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ABSTRACT
An object-oriented framework enables both black box reuse
and white box reuse in client applications, serving as an im-
portant infrastructural building block. We are refactoring
framework-based applications to modularize cross-cutting
concerns with aspects. In this paper, we explore implemen-
tation issues we encountered while creating non-functional
aspects in AspectC++ that are pluggable and reusable.

1. INTRODUCTION
Aspect-oriented programming can be used to modularize

cross-cutting concerns in application software. Non-func-
tional aspects modularize cross-cutting concerns that do not
directly affect functionality, but instead improve characteris-
tics such as performance, dependability, and configurability.
Though important, they are orthogonal to the primary func-
tionality. Modularizing non-functional cross-cutting con-
cerns with aspects reduces duplicated code. In addition
to reducing duplicated code, aspects improve pluggability,
since a single pointcut can enable or disable the advice code
[6]. Designing aspects with virtual pointcuts and virtual
methods allows an aspect to be reused in different applica-
tions, with application-specific behavior or pointcuts speci-
fied in a concrete aspect.

Object-oriented frameworks serve as infrastructure build-
ing blocks for the development of large-scale industrial appli-
cations. A framework’s application programming interface
(API) enables blackbox reuse [14] while framework classes
enable white box reuse through object-oriented mechanisms
such as composition, inheritance, and polymorphism [13].

Domain-specific frameworks are typically designed as large,
layered systems that include a kernel layer of foundational
services such as access to the operating system, container
classes, and external data stores and domain-specific layers
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[2]. VLSI chip design involves a complex, multi-step flow
that requires many individual tools to share data. VLSI
CAD frameworks provide common translators for different
file formats and enable applications to focus on a specific
task while leveraging framework components for data trans-
lation, persistence, and memory models [1].

Frameworks provide extension points for client applica-
tions that enable object-oriented reuse. However, such ex-
tension points must be anticipated by framework develop-
ers during the design of the framework. Aspects provide an
additional way of providing extension points for client ap-
plications. Advice can be layered on top of existing code
whether or not the developer anticipated the extension.

Although frameworks can be designed or refactored to use
aspects [5], changing existing frameworks can be problem-
atic due to license restrictions, the large number of appli-
cations already using the existing framework implementa-
tion, or the effort required to modify a large framework.
Rather than modifying these frameworks, we can identify
cross-cutting concerns common to many framework-based
applications, particularly cross-cutting concerns that relate
to framework use and extension. In like manner, Ghosh et al.
[4] differentiate between business logic and code that inter-
acts with middleware services, and propose that middleware-
related code be modularized as an aspect.

We use aspects to enhance the use of existing, unmodified
OO frameworks. We are creating a library of framework-
based aspects that represent cross-cutting concerns in frame-
work-based applications. We refactor applications (not the
framework) and weave in aspects from the aspect library;
the refactored applications use both the aspect-library and
the framework. For our aspect library to be beneficial to
many framework-based applications, aspects must be de-
signed with pluggability and reuse in mind. While develop-
ing an aspect library for an VLSI CAD framework used at
Hewlett-Packard, we found that tradeoffs between alterna-
tive implementations have implications for reusing aspects.
We also found that aspects themselves can be developed in
a modular way so that a caching aspect can monitor how
much benefit (in terms of cache hit rates) it provides to the
system.

The remainder of the paper is structured as follows. Sec-
tion 2 describes the design and implementation of a caching
aspect for framework-based applications. In section 3 an
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aspect for enabling user-configuration of a large CAD ap-
plication is considered. Section 4 discusses related work,
followed by conclusions and future work in Section 5.

2. CACHING

2.1 Motivation
Caching is used to improve performance while maintaining

the same functional behavior. Caching is a common example
of a cross-cutting concern that can be modularized as an
aspect. The implementation is largely the same across all
functions that are cached [7, 8].

Framework-based applications contain functions or meth-
ods that implement caching in an ad-hoc way. In VLSI CAD
applications, these functions calculate some property of a
circuit element (an electrical net or transistor). Calculat-
ing the property can involve complex, time-consuming steps,
such as reduction of RC networks for resistance calculation
or graph traversals to calculate reachability. In a framework-
based application, the objects being cached are often in-
stances of framework classes, while the function doing the
calculation is application-specific. One of the framework-
based applications that we are refactoring is an electrical
rules checking (ERC) tool developed at Hewlett-Packard,
the ErcChecker. The ErcChecker consists of approximately
80,000 lines of C++ code.

2.2 Aspect Identification
We can identify cached functions idiomatically since they

use a manually inserted static set or static map. The Erc-

Checker contains 38 functions that separately implement
similar caching code. These functions were in various classes
and did not have a common naming convention, so a list of
pointcut expressions grouped by the logical or operation can
be used to capture them, and the original tangled code can
simply be deleted.

2.3 Design challenges
Caching consists of storing the result value for some input.

In C++, the input can be one of several things, since we can
have procedural functions where the input is a value, method
calls where the input is the object invoking the method, or
functions or methods where an object is passed as a para-
meter.

Non-functional aspect pluggability is important since these
aspects may not always be needed. For example, user com-
ments in one manually cached ErcChecker function indicate
that the cache was not improving performance. Caching is
only effective if cached values are used: a function that does
not recompute the same value during program execution
will not benefit from caching. In prototyping and develop-
ing caching as an aspect that could easily be enabled and
disabled and also monitor its benefits, we found a variety of
interesting trade offs and challenges.

2.4 Cache implementations

2.4.1 Two simple caches
We implemented two simple caching aspects: one for caching

functions and static methods, and one for caching object-
based method calls. These caches are similar to a generic
caching strategy described by Lohmann, Blaschke, and Spin-
czyk [8], although they focus on using C++ template meta-

programming with AspectC++, and demonstrate capabil-
ities such as handling an arbitrary number of function or
method parameters.

Example code for caching a function or static method
based on its first argument is shown in Appendix A, as the
AbstractFunctionCache. The second cache is structured
like the AbstractFunctionCache, but the cache key is the
object on which the method is called rather than the first
parameter. This changes the static map definition:

static std::map <

typename JoinPoint::Target*,

typename JoinPoint::Result >

theResults;

Retrieving the target is done dynamically with tjp->target().
Both aspects declare a virtual pointcut so that use only

requires creating a concrete aspect that defines the pointcut,
as shown below. Because the cache creates a static map
inside the around advice, a concrete aspect like MethodObj-

Caching (see below) whose pointcut matches multiple join
points will have separate caches for each one.

1 aspect MethodObjCaching :

2 public AbstractMethodCache {

3 pointcut ExecAroundMethod() =

4 execution("% Circle::getArea(...)")

5 || execution("% Donut::getArea(...)");

6 };

7 aspect SquareCache :

8 public AbstractFunctionCache {

9 pointcut ExecAroundArgToResult() =

10 execution("% SquareArea(...)");

11 };

2.4.2 TrackingCache
In order to measure the effectiveness of the caching con-

cern, we add hit and miss counts directly to the implemen-
tations above. However, we immediately recognize two con-
straints: we must initialize the Statistics before the first
access, and after all calls to the caching functions are done
the Statistics need to be displayed.

Because a concrete aspect (such as MethodObjCaching)
may match multiple join points, hits and misses should also
be tracked for each join point. We can create a simple C++
struct for representing hits and misses whose constructor
does initialization, and can store the struct for each join
point with JoinPoint::signature(). We print out the map
after the main function has executed to get the final results.
We show the statistical tracking implementation in Appen-
dix B. This caching aspect defines the Stats struct and
overrides the output operator (<<) so that Stats variables
are easily printed.

The around advice (ExecAroundMethod) has two lines of
cache Statistics code (lines 35 and 40) mixed in with the
caching code, with the Statistics functionality is spread across
two advice bodies. Any changes tracking cache results will
require manually editing these lines, which look like the kind
of tangled code that aspects strive to reduce or eliminate.

2.4.3 Caching with a utility class
Since cache hit and miss statistics are linked to cache be-

havior, next we modify the aspect to use a utility class,
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which we can extend via inheritance to add tracking in-
formation. This provides an aspect implementation that
enables easily plugging or unplugging the cache tracking
(hit/miss) functionality.

First, we define the helper class, which is a templatize
cache class that can handle arbitrary key and value types.
Source code is shown in Appendix C. Next, we modify the
aspects (parameter based and object-based) to use AspectCache.
The caching aspect that uses the class can simply instantiate
it and call get and set rather than directly manipulating the
cache data. A caching aspect for storing parameter/return
value pairs is shown in Appendix D.

Note that the AspectCache class cannot be accessed in the
after advice associated with main. Because of C++ scop-
ing rules, the AspectCache variable (theResults) is only
accessible in the around advice for the cached function. It is
needed there for two reasons. First, we need it to be a static
object inside the around advice so that it is created once
for each join point, allowing this aspect to have a pointcut
that matches many join points and yet have each join point
be separately cached. Second, the cache is instantiated with
static type information available only inside the join point
(JoinPoint::Arg<0>::Type and JoinPoint::Result).

We rely on the destructor for the static class when extend-
ing the AspectCache via inheritance to create the Counting-
AspectCache, which we show in Appendix E.

The CountingAspectCache can be directly substituted in
the aspect, or we can have an aspect associated with each
class (AspectCache and CountingAspectCache) and then
create a concrete aspect based on whether or not we want
tracking. Since the CountingAspectCache may be associ-
ated with one of many join points, we pass in the join point
signature to the constructor so that it will be accessible (at
the end of execution) in the destructor (lines 11-17), which
prints out join point names and cache statistics.

The CountingAspectCache inherits concrete methods from
AspectCache. While reuses code, it could lead to problems
if the AspectCache is modified without regard to how that
might impact the CountingAspectCache. In fact, the rela-
tionship between the CountingAspectCache and AspectCache

is analogous to the relationship between CountingBag and
Bag in the example code for the fragile base class prob-
lem [11]. An alternative that avoids this would be an ab-
stract caching class that only defines pure virtual methods
(which forms an interface class in C++), from which both
AspectCache and CountingAspectCache could be derived
and which could be implemented separately.

Since we are providing caching as part of an aspect li-
brary for framework-based applications, the best approach
seems to be to let users directly access both cache aspects.
During development and testing, cache Statistics could be
tracked to determine the value of caching a particular func-
tion. Before production release, the application developer
would switch to the regular (non-counting) cache to reduce
cache overhead. For aspect library stability, implementing
the cache classes based on a C++ interface base class would
be preferred.

2.4.4 Object Identity
Many of the functions cached are based on calculating a

value for a parameter that is an object (e.g., pointer to an
electrical net, pointer to a transistor). Object identity and
aliasing introduce additional complexity to caching. Using

pointers is efficient with a map. However, multiple refer-
ences to the same object result in each one being added to
the cache rather than reusing the calculated value, as shown
by lines 32, 38 and 39 of example in Appendix F.

Hewlett-Packard’s framework, like other VLSI CAD frame-
works, reads in a persistent store such as a netlist and builds
an in-memory model in which pointers are usually unique
and are associated with circuit components. However, in
general we need to be careful for cases where we can have
different memory references to the same object.

There may also be distinct objects that are equivalent in
some respect. In an electrical design, there may be many
instances of the same circuit component. In the example
in Appendix F, square structs s1 and s3 (on lines 24 and
28) have the same coordinates. Depending on the cost to
compare objects versus the cost of computing some func-
tion, we may want to cache properties of objects and avoid
recomputation when we have seen an alias to an object or
an equivalent object.

2.5 Impacts on the ErcChecker
Originally, developers manually implemented caching for

some functions of a large application to improve perfor-
mance. The implementation did not use aspects, and re-
sulted in similar code being scattered in many functions.
Implementing caching as an aspect improves modularity and
results in the removal of duplicated cache code from 27 lo-
cations. By using a helper class and inheritance, applica-
tion developers can easily switch between a fast cache and
a slightly slower one that measures the benefit of the cache.
We did not find a noticeable performance penalty when run-
ning the refactored ErcChecker. Benchmark testing of the
aspects1 found that the aspect implementation was only 15
seconds slower than the direct implementation (even with
gathering hit and miss data) for a loop of 9 million method
calls.

Aspects, like application code, must be maintained. Using
inheritance and abstract interface classes when implement-
ing aspects improves cache pluggability, allows the aspect
to be reused in many contexts, and that limits the change
impact if the aspect or utility classes change. When design-
ing caching as an aspect, subtle language features such as
aliasing and domain knowledge about object equivalence are
important to consider since they affect cache and application
performance.

3. RUN-TIME USER CONFIGURATION

3.1 Motivation
A second type of extra–functional aspect we consider is

run-time user configuration of the ErcChecker. ERC sys-
tems automate a number of electrical circuit checks. Exam-
ple checks include checking for proper transistor ratios be-
tween the pull-up and pull-down transistors of an inverter,
checking for fan-out limits, or checking for drive strength
problems [12]. An ERC checking tool typically performs
many types of checks on a circuit, reporting violations to
the user.

The ErcChecker implements 58 different electrical checks
as a class hierarchy. Because of the number of queries and

1Performance data are from a 2.4GHz Linux Xeon desktop
system with 3 GB RAM.
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the run-time of the tool (often several hours for a circuit),
the ErcChecker allows users to turn any of the checks off
through a user configuration file. Before time-intensive cir-
cuit traversal or electrical query evaluation, each of the 58
types of electrical calls a configuration method to see if the
user has disabled that electrical check. Although this does
affect the functionality of the final run, this functionality is
orthogonal to the primary functionality: the actual electri-
cal rules checking.

3.2 Aspect Identification
In the ErcChecker, each class has a static method, create-

Queries(), that calls ErcQuery::getQueryConfig before cre-
ating and evaluating query objects to see if the query is
disabled:

1 void InformAlwaysOnPassGate::createQueries

2 (bcmInstance *fet)

3 {

4 // See if this query is turned off

5 if (ErcFet::getQueryConfig

6 ("InformAlwaysOnPassGate")== eOff)

7 return;

8 ...

Because the ErcFet::getQueryConfig call to check for run-
time user configuration crosscuts all electrical queries, and
its behavior is always the same (disable running the check
if a user configuration command is found), it is a good can-
didate for an aspect. A query that fails to call ErcFet-

::getQueryConfig in this manner will function, but cannot
be disabled by configuration commands, which is a system-
wide policy for the ErcChecker.

The original C++ code embedded the literal string for
the electrical check’s name (such as “InformAlwaysOnPass-
Gate”). This was done because C++ lacks reflection, which
otherwise could query the name of the class and method
name. AspectC++ provides this level of reflection through
thisJoinPoint. In this application, the string literals match
the class name for the method. Without such regularity, it
would be difficult to refactor to an aspect and automatically
calculate the electrical check context.

3.3 Design challenges
The aspect must first extract the electrical query name.

We could simplify the aspect code by modifying ErcFet-

::getQueryConfig() to accept the join point signature and
parse the string. Doing so would change the functionality of
an existing behavior to depend on the aspect, which would
limit aspect pluggability. In addition, ErcFet::getQuery-
Config() is an overloaded function that can take additional
arguments (such as an electrical net or transistor) to pro-
vide more fine-tuned user configuration. The fine-grained
calls to ErcFet::getQueryConfig() with extra parameters
are interspersed throughout the electrical checks and do not
have a regular structure.

3.4 Aspect Implementation
The aspect for this concern uses the join point signature

to get the calling context (void InformAlwaysOnPassGate-

::createQueries (bcmInstance *fet) and calls the same
method as the original code (ErcFet::getQueryConfig()).

1 aspect QueryConfigAspect {

2 pointcut createQuery() =

3 execution("% %%::createQueries(...)");

4 advice createQuery() : around() {

5 std::string jpName = JoinPoint::signature();

6 int first_space = jpName.find(’ ’);

7 int scope_operator = jpName.find("::");

8 std::string className=jpName.substr(

9 first_space+1,

10 scope_operator-first_space-1);

11 if(ErcFet::getQueryConfig(className)==eOff)

12 return; //user config exists, SKIP

13 tjp->proceed();

14 }

15 };

The aspect above handles the call to ErcFet::getQuery-

Config() that occurs at the beginning of the static method
createQueries for each ErcQuery class, but does not han-
dle the additional fine-grained user configuration calls men-
tioned in the design challenges section. The fine-grained
calls do not occur in a regular way that can be described
by an AspectC++ pointcut. Instead, they are associated
with loops and conditional statements in the body of the
createQueries method for each class.

3.5 Impacts on the ERC application
Using an aspect for the call to ErcFet::getQueryConfig()

inside the createQueries() method for each electrical query
class improves the modularity of the code. Since the scat-
tered code is only a single method call, there is not signifi-
cant code reduction, but using an aspect provides an auto-
mated way to enforce the policy that each class check the
code. A query class that does not call ErcFet::getQuery-
Config() will not provide the desired user configuration.

The policy itself can easily be enabled, modified, or dis-
abled for the ErcChecker. Other VLSI CAD applications
developed at Hewlett-Packard provide similar configuration
options, although the implementation varies by application.
We are investigating how easily this aspect, developed for
the ErcChecker, can be reused by other applications.

4. RELATED WORK
Lohmann, Gal, and Spinczyk [9] demonstrate that C++

template metaprogramming can be used to develop code
with an aspect-oriented style, but without the oblivious-
ness of aspects: everything must be explicitly instantiated
through templates, which need to have the extension points
designed in. Lohmann, Blaschke, and Spinczyk [8] have
shown that aspects in AspectC++ can use templates and
template metaprogramming. Their work on caching influ-
enced our work, but their focus is on using template metapro-
gramming to create a single aspect that can cache a function
with an arbitrary number of parameters, while our focus is
on the implementation trade-offs that occur in making any
cache pluggable and reusable.

Lohmann et al. [10] use AspectC++ to modularize extra-
functional (also called non-functional) aspects. They focus
on emergent properties that result from architectural prop-
erties, while we focused on explicit non-functional aspects.
They also observe that while non-functional aspects are fea-
sible, the implementation can contain challenges and subtle
details that require in-depth analysis of their viability.

Duclos, Estublier, and Morat [3] consider mixing component-
based design with aspect-oriented programming, which is
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similar to our goal of using aspects with existing frame-
works. Their approach, rather than extending frameworks
with a single aspect language, proposes providing two lan-
guages so that component development and component use
with aspects are done separately.

5. CONCLUSIONS AND FUTURE WORK
Aspects are effective for modularizing non-functional cross-

cutting concerns. We explored two types of non-functional
concerns: caching and user run-time configuration. Although
aspects were well suited for both, we identified specific issues
that should be considered when using aspects:

• Non-functional aspects should be designed (where ap-
propriate) to monitor their own usefulness.

• Non-functional aspects should make use of stand-alone
classes, aspect inheritance, interfaces, and other fea-
tures that promote ease of maintenance of aspects.

• Subtle implementation issues such as object identity
and object equivalence can complicate seemingly sim-
ple aspects.

• When refactoring to use an aspect, obtaining the con-
text (such as the query name in the user configura-
tion aspect) may be different in the aspect code than
the equivalent functionality in the (original) base code.
For example, the original base code might not have a
regular naming structure that facilitates using point-
cuts.

• A non-functional aspect may only be able to be par-
tially factored to an aspect, as our QueryConfigAspect
demonstrated.

These issues should not discourage the use of aspects, but
can provide guidance and insight as aspect-based refactoring
and design is performed.

The aspects improve pluggability of the non-functional
features. The caching aspect is generic enough to be reused
in multiple applications. The run-time configuration aspect
modularizes a feature that is used in other VLSI CAD ap-
plications, although its current implementation may be too
closely tied to how run-time configuration is done in the
ErcChecker.

We continue to identify aspects for refactoring the Erc-
Checker. This work may yield additional insights into de-
sign considerations, and may identify more aspects. We are
also interested in seeing if the fine-grained calls to ErcFet-

::getQueryConfig() described in Section 3.3 can be refac-
tored to one or more additional aspects.
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APPENDIX

A. ABSTRACT FUNCTION CACHE

1 %#include <map>

2 aspect AbstractFunctionCache {

3 pointcut virtual ExecAroundArgToResult() = 0;

4 advice ExecAroundArgToResult() : around()

5 {

6 JoinPoint::Result *result_ptr = NULL;

7 static std::map <

8 typename JoinPoint::Arg<0>::Type,

9 typename JoinPoint::Result > theResults;

10 JoinPoint::Arg<0>::Type *arg_ptr =

11 (JoinPoint::Arg<0>::Type*) tjp->arg(0);

12 JoinPoint::Arg<0>::Type arg = *arg_ptr;

13 if( theResults.count( arg ) ) {

14 //already have the answer, return it

15 result_ptr = tjp->result();

16 *result_ptr = theResults [ arg ];

17 } else {

18 //proceed and store the answer

19 tjp->proceed();

20 result_ptr = tjp->result();

21 theResults [ arg ] = *result_ptr;

22 }

23 }

24 };

B. TRACKING CACHE

1 struct Stats {

2 int hits, misses;

3 Stats() : hits(0),misses(0) {}

4 };

5 std::ostream& operator <<(std::ostream& os,

6 const Stats& stats) {

7 os << "(Stats hits: " << stats.hits

8 << " misses: " << stats.misses << ")";

9 return os;

10 }

11 aspect AbstractTrackingMethodCache {

12 pointcut virtual ExecAroundMethod() = 0;

13 std::map<std::string, Stats> theStats;

14 advice execution("% main(...)") : after()

15 {

16 std::map<std::string,Stats>::iterator iter;

17 for(iter = theStats.begin();

18 iter != theStats.end(); ++iter) {

19 std::string jpName = (*iter).first;

20 Stats jpStats = (*iter).second;

21 std::cerr << " JP: " << jpName

22 << " "<< jpStats << std::endl;

23 }

24 }

25 advice ExecAroundMethod() : around()

26 {

27 JoinPoint::Result *result_ptr = NULL;

28 static std::map<typename JoinPoint::Target*,

29 typename JoinPoint::Result > theResults;

30 JoinPoint::Target *target = tjp->target();

31 if( theResults.count( target ) ) {

32 //cache already had answer, return it

33 result_ptr = tjp->result();

34 *result_ptr = theResults [ target ];

35 theStats[JoinPoint::signature()].hits++;

36 } else { //not in cache, proceed and store

37 tjp->proceed();

38 result_ptr = tjp->result();

39 theResults [ target ] = *result_ptr;

40 theStats[JoinPoint::signature()].misses++;

41 }

42 }

43 };

C. CACHE CLASS FOR CACHING ASPECT

1 template < typename Key, typename Value>

2 class AspectCache {

3 protected:

4 std::map< Key, Value> theData;

5 public:

6 AspectCache() {}

7 virtual ~AspectCache() {} //important for OO

8 virtual bool has(Key& k)

9 { return (theData.count(k)>0); }

10 virtual void add(Key& k, Value& val)

11 { theData[ k ] = val; }

12 virtual Value& get(Key& k) {

13 assert( has(k) ); //ensure we have it

14 return theData[k];

15 }

16 };

D. CACHING ASPECT THAT USES CACHE
CLASS – PARAMETER VERSION

1 aspect AbstractFunctionCache {

2 pointcut virtual ExecAroundArgToResult() = 0;

3 advice ExecAroundArgToResult() : around()

4 {

5 JoinPoint::Result *result_ptr = NULL;

6 static AC::AspectCache <

7 typename JoinPoint::Arg<0>::Type,

8 typename JoinPoint::Result > theResults;

9 JoinPoint::Arg<0>::Type *arg_ptr =

10 (JoinPoint::Arg<0>::Type*) tjp->arg(0);

11 JoinPoint::Arg<0>::Type arg = *arg_ptr;

12 if( theResults.has( arg ) ) {

13 result_ptr = tjp->result();

14 *result_ptr = theResults.get( arg );

15 } else {

16 tjp->proceed();

17 result_ptr = tjp->result();

18 theResults.add( arg, *result_ptr );

19 }

20 }

21 };

E. COUNTING ASPECT CACHE

1 template < typename Key, typename Value>

2 class CountingAspectCache :

3 public AspectCache <Key,Value> {
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4 protected:

5 int hits, misses;

6 std::string joinPointName;

7 public:

8 CountingAspectCache(std::string jpName) :

9 AspectCache<Key,Value>()

10 {hits=misses=0; joinPointName = jpName;}

11 ~CountingAspectCache() {

12 std::cerr << "Deleting CountingAspectCache,"

13 << " jp=" << joinPointName

14 << " hits=" << hits

15 << " misses =" << misses

16 << std::endl;

17 }

18 void add(Key& k, Value& val) {

19 misses ++;

20 AspectCache<Key,Value>::add(k,val); }

21 Value& get(Key& k) {

22 hits++;

23 return AspectCache<Key,Value>::get(k); }

24 };

F. OBJECT IDENTITY EXAMPLE

1 /* Simple C-style struct, and a

2 function that calculates its area */

3 struct Square {

4 int x1,y1,x2,y2;

5 };

6 void InitSquare(Square* s, int x1,int y1,

7 int x2, int y2) {

8 s->x1 = x1; s->y1 = y1;

9 s->x2 = x2; s->y2 = y2;

10 }

11 int AreaOfSquare(Square *s) {

12 int w = s->x1 - s->x2;

13 int l = s->y1 - s->y2;

14 int area = w*l;

15 if(area<0)

16 area = -area;

17 return area;

18 }

19 int main() {

20 Square *s1,*s2,*s3,*s4;

21 Square s5;

22 s1 = (Square*) malloc(sizeof(Square));

23 InitSquare( s1, 0,0, 2,2);

24 s2 = (Square*) malloc(sizeof(Square));

25 InitSquare( s2, 3,3, 4,4);

26 s3 = (Square*) malloc(sizeof(Square));

27 InitSquare( s3, 0,0, 2,2);

28 /*s3 and s1 have the SAME contents but

29 are different memory objects */

30 InitSquare( &s5, 4,4, 7,7);

31 s4 = &s5; /* s4 is a pointer to s5 */

32 /* consider a sequence of calls that call

33 AreaOfSquare while cached by an aspect*/

34 int y = AreaOfSquare(s1);

35 y = AreaOfSquare(s2);

36 y = AreaOfSquare(s3);

37 y = AreaOfSquare(s4);

38 y = AreaOfSquare(&s5);

39 }
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ABSTRACT 
In this paper we discuss the shortcomings derived from 
having coordination and computation tangled in the same 
software entities and from having coordination protocols 
scattered through the several components participating in 
an interaction. We show a possible solution to this problem 
by using aspect-oriented techniques to separate 
coordination as an independent entity in middleware 
infrastructures. 
Keywords 
Coordination, AOSD, MultiTEL, CAM/DAOP, MALACA 
INTRODUCTION 
Developing distributed applications can be seen as the 
combination of two distinct activities: a computing part that 
comprises programming a number of entities (objects, 
components, agents, web services) involved in 
manipulating data, and a coordination part responsible for 
the communication and cooperation between these entities.  
Given a set of possibly heterogeneous computational 
entities, the purpose of the coordination paradigm is to 
provide mechanisms and primitives to specify the 
synchronized interaction for putting all these components 
together, and make them interact in such a way that form a 
single application. This paradigm provides a clean 
separation between individual software components and 
their interactions within their overall software organization. 
This separation, together with the high-level abstractions 
offered by coordination models, allows viewing 
computational entities as black boxes, promoting their 
reuse in different applications. 
Most standard middleware infrastructures directly support 
some kind of coordination mechanisms based on traditional 
coordination models such as the publish-and-subscribe, the 
tuple-based and the blackboard models [1]. However, such 
mechanisms are not sufficient for managing complex 
interaction protocols, typically comprising several lines of 
code. For instance, in the publish and subscribe 
coordination model, the support for expressing patterns 
about distributed events and algorithms for detecting 
correlations among these events are still largely unexplored 
[2]. By failing to support separate abstractions for 
representing such complex protocols, most standard 
middleware infrastructures force programmers to distribute 
and embed them inside the interacting components.. 

In this paper we propose a possible solution to this problem 
encapsulating the coordination among a set of software 
entities in an aspect. The coordination aspect is defined as 
an entity that encapsulates the interaction pattern or 
coordination protocol that governs the communication and 
interchange of information among two or more software 
entities. A coordination protocol can be defined as the list 
of messages and/or events that a software entity is able to 
send and receive, along with a set of coordination rules that 
state the order in which messages and events must be 
interchanged by the participant entities of the interaction. A 
coordination protocol can be specified by a STD (State 
Transition Diagram), or any other similar formalism. Other 
works for enhancing traditional coordination model by 
embedding the description of coordination information in a 
third-party entity are starting to appear [2,3,4,5]. 
After this introduction the paper is organized as follows. 
Next section briefly describes the state of the art of 
coordination in component-based and multi-agent domains. 
We continue with our motivation to separate coordination 
as an aspect and with the solutions we have adopted to 
separate coordination in MultiTEL [6], CAM/DAOP [7] 
and MALACA [8]. Some initial discussion about how 
coordination might need to interact with other aspects in 
the middleware infrastructure is presented in the following 
section. Finally, we present the conclusions of the paper.  
STATE OF THE ART 
Coordination plays a central role in technologies used to 
develop distributed applications such as component 
technologies, web services and agent technologies.  
With respect to component-based technologies, they 
usually provide coordination mechanisms based on the 
publish-and-subscribe coordination model. Examples of 
these are CORBA, CCM/CORBA and J2EE. The main 
advantage of this mechanism is that communication is 
anonymous. Therefore, suppliers and consumers of events 
are decoupled among them due to the use of a third-party 
object that acts as intermediary between them.  However, 
by using this mechanism software developers do not 
achieve a complete separation between computation and 
coordination for two main reasons: (1) the coordination 
model is spread throughout the objects acting as suppliers, 
consumers and event channels. That is, suppliers do not 
simply throw events that are intercepted by the middleware 
infrastructure and managed by the coordination entity. 
Instead, suppliers and consumers need to create and/or 
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localize the event channels, including code related to the 
particular coordination model they follow as part of the 
code of the objects that implement consumers and 
suppliers; (2) the event channel does not usually provide 
support to encapsulate complex interaction protocols. In 
consequence, this service is mainly suitable for applications 
that just need to be aware of “change notifications”. 
Basically, a supplier produces an event and all the 
consumers registered in the event channel will receive the 
notification that such event was produced. The third-party 
objects in the Jini Distributed Event Service are an 
exception to the latter shortcoming. The reason is that Jini 
does not impose anything about the implementation of third 
party objects. They just need to implement the interfaces to 
register or to notify events but do not need to extend a 
particular object of a specified type. Therefore, Jini 
provides an event based programming model plus the 
possibility of encapsulating a coordination protocol in the 
third party objects. As commented before, other proposals 
that extends the publish and subscribe model to address the 
coordination of activities between decoupled components 
are [2,3,4]. Finally, ObjectPlace [5] is another proposal 
extended the traditional tuple space coordination model 
with support for role-based coordination between 
individual components. 
Coordination also plays an important role in web services 
that use a loosely coupled integration model to allow 
flexible integration of heterogeneous systems in a variety 
of domains including business-to-consumer, business-to-
business and enterprise application integration. However, 
the use of standards such as SOAP, WSDL and UDDI and 
interaction following a loosely coupled is not enough for 
such integration. Systems integration requires an additional 
layer able to describe and perform web services 
composition and orchestration. The latter term is the 
description of interactions and message flow between 
services in the context of a business process. This concept 
is not new; in the past it has been called workflow. Until 
now, different XML-based languages have been introduced 
to cover web services orchestration where two of the more 
well-known are the Web Services Choreography 
Description Language (WS-CDL) [9] and the Web services 
Business Process Execution Language (WS-BPEL) [10]. 
WS-CDL describes the set of rules that explains how 
different web services may act together, and in what 
sequence, giving a flexible and integral view of the 
process. WS-BPEL enables the composition of existing 
web services into a more complete web service. The 
composition is defined in terms of a workflow process 
consisting of a set of activities and the composition itself is 
exposed as a web service. 
Nowadays, Multi-Agent Systems (MAS) are an effective 
paradigm for the design and implementation of complex 
software applications. Agent-based applications are 
understood as a system consisting of autonomous agents 
whose interactions are coordinated through an 

organizational structure [11]. The necessity of coordinating 
agents in MAS relies on the common idea that an agent 
should be able to engage in, possibly, complex 
communications with other agents in order to exchange 
information or to ask their collaboration in pursuing a goal. 
Currently two coordination models are the most 
representative and effectively used to realize agents 
coordination mechanisms: Interaction protocols and Shared 
Dataspaces. A large portion of the agent community, which 
includes the standardizing organism FIPA, considers 
coordinating agents using interaction protocols, i.e. 
predetermined patterns of interaction. This approach is 
based on considering coordination essentially as a problem 
of communication. Thus the Agent Communication 
Language (ACL) plays a fundamental role, providing a 
means to achieve a higher-level of interoperability between 
agents. We can find in the agent models supporting this 
coordination model that the functional part of the code of 
an agent is interleaved with code that is there only to 
support coordination. This dependency derived from the 
intermingled code makes difficult the reuse of the agent 
functionality in other applications and platforms.  
MOTIVATION 
The conclusion is that coordination models provide support 
for loosely coupled interaction, mainly focusing on 
decoupling the source and the target of the communication. 
However, they do not achieve a complete separation among 
computation and coordination, since they do not provide 
support for the description of complex interaction 
protocols. As stated before, a complex interaction protocol 
specifies not only the information interchanged by 
coordinated entities but also the coordination rules. 
To illustrate this shortcoming we will focus on an auction 
system and, concretely, in the simplified interaction 
between the seller and the buyer. In this example, Figure 1 
shows the entities participating in an auction, while Figure 2 
describes a scenario of the interaction among them. 
However, when the system is finally implemented using, 
for instance, a component based approach, the coordination 
information shown in Figure 2 is usually lost. That is, the 
coordination protocol among buyers and sellers is directly 
hard coded as part of the implementations of the Seller and 
the Buyer components. As a consequence, there may be 
situations in which a change in the interaction protocol 
requires changing the component implementations. 
 

Seller

+propose( bid : float, customerID : AID )
+Join( customerID : AID )

Buyer

+AcceptProposal( customerID : AID )
+CallForProposal( price : float )
+RejectProposal()

Customer

-customerID : AID

IBuyer

ISeller

 
Figure 1. Part of the design of an Auction System. 
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: BuyerBuyer2: BuyerBuyer1 : SellerBook

Join( customerID )2: 

Propose( bid, customerID )5: 

Join( customerID )1: 

Propose( bid, customerID )6: 

CallForProposal( price )3: CallForProposal( price )4: 

AcceptProposal( customerID )8: 
RejectProposal()9: 

decide the winner7: 

 
Figure 2. Buyer – Seller Interaction Protocol. 

 
In Figure 2 when an auction finalizes, the Seller component 
decides the winner bid (step 7) and notifies to just one of 
the Buyer components that his/her bid won, using the 
AcceptProposal(customerID) operation (step 8). The other 
buyers are notified that they did not win invoking the 
RejectProposal(customerID) operation (step 9). 
Let us suppose now that all the buyers have to be notified 
about which is the winner. This is a change in the 
coordination among the components and, with the current 
approach, implies to modify the implementation of the 
Seller component. Thus, the seller has now to invoke the 
AcceptProposal(customerID) operation over all the buyers.  
This shortcoming may be overcame if the seller and the 
buyers use, for instance, the publish-and-subscribe 
interaction style. In this case, components register in a 
common communication channel. The use of a third-party 
object facilities the 1-to-many communication. This means 
that the seller just publishes an anonymous 
AcceptProposal(customerID) event and all the buyers 
subscribed to that event will receive the notification.  
Another change may be to make the auction public (one in 
which all bids are shared among the participants). We 
desire to (re)use the Buyer and Seller components in Figure 
1 and Figure 2. In this case the Seller component should 
have to notify the Buyer components that a new bid is 
proposed, and this requires modifying its implementation. 
Concretely, after receiving the Propose(bid,customerID) 
operation invoked by customerID buyer, the Seller has to 
notify the bid to the rest of buyers using the 
CallForProposal(bid) operation. Once again this is part of 
the interaction protocol codified crosscutting the 
functionality of the Seller component. In this case, even 
using the publish-subscribe interaction style it is needed to 
change the implementation of the seller component. The 
reason is that this change modifies the interaction protocol, 
which is tangled with computation and scattered 

throughout the participant components. The solution to this 
problem comes across not including the coordination rules 
as part of the components. This information should be 
included in the third-party object of coordination models. 
However, traditional coordination models do not provide 
support for this. 
The extension of a coordination model with the necessary 
support to encapsulate complex interaction protocols may 
avoid to hard code this information as part of the 
coordinated entities. However, most of the realizations of a 
coordination model for particular technologies introduce 
some non desirable dependencies among the coordinated 
entities. For instance, the event service in CORBA follows 
a publish-and-subscribe coordination model. However, its 
implementation uses RPC (Remote Procedure Call). This 
implies that the channel is a CORBA object and it has to be 
located by the components before using it. 
This problem can be alleviated if the responsibility of 
locating the adequate channels falls to the middleware 
infrastructure. This approach is followed in the CCM 
model of CORBA, where components just throw events 
and it is the container the responsible of managing 
channels.  
The next section will show how AOSD mechanisms 
provide a natural solution to solve the limitations of the 
coordination models discussed in this section.  
SEPARATING COORDINATION IN MIDDLEWARE 
INFRASTRUCTURES 
In this section we describe our experience separating 
coordination as an aspect in three different middleware 
infrastructures we have developed: MultiTEL, 
CAM/DAOP and MALACA. Readers can obtain detailed 
information of these middleware infrastructures in [2,3,4]. 
A common feature of these infrastructures is that 
coordination is separated from computation and moved into 
a coordination aspect (Figure 3, label 1). Other important 
feature is that the weaving information is not part of the 
definition of components or aspects. Instead, it is explicitly 
described and allocated in the middleware infrastructure 
(Figure 3, label 2), which is the responsible of weaving 
components and the coordination aspect at runtime. This is 
very useful for implementing applications in open systems, 
in which components evolve over time. Thus, components 
do not need to choose or localize the proper coordination 
aspect, since this is the middleware infrastructure 
responsibility. This characteristic increases the reusability 
of components in different contexts. As shown in Figure 3, 
both load-time weaving and runtime weaving mechanisms 
may be provided, with divergent outcomes on flexibility 
and performance.  
Other advantage of separating the coordination aspect is 
that it is easier to control the different states of a complex 
interaction (Figure 3, label 3).
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Buyer
Buyer

   Middleware Layer 

Seller BuyerCoordination 
Aspect 

Load-time weaving   Run-time weaving 

Component-Aspect Binding Rules

 

Init 

Active 

Start auction 

Join
/ notify Seller join

CFP 
/ notify Buyers CFP 

Propose
/ notify Seller propose

Accept Proposal 
/ notify winner acceptProposal 
/ notify others rejectProposal 

(1) 

(2) 

(3)

 
Figure 3. Separation of coordination in Auction System 

 
Going back to our example, let us suppose that it is needed 
to control that once the auction begins (the Seller 
component sends the first CallForProposal() operation), no 
new buyers can join the auction. This kind of constraint can 
be easily satisfied with a coordination aspect that 
encapsulates a protocol with different states.  
Coordination in MultiTEL 
MultiTEL (Multimedia TELecomunication services) is a 
complete development solution that applies component and 
framework technologies to deploy multimedia and 
collaborative applications. Essentially, MultiTEL provides 
separation of concerns between computation and 
coordination by encapsulating computation into 
Components and locating coordination into Connectors. 
Therefore, the architecture of a MultiTEL application can 
be seen as a collection of components that interact through 
connectors. 
In MultiTEL, components are passive entities that react to 
external stimuli by propagating events. Connectors are 
abstractions of complex coordination patterns that 
implement coordination protocols. By handling the events 
propagated by external components a connector can 
coordinate the execution of the components participating in 
the same interaction or task. The interaction protocol 
encapsulated in connectors is specified as a STD and it is 
implemented using the State Design Pattern in Java.  
Another important characteristic of MultiTEL is that the 
weaving information to connect components and 
connectors is specified separately from components and 
connectors and stored in the middleware infrastructure. 
Weaving information is specified in a Service Description 
Language (LDS). Afterwards this information is provided 
to the distributed middleware infrastructure that will use it 
at runtime to weave components and connectors 
dynamically. This increases both components and 
connectors reusability and evolution and it provides a 
powerful mechanism for late binding among them. 
Coordination in CAM/DAOP 
CAM/DAOP (Component-Aspect Model/Dynamic Aspect-
Oriented Platform) is a model and a middleware 
infrastructure that combines the benefits of both 

component-based and aspect-oriented disciplines in the 
development of complex distributed applications.  
CAM/DAOP is an extension of MultiTEL and shares with 
it features such as the explicit description of the application 
architecture and the use of this information by a 
middleware infrastructure to perform the late binding 
between components and aspects. Therefore, CAM/DAOP 
also shares with MultiTEL the advantages introduced by 
these features. There are also some differences. The main 
difference is that the main entities of CAM/DAOP are 
Components and Aspects. This makes possible to separate 
any extra-functional properties that result to be tangled or 
scattered throughout the components in an application. This 
has the advantage that we increase even more the 
reusability and evolution of both Components and Aspects.  
Another difference is that in CAM/DAOP Components can 
interact using both a message-based and an event-based 
programming models. The handling of events is resolved at 
runtime by a coordination aspect that plays the same role 
than the Connector in MultiTEL. Additionally, the 
coordination aspect can intercept messages among 
components. In this case, the coordination aspect 
introduces an additional advantage since it can be also used 
as an adapter for resolving component incompatibilities 
and integration problems. 
A final advantage is how the coordination aspect is 
implemented. Concretely, the interaction protocol 
encapsulated in the aspect is XML-based specified 
conforming to an XML Schema. Thus, the implementation 
of the aspect consists on building an interpreter for these 
protocols, instead of providing different implementations 
of the aspect for each interaction protocol. Using this 
approach the application can evolve at runtime only by 
changing the XML description of the coordination 
protocol.  
Coordination in MALACA 
MALACA provides separation of concerns in the scope of 
MAS and more concretely in the context of agent internal 
architecture. MALACA is a component-based and aspect-
oriented agent model. Inside the agent architecture, agent 
functionality is provided by components and it is separated 
from its communication, which is modelled by aspects. 
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Three main aspects are recognized as mandatory since they 
cover the basic agent communication functions in a FIPA-
platform: Distribution, Coordination through an interaction 
protocol and ACL representation. Aspects are weaved at 
runtime by a third party component (internal weaving 
infrastructure) of the architecture following a set of aspect 
composition rules. Weaving is performed when the agent 
communicates, that is when it sends and receives messages. 
As said before, agents of MAS mostly use interaction 
protocols to coordinate. This way they achieve a separation 
between how agent coordinates and how it performs its 
tasks. However, it has an impact on the internal 
development of agents, since most object-oriented 
infrastructures tangle in the same architectural unit 
computation and coordination, this time inside the agent.  
In the MALACA architecture, each ongoing conversation 
is coordinated by a coordination aspect. To perform 
protocol-compliance the coordination aspect uses a XML-
based description of the interaction protocol, which is 
given to the coordination aspect during instantiation. 
Currently MALACA provides a common implementation 
of the coordination aspect that is able to parse and use the 
XML description of an interaction protocol that follows a 
concrete XML Schema. This feature avoids implementing a 
coordination aspect for each interaction protocol the agent 
has to support. Each role participating in the interaction is 
described as an STD, in terms of states and transitions. The 
transition from a state to another carries out the execution 
of the agent functionality, which is also included as part of 
the XML-based STD description.  
INTERACTION WITH OTHER ASPECTS 
The most relevant relationship of the coordination aspect 
with other aspects at the middleware infrastructure level is 
with the distribution aspect. Let us consider that a 
distribution aspect encapsulates both localization and 
communication sub-concerns [12]. Therefore, when an 
anonymous interaction occurs – i.e. a component throws an 
event: (1) the coordination aspect is the responsible to 
manage the events thrown by components to determine 
which component(s) is/are the recipient of the information 
and forwards a message to it/them, and (2) once the targets 
are decided, the interaction is considered as an explicit 
component to component interaction and thus requires 
interacting with the localization and the communication 
sub-concerns of the distribution aspect. The relationship 
between the coordination and distribution aspects at the 
infrastructure level is also present in the agent domain. In 
the scope of the agent internal infrastructure, the 
distribution aspect encapsulates the access to a concrete 
agent platform through its done message delivery. 

CONCLUSIONS AND FUTURE WORK 
In this paper we have shown that it is possible to use 
aspect-oriented techniques to improve the separation 
between computation and coordination in middleware 
infrastructures. The main benefits of the proposed solution 
are: (i) facilitate the reusability of components in different 
contexts; (ii) well-designed support for the definition of 
complex interaction protocols; (iii) increase the 
maintainability and adaptability of final applications. 
Comparison with other approaches enhancing traditional 
coordination models to provide support for the definition 
and management of the orchestration among a set of 
interacting components is needed and it is planned as part 
of our future work. Performance evaluation of the 
presented approach will also be made. 
ACKNOWLEDGMENTS 
This work has been funded in part by the Spanish CICYT 
project with number TIN2005-09405-C02-01 and in part 
by the AOSDEurope NoE with number IST-2-004349. 
REFERENCES 
1. Papadopoulos, G. A., et al. “Coordination models and 

languages”, Advances in Computers 46 pp. 329-400. 1998. 
2. Li, G et al.” Composite Subscriptions in Content-Based 

Publish/Subscribe Systems”, Middleware 2005, LNCS 3790, 
pp. 249–269, 2005. 

3. Pietzuch, P. R. et al. ”Composite event detection as a generic 
middleware extension”, IEEE Network Magazine, Special 
Issue on Middleware Technologies for Future Communication 
Networks, January/February 2004. 

4. Ulbrich, A. et al. “Programming abstractions for contentbased 
publish/subscribe in object-oriented languages”. In 
CoopIS/DOA/ODBASE (2), pages 1538–1557, 2004. 

5. Schelfthout, K. et al. “Middleware for protocol-based 
coordination in dynamic networks”, in 'MPAC '05: 
Proceedings of the 3rd international workshop on Middleware 
for pervasive and ad-hoc computing', ACM Press, New York, 
NY, USA, pp. 1—8, 2005. 

6. Fuentes, L., et al. “Coordinating distributed components on 
the web: An integrated development environment”, Software 
Practice & Experience, 31(3):209-233, 2001. 

7. Pinto, M., et al. A dynamic component and aspect oriented 
platform, The Computer Journal, 48(4):401-421, 2005. 

8. Amor, M., et al., Training compositional agents in negotiation 
protocols using ontologies, Journal of Integrated Computer-
Aided Engineering, 11(2):179-194, 2004. 

9. W3C. “Web Services Choreography Description Language 
Version 1.0”, http://www.w3.org/TR/ws-cdl-10/ 

10. OASIS Open, Inc. “Web Services Business Process Execution 
Language Version 2.0. “, http://www.oasis-open.org/ 

11. Omicini, A. et al, eds. Coordination of Internet Agents. 
Models, Technologies, and Applications. Springer, 2001 

12. Loughran, N., et al. Requirements and Definition of AO 
Middleware Reference Architecture, http://www.aosd-
europe.net/documents/d21.pdf, 2005

 

12



AspectJ for Multilevel Security

Roshan Ramachandran
Computer Science

Victoria University of
Wellington, NZ

ramachrosh@mcs.vuw.ac.nz

David J. Pearce
Computer Science

Victoria University of
Wellington, NZ

djp@mcs.vuw.ac.nz

Ian Welch
Computer Science

Victoria University of
Wellington, NZ

ian@mcs.vuw.ac.nz

ABSTRACT
A multilevel security (MLS) system has two primary goals: first,
it is intended to prevent unauthorised personnel from accessing in-
formation at higher classification than their authorisation. Second,
it is intended to prevent personnel from declassifying information.
Using an object-oriented approach to implementing MLS results
not only with the problem of code scattering and code tangling, but
also results in weaker enforcement of security. This weakeren-
forcement of security could be due to the inherent design of the
system or due to a programming error. This paper presents a case
study examining the benefits of using an aspect-oriented program-
ming language (namely AspectJ) for MLS. We observe that aspect-
oriented programming offers some benefits in enforcing MLS.

1. INTRODUCTION
Multilevel security (MLS) [3] was developed by the US military
in the 1970’s to allow users to share some information with certain
classes of user while preventing the flow of sensitive information to
other classes of user. MLS achieves this by labelling data with clas-
sifications and assigning fixed clearances to users. The relationship
between the classifications and clearances are used to determine
if access by a user to data is permitted or disallowed. Note that
the terms “clearance” and “classification” in the context ofmilitary
systems refers to the security levels top secret, secret, confidential
and unclassified. For example, a secret military plan will have dif-
ferent levels of information that correspond to various ranks.

MLS, once thought only to be significant to military systems,is also
used in other domains like trusted operating systems, and ingrid
applications, where administrative users can set multilevel policies
on their applications, thereby providing a fine grained control on
the community users.

The Bell-LaPadula security model (BLP) [3] is a formalisation of
MLS. BLP defines two rules which, if properly enforced, have been
mathematically proven to prevent information at any given secu-
rity level from flowing to a “lower” security level. These rules are
called No Read Up (NRU) and No Write Down (NWD). The NRU
rule states that a subject cannot read an object that has a higher se-

curity level. Whereas, NWD states that a subject cannot write to an
object that has a lower security level.

To enforce MLS in a system, access control involves three entities:
an object (the entity to which access is requested), a subject (the
entity requesting access) and a reference monitor [1]. It isthe re-
sponsibility of the reference monitor to check whether every access
by the subject to an object is validated by the rules (i.e. BLP) set up
by the MLS. To help in taking this decision, an object is assigned a
classification and the subject is assigned a clearance.

Object-Orientation is an attractive approach to implementing MLS
because objects are a natural way to represent system data and well-
defined interfaces are a natural place to enforce access. However,
there are several serious problems with this approach. Firstly, an
object-oriented approach to implementing MLS can result incode
tangling and scattering if access control is manually inserted into
methods that read or write to sensitive objects. Although patterns
such as the Proxy pattern can be used to structure object-oriented
programs so that access control code is localised there are still
maintenance problems because the relationship between theproxy
and its object must be maintained at all times to prevent leakage of
a pointer allowing uncontrolled access. More seriously, anobject-
oriented approach does not provide any support for preventing the
introduction of security holes through poor design or bad program-
ming. In other words, object-oriented programming does notsup-
port programmers in achieving stronger enforcement of security.

The aspect-oriented [10] approach is often perceived as an im-
provement over the conventional object-oriented approachin deal-
ing with the issues of code tangling and crosscutting. Most previ-
ous work on implementing security using AOP have focused upon
the concerns of reducing tangling and crosscutting [10, 12]. This
paper describes how an AOP language (in particular AspectJ [2,
9, 10]) can actually go further to achieve stronger enforcement of
MLS.

2. MOTIVATION
Figure 1 shows the class diagram of a payroll system with MLS.
The payroll system is used by administrators and managers totrack
employee information, salary details, hourly rate etc. At the heart
of the diagram is the PayrollSystem class, this implements func-
tionality for adding new employees (Employee), changing their
hours worked (WorkInfo) and changing their hourly rate (PayInfo).
It is assumed that users of varying clearances access the payroll
system and we want to control information flows between them.
Note that we are not concerned with the problem of maintaining
the integrity of the system — this would require the enforcement
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PayrollSystem

- empList : Employee

+ addEmp()

+ addWorkDetails()

+ setPayDetails()

+ viewEmployee()

n

1

Employee

- name : string

- workList : WorkInfo

- payInfo : PayInfo

+ setPayDetails()

+ setHrsWorked()

11

PayInfo

- hourlyRate : double

- weeklyPay : double

+ setPayDetails()

+ viewPayDetails()n

1

WorkInfo

- hrsWorked : double

+ setHrsWorked()

+ viewWorkDetails()

Figure 1: Class diagram of a payroll system

of a BIBA-style policy [4].

Consider a scenario where there are two types of users with dif-
ferent rights: managers and employees. Managers are allowed to
view all information in the system, while employees can onlyview
the non-sensitive information contained within the Employee class.
Using BLP to enforce this requires setting up the system of clear-
ances and classifications as follows: Employee instances are as-
signed a “low” classification, WorkInfo and PayInfo are assigned
“high” classifications, managers are assigned “high” clearances and
employees are assigned “low” clearances.

With this particular choice of classifications and clearances we can
see that our access requirements described above are satisfied by
enforcement of the BLP policy. The NRU rule restricts employees
to reading Employee objects because all employees have clearances
lower than the classifications of all objects except for Employee
objects. While the NRU allows managers access to all objectsbe-
cause the manager’s “high” clearance is equal or higher thanall the
classifications of all the other objects in the system. Furthermore,
information cannot be passed by managers to employees because
managers are prevented from writing to objects that can be read
by employees (namely the Employee objects) by application of the
NWD rule.

An object-oriented approach to implementing the payroll system
would be to define a component that behaves as a reference mon-
itor. This would take three arguments: the user’s clearance, target
object’s classification and whether the requested action isa read or
write operation. The reference monitor is responsible for deciding,
based on the BLP rules, whether or not the user is authorised to ac-
cess the object. For this to work, the programmer must either: insert
access control code in all methods that read or write the protected
objects (e.g.setPayDetails()); or create proxies containing
the access checking code for the protected objects. Either way,
he/she mustmanually identify those methods which need access
control. This, of course, leaves open the possibility of programmer
error — that some method may read/write a protected object with-
out access control simply because the programmer missed it.Since
humans are fallible, we believe it follows that an object-oriented
approach is an inherently error prone way of enforcing MLS.

The problem is that we want code to be generated and added auto-
matically based upon a declarative specification that defines what
is a controlled information flow. Ideally this would be as finer-
grained as possible to allow greatest control. Aspect-Oriented Pro-

abstract aspect BLPPolicy {

abstract pointcut read(Object o);
abstract pointcut write(Object o);

// No Read Up (NRU)
before(Object o) : read(o) {
int oc = classification(o);
int sc = clearance(Thread.current());
if(sc < oc && sc != TRUSTED) {
throw new SecurityException();

}}

// No Write Down (NWD)
before(Object o) : write(o) {
int oc = classification(o);
int sc = clearance(Thead.current());
if(oc < sc && sc != TRUSTED) {
throw new SecurityException();

}}

abstract int clearance(Object o);
abstract int classification(Object o);

}}

Figure 2: The generalised BLPPolicy aspect.

gramming offers such an approach and, we argue, can provide a
stronger enforcement of security than is possible through conven-
tional Object-Oriented Programming. This stems from the fact that
AOP languages allow quantification over a set ofjoin points. For
example, we can capture all reads and writes to a given set of ob-
jects automatically using fieldset andget pointcut designators
(as in AspectJ). Once we intercept a field read or writejoinpoint,
we can usebefore advice to perform the authorisation. This way,
we avoid having to manually identify which accesses need autho-
risation. This guarantee provided by the quantification property of
aspect-oriented languages is very difficult to achieve in traditional
object-oriented languages.

An AspectJ implementation of the BLP policy for the payroll sys-
tem is shown in Figures 2 and 3. The two rules of the BLP model
are encoded in an abstract aspect, where the concepts reading and
writing are represented, but left unspecified. In this way, the policy
can be (re)used simply by extendingBLPPolicy and declaring
these concepts appropriately (as done in Figure 3). In the imple-
mentation, we have simply usedIntegers for the clearance and
classification values; a more general approach might be to use an
(abstract) lattice which the user would define appropriately. The
use of the specialTRUSTED status will be discussed later.

Our implementation shares some similarity with the AspectJim-
plementation of the Subject-Observer protocol [7]. One difference
is that we have not made the roles (i.e. subject and object) explicit
using interfaces as role markers (as done in [7]). This wouldhave
simplified our pointcut definitions to some extent. However,un-
like application classes, AspectJ does not allow system classes to
be modified, forcing us to use the somewhat less elegant approach.

3. CASE STUDY: FTP SERVER
This case study focuses on implementing MLS in a non-trivial(ap-
prox 20 classes), third-party application called jFTPd [8]. This im-
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aspect PayrollPolicy extends BLPPolicy {

pointcut read(Object o) :
(get(* WorkInfo.*) || get(* PayInfo.*) ||
get(* Employee.*)) && target(o);

pointcut write(Object o) :
(set(* WorkInfo.*) || set(* PayInfo.*) ||
set(* Employee.*)) && target(o);

int clearance(Object o) {
// lookup thread clearance, possibly
// resulting in user authentication

}
int classification(Object o) {
// lookup object classification

}}

Figure 3: The payroll system’s security policy.

plements an ftp server and we chose this as a case study for several
reasons:

• An FTP server is a good example of an application requir-
ing MLS enforcement. Users can read (download) and write
(upload) files to the ftp server. Confidentiality needs to be
taken care of to ensure secret files are only read by users
with proper clearance. Likewise, users must be prevented
from downgrading a file’s classification (accidentally or oth-
erwise).

• jFTPd is implemented in the object-oriented paradigm and
has a built-in (albeit basic) security policy. This allows some
comparison with the AOP implementation of MLS.

• jFTP is a third-party application with sufficient complexity
that it might expose any limitations on the reusability of our
abstract BLP policy aspect.

3.1 Overview of jFTPd
jFTPd is a Java implementation of an FTP server. jFTPd is multi-
threaded, so many users can connect and transfer files simultane-
ously. Figure 4 shows the original class diagram of jFTPd. For
clarity, only classes concerning the access control for writing or
reading files and basic ftp authentication are shown. The main class
is FTPHandler which takes care of incoming connection setup re-
quests. For every request,FTPHandler creates a new thread
(i.e. FTPConnection) and assigns the incoming connection to
it. This services all FTP commands from the client by delegating
them to thedoCommand()method (inFTPConnection). This
in turn delegates onto a number of command-specific processing
methods.

FTPConnection maintains a session for each connected user
(i.e.FTPUser) and an object (i.e.FTPSecuritySource) which
acts as a reference monitor containing the access control logic.
Calls to this are scattered throughout the methods ofFTPConnection
to restrict certain types of access. Specifically, users mayonly ac-
cess files in their home directory, whilst the anonymous usermay
be allowed (depending upon the configuration) certain access to
files in the anonymous directory.

«interface»

Runnable

1n

FTPSecuritySource

1

1

1

1

FTPHandler

FTPUser

FTPConnection

Figure 4: Original structure of jFTPd

3.2 AspectJ implementation
Our AspectJ implementation of the MLS security policy proceeds,
as before, by extendingBLPPolicy. The goal is to intercept
all read and write operations to perform the required authorisa-
tion checks. But, what are the read and write operations in this
case? In the previous example, the objects (object as in MLS)were
Employee, WorkInfo andPayInfo instances, while the sub-
jects were threads. In this case, however, the objects are files and
the subjects instances ofFTPConnection. Therefore, instead of
using fieldset or get pointcuts to capture read or write opera-
tions, we must intercept all attempts to read or write files.

Figure 5 outlines the implementation. Several details havebeen
omitted for brevity. The read and write pointcuts are definedin
terms of the Java standard library calls for reading and writing
streams. We must intercept on, for example,InputStream rather
thanFileInputStream; otherwise, accesses to an instance of
the latter with a static type of the former will be missed. When a
read or write to some stream type is intercepted, we have access
to the stream object in question. From this, we must determine
the true subject (i.e. the actual file being manipulated). Unfortu-
nately, the Java APIs do not permit this directly (e.g. we getcannot
get back a file name from an instance ofFileInputStream).
To overcome this, we intercept the creation points of these streams
and manually associate with them the file name in question.

Threads other than instances ofFTPConnection are regarded as
having system/administration roles and given the specialTRUSTED
status (see Section 4.5 for more on trusted subjects). When aread
or write operation is intercepted, we must determine the true sub-
ject (i.e. the user) in order to determine the appropriate clearance
level. This information is maintained byFTPConnection as part
of the original implementation. However, as outlined in Figure 4,
instances ofFTPConnection implement theRunnable inter-
face (rather than extendingThread). This poses a problem as,
although we can determine the thread responsible for a read/write
operation viaThread.currentThread(), the Java API again
provides no way to obtain the instance ofFTPConnection it is
associated with. As before, we overcome this by intercepting cre-
ation points forFTPConnection objects and maintaining their
thread associations explicitly.

4. DISCUSSION
In this section we discuss our approach’s granularity of control,
how authentication is accommodated, the problems of covertchan-
nels, how improved modularity and maintainability are achieved,
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public aspect JFTPdPolicy extends BLPPolicy {
Map<Object,String> objects = ...;
Map<Thread,FTPConnection> subjects = ...;

pointcut read(Object o) : target(o) &&
(call(* InputStream.read*(..)) ||
call(* Reader.read*(..)) ||
...;

pointcut write(Object o) : target(o) &&
(call(* OutputStream.write*(..)) ||
call(* Writer.write*(..)) ||
...;

// *** OBJECT intercepts ***
after(String s) returning(Object o): args(s)

call(FileInputStream.new(String)) {
objects.put(o,s);

}

after(File f) returning(Object o): args(f)
: call(FileInputStream.new(File)) {
objects.put(o,f.getName());

}

... // other object creation intercepts

// *** SUBJECT intercepts ***
after(FTPConnection f) returning(Thread t)
: call(Thread.new(Runnable)) && args(f) {
subjects.put(t,f);

}

... // other subject creation intercepts

// *** BLPPolocy methods ***
int clearance(Object o) {
FTPConnection f = subjects.get(o);
if(f == null) { return TRUSTED; }
else {
String user = f.getUser().getUsername();
... // lookup clearance for "user"

}}

int classification(Object o) {
String file = objects.get(o);
if(f == null) { return TRUSTED; }
else {
... // lookup classification for "file"

}}
...

}

Figure 5: An AspectJ-based MLS security policy for jFTPd.

the issue of trusted subjects and how to appropriately handle secu-
rity failures.

4.1 Granularity of Control
In the case study we enforced security by intercepting system calls
rather than application calls. For example, we interceptedfile reads
and writes rather than defining a read or write pointcut that inter-
cepted application methods related to file access. The benefit of
our system call approach is we get complete assurance that every
read or write operation on a file has been validated by following the
rules of No Read Up and No Write Down. Thus, we are not affected
by the introduction of new application-level methods because these
will use system calls to interact with the file system and therefore
will be constrained by the BLP security policy. However, we are
affected by changes to system classes that introduce new system
calls. For instance, any newly introduced system API that deals
with the reading or writing to files needs to be reflected in theex-
isting pointcuts used to control access to system classes. However,
we consider this to be less of an issue than the problems of tra-
ditional object-oriented languages, for several reasons:firstly, it’s
unlikely that system APIs will change frequently: secondly, there
are fewer things which need to be identified by the programmer.

4.2 Authentication
In the case study we used existing jFTP authentication mechanisms
to ensure that users are authenticated before making authorisation
decisions. An open question is how to implement authentication
within our framework. For example, should authentication be treated
as a separate aspect or part of the authorisation aspect because it is
a fundamental precondition for proper application of a security pol-
icy? The advantage of a separate aspect is that authentication could
be easily plugged in and out, for example we could swap a localau-
thentication mechanism for a federated authentication mechanism.

4.3 Covert Channels
Our current implementation does not address the problem of covert
channels, that is information flows that are not controlled by a secu-
rity mechanism. For example, a jFTP user with a “high” clearance
could communicate with a user with a lower clearance by creat-
ing files with a “high” classification whose existence can be seen
but the contents not read. This could be used to signal information
read by the user with a higher clearance to the user with the lower
clearance. To address this we could extend our implementation to
hide the existence of files that cannot be accessed by the current
user.

Another type of covert channel might arise if there are informa-
tion flows not intercepted by our pointcuts. For example, in the
case study we concentrated upon information flow via file reading
and writing and assumed that no other information flows between
threads was possible. However, what if we were wrong? Threads
might have access to shared static fields and use these for commu-
nication. There are at least two solutions. We could use someform
of static analysis to determine that flows between threads other than
the ones we are dynamically checking do not occur. Unfortunately
this might not be practical for all programs because of complexity.
Alternatively, we could implement some form of dynamic point-
cut for inter-thread information flow. This might be realized by
intercepting all state changes (including variable reads/writes and
parameter passing) and enforcing BLP. The disadvantage of this
approach is the cost of intercepting all state changes. However, it
may be possible to use it in conjunction with a more constrained
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form of static analysis to ensure enforcement is added only where
threads may communicate with each other rather than throughout
the application.

4.4 Modularity
By having the MLS access control logic in an aspect supports the
well known AOSD notion of improved modularity and maintain-
ability. This also makes it possible to have multiple authorisation
aspects woven into the same base object. For example, in jFTPd,
we could have a separate authorisation aspect executing after the
JFTPdPolicy aspect to give finer control over anonymous users.

4.5 Trusted Subjects
There are sometimes legitimate reasons to relax the BLP policy
for some subjects. Consider a listener thread that receivesand dis-
patches requests to worker threads or a logging thread that updates
a range of application objects. These threads may need to violate
the BLP rules in order to function. Traditional MLS systems allow
this by introducing the notion of trusted subjects who are allowed
to violate the security rules.

In our case study this notion is satisfied because threads other than
those associated with instances ofFTPConnection are treated
as trusted. We believe these threads are worthy of that trustsimply
because we have inspected their code to determine there are no
violations of the BLP rules. This is not ideal, although it remains
unclear how else such trust can be established.

4.6 Security Failures
Our current implementation raises aSecurityExceptionwhen
the BLP policy is violated. This may cause the client to crashif
it does not expect this type of exception and it could also leave
the application in an inconsistent state if the exception happens af-
ter a thread has updated one object but was denied access to an-
other related object1. We can address the first problem by adding
application-specific code to our aspects that create exceptions our
client will be able to handle. The second problem is more problem-
atic and may require the use of transactions to allow all-or-nothing
semantics to be applied to controlled operations. The drawback of
this is the requirement to understand the application semantics suf-
ficiently in order to put all the security-related operations within a
single transactional scope.

5. RELATED WORK
Implementing authentication and authorisation as crosscutting con-
cerns for distributed object-oriented programs has already been ad-
dressed by several researchers, for example Lasagne [11], System
K [12] and jFTPd [5, 6]. Lasagne implements an access control
list style policy for a dating application. System K implements a
MLS security policy for a third-party distributed editor. jFTPd im-
plements an access control list style policy for a third-party FTP
server.

These papers differ from our approach in that they use AOSD tech-
niques with pointcuts that are tied to manually identified methods.
This can lead to error if a method is missed or misidentified. In-
stead we concentrate on how to avoid this problem by determining
pointcuts using fundamental properties of the applicationthat are
independent of functionality. For example, pointcuts tiedto file

1Consider a transfer of money between two different types of ac-
count.

update are better than pointcuts tied to specific methods believed
to update files. This is an approach that was suggested by Welch
and Stroud with respect to their implementation of MLS usinga
metaobject protocol[12].

6. CONCLUSION
In this paper, we have described an approach to incorporate MLS
using aspects. In the case study, we used AspectJ to intercept Java
library calls in order to provide a strong enforcement of MLSpol-
icy. By following this approach, we reduce the burden on program-
mers to correctly identify all the places in the code where authorisa-
tion is required. This quantification achieved by AspectJ isdifficult
to achieve in an object-oriented language.

We observe that even though the object-oriented paradigm provides
a natural way to implement multilevel security, it falls short of pre-
venting security flaws caused by bad programming or poor design.
In this paper, we have demonstrated how aspects, in comparison
to object-orientation, can guarantee better security assurance when
implementing multilevel security.
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ABSTRACT
Nowadays, the need for grid systems is becoming more
and more relevant to applications demanding either large
amount of data storage or computation. In this paper, we
propose an approach that permits thread’s distribution
in hetereogenous grid systems without any middleware
layer or thread’s API modifications so that the program-
mer feels comfortable and shares variables in complete
transparency. In order to achieve this task, we will use
the Aspect-Oriented Programming and Java’s mechanism
such as introspection and RMI.

Keywords
grid, thread, aspect, AspectWerkz, java, scalability, intro-
spection

1. INTRODUCTION
A grid system is the collection of either homogeneous or

heterogeneous computers called nodes which are intercon-
nected to each other in order to enhance the overall sys-
tem capabilities. Amongst these capabilities, the follow-
ings are the three principal ones[1]: enhanced data storage
by aggregating the storage spaces of each node, rapid exe-
cution of computation-demanding applications by taking
advantage of the computing power of every node and the
aggregation of the bandwidths of the nodes in order to
obtain a larger bandwidth for every connection destined
for the outside of the grid’s domain.

On the other hand, the applications of such grid sys-
tems must be either compiled at every node of the gird or
written in a language portable to every node of the grid.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

The realization of the first case is a tedious and costly
task. Therefore, we have concentrated our efforts on the
second case by taking Java as the programming language
because of its multiplatform characteristic.

Nevertheless, in order that the applications written in
Java benefit from the computing grids, they must be de-
composable into pieces that can be migrated from one
node to another. Java’s threads cannot accomplish this
task, so a more convenient solution must be found.

1.1 Contribution
We have implemented Java facilities that permit mi-

gration of the Java threads. This permits the application
programmer to use grid systems in order to write sim-
ple, highly scalable and efficient programs. In this paper,
we describe an approach called MigThread that permits
the migration and execution of Java threads on differ-
ent nodes of the grid and corresponds to the following
specifications: sharing of variables among the threads, no
modification of the JVM (Java Virtual Machine), Java’s
syntax and the program interface to which the program-
mer is accustomed. Finally, no deployment of additional
application to the nodes other than the JVM of course.

In order to satisfy these specifications, we used the fol-
lowing mechanisms: adding of advices to certain portions
of the user code thanks to the Aspect-Oriented Program-
ming, Java’s introspection mechanism which allows the
program to discover the variables and the methods of a
class from its name, Remote Method Invocation (RMI),
grid file system’s facilities which permit to access a Java
application from any node and distant process execution
by SSH.

We were forced to go back to the notion of process in
order to realize efficient migration and then to return to
the notion of threads (starting from these processes) in
order to permit sharing of variables.

Our approach does not include the following functional-
ities: checkpointing, serialization, scheduling, fault toler-
ance and synchronization of Java threads. However, these
functionalities will be included in upcoming releases.

1.2 The Plan
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The rest of this paper is organized in the following man-
ner: section 2 gives a quick overview of the approaches
used to distributes threads in the grid system whereas
section 3 presents Aspect-Oriented Programming as well
as AspectWerkz. Section 4 presents our approach and its
mechanism. Finally, the obtained results as well as the
perspectives are discussed in section 5 and the conclusion
is given in section 6.

2. STATE OF ART
Much work has been concentrated on migrating threads

in grid systems. These are based on a middleware layer
which provides grid services; examples of such a mid-
dleware layer are GTPE[6] (Grid Thread Programming
Environment) of the University of Melbourne which is
based on GridBus Broker[2] and PROACTIVE of IN-
RIA[5]. Other works are based on distributing Java’s vir-
tual machine like the cJVM[3] approach. It is important
to note that the middleware approach is based on modi-
fying the syntax of the Java language whereas the second
approach is based on modifying the virtual machine.

3. THE ASPECT ORIENTED PROGRAM-
MING

The computer programs are generally composed of two
important perspectives: a functional perspective which
permits the program to realize the things that it was de-
vised for and the non-functional perspective which per-
mits the program to be integrated into its environment
or to respect certain specifications. Examples of non-
functional perspectives are authentication or the event
logging procedures. However, such perspectives are often
blended in with the functional code, what makes their
evolution and separation a very difficult task. These scat-
tered pieces of code of the program are called cross cutting
concern.

The aspect programming[4] permits to separate this
non-functional code from the functional one when writing
the program. There exists different approaches to achieve
this task but we will quickly present only AspectWerkz [7].

3.1 AspectWerkz
An aspect contains a code called advice that will be

executed at pointcuts. AspectWerkz proposes to define
the pointcuts in an XML file and the advices in Java.
The pointcuts are described by a logical language which
permits to specify particular points in the code where the
advices can be applied. These points can be, for example,
method calls or reading and writing of variables.

For instance, the following files permit to display ”the
foo method will be called” every time the method foo of
the application is called.

• the file that contains the advice

public class aspect_foo
{

public void call_foo_method ()

{
System.out.println("the foo

method will be called");
}

}

• and the file that describes the pointcut:

<aspectwerkz >
<aspect class="aspect_foo">

<pointcut
name="foo_call"
expression="execution (* *.foo

(..))"
/>
<advice

name="before_foo_call"
type="before"
bind -to="call_foo_method"

/>
</aspect >

</aspectwerkz >

AspectWerkz possesses a static and a dynamic weaver.
In our approach, we used only the static one.

3.2 The Aspect Programming of our Ap-
proach

We are going to use the aspect programming in order to
apply an advice before reading or writting the variables
of the run() method. Thus, in our approach, we will
be using a get or set pointcut types. Unlike AspectJ,
AspectWerkz’s API will allow us to discover the read or
written variable. Then the advices will permit to update
this variable before carrying out any operation related to
it.

4. OUR APPROACH
Our approach is made up of two parts: migration of

threads towards a distant node and the sharing of vari-
ables among the migrated threads.

4.1 Migration Towards a Distant Node
To achieve this task, a MigProcess class is created. Its

main purpose is to realize a migration towards a distant
node but does not allow any communication among the
migrated tasks. Hence, we can consider these migrated
tasks as processes. This class retrieves the API of JAVA
threads but on the other hand modifies the signature of
the join() method and makes it final so that neither it
can be overridden nor it can be overloaded by the classes
that inherit it. When the start() method is called, the
task peels off in order to be executed on another node.
When the join() method is called, the father process re-
mains blocked until the execution of the distant process
terminates. This method is used in order to synchronize
the father with the child processes. We can notice in this
class the existence of a main() method which allows it to
become an executable class. This method will permit to
resume the migrated process at the distant node.
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In order to realize a migration, the following steps must
be taken: separation of the migrating code from the prin-
ciple application, migration towards the distant node, dis-
tant execution and synchronization between father and
child processes.

In this paper, we will not delve into the details of these
different steps. On the contrary, we consider that the
threads are already distributed among the nodes and see
how the variables can be shared among the threads.

4.2 The Principle of Variable Sharing Among
Local Objects and Migrating Threads

4.2.1 Highlights of the Proposition
During the application’s compiling phase, the program-

mer must call the AspectWerkz weaver which will weave
the predefined aspects to his code. These aspects will
play the role of capturing all read and write operations
of the variables of the migrating thread’s run() method.
For each read and write operation, a call to a variable’s
address server is performed in order to know the address
of the machine (thread) that holds the most recent value
of the concerned variable. If this updated value is not
found in the local migrating thread, it will be obtained
by an RMI call to the thread that has the most recent
value.

Hence the table of this variable’s address server is up-
dated. It is important to note the presence of a dis-
tributed thread context: not all updated values of the
variables are found in the same migrating thread. Each
migrating thread possesses a portion of the application’s
context and works locally as long as this portion is nei-
ther read nor written by another node of the grid. These
mechanisms are included in the MigThread class which is
the basic class of our approach and all migrating threads
must inherit it.

4.2.2 Mechanism
As explained above, each migrating thread must in-

herit the MigThread class. Thus, each will behave like a
Java thread but with a context distributed among several
nodes of the grid. The MigThread class extends JVM’s
UnicastRemoteObject class which makes it an RMI com-
ponent. Likewise, every instance of the MigThread class
is associated with an instance of the MigProcess class.
Finally, this class uses the start() and join() methods of
the standard thread API.

When the start() method of the migrating thread is
called, the start() method of the ancestor class MigThread
is executed.

This method performs the following operations:

1. if it is the first migrating thread of the applica-
tion, an RMI register is created at the local node
of the application and an empty static hashtable is
reserved (belonging to the MigThread class),

2. the MigProcess class associated with this instance
of the class is started.

The migrating thread migrates to the distant node and
the main() method of the MigProcess is called. This
method executes the pre run() method which creates an
RMI register at the distant node and then executes the
run() method of the migrating thread.

4.2.3 The Address Server
The server of the variable’s address is encapsulated

within the MigThread class. It consists of a static hashtable
and an RMI register using the CommWithBase interface.
The RMI register and the hashtable are created during
the first execution of the distant thread. They remain
on the machine that executes the Java application and
the hashtable’s static modifier permits it to remain un-
modified even if all the migrating threads terminate their
execution.

The CommWithBase interface defines the following method:

public String getAddress(String var ,
String host , String name);

A call to this method is included in the advices which
are bind to the code of the application in order to know
the migrating thread that has the most recent value of
the variable var.

The host and name parameters are used by the server
in order to update the hashtable. In fact, we consider that
a migrating thread that asks for the address of a variable,
will obtain the most updated value. For each call to the
getAddress() method, the table is updated.

This table is initially empty and as, during the migra-
tion, the context of the migrating threads is serialized,
we consider that the first migrating thread that asks for
a variable is also the one that possesses the most updated
value.

4.3 The Migrating Threads
Every migrating thread carries with it an RMI server

included in the superclass MigThread. This RMI server
permits a thread to provide another thread a variable that
will be updated in its context. Likewise, each thread is
able to ask another thread for the value of a variable.

Therefore, the architecture for the exchange of variables
is not centralized but is totally ”point to point”. On the
other hand, the server of the variable can be a real bottle-
neck which imposes a client/server architecture to retrieve
the addresses of the variables.

At the compilation time, the run() method of the mi-
grating threads is modified by the AspectWerkz’s prepro-
cessor which captures all the read and write operations of
the variables. When a read or write operation is called,
the methods of ExtendedInformation interface are called
by the advices.

4.3.1 The ExtendedInformation Interface
This interface is composed of the following two meth-

ods:
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public void getVar(String variable);
public void setVar(String variable);

It permits the advices to update the variable that looks
to be read or written.

The getVar() method, called during each read opera-
tion, sends a query to the address server in order to re-
trieve the address of the variable variable. If this variable
is local, it stops at this point. If the variable is not lo-
cal, its type is determined. A second query is sent to the
thread possessing the updated value and then an update
is performed locally. Thus the thread can perform the
read operation.

The setVar() method, called during each write opera-
tion, sends only one query to the address server in order
that this latter updates its address table. Thus the thread
can perform the write operation.

4.3.2 The RMI Server of the Migrating Threads
This server works with the Information interface. This

interface permits the threads to ask for the variables and
possesses the methods of the following type:

// A method to retrieve an object called
variable

public Object getObject(String variable)
throws RemoteException ,

NoSuchFieldException ,
IllegalAccessException;

// A method to retrieve an integer
called variable

public int getInt(String variable)
throws RemoteException ,
NoSuchFieldException ,
IllegalAccessException

// The same for every type

When one of these methods is called, the asked vari-
able is searched by the introspection mechanism using its
name. When it is found, its name is sent to the thread
that asked for it or an exception of NoSuchFieldException
type is raised.

4.3.3 The Used Aspects

4.3.3.1 The advices.
The advices that we used are of two types: before reading

and before writing. They recognize the name of the vari-
able which will be read or written and then they call the
getVar() or setVar() methods according to the case.

4.3.3.2 The pointcuts.
The pointcuts are dynamically generated before the

weaving phase of the user. In fact, AspectWerkz can not
determine the class from its superclass. Hence, we must
find all the classes that extended the MigThread class
and then for each of these classes the following type of
pointcut must be created:

<pointcut name="write_AMigratingThread"
expression="set(* *. AMigratingThread
.*) AND withincode (* *.
AMigratingThread.run())" />

<pointcut name="read_AMigratingThread"
expression="get(* *. AMigratingThread
.*) AND withincode (* *.
AMigratingThread.run())" />

<!-- and so forth for all the classes
that extend MigThread -->

for the AMigratingThread class.
The advices are attached to these pointcuts thanks to

the following definitions:

<advice name="before\_reading" type="
before" bind -to="
reading_AMigratingThread" />

<advice name="before\_writing" type="
before" bind -to="
writing_AMigratingThread" />

<!-- and so forth for all defined
pointcuts -->

If the inheritance manager of the AspectWerkz’s point-
cut language would have been integrated, only two point-
cuts and two pointcuts-advice associations will have to be
necessary.

4.4 Synthesis
Below is the flowchart of the read and write operations

of a variable.

Figure 1: Flowchart of the read and write opera-
tions of a variable

5. RESULTS AND PERFORMANCES
We tested our approach by using a simple bubble-sorting

algorithm on a grid composed of 4 machines each possess-
ing dual processors. This sorting method is not the opti-
mum one and this is acceptable because our main objec-
tive was to prove the validity of our approach. It executes
on an array whose elements are inversed and functions in
its worst case at O(n2).

We present the results in the form of a curve graph
where the horizontal axis represents the number of used
threads to sort an array of 500000 elements and the ver-
tical axis represents the execution time to sort this array.
On the diagram, we will find the curves for sorting the

21



array using Java threads, local MigThreads and distant
MigThreads.
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Here we can notice that the three curves overlap for a
number of threads of 1 and 2. This is normal because the
machines on which these tests were performed possess a
double processor. We can equally notice the absence of
any significant overhead by the MigThread approach us-
ing 1 or 2 processes. For a thread number of 8, the curves
start to diverge: the portion of the curves of the Java
thread and the local MigThread approaches have a sim-
ilar variation whereas the distant MigThread approach
gets benefit from distribution. The results of the distant
MigThread approach are completely in conformity with
the theoretical results of parallelism with 8 threads ex-
ecuting on 8 different processes. For 16 threads, both
the distant MigThread and Java thread approaches ob-
tain the same gain in performance. This is due to the
progressive drop off of the complexity because the origi-
nal array is partitioned into several sub-arrays. The local
MigThread approach begins to become less efficient than
the Java thread one. In fact, it is clear that these two
approaches are both theoretically efficient but the over-
head which is due to the network connection of the lo-
cal loop starts to be a dominant factor in performance
degradation. Finally, with 32 threads, local MigThread
approach is less efficient than the Java thread approach.
The distant MigThread approach varies in performance as
the Java thread approach because the use of 8 processors
masks away the problem of overhead due to the migration
of the MigThreads.

We performed another test with 5000 elements. The re-
sults weren’t good enough because of the migration over-
head.

6. CONCLUSION
We have succeeded in distributing an application through-

out a heterogeneous grid by respecting our constrains.
Indeed, by using Java, the execution of applications in a
heterogeneous grid becomes plausible. On the other hand,
neither Java’s parallel API nor its virtual machine are

modified and the application can be distributed among
several nodes of the grid without deploying any applica-
tion other than the JVM.

The obtained performances, by not taking into account
the problem related to the migration time of the MigTh-
reads through the network, are almost the same compared
to the ones that could have been obtained if the machine
on which threads were executed possess the same num-
ber of processors as the grid to which the MigThreads are
migrated.

Nevertheless, the absence of synchronization makes cod-
ing the program a difficult task. Hence it is important
that this synchronization be done in an explicit manner
for example by means of a semaphore server. That is the
reason why we are actually using AOP approach in order
to synchronize the threads by using classical Java threads
for synchronization.

Hence we will have a complete solution of distributing
Java applications in a heterogeneous grids.

7. REFERENCES
[1] V. Berstis. Fundamentals of grid computing. In

Redbooks, 2002.

[2] R. Buyya and S. Venugopal. The gridbus toolkit for
service oriented grid and utility computing: An
overview and status report. In First IEEE
International Workshop on Grid Economics and
Business Models (GECON 2004, April 23, 2004,
Seoul, Korea), 2004.

[3] IBM. A scalable single system image vm for java on
a cluster, 2000.
http://www.haifa.il.ibm.com/projects/systems/cjvm/overview.html.

[4] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented programming. In M. Akşit and
S. Matsuoka, editors, Proceedings European
Conference on Object-Oriented Programming, volume
1241, pages 220–242. Springer-Verlag, Berlin,
Heidelberg, and New York, 1997.

[5] ProActive. Inria, 1999.
http://www-sop.inria.fr/oasis/ProActive.

[6] H. Soh, S. Haque, W. Liao, K. Nadiminti, and
R. Buyya. Gtpe (grid thread programming
environment). In 13th International Conference on
Advanced Computing and Communications (ADCOM
2005), 2005.

[7] WebSite. Aspectwerkz - plain java aop - overview,
2005. http://aspectwerkz.codehaus.org/.

22



Classifying and documenting aspect interactions 
 

Frans Sanen, Eddy Truyen, 
Wouter Joosen 

Distrinet Research Group 
Department of Computer Science 

K.U.Leuven 
Celestynenlaan 200A, 

B-3001 Heverlee - Belgium 
Tel. (+32) (0) 16 32 76 02 

frans.sanen@cs.kuleuven.be 

Andrew Jackson,  
Andronikos Nedos, 

Siobhán Clarke 
Distributed Systems Group, 

Trinity College Dublin 
Dublin 2 - Ireland, 

Tel (+353) (0) 16081543 

anjackso@cs.tcd.ie 

Neil Loughran, 
Awais Rashid 

Computing Department 
Infolab 21, 

Lancaster University 
(+44) (0) 1524 510503 

loughran@comp.lancs.ac.uk 
 
 
 

ABSTRACT 
In this position paper, we propose an approach for classifying and 
documenting aspect interactions. Making aspect interactions 
explicit will result in an important form of knowledge that can be 
shared or used over the course of system evolution.  

Keywords 
Aspect-Oriented Software Development, Interaction 

1. INTRODUCTION 
Aspects enable isolating and modularizing crosscutting concerns. 
In the literature, aspects that are orthogonal to one another have 
often been used to illustrate the benefits of Aspect-Oriented 
Software Development (AOSD) [8]. However, are all aspects 
truly orthogonal in reality? It is a simple question with an equally 
simple answer. Beyond some trivial lower-level aspects, there will 
be interdependencies between the more interesting aspects, 
resulting in aspect interactions. 

Our motivation is based on the relevance of the problem. Aspect 
interactions are both technology and domain independent. The 
domain independence can be motivated by the example 
interactions that are known for numerous application domains, 
such as telecommunications, email, thermo control, policy-based, 
multimedia, middleware and other systems [2, 3, 4, 6, 11, 13, 15, 
16]. Due to this technology and domain independence, solutions 
for aspect interactions will be generally applicable. As a 
consequence, aspect interactions can directly endanger the 
integrity, availability and reliability of their enclosing 
infrastructure. Future expectations aren’t good either, because, in 
our opinion, the amount of aspect interactions will keep 
increasing. Since software development is subject to reduced 
time-to-market cycles, an aspect-oriented system will need to 
cope with evolution beyond delivery and unanticipated changes 
during the maintenance phase. Additionally, more and more 
aspects will be developed by third parties, independently of the 
existing platform. Garlan et al. [10] argument that software 
elements developed independently of each other are the main 
reason causing interactions because they make implicit or explicit 
assumptions that are only valid if the software element is 
operating in isolation. Applying their idea to AOSD gives us 
aspects, which make implicit or explicit assumptions that are only 
valid if the aspect is the only aspect composed with the base 
system, as the main reason causing interactions. Unfortunately, 
current systems cannot guarantee correctness when aspects are not 
tightly integrated with the base system.  

There exists a large set of publications on interactions, especially 
in the telecommunications domain [4, 13]. However, interactions 
also arise in complex systems such as middleware and product 
lines [2, 15]. In the aforementioned systems, there is a common 
agreement and wide acknowledgement of the necessity of 
handling interactions. First of all, it is important to realize that not 
all interactions are harmful. Both positive and negative aspect 
interactions exist. Therefore, we propose a classification of aspect 
interactions in which this distinction is reflected. The main benefit 
from this classification is that by having different types of 
interactions common patterns of interaction and their response 
types may arise. Once we have a substantial list of interactions, 
analysis of the examples for a specific type of interactions may 
reveal these common patterns. Secondly, to the best of our 
knowledge, a means for explicitly documenting aspect 
interactions is lacking. Therefore, we propose an approach for 
documenting aspect interactions, and, hence, making them 
explicit. This will result in an important form of knowledge that 
can be shared or used over the course of system evolution. Aspect 
interactions then can be addressed if they are negative or kept as 
part of system documentation if they are positive. 

Obviously, this form of knowledge about interactions can be 
useful at different stages of the software life cycle. For instance, a 
middleware platform can be developed to be able to interpret 
implementation-oriented interactions automatically whereas an 
architectural design tool can exploit interactions exposed by 
requirements-level composition and analysis. Especially the latter 
case of an architectural blueprint capturing design know-how that 
resolves certain axiomatic interactions – interactions that are 
invariant – is the long term result we aim for. 

The rest of this paper is structured as follows. In Section 2 we 
present the example application we use to give examples of aspect 
interactions. We propose a classification of aspect interactions in 
Section 3. Our proposed approach to document aspect interactions 
explicitly is elaborated and illustrated in Section 4. Section 5 
discusses our work. Some related work is covered in Section 6. 
Finally, this position paper is concluded in Section 7. 

2. EXAMPLE APPLICATION 
The example application we use to give examples of aspect 
interactions in our classification is an online auction system that 
allows people to negotiate over the buying and selling of goods in 
the form of English-style auctions. The system only allows for 
enrolled users to log into the system to start a session in which 
they can buy, sell or browse through auctions available. When one 
wants to follow an auction, one must first join the auction. Once 
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one has joined an auction, one may make a bid. One only can bid 
before an auction closes. After it is closed, the system calculates 
the highest bid and checks if it meets the reserve price issued by 
the seller. Finally, the relevant parties are informed of the 
outcome of the auction. 

In this application context, we limit our scope to three concerns1: 
persistence, security and context-awareness. Based on discussions 
with experts from all three domains, we came up with an initial 
breakdown for these concerns into sub-concerns in order to make 
the interaction documentations as concrete as possible. An 
important criterion for these breakdowns was the orthogonality of 
the sub-concerns to structure further analyses more easily. 
Security encloses authentication, authorization, non-repudiation, 
integrity, confidentiality and auditing. Persistence is broken down 
into state encoding, state change detection, state-access, 
transactions, caching and logging. Our context-awareness concern 
breakdown distinguishes between context monitoring, inference 
and action. We start from the assumption that all these sub-
concerns can be realized through aspects. 

3. CLASSIFICATION  
Aspects can interact in multiple ways. In what follows, we 
distinguish between four different types of aspect interactions: 
mutual exclusion, dependency, reinforcement and conflict.  

• Mutual exclusion encapsulates the interaction of mutual 
exclusiveness. For example, if there are two aspects that 
implement similar policies, or algorithms, the situation can 
arise where only one such aspect must be used. No 
mediation is possible because the aspects are not 
complementary: only one of them can be used, the other 
cannot. With respect to the auction example this might 
simply be the choice of a scheme for caching particular 
records in order to increase performance. If two mutually 
exclusive schemes were weaved, results will be 
unpredictable or undesirable. Another example might be a 
specific product configuration using persistence that 
included both relational and object mapping schemes, which 
could result in data duplication or wrong encoding in the 
target database. 

• Dependency covers the situation where one aspect explicitly 
needs another aspect and hence depends on it. A 
dependency does not result in a problem or erroneous 
situation as long as the aspect on which another one depends 
is ensured to be present and not changed. To illustrate this 
situation, two simple dependencies are the following: 
authorization depends on authentication and context 
actuation depends on context monitoring. Without the latter, 
the former cannot perform correctly.  

• Reinforcement arises when an aspect influences the correct 
working of another aspect positively and hence reinforces it. 
There can be no doubt that this type of interaction is a 
positive one. When an aspect reinforces another aspect, 
extended functionalities become possible and extra support 
is offered. As an example, the monitoring of an auction 
user’s location (context-monitoring) allows for an extended 
authorization policy. For instance, it is possible to realize 
that only users within the country in which an auction is 
taking place are allowed to make a bid.   

                                                                 
1 These three concerns were already studied as a part of [21]. 

• Conflict captures the situation of semantical interference: 
one aspect that works correct in isolation does not work 
correctly anymore when it is composed with other aspects. 
Hence, an aspect influences the correct working of another 
aspect negatively. Typically, a conflict can be solved by 
mediation because the aspects –in a sense- are 
complementary. To illustrate this situation, non-repudiation 
and state encoding are in conflict because one does not want 
to persist repudiated data. 

4. DOCUMENTING ASPECT 
INTERACTIONS 
4.1 Template 
We propose a template with clearly defined semantics for 
describing interactions unambiguously. This template consists of a 
record structure consisting of a number of attribute-value pairs 
and is explained below. 

We have found that, when documenting aspect interactions, it is 
important to explicitly state the relevant conditions that hold when 
an interaction occurs. Obviously, these conditions evaluate over 
the context of the interaction. In our template, these conditions are 
called explaining predicates. 

An aspect interaction description consists of the following 
attributes: 

• Name, containing the name of the interaction.  
• Aspects involved, containing the aspects involved in the 

interaction. Involved aspects typically are at the level of 
sub-concerns. 

• Type, containing the type of interaction. We distinguish 
between four different types of interaction: mutual 
exclusion, dependency, reinforcement and conflict. These 
were discussed in Section 3. 

• Example, containing an informal example of the interaction. 
• Explaining predicates, containing the predicates that can be 

used to explain the interaction. Predicates typically express 
conditions that evaluate over a number of parameters 
representing the relevant context information of the 
interaction. Each explaining predicate is again described 
through attribute-value pairs.  
- Name, containing the name of the explaining predicate. 
- Aspect, containing the aspect the explaining predicate is 

referring to.  
- Definition, containing the definition indicating in which 

states and/or under which conditions the explaining 
predicate holds.  

- Parameters, containing the parameters that are relevant 
for evaluating the explaining predicate. 

• Description, containing an informal description of the 
interaction in terms of the explaining predicates. 

• Time of response, containing the appropriate time in the 
software lifecycle to respond to the interaction. Software 
lifecycle stages we consider to be relevant are the following: 
requirements, architecture, design, implementation, 
middleware, deployment. 

• Type of response, containing an informal description of the 
mechanism, action and/or structure that uses the knowledge 
about the interaction to solve it (in case of a conflict or 
mutual exclusion) or instantiate it (in case of a dependency 
or reinforcement). 
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4.2 Illustrated 
We illustrate the applicability of our template in documenting 
aspect interactions with an example taken from the online auction 
system as described in Section 2. Users can participate in an 
auction through their handheld device. As mentioned in the 
application description, each buyer and seller will have an 
associated session. In order to ensure integrity of each bid, a 
symmetric session key is part of each user session. For obvious 
reasons, this session key only has a limited lifetime reducing the 
chance that the integrity of a bid can be broken. Each time the 
session key expires, a new one has to be generated, which is very 
computationally intensive. When the handheld device power is 
low, a clear aspect interaction arises. The integrity security sub-
concern is in conflict with the device power context, in which one 
wants to avoid intensive computations. The example described 
within our template is shown in Table 1. 
 

Table 1. Example aspect interaction description. 

Name Extend session key lifetime if device power is low 

Aspects 
involved 

Integrity, Context monitoring 

Type Conflict 

Example There shouldn’t be generated a new symmetric 
session key when the power of an auction user 
his/her handheld device is low. 

Explaining 
predicates 

 

Name SessionKeyAboutToExpire 

Aspect Security/Integrity 

Parameters Joinpoint 

Definition SessionKeyAboutToExpire( 
Joinpoint jp) holds when the 
current session key is about to 
expire at join point jp. 

  

Name DevicePowerLow 

Aspect Context-awareness/Context 
monitoring 

Parameters Joinpoint 

Definition DevicePowerLow(Joinpoint jp) 
holds when the device power is 
low at join point jp. 

  

Description ∀ Joinpoint jp: DevicePowerLow(jp) requires 
!SessionKeyAboutToExpire(jp) 

Time of 
response 

Architecture, design, middleware 

Type of 
response 

When the power of one’s handheld device is low, 
the lifetime of the current symmetric session key 
should be automatically extended instead of 
creating a new key. 

5. ONGOING AND FUTURE WORK 
This approach is being taken within a larger investigation of 
AOSD applications2 carried out in the context of AOSD-Europe 
[1]. We have begun to investigate aspect interactions within the 
context of the online auction system and the scope of three extra-
functional concerns: persistence, security and context-awareness. 
Currently, we are manually documenting a list of aspect 
interactions between these aspects in the example auction 
application. Our previous example illustrating the template is one 
of these.  

Based on this first experiment, we will evaluate the proposed 
documenting approach and extend it where needed. Extra 
attribute-value pairs may be needed. For instance, we do not 
consider instances of aspects yet. For now, we assumed there is 
only one global instance of each aspect. Moreover, we believe that 
other (sub)types of interaction may exist and will need to be 
incorporated. Our end goal is an exhaustive and non-overlapping 
classification of aspect interactions. 

We realize that, because of the limited scope of our experiment, 
this merely is a first step towards our end goals. Nevertheless, we 
are persuaded of the relevance of finding a good approach to 
document aspect interactions explicitly and unambiguously. By 
means of documenting aspect interactions and, hence, make them 
more explicit, it will be possible to share this crucial development 
and execution knowledge. This results in an important form of 
help for other members of the team or over the course of 
evolution, when even a different team may be in place. 
Classifying and documenting aspect interactions enables us to 
address them in case of a conflict or a mutual exclusion or have 
them as part of the system documentation in case of a 
reinforcement or a dependency. 

6. RELATED WORK 
Interactions are a widely known problem, especially in the 
telecommunications domain. The relevance of interactions in the 
broader context of a middleware platform and its proliferated 
common services has been discussed in [2, 15]. A number of 
solutions have been proposed to deal with conflicting situations, 
such as for example in [17], where the authors propose the notion 
of a compositional intersection to enable the identification of 
suitable sets of concerns that can then be used in an early trade-off 
analysis. Some first results based on an analysis of a set of aspects 
are discussed by Douence et al. [7] and Rinard et al. [19]. 

We are convinced that our approach for classifying and explicitly 
documenting interactions is complementary to this body of 
existing work. To the best of our knowledge, there only exist a 
few approaches that are similar to our proposed approach and 
focus on describing the interactions themselves. In [18], Pawlak et 
al. propose CompAr, a language that allows programmers to 
abstractly define an execution domain, advice codes and their 
often implicit execution constraints. Their language enables the 
automatic detection and solving of aspect-composition issues 
(aspect interactions) of around advices. Major contribution of the 
work in [18] is the high level of abstraction the language offers to 
specify very generic aspect definitions. Batory et al. [14] propose 

                                                                 
2 More information about this larger investigation of AOSD 

applications can be found on the AOSD-Europe web portal 
(http://www.aosd-europe.net) within the applications research 
lab area. 
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an algebraic theory for modeling interactions in feature-oriented 
designs. In their theory, feature interactions are modeled as 
derivatives. The approach taken in [14] is very similar to the 
Distributed Feature Composition of Zave et al. [12]. 

7. CONCLUSION 
In this short paper we have demonstrated our approach for 
classifying and documenting aspect interactions. While the 
research presented here is still in the preliminary phases, we 
believe that the direction taken offers a fresh perspective that is 
complementary to other research already undertaken in the field of 
AOSD.  Indeed, we already envisage that the work could form the 
beginnings of what will be a catalogue of interaction patterns in a 
similar vein to that of design patterns [9].  A future document [20] 
will express this in more detail. 

So far we have only discussed production aspects (i.e. aspects that 
are included in the final application). Of course, in a typical 
development scenario one could imagine many different kinds of 
development aspects (i.e. aspects that are used in the activities of 
testing, profiling, tracing, where the code is not included in the 
final release) causing interactions with our core concerns.  
Additionally different versions of concerns, which may exist in 
the software product line [5] context, where concerns are 
customized to differing requirements, can also further exacerbate 
the problem of interactions. 

Interactions across many aspects add to our conviction that there 
is a need for the documentation, detection, modularization and, 
ultimately, the resolution of aspect interactions.   
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ABSTRACT 
Recent trends in Aspect-oriented Design (AOD) have emphasized 

interface-based modularity constructs that support noninvasive 

advising of components by aspects in a robust and flexible way. 

We show how the AspectJ-based tool Contract4J supports Design 

by Contract in Java using two different forms of a design pattern-

like protocol, one based on Java 5 annotations and the other based 

on a JavaBeans-like method naming convention. Neither form 

resembles conventional Java-style interfaces, yet each promotes 

the same goals of abstraction and minimal coupling between the 

cross-cutting concern of contract enforcement and the components 

affected by the contracts. Unlike traditional implementations of 

design patterns, which tend to be ad hoc and require manual 

enforcement by the developer, the Contract4J protocol offers at 

least partial support for compile time enforcement of proper 

usage. This example suggests that the concept of an interface in 

AOD should more fully encompass usage protocols and 

conversely, aspects give us ways to enforce proper usage 

programmatically. 

Categories and Subject Descriptors 

D.1.5 [Programming Techniques]: Object-oriented 

Programming. Aspect-oriented Programming 

General Terms 

Design, Theory. 

Keywords 

Aspect-oriented software development, object-oriented software 

development, design, AspectJ, Java, Contract4J, Design by 

Contract. 

1. INTRODUCTION 
Much of the current research work on Aspect-Oriented Design 

(AOD) is focused on understanding the nature of component and 

aspect interfaces with the goal of improving modularity, 

maintainability, etc., just as pure object-oriented systems 

emphasize interface-based design [1-2]. Because aspects are 

cross-cutting, they impose new challenges for design approaches 

that don’t exist for objects, but they also offer new capabilities 

that can be exploited. 

Griswold, et al. [2] have demonstrated one approach to designing 

interfaces, called Crosscutting Programming Interfaces (XPIs), 

which resemble conventional object-oriented interfaces with 

additions such as pointcut declarations (PCDs) that hide 

component join point details behind abstractions. The interfaces 

are implemented by components that wish to expose state or 

behavior to interested “clients”, e.g., aspects. The aspects then use 

the interfaces’ PCDs only, rather than specifying PCDs that rely 

on specific details of the components. This approach effectively 

minimizes coupling between the components and the aspects, 

while still supporting nontrivial interactions. For our purposes, it 

is interesting to note that the XPI PCDs also impose contract-like 

constraints on what the components, which are the interface 

implementers, and the aspects are allowed to do. For example, a 

component may be required to name all state-changing methods 

with a prefix like “set” or “do”, while an aspect may be required 

to make no state changes to the component. 

Contract4J [3] is an open-source tool that supports Design by 

Contract (DbC) [4] in Java using AspectJ for the implementation. 

It demonstrates an alternative approach to aspect-aware interface 

design with two syntax forms supporting a common protocol that 

will be suitable for many situations. Instead of specifying methods 

to implement, like a traditional Java interface, one form uses Java 

5 annotations and the other uses a method naming convention. 

Both approaches are essentially a design pattern [5] that must be 

followed by components that wish to expose key information, in 

this case a usage contract, and by clients interested in the usage 

contract, which they can “read” from the components if they 

understand the protocol, without having to know other details 

about the components. 

2. DESIGN BY CONTRACT AND 

CONTRACT4J 
Briefly, Design by Contract (DbC) [4] is a way of describing the 

contract of a component interface in a programmatically-testable 

way. Preconditions specify what inputs the client must provide in 

order for the component to successfully perform its work. 

Postconditions are guarantees made by the component on the 

results of that work, assuming the preconditions are satisfied. 

Finally, invariant conditions can be specified that hold before and 

after any publicly-visible component operation. The test 

conditions are written as executable code fragments to support 

runtime evaluation of the tests. When the tests fail, program 

execution stops immediately, forcing the developer to fix the 

problem immediately. Hence, DbC is a development tool for 

finding and fixing logic errors. It complements Test-Driven 

Development [6].  

Contract4J supports DbC in Java as follows. The component 

developer annotates classes, fields, and methods with annotations 

that define the condition tests as Java boolean expressions. 

Aspects advice the join points of these annotations and evaluate 

the expressions at runtime to ensure that they pass. If not, program 

execution is halted. 

Here is an example using a simplistic BankAccount interface. 

27



@Contract 
interface BankAccount { 

  @Post(“$return >= 0”); 
  float getBalance();  

 

  @Pre(“amount >= 0”) 

  @Post(“$this.balance == 

         $old($this.balance)+amount  

         && $return == $this.balance”) 
  float deposit(float amount); 

 

  @Pre(“amount >= 0 && 

        $this.balance – amount >= 0”) 

  @Post(“$this.balance ==  

         $old($this.balance)-amount  

         && $return == $this.balance”) 
  float withdraw(float amount); 

  … 

} 

Figure 1: BankAccount with Contract Details 

The Contract4J annotations are shown in bold. The @Contract 

annotation signals that this class has a DbC specification defined. 

The other annotations are ignored unless this annotation is 

present. Contract4J also includes aspects that will generate 

compile-time warnings if the other annotations are present 

without the @Contract annotation, an example of partial 

programmatic enforcement of proper usage1. The @Pre 

annotation indicates a precondition test, which is evaluated before 

the join point executes. The withdraw method has a 

requirement that the input amount must be greater than or equal 

to zero and the amount must be less than or equal to the balance, 

so that no overdrafts occur. The expression $this.balance 

refers to an instance field that is implied by the JavaBean’s 

accessor method getBalance defined in the interface. The 

@Post annotation indicates a postcondition test, which is 

evaluated after the join point executes. The deposit or 

withdraw method must return the correct new balance 

(specified with the $return keyword) and the new balance must 

be equal to the “old” balance (captured with the $old(..) 

expression) plus or minus the input amount, respectively. Not 

shown is an example @Invar annotation for invariant 

specifications, which can be applied to fields and classes, as well 

as methods. The field and class invariants are tested before and 

after every non-private method executes, except for field accessor 

methods and constructors, where the invariants are evaluated after 

execution, to permit lazy evaluation, etc. Method invariants are 

tested before and after the method executes. 

The test expressions are strings, since Java 5 annotations can’t 

contain arbitrary objects. Aspects match on join points where the 

annotations are present. The corresponding advice evaluates the 

test strings as Java expressions using a runtime evaluator, the 

Jakarta Jexl interpreter [7]. 

So, including the annotations specifies the behavior of the 

component more fully, by explicitly stating the expected behavior 

                                                                 

1 The @Contract annotation is not strictly necessary, but it makes 

the Contract4J implementation more efficient and it makes the 

code more self-documenting. A future release may drop the 

requirement for it to be present. 

and eliminating ambiguities about what would happen if, for 

example, amount were less than 0.  

A separate, experimental implementation of Contract4J, called 

ContractBeans, supports an alternative way of defining test 

conditions, where the component implementer writes the tests as 

special methods that follow a JavaBeans-like [8] signature 

convention,. Here is the same BankAccount interface expressed 

using this approach2. 

abstract class BankAccount { 

  abstract public float getBalance(); 

 

  boolean postGetBalance(float result) { 

    return result >= 0; 

  } 
 

  abstract public  

  float deposit(float amount); 

 

  public boolean preDeposit(float amount) { 

    return amount >= 0; 

  } 

  public boolean postDeposit(float result,  

                             float amount){ 

    return result >= 0 && 

           result == getBalance(); 

  } 
 

  abstract public  

  float withdraw(float amount); 

 

  public boolean preWithdraw( 

      float amount) { 

    return amount >= 0 && 

           getBalance() – amount >= 0; 

  } 

  public boolean postWithdraw( 

                           float result,  

                           float amount) { 

    return result >= 0 && 

           result == getBalance(); 

  } 
  … 

} 

Figure 2: “ContractBeans” Format 

An abstract class is used, rather than an interface, so that the tests, 

which are now defined as instance methods, can be defined 

“inline”. (An alternative would be to use an aspect with intertype 

declarations to supply default implementations of the test methods 

for the original interface.) 

Following a JavaBeans-like convention, the postcondition test for 

the withdraw method is named postWithdraw. (Compare 

with the JavaBeans convention for defining a getFoo method for 

a foo instance field.) This method has the same argument list as 

withdraw, except for a special argument at the beginning of the 

list that holds the return value from withdraw. The 

preWithdraw method is similar, except that its argument list is 

                                                                 

2 Actually, this implementation doesn’t support the “old” keyword 

for comparing against a previous value, so the tests shown 

reflect this limitation. 
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identical to the withdraw argument list. All the test methods 

must return boolean, indicating pass or fail. Invariant methods 

follow similar conventions. 

This version of Contract4J advices all the fields and methods in a 

class, then uses runtime reflection to discover and invoke the 

tests, when present. Hence, this implementation has significant 

runtime overhead and the method based approach has several 

drawbacks compared to the annotation approach, including 

greater verbosity when writing tests and a less obvious connection 

between the tests and the methods or fields they constrain. It is 

discussed here because it demonstrates the approach of using 

naming patterns to convey meta-information of interest to other 

concerns. However, as a practical tool, the annotation form of 

Contract4J is more usable. 

More details on the design and usage of Contract4J, as well as a 

discussion of general issues encountered during its development, 

can be found in [9] and [3]. 

3. THE CONTRACT4J PROTOCOL AND 

ASPECT INTERFACES 
The two approaches are different syntax forms for a design 

pattern, in the sense that they define a protocol for interaction 

between a component and clients of its contract, with minimal 

coupling between them. In this case, the protocol is used by 

aspects to find tests and execute them before and/or after a 

method invocation or field access. Compare this to the well-

known Observer pattern where a state change in a subject triggers 

notifications to observers. In fact, many of the better-known 

patterns could be implemented, at least in part, using similar 

techniques. A simple implementation of Observer would be to 

annotate state-changing methods in potential subjects with an 

annotation, e.g., @ChangesState. Aspects could advice these 

methods with after advice to retrieve the new state and react 

accordingly. 

Using either form of the Contract4J protocol in an interface or 

class enhances the declaration with additional usage constraints 

that complete the specification of the component’s contract, both 

the usage requirements that clients must satisfy, and the results the 

component guarantees to produce. DbC also promotes runtime 

evaluation of these constraints. 

Consistent with the general goals of interface-based design, 

including the recent work on aspect-aware interfaces, the 

component remains agnostic about how the contract information 

is used. Of course, the two syntax forms were designed with 

Contract4J’s needs in mind. However, other aspect-based tools 

could exploit these protocols for other purposes. Just as IDEs 

exploit JavaBeans conventions, the Contract4J protocol could be 

used, e.g., by code analysis tools, automated test generation tools, 

and the code-completion features offered by most IDEs (e.g., to 

warn when method arguments are clearly invalid). Hence, for a 

class of situations like DbC, a protocol like the two in Contract4J 

effectively provides an interface used by aspects for cross-cutting 

concerns. Specifically, if an aspect needs to locate all methods, 

constructors and fields meeting certain criteria that can be 

indicated through an annotation (or naming convention) and some 

action needs to be taken in the corresponding advice and that 

action can be expressed through the same syntax conventions, 

then this concern can be implemented in a similar way. 

For example, the EJB 3 specification defines annotations that 

indicate how to persist the state of the annotated “Plain Old Java 

Objects” (POJOs) [12]. Actually, this example could be 

considered a case of tangling an explicit concern in the POJO; the 

annotations should ideally be more generic, perhaps conveying 

general lifetime information (e.g., must live beyond the life of the 

process) and indicating what properties are required for uniquely 

specifying the state (vs. those that are transient properties). They 

should convey enough information that a persistence aspect could 

“infer” the correct the behavior (and similarly, other, unrelated 

aspects could infer what they need to know for their needs). 

Finding the right balance between explicitness and generality is 

clearly an art that needs to be developed.  

Similar examples of using annotations to integrate with 

infrastructure services and containers include annotations that flag 

“sensitive” methods that trigger authentication processes before 

execution, annotations that provide “hints” to caching systems, 

and annotations that indicate potentially long-running activities 

that could be wrapped in a separate thread, etc. 

4. DISCUSSION AND FUTURE WORK 
The two Contract4J protocol forms demonstrate an idiomatic 

“interface”-based approach to aspect-component collaboration 

that are more like a design pattern than conventional interfaces, 

including the XPI form discussed by Griswold, et al. [2]. It is 

interesting that [2] calls for an explicit statement of the contract of 

behavior implied for both the components that implement the XPI 

and the aspects that use them to advise components. The unique 

characteristics of aspects make an explicit contract specification 

more important, because the risk of breaking existing behavior is 

greater, yet no programmatic enforcement mechanism currently 

exists. In contrast, Contract4J is specifically focused on contract 

definition and enforcement. Hence, Contract4J could be used to 

enforce the contract section of an XPI. Conversely, Contract4J 

could be extended to support the XPI-style of contract 

specification. 

In general, Contract4J’s protocol and the inclusion of contract 

details in XPI both suggest that good aspect-aware interfaces can 

go beyond the limitations of conventional interfaces, which 

provide a list of available methods and public state information, 

but usually offer no guidance on proper usage and never offer 

programmatic enforcement of that usage. Aspects offer the ability 

to monitor and enforce proper usage, which can then be specified 

as part of the interface.  

With this support, design patterns can be programmatically 

enforceable and not just ad hoc collaboration conventions that 

require manual enforcement. The enforcement can be 

implemented as aspects and specified using a new kind of 

interface [10]. This would raise the level of abstraction in aspect 

design from focusing on points in a program’s execution to 

designing nontrivial component collaborations at a higher level. 

Another example of “aspects as protocols” is the work of 

Jacobson and Ng on use cases as aspects [13]. Use cases are units 

of work involving collaborations of components. It is necessary 

for use case implementers to understand the usage constraints of 

the components and for components to expose suitable 

programmatic abstractions that permit them to be used in use 

cases. Currently, use cases are more like “extended” design 
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patterns, relying on ad hoc conventions and manually-enforced 

usage compliance. 

For Contract4J itself, future work will focus on completing the 

partial support for enforcing proper usage of the protocol. For 

example, while Contract4J now warns the user if contract 

annotations are used without the class @Contract annotation, it 

contains few additional enforcement mechanisms. Enhancing this 

support will further clarify how design pattern-like protocols can 

be specified in aspect-aware interfaces in a way that is 

programmatically executable and enforceable. This capability will 

be necessary to remove the current ad hoc nature of design 

patterns and make them as rigorously precise as classes and 

aspects themselves. 

Possible extensions to Contract4J’s functionality include 

extending the notion of a “contract” beyond the domain of DbC. 

For example, there is no built-in support currently for enforcing 

contracts between components, as opposed to enforcing a 

component’s contract in isolation. Another possible enhancement 

is to support time-ordered event specifications, similar to [11]. 

Intercomponent contracts could be supported in several ways. 

First, it is already possible for one component to make assertions 

about another one, if the latter component is a bean property of 

the former or invocations of static (class) methods are sufficient. 

The test expression can simply call methods on the other 

component and assert conditions on the results. Without an 

explicit property connection, it would be necessary for Contract4J 

to support some sort of lookup scheme for locating instances. The 

bean management facilities of a framework like Spring could be 

leveraged, for example. 

Annotations could be added to Contract4J to support temporal 

constructs [11]. Constraints on the order of invocation of API 

calls are perhaps the most common usage scenario for 

intercomponent contracts. However, temporal annotations could 

also be used to drive events in a state machine, notify observers, 

etc., which would extend these annotations beyond the contract 

role to more general purposes. 

An alternative approach is to bypass Contract4J and to write ad 

hoc aspects that test the component relationships. The AspectJ 

literature is full of practical examples. This approach gives the 

developer maximum flexibility, but it requires AspectJ expertise 

and the developer doesn’t get the other advantages of Contract4J, 

discussed previously and elsewhere [9]. 

The annotation approach has its limits. It is certainly not a 

“complete” conception of aspect-aware interfaces. It provides a 

convenient and terse mechanism for expressing information, 

which can be used to drive nontrivial aspects behind the scenes. 

However, it has limited expressive power and “hard-coding” an 

annotation in source code undermines the separation of concerns 

advantage of aspects, if not used judiciously. 

5. CONCLUSIONS 
Contract4J defines a design pattern-like protocol with two 

different syntax forms for specifying the contract of a component. 

The protocol is essentially a non-conventional “interface” that 

could be used by other tools as well, such as code analysis tools 

and IDEs. Like good interfaces, the protocol minimizes coupling 

between aspects and components. For some situations, this 

approach provides a terse, yet intuitive and reasonably-expressive 

way to specify metainformation about the component that can be 

exploited by aspects behind the scenes to support nontrivial 

component interactions. However, this approach has its limits and 

it does not replace a more complete concept of aspect interfaces. 

Consistent with the work on crosscutting programming interfaces 

(XPIs) [2], Contract4J shows that aspect-aware interfaces, 

whatever their form, should contain more precise contract 

specifications for proper use and not just lists of methods and 

state information. Otherwise, the risk of breaking either the 

aspects or the components is great, especially as they evolve. 

However, programmatic enforcement of the interfaces is also 

essential. Fortunately, aspects also make such enforcement 

possible in ways that reduce the ad hoc nature of most pattern 

implementations seen today. Taken together, these facts suggest 

that a fruitful direction for AOP research is to explore how aspects 

can elevate ad hoc patterns of collaboration to programmatic 

constructs. 
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Abstract 
Increasing demands for real-time systems are vastly 
outstripping the ability for developers to robustly 
design, implement, compose, integrate, validate, and 
enforce real-time constraints. It is essential that the 
production of real-time systems take advantage of 
approaches that enable higher software productivity.  
Though many accidental complexities have proven to 
be time consuming and problematic – type errors, 
memory management, and steep learning curves – we 
believe a disciplined approach using tools, patterns, 
and aspects can help.  But the question as to how to 
best strike a balance between these approaches 
remains. 

This paper previews Scoped Types and Aspects for 
Real-Time Systems (STARS), an approach aiming to 
guide real-time software development.  In this paper, 
the balance between tools, patterns and aspects in this 
programming model is explored, and tradeoffs 
associated with an early prototype are identified. 

1 Introduction 
The Real-Time Specification for Java (RTSJ) 
introduces abstractions through which developers must 
manage resources, such as non-garbage collected 
regions of memory [2].  The difficulty associated with 
managing the inherent complexity associated with 
these concerns ultimately compromises the 
development, maintenance and evolution of safety 
critical code bases and increases the likelihood of fatal 
memory access errors at runtime. 

This paper considers key tradeoffs in the design of a 
programming model for real-time systems.  The model 
integrates the RTSJ abstractions with tools for 
verification, a disciplined approach including patterns, 
and language features from AOP.  Scoped Types and 
Aspects for Real-Time Systems (STARS), offers a 
programming environment we believe that is 
conducive to modern software development for real-
time systems.  Building on the work of Scoped Types 
[6], STARS both guides real-time development with a 
simplified Scoped Type discipline and provides much 
needed support for the modularization and verification 
of real-time constraints. 

 

1.1 Background on RTSJ 
RTSJ extends the Java memory management model to 
include dynamically checked region-based memory 
known as scoped memory areas. A scoped memory 
area is an allocation context, which provides a pool of 
memory for threads executing in it. Individual objects 
allocated in a scoped memory area cannot be 
deallocated.  Instead, an entire scoped memory area 
can be collected as soon as all threads exit that area. 

The RTSJ defines two predefined areas for immortal 
and heap memory represented by the Java classes 
ImmortalMemory and HeapMemory, respectively, 
for objects with unbounded lifetimes and objects that 
must be garbage collected.  Scoped memory areas can 
be nested to form a dynamic, tree-shaped hierarchy, 
where child memory areas have strictly shorter 
lifetimes than their parent.  Though this structure can 
be well defined in terms of design, it can be easily 
overlooked in an implementation, resulting in a 
dangling reference.  Since a scoped memory area could 
be reclaimed at any time, dynamically enforced safety 
rules must include checks to ensure a memory area 
with a longer lifetime does not hold a reference to an 
object allocated in a memory area with a shorter 
lifetime.   

1.2 Related Work:  Scoped Types 
Scoped types are one of the latest developments in the 
general area of type systems for controlled sharing of 
references [6]. The key insight of the scoped type work 
was the necessity to make the scope structure of the 
program explicit in order to have a tractable 
verification procedure.  STARS builds on the 
contribution of scoped types and proposes that every 
time the programmer writes an allocation expression of 
the form new Object(), it should be possible to 
know statically (i.e. at verification time) where the 
object fits in the scope structure of the program.  

This paper investigates some of the tradeoffs involved 
in the design and implementation of the STARS 
programming model.  The core decisions involve 
striking the right balance between aspects, patterns and 
tools in the development of real-time applications.  
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2 The STARS Programming Model 

patterns 

tools 

aspects 

RTSJ 

scoped 
types 

  

Figure 1:  Elements of the STARS programming model. 

STARS guides the design and implementation of real-
time systems with a well defined, explicit 
programming model. Key elements of the model are 
overviewed here.   Figure 1 shows that STARS consists 
of five elements:  RTSJ, Scoped Types, aspects, 
patterns and tools. 

When Scoped Types is coupled with a cleanly defined 
programming discipline, it provides static constraints 
and declarative specification. Patterns and aspects can 
provide controlled and explicit memory management.  
Tools of course can enhance each of these features as 
well as provide additional infrastructural support, such 
as static verification.   

Static verification is important in order to save costs.  
For example, in a comparison between (1) a plain Java 
implementation, (2) an RTSJ implementation and (3) a 
Scoped Type implementation with static checking, on 
average the plain Java performs the best (due to the 
fact that it does not have to incur the cost of dynamic 
scope checks and does not have code to manage, enter 
and reclaim scoped memory areas).  However, results 
show interference by the data reporting thread and 

garbage collection1.  The RTSJ version is more 
predictable but markedly, slower.  The Scoped version 
retains the predictability of the RTSJ version but is 
faster due to the elimination of most runtime checks.  
The following subsections overview the current Scoped 
Typed model for memory scopes, and the static 
constraints that can be established based on that model. 

2.1 Modeling memory scopes 
STARS looks to leverage the abstractions proposed in 
the Scoped Types discipline to explicitly enforce as 
well as modularly support reasoning about the RTSJ. 

We start by considering a key simplifying feature of 
Scoped Types. Rather than relying on RTSJ’s implicit, 
dynamic notion of allocation context, i.e. the last 
entered memory area by the current thread, we need to 
enforce an explicit lexically-scoped discipline which 
guarantees that the relative location of any object is 
obvious from the program text. Equally as important, 
we must establish a simple, clear, and static memory 

                                                 
1 This cannot occur in the RTSJ version as the real-time 

thread cannot be interrupted by a lower priority thread. 

scope hierarchy in the program’s code.  That is, 
developers need a clear structural view of the memory 
area hierarchy of an application. 

In an attempt to model the Scoped Types abstractions a 
restructuring of the programs package structure is 
required.  Essentially, we equate Java packages to 
memory scopes. Nested packages model nested scopes. 
Because real-time code needs to coexist with standard 
Java code, we require all real-time code to be in 
packages nested within a package for immortal 
memory called imm — all the instances of classes in 
this package are in permanent, are not garbage 
collected, but are accessible from the standard Java 
system. Then, classes to be in scoped memory reside in 
scopes nested inside imm, where the static package 
nesting reflects the dynamic scope nesting at runtime. 

Further, Scoped Types categorizes every class that will 
execute in immortal memory as either a gate or a 
scoped class.  A scoped class is assigned to the 
memory scope it executes in, whereas a gate class turns 
scopes into first class entities, facilitating the ability for 
threads to enter and exit nested scopes explicitly.  Each 
memory scope and consequently each package has just 
one gate class and all references from parent to child 
scope must proceed through it.  Each gate class is 
therefore associated with a thread of execution and a 
memory scope that execution and further allocations 
will occur in explicitly dictated by the package it 
resides in.   

Intuitively, this model enforces the invariant that every 
instance of gate class maps to a uniquely scoped 
memory area. Furthermore, every instance of a class 
defined in a scoped package P is allocated in the 
memory area of a gate defined in P. Operationally, 
whenever a method of a gate is invoked, the allocation 
context is switched to the scope associated with that 
gate. Objects allocated within a scoped package are 
allowed to refer to objects defined in a parent package 
(just as in the RTSJ objects allocated in a scope are 
allowed to refer to a parent scope). But as expected the 
converse is forbidden. At runtime, there is one scoped 
memory area (immortal memory) corresponding to 
package imm, and then as many scoped memory areas 
nested inside it as there are instances of the gate classes 
defined in imm’s immediate subpackages (and so on, 
down through other packages nested more deeply 
within imm). 

2.2 Static Constraints 
We now outline the rules that ensure static correctness 
of STARS programs. In the following we assume that a 
scoped package contains at least one gate class and 
zero or more scoped classes. The descendant relation 
on package is a partial order on packages. 
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Rule 1. An expression of a type T defined in scoped 
package P is visible to classes defined in P or to class 
defined in some package P’  that is a descendant of P.  
An expression of a gate type G defined in package P is 
visible to classes defined in P’  where P is a direct 
descendant of P’ . 

This first rule encodes the essence of the RTSJ access 
rules.  Scoped packages are those that are descendents 
of the imm package.  Gate classes are treated 
differently as they are handles used from a parent 
scope to access a memory area. They must be 
accessible (visible) to the code defined in the parent 
scope.   

Rule 2. An expression of type T defined in scoped 
package P can be widened to type T’  iff T’  is defined in 
P. 

Rule 2 is used to enforce structural properties on the 
object graph.  By preventing types to be cast to 
arbitrary supertypes (in particular Object), it is 
possible to verify Rule 1 statically.   

Rule 3. An method invocation of method m on an 
expression of scoped (gate) type T is valid iff type T 
implements m. 

Rule 3 prevents reference leaks, within an inherited 
method the receiver (i.e. this) is implicitly cast to the 
method’s defining class – this could lead to a leak if 
the method is defined in another package. 

Rule 4. The constructor of class C defined in scope 
package P can only be invoked by a method defined in 
P. 

Rule 4 prevents a subpackage from invoking new on a 
class defined in a parent package. To do this, 
programmers should provide a factory method in the 
parent package.   

Rule 5. A class C defined in a scoped package P may 
not have static reference fields. 

Rule 5 prevents objects of classes defined in the same 
scoped package (but with different gates at runtime) 
from communicating via static variables. This can 
result in dangling references as the gates have disjoint 
lifetimes. 

2.3 Sample Scoped Types Structure 
To get a sense of what the structure a scoped type 
program looks like, we overview an example here.  
The package structure includes ImmExample at the top 
level, and two subpackages a and b.  The classes in this 
simple example are Many, RunnerA and RunnerB. 
 
 
 

      

     Imm/ 
     ImmExpample/ 
    ImmExample.java       � Gate 
   …         
    RunnerA.java      
    RunnerB.java 
    a/ 
           A.java   � Gate 
           … 
     b/ 
           B.java                     � Gate 
   … 

 
Which corresponds to the following scoped memory 
area structure, where the subpackages a and b are child 
scopes at the same level, and ImmExample, A and B are 
gates: 
 

heap 

imm 

a b 

 

3 The STARS Prototype  
A STARS prototype is currently being developed.  
Three key elements of the STARS model considered 
here are the tool that verifies the static constraints, 
patterns and idioms to manipulate scopes, and finally, 
an aspect-oriented translation that takes the scoped-
type Java code and weaves in the necessary low-level 
real-time calls to execute the code on a real-time 
virtual machine.  The following subsections consider 
these in turn, with an emphasis on the aspect-oriented 
issues.  The software system used to demonstrate the 
STARS approach is modeling a real-time collision 
detector (or CD) consisting of two threads: (1) a real-
time thread which periodically acquires data on 
position of aircraft from simulated sensors, and (2) a 
second thread that is low priority non-real-time thread 
responsible for updating the display. The system must 
detect collisions before they happen. The number of 
planes, airports, and nature of flight restrictions are all 
variables to the system. 

The CD algorithm and base implementation was 
written by Filip Pizlo and Jason Fox using libraries 
written by Ben Titzer. The system is about 25K LOC 
and contains a mixture of plain Java and real-time Java.  
To provide a proof-of-concept for our proposal, we 
refactored the CD to abide by the previously described 
static constraints. The refactoring was done in three 
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stages. First, we designed a scope structure for the 
program based on the ScopedMemory areas used in 
the CD.  Second, we redistributed classes between 
packages so that the Scoped CD package structure 
matches the scope structure. Third, we removed or 
replaced explicit RTSJ memory management idioms 
with equivalent constructs of our model. 

3.1 Tools: Checking the Scoped Types 
Discipline 

We must ensure that only programs following the 
Scoped Types discipline are accepted by STARS.  The 
JavaCop “pluggable types”  checker [1] verifies Scoped 
Types as a pluggable type.  The key idea is that 
pluggable types layer a new static system over an 
existing lanaguage, and JavaCop can then check 
syntax-directed rules at compile time.   JavaCop made 
it possible to leverage package structure in order to 
construct and check a relatively high-level description 
of the Scoped Type definitions. 

3.2 Patterns and Idioms 
RTSJ programmers have adopted a number of 
programming idioms to manipulate scopes. After 
changing the structure of the original CD, we needed to 
convert these idioms into corresponding idioms that 
abide by the rules established in Section 2.2. In almost 
every case, the resulting code was simpler and more 
general, because it could directly manipulate standard 
Java objects rather than having to create and manage 
special RTSJ scope metaobjects explicitly.  In short, 
the patterns included two of those identified in [4] 
(scoped run loop and multiscoped object). 

3.3 Aspect-Oriented Memory Management 
Though the design of memory management in a real-
time system may be clear, its implementation typically 
is not because it is inherently tangled throughout the 
code. For this reason we chose an aspect-oriented 
approach for modularizing scope management in a 
STARS program. This part of STARS is implemented 
using a subset of aspect-oriented programming 
extensions provided by AspectJ [5, 3]. 

After the program has been statically verified, aspects 
are composed with the plain Java base-level 
application. The aspects weave necessary elements of 
the RTSJ API into the system, and invoke some virtual 
machine specific extensions to ensure efficient 
management.  This translation (and the aspects) depend 
critically upon the program following the Scoped Type 
discipline.  If the rules are broken, the resulting 
program will no longer obey the RTSJ scoped memory 
discipline.  As a result, either the program will fail at 
runtime with just the kind of an exception we aim to 

prevent; or worse, if running on a virtual machine that 
omits runtime checks, fail in some unchecked manner. 

Memory management aspects in STARS can be largely 
generated from information provided by the declarative 
specification for gates and scoped packages. For each 
gate class, the aspect introduces two fields: memory 
and thread, for the memory area in which the gate 
executes and the thread to which the gate is bound. 
Though these introductions can be automatically 
generated by having all gates implement the following 
interface:  

public interface Gate { 
 private MemoryArea memoryArea; 

 private Thread thread;  
} 

 

the programmer must specifically customize some 
functionality, as the RTSJ memory hierarchy provides 
many choices for memory areas. 

The MemoryArea class is the abstract parent of all 
classes representing memory. Its subclasses include 
HeapMemory, ImmortalMemory, and 
ScopedMemory. Both HeapMemory and 
ImmortalMemory have a singleton instance 
obtained by invoking the instance() method.  The 
ScopedMemory class is also abstract and its 
subclasses LTMemory and VTMemory provide 
linear time and variable time allocation of objects in 
scoped memory areas respectively.   

All memory area classes implement the enter() 
and executeInArea() methods which permit 
application code to execute within the allocation 
context of the chosen memory area.  Furthermore, the 
getMemoryArea() method lets one obtain the 
allocation context of an object – an instance of a 
subclass of MemoryArea. Finally, all memory areas 
support methods to reflectively allocate objects. 

For an example of the ways in which the precise 
functionality must be customized, in one case memory 
may be set simply as immortal without a bound thread: 

this.memory = ImmortalMemory.instance(); 
 

whereas another gate may require both a memory area 
and a real-time thread: 

this.memory =  
  new LTMemory(Constants.MEMSIZE, 

Constants.MEMSIZE); 
this.thread =  
  new RealtimeThread( 
    new PriorityParameters(Constants.priority), 
    null,null,null,null, this); 

 

In order to efficiently manage the setting and getting of 
appropriate scoped memory allocation context during 
program execution, the STARS infrastructure relies 
upon two virtual machine methods customized for this 
purpose: 
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VM.setAllocForThread(ScopedMemoryArea memory); 
ScopedMemoryArea VM.getAllocForThread(); 

 

More specifically, before any object is created (i.e., 
before all calls to new) or before any call to a gate 
method from a parent, the allocation context must be 
set accordingly.  Subsequently, within any object 
initializer, the right context must be used. It is 
important to note that this is the only added VM 
support needed for STARS, and its use is localized 
within one STARS memory management aspect. The 
STARS infrastructure does provide a class STARS 
with some helper methods (such as 
waitForNextPeriod and start()) available 
for general purpose use.   

In order to provide a high-level example of a memory 
management aspect of STARS, consider the sample 
code in Figure 2. In lines 6-9 the declare parents 
construct is used to identify gate classes and to extend 
the specialized thread class.  The new fields required 
for each Gate class, memory and thread, are introduced 
starting on line 11.  The around advice beginning on 
line 15 simply demonstrates the kind of functionality 
that the aspect can associate with all calls to new 
within the detector package. This code simply shows 
the new call proceeding to create an instance of a new 
object, and if that object is a gate, the memory field of 
the gate is set accordingly. As previously mentioned, 
this code relating to the specifics of the scoped 
memory area would need to be customized (not 
automatically generated) on a per gate basis. 
1 import javax.realtime.*; 
2 
3 public aspect ScopeAspect { 
4 
5 // gate class 
6 declare parents: App implements Gate; 
7 
8 // thread concerns 
9 declare parents: App extends NoHeapRealtimeThread; 
10 
11 // fields for gate context 
12 private ScopedMemoryArea Gate.memory; 
13 private Thread Gate.thread; 
14 
15 // functionality associated with all calls to new 
16 Object around(Object o):  
    call(detector.*.new(..)) && this(o) { 
17              Object newObj = proceed(o); 
18              if (newObj instanceof Gate) { 
19                     Gate tmp = (Gate)newObj; 
20                     tmp.memory = new LTMemory(124000, 124000); 
21             } 
22             return newObj; 
23   } 
24 } 

Figure 2. Sample memory management aspect. 

4 Tradeoffs 
In its current form the STARS approach impacts the 
logical structure of Real-time Java programs. By giving 
an additional meaning to the package construct, we, de 
facto, extend the language. This form of overloading of 
language constructs has the same rationale as the 
definition of the RTSJ itself, namely to extend a 
language without changing its syntax, compiler, or 

intermediate format. As for the architectural changes, 
this discipline imposes a different kind of functional 
decomposition on programs. Rather than grouping 
classes on the basis of some logical criteria, we group 
them by lifetime and function. 

1 import javax.realtime.*; 
2 
3 public aspect ScopeAspect { 
4 declare parents:  Mem extends IMM 
5 declare parents:  Cdmem extends Mem 
6   declare parents: Main implements IMM; 
7 
8 // classes to be created in Mem Scope 
9 declare parents: (App || Detector ||  
10             StateTable || Aircraft ||  
11             Position) implements Mem; 
12 // class to be created in CDMem Scope 
13 declare parents: Frame implements CDMem; 
14 
15 // gate class 
16 declare parents: App implements Gate; 
17 
18 // thread concerns 
19 declare parents: App extends NoHeapRealtimeThread; 
20 
21 // fields for gate context 
22 private ScopedMemoryArea Gate.memory; 
23 private Thread Gate.thread; 
24 
25 // functionality associated with all calls to new 
26 Object around(Object o): call(detector.*.new(..))  
     && this(o) { 
27   Object newObj = proceed(o); 
28   if (newObj instanceof Gate) { 
29       Gate tmp = (Gate)newObj; 
30       tmp.memory = new LTMemory(124000, 124000); 
31   } 
32    return newObj; 
33 } 

 
Figure 3. New memory management aspect, introducing 
memory hierarchy for scope management.   

It can be argued that this decomposition is natural; 
RTSJ programmers must think in terms of scopes and 
locations in their design. Thus it is not surprising to see 
that classes that end up allocated in the same scope are 
closely coupled, and grouping them in the same 
package is not unrealistic.  But from a first principles 
perspective, the importance of a logical package 
structure cannot be underestimated in application 
development, maintenance and evolution.  Could we 
offset this impact by escalating tool support, aspects, or 
both, in order to still claim the associated static 
guarantees? 

One alternative to this overloading of package structure 
is the use of empty interfaces that would behave as low 
level flags to model the Scoped Types abstractions.  
That is, empty interfaces corresponding to each of an 
application’s memory scope hierarchy are introduced, 
with the hierarchal relationship between those memory 
scopes paralleled with the extends relationship shown 
in line 4 of Figure 3.  Intuitively, this enforces the 
single parent rule for memory areas establishing a root 
memory scope of immortal memory (imm).  Further we 
can associate each class with a specific memory area 
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illustrated in lines 9-13 of Figure 3, statically reflecting 
the dynamic scope hierarchy similar to the result of the 
package restructuring described in Section 2.1. 

Arguably, this alternative to package restructuring does 
not explicitly force the same safety guarantees, such as 
the assignment of a class to a memory scope.  Just as 
with the implicit requirement of non-garbage collected 
classes to be assigned to packages within the immortal 
memory package, the requirement for those classes to 
implement the corresponding interface can possibly be 
overlooked. 

5 Conclusions and Future Work 
It is essential that the production of real-time systems 
take advantage of approaches that enable higher 
software productivity.  Through a combined approach 
of tools, patterns and aspects, STARS attempts to strike 
a balance necessary to combat real problems associated 
with real-time, such as type errors, memory 
management, and steep learning curves.   

The question of how to strike a balance between tools, 
patterns and aspects is a matter we are currently 
exploring.  Depending on the balance, aspects can be 
used solely to introduce low level RTSJ mechanisms, 
or their role could be more comprehensive, as part of 
tool support and also pattern implementations.  One of 
the determining factors in this work will be the 
performance impact of aspects in RT applications.  We 
are currently exploring these metrics. 
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ABSTRACT 
In this paper, we discuss the benefits of using aspect-oriented 
programming to develop parallel applications. We use aspects to 
separate parallelisation concerns into three categories: partition, 
concurrency and distribution. The achieved modularisation 
enables us to assemble a variety of platform specific parallel 
applications, by composing combinations of (reusable) aspect 
modules into domain-specific core functionality. The approach 
makes it feasible to develop parallel applications of a higher 
complexity than that achieved with traditional concurrent object 
oriented languages. 

Keywords 
Parallel computing, skeletons, aspect composition. 

1. INTRODUCTION 
There is a growing demand for parallel applications. The 
increasingly popular multi-core CPU architectures require 
concurrent programming to effectively leverage the underlying 
parallel processing capabilities. However, concurrent 
programming may introduce overhead in application execution 
time when running on a single core system. Grid systems [6] 
connect worldwide computing resources, delivering significant 
computing power. However, the systems are extremely complex 
to program, due to the intrinsic heterogeneity of computing 
resources, network latencies and bandwidths. Grid systems are 
built as clusters of clusters of multiprocessors machines, whose 
processors can be multi-core CPUs. 

Traditional parallel applications suffer from classic tangling 
problems [10], as parallelisation concerns cut across multiple 
application modules. Core functionality (i.e., domain specific 
logic) is usually mixed with parallelisation concerns. Such 
concerns include work partition into parallel tasks, concurrent 
execution of these tasks; synchronisation of parallel accesses to 
shared data structures (to avoid data races) and distributed 
execution of the tasks. Code related to these concerns is tangled in 
application code, which makes it harder to understand, reuse and 
evolve core functionality and parallel code. Traditional parallel 
programming is mainly focused on performance issues. Aspect-
oriented programming (AOP) [10] contributes to conciliate 
between high level and high performance computing, by 
modularising the above concerns more effectively [9]. 

This paper presents an approach to develop parallel applications 
in which parallelisation concerns are modularised into various 
aspects. Section 2 overviews the approach. Section 3 focuses on 
the development of reusable parallelisation concerns and section 4 

discusses benefits and how to support composition of the aspects. 
Section 5 concludes the paper. 

2. MODULAR PARALLELISATION 
CONCERNS 
Our approach entails modularising parallelisation concerns with 
AOP, to increase general modularity and reuse potential in 
parallel applications. The base application must be amenable for 
parallelisation, since our focus is more on modularising existing 
parallel applications than parallelising sequential applications. It 
is harder to transform sequential applications into parallel ones 
than to modularise current parallel applications. The greater 
suitability of AOP to achieve such transformations of sequential 
applications relative to other approaches is as yet unproven. 
Our approach involves using traditional object oriented 
mechanisms to implement application core functionality and 
implementing parallelisation concerns with AOP. Parallelisation 
concerns are grouped in thee categories: functional or/and data 
partition, concurrency and distribution. Each concern is 
implemented in its own aspect module that can be (un)plugged 
from application core functionality. 

Core functionality expresses domain specific logic; by specifying 
what the application is supposed to do. Partition modules specify 
how work is performed in an efficient way, using several 
processing elements. Concurrency modules manage execution of 
parallel tasks, including synchronisation requirements. 
Distribution modules assign objects to available resources and 
manage remote method invocations. 

The programmer is in charge of dividing parallel code into these 
concerns. In some parallel applications, core functionality code is 
the same as the sequential code. However, in intrinsically parallel 
applications (i.e., in parallel applications where there is no 
sequential equivalent) our core functionality module contains the 
domain-specific logic. 

The partition module transparently replicates objects and manages 
method calls to the replicated objects. Replicated objects are 
managed by the partition aspect, which also manages their life-
cycle (these are called aspect managed objects). The partition 
aspect controls the way a method call is executed into such 
objects. Usual partitions include farming, divide and conquer, 
pipeline and heartbeat [2]. For instance, in a pipeline partition, 
aspect-managed objects are organised in a pipeline sequence and 
each method call is successively executed by all pipeline objects. 
Partition module can introduce joinpoints that can be intercepted 
by other aspects. 
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The concurrency module specifies asynchronous method 
invocations: the caller object is allowed to proceed while the 
called object executes the requested method. In Java, this can be 
achieved by using a new thread to perform the requested method. 
Asynchronous method invocations may also require 
synchronisation to protect shared objects, to avoid data races and 
to ensure a specific execution order. Synchronisation code is also 
placed in the concurrency aspect and it resorts to synchronised 
block constructs and monitors provided by Java. 

Partition and concurrency code is deployed in separate modules. 
The main idea is first to develop a partition module and next to 
develop the concurrency module. This way it is possible to 
(un)plug concurrency for debugging purposes and it also helps to 
avoid the inheritance anomaly problem [12], as partition code can 
be reused independently of concurrency constraints. 

Our approach is based on distributed objects, which can be 
deployed across machines. Object distribution concerns are 
implemented in their own module as well. We identify two main 
benefits: (1) partition and concurrency modules can be developed 
without taking into account object distribution issues (i.e., they 
are developed for a single processor/shared memory machine) and 
(2) it is easier to switch between underlying middleware 
implementations for distribution concerns, such as CORBA, Java 
RMI and MPI. 

A simple example (using Java and AspectJ) of the intended 
separation of the above concerns is described next. The Java 
Grande Forum (JGF) RayTracer [14] is a benchmarking 
application that renders an image of sixty spheres. This 
benchmark is already amenable for parallelisation. Actually, JGF 
provides both sequential and parallel versions of this application. 
Core functionality is very close to the JGF sequential version. It 
creates a RayTracer object, initialises it with a scene to render and 
then sends it a message to render the scene, specifying image size 
by means of an Interval object: 
RayTracer rt = new RayTracer(); 
Scene sc = ... // create scene to render 
rt.initialise(sc); 
Interval interval = new Interval(0,500); 
Image result = rt.render(interval); 
 

The concrete partition aspect for this example intercepts the 
creation of the RayTracer object and creates a set of aspect-
managed RayTracer objects. The concrete partition aspect 
broadcasts the call to method initialise to all the new RayTracer 
objects. It also broadcasts the call of method render, using a 
different interval for each RayTracer object and joins partial 
results produced by each one (this is a typical implementation of a 
simple farm partition): 
 
RayTracer farm[]=new RayTracer[numberOfWorkers]; 
 
RayTracer around() : call (RayTracer.new()) { 
 for(i=0; i<numberOfWorkers; i++) 
  farm[i] = new RayTracer(); 
 return(farm[0]); 
} 
 
void around(/*scene*/) :  
               call (RayTracer.initialise(..)) { 
 for(int i=0; i<numberOfWorkers; i++) 
  farm[i].initialise(/*scene*/); 
} 

 
Image around(/* interval */) :  
                   call (RayTracer.render(..)) { 
 for(int i=0; i<numberOfWorkers; i++) 
  res[i] = farm[i].render(/* subinterval*/); 
 ... //join sub-images saved in res array 
 return(/*merged subimages*/); 
} 
 

In the above example, array farm stores the references to aspect-
managed objects. Element zero of the array is used as the group 
front-end: it executes calls to RayTracer objects that are not 
intercepted by the partition aspect. We chose to perform explicit 
calls (i.e., new, initialise and render calls), instead of calling 
proceed to allow specific advising of joinpoints introduced by this 
partition aspect. Also note that all advices also must include 
!within(…) to avoid recursive advices (the within pointcut 
designator (PCD) is omitted above for simplicity). This aspect can 
be deployed with pertarget instantiation to support advices on 
multiple RayTracer instances.  

The concurrency aspect spawns a new thread for each call to 
initialise (code for an asynchronous call of method render is also 
possible but trickier, as it involves the creation of a future object): 
void around() : call (RayTracer.initialise()) { 
 (new Thread() { 
  public void run() { 
   proceed(); 
  } 
 }).start(); 
} 
 

Distribution aspects redirect local object creations/calls to remote 
object instances. The caller local aspect plays the role of 
traditional proxies. However, a fake local object is required due to 
type system compliance. The following code presents a sketch of 
the code for the ray tracer benchmark: 
RayTracer around() : call (RayTracer.new()) { 
 // request object creation to remote factory 
 // associate remote object to local fake 
 return(/*fake local object*/); 
} 
 
void around() : call (RayTracer.initialise()) { 
 // redirect call to remote object 
} 
 
Image around() : call (RayTracer.render(...)) { 
 // redirect call to remote object 
 return(/*remotely rendered image*/); 
} 
 

Table 1 presents combinations of these modules and their 
purpose. By modularising parallelisation concerns into multiple 
aspects it is possible to manage multiple configurations of a 
parallel application and to deploy the one that more adequately 
matches the target platform. When the target platform is a single 
processor machine, only core functionality is deployed. On 
multiprocessor machines, the concurrency module is included as 
well. However, we keep the choice over whether we include the 
partition module, depending on the type of parallel application 
(e.g., in branch and bound applications partition module usually is 
not required). 
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Table 1. Deployable parallel applications 

Partition 
M

odule 

C
oncurrency 
M

odule 

D
istribution 
m

odule 

Purpose 

No No No Tidy up core functionality, debugging, 
single processor machines 

Yes No No Tidy up partition strategy, debugging 
No / 
Yes Yes No Shared memory parallel machines 

(SMP/Multi-core) 
Yes Yes Yes Distributed memory machines/Grids 

No No / 
Yes Yes Distributed application 

 
Aspect precedence is of particular importance in this approach. 
Partition code has the highest precedence. Contrary to the effect 
achieved by AspectJ’s precedence mechanism, advice of partition 
code is always the first to execute, including after advice. This is 
required since partition code may introduce new objects and 
method calls that can be intercepted by other aspects. In the 
previous ray tracer benchmark, both concurrency and distribution 
aspects should be applied to aspect-managed ray tracer objects. 

Order of precedence of concurrency and distribution determines 
the difference between client activated and server activated 
threads [11]. Both precedences achieve asynchronous remote 
method invocations. When concurrency has higher priority, 
threads are created to perform all remote communication in a 
separate local thread running on a client node, to hide network 
latencies and to increase network bandwidth usage. 

The precedence rules ensure that parallelisation concerns are 
composed in the right order. However, in this composition model, 
each aspect only applies to joinpoints introduced by one previous 
module (i.e., with the next higher precedence, in the precedence 
list). For instance, it does not make sense to apply the distribution 
module to jointpoints from the core functionality and from the 
partition aspect. Replacing the explicit method calls in aspects by 
calls to proceed can enforce this behaviour; however, our 
experience reveals that this becomes trickier, since it depends on 
the particular implementation of the aspect weaver. Another 
alternative is to use the within PCD to specifically advise a single 
module, but it negatively affects the flexibility to assemble 
parallel applications, as it reduces the range of possible 
compositions. 

A description of the approach, to modularise parallelisation 
concerns, from a parallel computing perspective, as well as a 
detailed case study, including performance figures, can be found 
in [17]. 

3. REUSABLE MODULES 
Having modularised partition, concurrency and distribution 
concerns, the next step is to build reusable modules for these 
concerns. The modules are abstract aspects that are developed on 
the basis of abstract pointcuts and marker interfaces. 
Reusable implementations based on abstract pointcuts follow the 
template advice idiom [7] that is extensively used in [8]. An 

abstract aspect defines the reusable crosscutting implementation. 
Reusable code is applied to a case-specific situation by creating a 
concrete aspect that inherits the logic from the abstract aspect, 
usually a set of abstract pointcuts and methods. The pointcuts are 
defined by the concrete aspects to specify the case-specific 
joinpoints. Inherited methods configure the logic defined in the 
abstract aspect by defining case-specific logic that binds the 
reusable part to the case-specific part. 
Marker interfaces are used to implement mixin composition [3]. 
Concrete aspects introduce implementation of marker interfaces 
declared in the abstract aspect to case-specific classes. Joinpoints 
originating from implementing classes are captured by the aspects 
to apply the concern logic as with other. Marker interfaces are 
preferable when the aspect implements a class based role. 
The reusable partition module combines the two above 
approaches. Each reusable aspect declares marker interfaces to 
specify the classes whose instances are replicated (i.e., which 
classes give rise to aspect-managed instances). Abstract pointcuts 
are concretised to specify how method calls are executed by the 
aspect-managed instances. 
The reusable partition module implements the functionality to 
transparently replicate objects and redirect/broadcast method calls 
to aspect-managed objects. Method calls that are not captured by 
the aspect run on a special object, the group proxy. The structure 
of the reusable aspect (not shown here) is similar to the partition 
code as presented in previous section. The main difference is that 
in this case we replace references to class RayTracer by 
interfaces, abstract pointcuts and calls to proceed. Figure 1 
presents an example of the reuse of the partition aspect. Objects 
of class RayTracer are replicated into all available processing 
elements. Calls to method initialise are broadcasted to all objects 
in this set (pointcut broadcastCall). Calls to method render are 
also executed by all elements in the set but each object receives a 
different argument (computed by method scatter, which is called 
by aspect ObjectGridProtocol). For simplicity, code 
implementing the merging of results of method render is not 
shown. 
 
aspect Partition extends ObjectGridProtocol { 

 
declare parents: RayTracer implements Grid1D; 
 
pointcut void broadcastCall() : 
    call(* RayTracer.initialise())); 
 
// calculates parameters of each scatterCall 
Vector scatter(Object arg) { 
 Vector v = new Vector(); 
 ... // splits arg into sub-intervals 
 return(v); 
} 
pointcut scatterCall(..) :  
   call (* RayTracer.render(..)) ...; 

} 
Figure 1 – Example of reusing of partition concerns 

 
A complete description of the reusable aspects for partition can be 
found in [16].  
Reusable components for concurrency concerns provide 
functionality to perform calls in separate threads and to manage 
synchronisation among running threads [5]. Figure 2 presents an 
example in which separate threads call method initialise. 
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public aspect Oneway extends OnewayProtocol { 
 protected pointcut onewayMethodExecution() : 
  (execution(* RayTracer.initialise(..))); 
 

Figure 2 Reuse of OnewayProtocol 
Distribution concerns can be modularised using aspects [15][17]. 
However, building reusable abstract aspects for distribution 
seems to be harder. Traditional approaches require additional 
tools to automate the generation of distribution code. Aspects can 
improve on such tools by (1) reducing the amount of generated 
code, (2) avoiding invasive changes on the original classes [4] and 
(3) by using code templates [19]. Development of reusable 
modules in the form of abstract aspects may require an extensive 
usage of introspection features of Java and AspectJ, due to the 
specificity of Java RMI. 

4. COMPOSING (REUSABLE) MODULES 
Aspect composition provides a particularly interesting subject to 
parallel computing. Composition of partition strategies has been 
well studied on skeleton-based approaches [13]. The idea is to 
combine partition strategies to achieve more sophisticated 
parallelisations. One common strategy is to have a two-level farm 
parallelisation, where each worker is also a farmer (with its own 
workers). Such a partition strategy is of particular importance to 
large-scale parallel applications, in which a single level farm risks 
becoming a bottleneck. With aspect-oriented (AO) modules this 
composition can be implemented by specifying aspects (e.g., a 
partition) that act on joinpoints introduced by another aspect. In 
our example in Figure 1, this would mean that each RayTracer 
object in the set would also be a set of objects. Composing 
partition aspects can be done by capturing just the joinpoints 
originating from a specific aspect (e.g., the first-level partition 
aspect), which can be implemented using the AspectJ within PCD. 
A simple implementation based on non-reusable aspects requires 
the duplication of partition code presented in section 2: 
aspect partitionLevel1 {  
 RayTracer around(): call (RayTracer.new()) { 
  // same as before 
 } 
 void around(): call (RayTracer.initialise()){ 
  // same as before 
 } 
 Image around(): call (RayTracer.render(...)){ 
  // same as before 
 } 
} 
 
aspect partitionLevel2 { 
 RayTracer around(): call (RayTracer.new())  
      && within(partitionLevel1) { 
  // same as before 
 } 
 void around(): call RayTracer.initialise()) 
      && within(partitionLevel1) { 
  // same as before 
 } 
 Image around(): call (RayTracer.render(...)){ 
      && within(partitionLevel1) { 
  // same as before 
 } 
 

Composing concurrency and distribution aspects is also of 
interest. When using a two-level farming it may be more efficient 
to only distribute objects of the first level of the farm. This type of 

composition closely matches the architecture of clusters of SMP 
machines. To achieve such composition, the distribution aspect 
should be applied only to the first-level partition aspect. This can 
be also achieved including within(partitionLevel1) in all 
pointcuts. 
Composing reusable aspects is harder. For instance, when using 
marker interfaces it is not possible to distinguish from aspect-
managed instances of level1 and level2 farm. This requires the 
programmatic support of associations between objects and 
aspects. A similar problem occurs when explicit method calls are 
replaced by proceed to develop reusable aspects, no longer being 
possible to advise a particular aspect by means of the within 
designator. 

5. RELATED WORK 
Skeletons and templates are alternative ways to achieve the 
separation between core functionally and parallelisation 
strategies. In functional languages, the parallelisation strategy can 
be modelled by higher-order functions that accept functions as 
parameters [13]. Templates and generative patterns provide 
generic classes for the parallelisation strategy that can be refined 
to include the core functionality [1]. CO2P3S [18] provides an 
example of such a system: code that models the parallelisation 
strategy is generated and the user must provide application-
dependent sequential hook methods. 
Skeletons and templates are very close to our AO approach in that 
both have a similar goal: to modularise the parallelisation strategy 
from core functionally. One main difference between skeletons 
and reusable AOP modules is how parallelisation strategies and 
core functionality are composed together to yield a parallel 
application. In the former approach, core functionality must be 
decomposed into code fragments to fill the hooks provided by the 
skeleton/template. In AOP approaches this composition is based 
on joinpoints, which results in less invasive changes to the core 
functionality. The advantage of AO parallel programming is due 
to the richer set of mechanisms available to perform compositions 
between core functionality and parallelisation strategies. On the 
other way, templates and skeletons have the advantage to enforce 
stricter rules for compositions and the correct (syntactic) 
composition can be checked at compile-time (for example 
ensuring that parallelisation modules are stacked in the right 
order). 

6. CONCLUSION 
This paper discusses an AO approach to modularise 
parallelisation concerns, namely object partitioning, concurrency 
management and distribution. The approach leverages the 
superior compositional capabilities of AOP to obtain a higher 
reuse potential from parallelisation concerns.  

Composing non-reusable aspects can be performed using current 
AOP capabilities. However, an adequate model to compose 
reusable aspects in a general way is left for future work. 
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