomization rate of 
every fifth probe in our analytical model (Figure 1). However, 
one could argue that the attack understates the capability of a 
motivated adversary. For example, an adversary could control a 
botnet and issue probes in parallel. The maximum scaleup 
factor would then depend on the number of concurrent requests 
that the targeted program could handle. If we assumed a 
scaleup factor of 100X, then a 100 msec re-randomization rate 
would correspond to the case where the shield was re-

randomized every 100th probe. 

Instead of re-randomizing based on a real-time trigger, we 
plan on investigating the performance of re-randomizing the 
shield based on the number of probes. Since we cannot readily 
distinguish between normal traffic and attack probing traffic, 
we need to assume conservatively that every packet read over 
the network is potentially a probe. While re-randomizing 
programs on every four read system calls may seem excessive, 
whether this will turn out to be the case is unclear. 
Furthermore, we will investigate the use of anomaly detection 
techniques to distinguish between normal traffic and attack 
probes and thereby reduce the required rate of re-

randomization. 

VI. CONCLUSION 

Artificial diversity is an effective security technology 
provided the randomization used yields a search space of 
sufficient size and the key cannot be recovered by an 
adversary. Dynamic artificial diversity adds the notion of 



 

periodic re-randomization to artificial diversity. We refer to the 
mechanism that implements dynamic diversity as a 
Metamorphic Shield because the mechanism applies 
metamorphosis to the attack surface and thereby offers the 

potential to shield the adversary from some forms of attack. 

We have developed a general model of dynamic diversity 
and applied it to an incremental attack against instruction set 
randomization. In that case, re-randomization restores lost 
entropy provided re-randomization occurs at a rate that is fast 
enough. The model we have developed predicts the probability 
of a successful attack with a certain number of state space 
probes, and so the model allows the rate of re-randomization 

necessary for a predefined level of protection to be determined. 

Finally, we note that any dynamic variation of a system’s 
characteristics designed to vary the attack surface and thereby 
thwart an adversary is, in practice, an example of dynamic 
artificial diversity and is, therefore limited in effect to the 

extent predicted by our model. 
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Figure 3. SPEC cpu2000 benchmark. Performance normalized to native execution. 


