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Abstract 1: Introduction

Scientific applications often manipulate very . — :
large sets of persistent data. Over the past decade Many scientific _appllcanons require the use of
advances in disk storage device performance havePme form of persistent data storage. We usually
consistently been outpaced by advances in the perthink of this persistent storage abstractly in terms of a
formance of the rest of the computer system. As &Set of files each of which containsa collection of data
result, many scientific applications have become I/items. Programs may read data from filesthat existed
O-bound, i.e. their run-times are dominated by the before execution of the program, may write data to
time spent performing 1/O operations. Conse- files that must remain after the program has finished
quently, the performance of 1/O operations has executing, or both. What programmers of such appli-
become critical for high performance in these caions would like is an environment that supports
appllcatlons._ The ELFS approach is designed to easy-to-use high performance access to stored data
address the issue of high performance 1/O by treat- and supports code reuse and extensibility of existing

ing files as typed objects.yped file objects can h
exploit knowleo_lge a_bout the file structure and type g;?g:oo:hi t;igif;orgegjlg :10 develli?%?oze\i/\; argﬁi:
of data. Typed file objects can selectively apply tech- y 9 app

niques such as prefetching, parallel asynchronous Mized. Ease of use, development, and maintenance
file access, and caching to improve performance.have always been desirable goals, but it is becoming
Also, by typing objects, the interface to the user cana more important issue as ever larger and more com-
be improved in two ways. First, the interface can beplex applications are created. In addition, many appli-
made easier to use by presenting file operations in ecationsrequire high performancefor file operationsto
more natural manner to the useSecond, the inter- avoid becoming 1/0O-bound, i.e. having their run-
face can allow the user to provide an “oracle” timesdominated by the time spent performing filein-
about access patterns, that can allow the file objeclyyt and output. This last problem is exacerbated as
to improve perfor_mancg—_\. By comblr_ung these con- cpy performance increases faster than persistent
cepts with the object-oriented paradigm, the goal O.fstorage device performance. With the increase in

the ELFS methodology is to create flexible, extensi- .
ble file classes that are easy to use while achievinccpU Speeds, more data can be processed per unit

high performance. In this paper we present the\ti me, requi r_i ng more data_to be tr_ansferred to or from

ELFS approach and our experiences with the Storagedeviceswhich areincreasingly unableto meet

design and implementation of two file classes: a twothis demand. This problem is further aggravated for

dimensional dense matrix file class and a multidi- parallel programs where the processing power of the

mensional range searching file class. application is effectively increased by using multiple
processors.

The ExtensibLe File System (ELFS) approach, first

proposed by Grimshaw and Loyot [1], is based on the

idea that in order to achieve high performance and

1. This work has been partially funded by grants NSF ASC-
9201822, NASA CS-CESDIS 5908-93, and NASA NGT-50970.



class TwoDMatrixFile {
public:

int openFormatted(string fileName);
DD_array* readRow(int rowNumber);
DD_array* readColumn(int columnNumber);
int writeRow(int rowNumber, DD_array* data);
int writeColumn(int columnNumber, DD_array* data);
void setStride(int newStride);
int elementSize();
int close();

Figurel- TwoDMat ri xFi | e ClassInterface

ease-of -use, files should be treated as typed objects.
Thus the ELFS approach introduces the notion of ap-
plying the object-oriented paradigm to file systems.
The philosophy of the ELFS approach is that the de-
sign of file objects can exploit type-specific knowl-
edge to both support ease-of-use and provide better
performance. In addition, features of the object-ori-
ented paradigm, particularly encapsulation and inher-
itance, can be exploited to ease the tasks of design,
development and maintenance of applications using
file objects. Toillustrate the concepts of the ELFS ap-
proach, we will use atwo dimensional matrix file ob-
ject as an example throughout the early sections of
this paper. This serves as a good example because 1)
it useful in many real-world applications; 2) the ac-
cess patterns to such data are well known and easy to
visualize; 3) many applications using such data, espe-
cidly scientific applications, require high perfor-
mance.

To support ease of use file object interfaces can be
improved to allow the user to manipulate data items
in a manner that is more natural than current file ac-
cess methods available. For example, using our 2D
matrix file, the interface should present data in terms
of rows, columns or blocks, instead of bytes or
records (partia interface for a2D matrix file object is
shown in Figure 1). Thus application programmers
can express requests in a manner that matches their
semantic model of the data. In addition, sincethe only
access the user hasto the file object is through the in-
terface, the details of how the data is physicaly
stored, retrieved, coerced, and converted is kept hid-
den. The underlying implementation manages these
details, including possibly variable file formats and
data representations.

To improve file performance, a typed file object
can exploit type-specific knowledge about the kind of
data to be stored and the likely access patterns to be

employed. For example, the file object can usethisin-
formation to organize the physical storage of the file
efficiently and to implement high performance data
retrieval techniques, including data caching, prefetch-
ing and asynchronous parallel data retrieval, sorting,
and conversion. An important feature of our object-
oriented approach isthat all of theimplementation de-
tailsare hidden from end users- all they observeisthe
object interface and the performance of the operations
when executed. Performance can be further improved
by providing an interface that allows the user to spec-
ify traits about application access patterns that can be
exploited by the implementation. Again using the 2D
matrix file as an example, the user may know that ac-
cesses will be across columns with a certain stride.
Thisinformation can then be used directly by the im-
plementation to initiate prefetching of those columns
needed next.

To support ease of development and maintenance,
file objects can exploit encapsulation and inheritance
mechanisms provided by the object-oriented para
digm. One of the goals of the ELFS approach is that
by treating files as objects, programmers can exploit
the mechanisms of the object-oriented paradigmtoin-
crease code reuse, extensibility, and modularity. We
envision that the ELFS approach will be applied to
create hierarchies of typed file classes. We want to
stress that many of the concepts behind ELFS are fa-
miliar to the object-oriented community. Our contri-
bution is the application of object-oriented
mechanisms, particularly inheritance and encapsul a
tion to the domain of high performance file systems
for the scientific computing community.

The ELFS approach isamethodology for how high
performance file systems should be developed, i.e.
through the development of file objects. The ELFS
approach is designed to work in conjunction with new
developments in file system technology, including
hardware, software and organizational improve-
ments. The advent of commercialy available and af-
fordable RAID systems is a perfect example.
Improvementsin retrieval algorithms and new or im-
proved file structures are two more examples. These
new technologies can and should be used when appli-
cablein theimplementation of ELFSfile objects. The
beauty of the file object model is that the implemen-
tation can be changed without disturbing end user
code.

ELFS has three primary goals. ease of use, high



performance, and ease of development and mainte-
nance. Current techniques employed to support file
operations are deficient in at least one of the these For
example, a UNIX-like file system using primitives,
such as seek, read, and wr i t e, does not support
ease of use or development, while high performance
can be achieved only with effort and care. The prob-
lems with UNIX-like file systems are 1) the primi-
tives provided work at a very low level that of
individual, unformatted bytes - all the effort of orga
nizing and tracking higher-level data structuresisleft
to the programmer; 2) there is no notion of type that
can be exploited by the interface; 3) there is no sup-
port for encouraging reuse of this code and no guaran-
teethat the code will be easy to extend or adapt to new
USES.

The goal of this paper is to present the ELFS ap-
proach to file 1/O in more detail, paying particular at-
tention to the benefits derived from using the object-
oriented paradigm. We also describe our experiences
applying the approach to two classes of files, atwo di-
mensional matrix file class and a multidimensional
range searching file class designed for use at the Na-
tional Radio Astronomy Observatory (NRAO). These
implementations demonstrate that the EL FS approach
can be trandated from theory into practice and that
ELFS file objects can achieve high performance in
real-world applications. In fact, the performance of
both implementations has been very encouraging.

In Section 2, we present a more detailed descrip-
tion of the current technigues most commonly used
for implementing file 1/O, discussing how well they
accomplish each of the three goals we have set. Sec-
tion 3 describes the ELFS approach in detail. In Sec-
tion 4 we present the two file objects we have
designed and implemented using the ELFS approach
and discusstheir respective interfaces, possible exten-
sions and modifications that can be made to thesefile
classes, and their performance. Section 5 presents
some related work in thisareaand Section 6 discusses
our conclusions and future plans for ELFS.

2: Current Methods

Application developers currently employ a wide
range of approaches for implementing operations to
store and retrieve data to/from persistent storage.
Common methods include using the native file sys-
tem of the target machine directly to develop file
structures, using a database management system, or

using library routines supporting a particular file
structure. Theremainder of this section discusses how
well each of these approaches meets the requirements
of application developers who need high performance
for file operations.

Using the Native File System

Coding complex file structures using the native file
system is usually a complicated task because the in-
terface for the native system is at alow level. For ex-
ample, in a Unix style file system, the programmer
must manage all the details of the file layout and how
to translate data access requirements into the primi-
tive file system operations. Developers armed with
only the native file system who desire high perfor-
mance, often face a decision of whether to spend the
effort to implement a more complex high perfor-
mance file structure or to use asimpler, lower perfor-
mance approach (e.g. a sequential file). Because of
the ad hoc design and implementation of many of
these applications, even when a high performance ap-
proach is used it is often difficult to adapt or reuse
code for other applications. First, the implementation
of file operations is often embedded and intertwined
within the main application, making extraction and
reuse of such code difficult and time consuming. Sec-
ond, the implementation may make undocumented
assumptions about the application and its access pat-
terns. Reuse of such codeisdifficult because these as-
sumptions must first be found and then the new
application must match these assumptions or the code
must be revised. Third, the file operations may direct-
ly update or access application data structures. Such
code must be found and revised for any new applica-
tion. Fourth, and most importantly, many implemen-
tations are simply not designed to be reusable. Part of
the ELFS approach is a philosophy that files should
be thought of as reusable objects and designed ac-
cordingly. The OO paradigm encourages such think-
ing and supports reuse via encapsulation and
inheritance. Careful development of file objects can
improve the situation. By first developing the func-
tionality in base file classes and then extending the
basic implementation by deriving new classes, the re-
sulting code is more easily adaptable to new applica-
tions.

For many applications the native file system does
not inherently provide the best performance. Though
almost al file systems now employ caching and many



use some form of prefetching, these mechanisms aample in read-only applications or when it is knaawvn
fixed within the file system. These systems do nopriori that only one application at a time will access
provide mechanisms to allow applications to interacthe data. These performance penalties often make a
with their environment and therefore, the caching anDBMS an unattractive choice for applications need-
prefetching strategies cannot be changed or tailored ing high performance file operations.
the needs of applications. In shori, even if the appliceF”e Libraries
tion can provide an “oracle” for its access patterns
there is no way to convey this information. Libraries designed to provide high performance
Using a Database Management System (DBMS) file operations for spet_:ific types _of data or access pat-
terns have the potential to provide both high perfor-
Database management systems have been devmance and ease of use. For example, it is easy to
oped partly in response to some of the problems dimagine a library supporting matrix file operations
scribed above in using the native file system directlysuch as those discussed in the interface shown in Fig-
The goal of a DBMS is to provide a layer of softwareure 1. However, the extensibility of a library is heavi-
between the user and the native file system that prly dependent on the design principles employed in the
vides data manipulation operations to the user in original implementation and the programming lan-
fairly intuitive manner, and also handles the details oguage used. Libraries developed in a language that
guaranteeing correct, consistent execution and faulsupports the object-oriented paradigm are more likely
tolerance. A DBMS attempts to provide these servicto be easy to extend and maintain than those devel-
es while still achieving as much performance as posoped using less structured approaches. The file library
sible. There are a number of different approaches fapproach using object-oriented techniques, effective-
how a DBMS should be developed, including hierarly creating file objects, appears very promising in
chical, relational and object-oriented approaches [2meeting the goals we have set. In fact, this is the basis
Each puts different emphasis on the structure of thof the ELFS approach: developing high performance
DBMS implementation and interface, providing dif- file objects.
fering degrees of usability, maintenance, and perfoi
mance. However, most DBMSs are designed fo3: The ELFS Approach
general purpose use and force users to adopt the mc
els used by the DBMS, rather than allowing the use The ELFS approach is designed to address three
to employ a model that is more natural or suited tdmportant issues surrounding the use of data files: 1)
their needs. DBMSs generally dictate the data repr(ease-of-use, 2) code maintainability, extensibility and
sentation and data manipulation models that the prdeuse, and 3) performance. ELFS is based on the ob-
grammer can use (OODBMSs are generally morject-oriented paradigm and, in particular, exploits the
flexible in these areas). DBMSs also usually enforcidea that files can be thought of as objects. The ELFS
a single set of sharing semantics and a single set of 1@Pproach is comprised of four key ideas: (1) design
covery semantics, which are often not the best choicdhe user interface of a file to support ease-of-use and
for many applications - they are either not adequate @IS0 to improve performance; (2) improve perfor-
they are overkill. mance by matching the file structure to the access pat-
The generality of DBMS can often hurt perfor-terns of the application and the type of data; (3)
mance. DBMS usually have a single underlying modselectively employ advanced 1/O access techniques
el for the structure of the physical storage of dateSuch as prefetching, caching and parallel retrieval, to
Since the physical representation is inflexible, thdmprove performance; (4) encapsulate the implemen-
DBMS cannot provide the high performance we ardation details of a file within file objects to enhance
interested in for many types of data and app|icatio|maintainability and exploit inheritance to encourage
access patterns. In addition, DBMS often requir(COde reuse and extensibility. Each of these concepts
overhead to maintain the guarantee of data consiste@re discussed in more detail below.
cy among transactions from different asynchronou
processes and the integrity of data in the face of si
failures. This overhead is often unnecessary, for & There are two main objectives in the design of a file

3.1: Interface



object interface. First, the interface should closehas UNIX provides, while for other applications this is
match the user’s semantic model of the data containcoverkill. These semantics are defined for each file
in the file. An interface that presents data and datclass and are exposed to the user through the class in-
manipulation operations in a manner that matches thterface and the behavior of its member functions. The
way a program is likely to use them is much easier tclass implementation must then ensure that the de-
use than an interface expressed in unnatural ternfined semantics are guaranteed.
Possible data representations include common cor In addition to providing an intuitive means for ma-
puter language representations such as integers, flonipulating file data, the interface should allow the ap-
ing point numbers and strings, as well as higher-leveplication to declare knowledge about its usage of the
representations such as records, rows, columns, refile. This knowledge can then be used by the file ob-
angles, lists, or any arbitrary structure that can be ejject implementation to improve performance. For ex-
pressed in the implementation’s language. The enample, if an application using a matrix file knows that
user does not need to know how the data is physicalupcoming requests will have a particular pattern, say
stored or how the data is converted from the physicievery ith row will be accessed, then the interface
storage representation to the interface representaticshould provide a way for the program to express this.
but only what the interface representation means<The underlying implementation can exploit this addi-
This is true even if the file may be stored in many diftional knowledge to achieve better performance by
ferent formats or if the format changes over time: thprefetching rows that are required in the near future.
implementation can manage these different formatin the absence of this knowledge, most prefetching
and coerce or convert data as necessary. Developmschemes would incorrectly retrieve the data in order,
in an environment where the data representations i.e. sequentially, with the corresponding loss of per-
the file interface match the internal data representdformance. Other examples of useful application
tion of the application relieves the programmer of theknowledge include declaration that data will be used
tasks of data extraction and conversion, a potentiallmore than once within the program (allowing the im-
significant saving of effort. plementation to attempt to cache data), declaration
Data representation is not the only interface desigthat the data file is read-only for a single reader (al-
issue. The object behaviors should also match tHowing the implementation to shut off consistency
functionality required by applications using the file checks for the file object, if any are used), or declara-
object. For example, in a file containing various twction of queries ahead of time (allowing the query re-
dimensional objects (e.g. rectangles, circles, polysults to be retrieved and buffered before they are
gons, etc.) and their positions, the interface shoulneeded). We have observed that many applications
provide functionality for operations needed to manip-often do know a great deal about their future access
ulate these objects. Besides typical operations such patterns and that this knowledge is currently not ex-
retrieving, inserting or deleting a 2D object, the inter-ploited. It is important to note that while the informa-
face might provide object intersection functions, retion declaration functions do increase the size of the
trieval of all objects within a bounded rectangle, etcinterface, the user only needs to use these additional
Though different applications may require differentbehaviors when performance is an issue. In the ab-
behaviors, each behavior only needs to be implemersence of any user knowledge, the file object will em-
ed the first time it is needed. New applications caiploy a default strategy.
then use previously defined behaviors at little or nc
cost, leveraging off of the previous work. 3.2: File Structure

One of the drawbacks mentioned about bott There has been a great deal of work over the past
DBMSs and native file systems is that they often deggcades in developing file structures for various uses.

fine a single set of sharing and recovery semantics, Cthe database literature contains many examples of
ten proyldlng elthe_r too strong or too weak guarante€craative file structures that are well suited for particu-
for particular applications. We feel that part of thejg; gppjication needs or types of data. Examples in-
defmmo_n of a file object is its shanng a_md recoverycjyde tree-based structures suck-darees [3,4] and
semantics. For example, some applications may e trees [5], partitioning-based structures like grid files
file objects that maintain the same sharing semantl([s] and Piecewise Linear Order-Preserving-hashing



(or PLOP) files [7,8], primary files with secondary in- ic file classes that tailor the use of access techniques
dexes, and many others. Each of these file structuriwith potentially little effort.
has advan_tages and disadvantag_es under different ipyefetcn ng
cess requirements and data attributes. For examp
indexing schemes work well for single record retriev- Prefetching data involves guessing ahead and start-
al when one of the indices can be used. Because ing I/O operations for data that is likely to be request-
data locality, they also work well when a range of datied in the near future. The simplest prefetching
is accessed along the key by which the primary file istrategy is to read the next block of data in the file af-
sorted. However, a range retrieval along a key that ter the last one read (sequential prefetching). This
not the primary file’s sort key will generally not per- method is employed in many database management
form well because the request will access data bloclsystems and some native file systems and works well
scattered across the file. for retrievals where reads will be sequential. For ac-
For I/O performance to be maximized, it is crucialcess patterns that do not behave this way, prefetching
to choose file structures that best match an applicican actually be detrimental as resources, such as buff-
tion’s access requirements. The goal is to reduce tler space, 1/0 device bandwidth, server CPU cycles
number of file accesses required and to reduce ttand network bandwidth are all used for reading in
cost of each access. A common method to reduce tlpoor guesses. The key is to guess correctly as often as
number of accesses needed for a file operation is to ¢possible. One promising approach to achieving better
range the physical storage of the file such that daiguesses is to allow the user to specify intentions for
that is likely to be used together is stored together, i.how the file is going to be accessed. These intentions
exploit data locality. In this manner, an entire grougcan be used to determine whether prefetching should
of data items can be read or written together in onbe employed and if so, which data is likely to be need-
file operation, instead of requiring several separated next. Examples of employing such a strategy in-
file operations. In addition, the cost of each operatioiclude declaring the stride of accesses to a matrix file
can be reduced (i.e. reduced latency) by proper placor pre-specifying a query that will be needed in the
ment of data files. This is especially true in distributenear future. In both cases, the file object knows what
systems that may have a wide range of point-to-poirdata will be needed and can prefetch effectively.
communicatiorj tim_es. _Placing data “close” to the prog;|e cachi ng
cess that requires it will reduce the overall latency o

a file operation. File caching is another popular method for reduc-
_ ing I/O latency and increasing effective I/O band-
3.3: Advanced |/0 Techniques width that relies on temporal locality of data

The third part of our approach, type specific acces'eferences. File caching exploits this property by

methods, encompasses a set of orthogonal methok€eping recent requests in local memory so if they are
that can be applied where appropriate to any siineeded again, the request can be satisfied from mem-

scheme to improve effective 1/0 bandwidth, latency©"Y instead requiring an I/O operation. This approach
or both. These methods include selectively and inte!S @Pplied throughout the computer storage hierarchy
ligently prefetching data, caching data likely to be?Nd can be very successful if references have a high
used again in the near future and parallelizing file opdegree of temporal locality. However, in applications
erations and other 1/O related activities such as sorhere data files or subsets of data files too large to fit
ing. Using an object-oriented class scheme allows tHNto local memory are read, this scheme does not help
implementor to choose which of the above method@nd may waste memory and processor resources. Like
are appropriate for a given file type and how they Wi”prefetchlng, th_e user often kngws the access patterns
be implemented. Selection and application of acce°f the application best and so it seems reasonable that
methods can be fine tuned in two important Wayspr_owdmg an interface to express the user’s intentions
First, an improved interface can allow the user to acill 1ead to better overall use of resources.

as an oracle, directing a file object’s use of differen

access techniques. Second, using inheritance fro

base file classes, a user can derive application-spec



tion of a file object limits how the object is used and
Qpplioa tion ngD which pie_ces of a program havg access to hid(_JIen data
and functions. Since all interactions with an object are
y A defined by the object’s interface, new functionality
can be added via inheritance at any time to an existing
File Object class without invalidating any code already using the
object. In this manner, the definition of an existing
Y A file object can easily be extended so that new require-

ments can be satisfied or the file object can be extend-
ed to support a new application.

i 4: Applying the ELFS M ethodology
@ Thus far we have described the rationale behind the
ELFS approach and given some examples where

there are opportunities to exploit the approach. We
next present our experience in applying the ELFS
. methodology to real-world problems. Specifically,

Multiple I/O Threads we have created two file hierarchies, a two dimen-
sional dense matrix file hierarchy and a multidimen-

therefore completely stop and wait when an 1/0 operSional range searching file hierarchy. Both file
hierarchies were implemented using Mentat, an ob-

ation is pending. A better model is to try to overlag, X d llel . M
computation as much as possible with file I/O activity]ec'['Orlente parallel processing system [9). Mentat

by splitting 1/0 operations and application code intcP'09rams are written in th_e Mfentat PLogrammlné;
separate threads of control that can execute in parall-2nguage (MPL), an extension of C++. The major ad-

(computer hardware is already built using this moddition to C++in MPL is that classes can be tagged as
el). This idea can be extended by having multiplebe'ng Mentat classes, which means that the member

asynchronous 1/0 processes or threads that can 0V'function invocations_on the class are executgd in par-
lap computation such as sorting and conversion angallel whenever possible. The Mentat system is a natu-

O requests. Of course, with a single I/O device for th/@l choice for implementing ELFS classes because it
entire file, the I/O device could create a bottleneciSUPPOrts both the object-oriented programming para-
and limit performance. However, if the file is parti- di9m and parallel execution, which is required for ex-
tioned or replicated and placed on multiple devices2MP!€ in applying prefetching or parallel sorting

then separate asynchronous I/O processes can achit€chniques.

true parallel retrig\_/al and exec_ution. I_:igure 2 sh(_)w4. - TwoDM&t ri xFi | e Class

the case of a partitioned or replicated file and multiple

asynchronous 1/0 “workers”. It is important to note Many applications, particularly scientific applica-
that in the model shown, the end user still only seetions, use data in the form of a dense two dimensional
the file object’'s normal interface, while the object'smatrix. Some examples include solution of dense sys-
implementation coordinates the creation and use dems of linear equations, image processing applica-

request

result

Worker 1 Worker 2 o oo Worker n

Figure2 - Multiple 1/O Serversfor a Single Task

Typical applications have one thread of control anc

the asynchronous workers. tions, grid-based modeling applications, and many
_ o _ others. Many of these applications require high per-
3.4: Encapsulation Within File Objects formance from the file system because the problems

and therefore the matrices are very large. If the matrix
is too large to fit into memory, the program must
move the data to and from persistent storage during
execution. Even if this is not the case, the matrix usu-
ally must be initialized with data from a file. Poor file

system performance can add significantly to the over-

Treating files as objects and implementing them ir
a language that supports the object-oriented prograr
ming paradigm is intended to reduce the effort neede
to develop and maintain applications that use files
This is accomplished by exploiting encapsulation an
object inheritance. Encapsulation of the implementa



Program 1.

inti, fd;
int m[maxR][maxC];

Program 2:
TwoDMatrixFile f;

f.openFormatted(filename);
maxR = faumRows();

fd = open(filename);
maxC = f.numColumns();

for (i=0; i<numR; i++)
// file position for row i DD_intarray m(maxR,maxC);

// column x m.column(2) =

seek(fd, position); f.readColumn(2);
read(fd, numBytes);

// convert data o

mli][x] = val; f.close();

close(fd);

(8) Unix (b) TwoDMBt ri xFi | e

Figure 3 - Matrix Column Access: UNIX vsELFS

al execution time of aprogram. The TwoDMVAt r i X-
Fi | e classis designed to alleviate the performance
problems of these applications while simultaneously
reducing the effort required to devel op the file storage
and retrieval operations.

Figure 3 demonstrates the power of an improved
interface for matrix file operations. Both code frag-
ments are designed to accomplish the same goal - read
a specific column of integers from a matrix file. The
sample code in 3a presents a possible implementation
using UNIX style file operations; 3b presents an im-
plementation using the TwoDMat ri xFi | e and an
auxiliary  two  dimensional data  class,
DD i ntarray (DD_i ntarray ispart of ahierar-
chy of 2D array classes derived from a base
DD array class). The DD i ntarray class in-
cludes row and column operationsin its definition. In
3a the application programmer needs to know all of
the details about how the file has been physically
stored. The programmer must know that the file is
stored in row major format and therefore must iterate
over the rows to retrieve each piece of the column.
The programmer must also know the file organization
and the data storage format. Is there afile header? If
so, how is it organized? |Is the data compressed or
converted to some particular representation? For the
programmer using the TwoDMat ri xFi | e, this is
not the case. The programmer only needs to know 1)
there isa TwoDIVAat r i xFi | e operation to return a
matrix columninDD_i nt ar r ay format and; 2) how
to create and manipulate DD_i nt ar r ay objects.

Figure 4 shows the interface for our current imple-
mentation of the TwoDMat r i xFi | e class. Asmight
be expected, the interface provides member functions

class TwoDMatrixFile {
public:

int createFormatted(string fileName,int rows,int cols,|
int size, int stride, int blockSize, int numBuffers);

int openFormatted(string fileName);

int openFormatted(string fileName, int stride,
int numBuffers);

DD_array* readRow(int rowNumber);

DD_array* readColumn(int columnNumber);

int writeRow(int rowNumber, DD_array* data);

int writeColumn(int columnNumber,
DD_array* data);

void setStride(int newStride);

int getStride();

int numRows();

int numColumns();

int elementSize();

int close();

Figure4 - TwoDMat r i xFi | e Class|nterface

to create, open and close matrix files, to read and
write rows and columns of data and to retrieve infor-
mation about the matrix file - the number of rows and
columnsin the file and the element size. To potential-
ly improve the performance of the file operations, the
set St ri de function has been included to allow the
user to change the stride that will be used for consec-
utive row or column operations (the get Stri de
function returns the current value of the stride param-
eter). The underlying implementation is designed to
exploit strideinformation by aggressively prefetching
data at the specified stride. The user has no knowl-
edge of when or how prefetching occurs. The user
aso has no knowledge of how the file is physically
stored.

The TwoDiVRt ri xFi | e class as presented sup-
ports only those data types for which there is an asso-
ciated DD_ar r ay class. However, by deriving anew
class from the DD_ar r ay hierarchy, the TwoDiVa-
tri xFi | e class can support new data types. In this
manner, the TwoDIVat r i xFi | e class can be incor-
porated into many new applications with little or no
effort?.

The underlying implementation of the TwoDVa-
tri xFi | e classexploitsafilestructure called block
partitioning, that is designed to provide equal perfor-
mance for row and column operations. Figure 5 dem-
onstrates how block partitioning works - the matrix
fileisdivided into blocks each containing arectangu-
lar region of the matrix. The matrix data for each
block is physically stored together in the file. To re-
trieve arow, several reads must be performed, onefor

2. We redlize that templates would be a better mechanism in this
case. However, the MPL compiler does not currently support templates.
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Figure5- Block Partitioning File Structure

each block intersected by the row. While this strategy
may require more reads for row operationsthan if the
file were stored in row magjor format, this perfor-
mance penalty is more than made up with the perfor-
mance gain for column accesses (if the entire file is
read there is no such penalty). The performance deg-
radation of row operations (or conversely column op-
erationsin acolumn-major format) isfurther offset by
thefact that each row retrieval aso readsin —1 addi-
tiona rows, which can be accessed at no additional
cost. A possihility that we have not implemented isto
support multiple file formats, row major, column ma-
jor, and square partitioning, and to enhance the inter-
face to alow the user to specify whether the file will
be accessed by rows, columns or both. This enhanced
file object would decide the best file format (atrivial
choice in this case) and would manage access to the
chosen file format, invisibly to the end user.

A sequential version (i.e. no prefetching was em-
ployed) of the TwoDMat ri xFi | e class achieved
comparable performance to using UNIX seeks and
reads for row retrievals. The performance for column
retrievals was about half that of row retrievals, due to
less physical locality of the reads on the disk (the disk
was not fragmented, therefore using a row major
alignment of blocks places the pieces along rows
closer together than the pieces for a column. We
would expect increased file fragmentation to bring the
row and column retrieval times closer together). The
retrieval times for columns, however, were vastly su-
perior to the UNIX column reads.

The paralel version, employing prefetching, also
performed very well. This version was tested against
the performance of the native Concurrent File System
(CFS) on a 32 node Intel iPSC/2 hypercube, using a
program that employed between 1 and 16 consumer
processes. Since the performance of prefetching de-

pends on the amount of computation a program per-
forms in between successive reads, the parallel
TwoDivat ri xFi | e implementation was tested
varying the number of floating point operations per-
formed by the reader on each data element. Perfor-
mance when executing only one floating point
operation per element is closeto CFS performancefor
row retrievals. For 10 FL OPs per element, the TwoD-
Mat ri xFi | e outperforms CFS by a significant
margin for al numbers of reader processes. Inal cas-
esthe TwoDMat ri xFi | e isfar superior for column
retrievals. Figure 6 shows these results. Note that per-
formance of CFS on column reads was so low that
they are not included in the graphs. For more detailed
discussion of the TwoDMat ri xFi | e performance
see [10].

4.2: Multidimensional Range Searching (MRS)
File Object

Multidimensional range searches appear in awide
range of applications. Such applications view a data
set as an n-dimensional data space, where each di-
mension represents the values along a key field
present in the data. The coordinates of each data
record areitsvauesfor each of then dimensions. Us-
ing thisview, subvolumes of the data space can be de-
fined by specifying a range of vaues for each
dimension. For example, a data set containing a set of
time indexed two dimensional images can be viewed
asathree-dimensional data space (time, x, y). Possible
range searches for such a data set include retrieving a
specified region of each image (a rectangle in (X, y))
for all time values, retrieving full imagesfor acertain
range of times, etc.

Our choice for implementing afile object for mul-
tidimensiona range searching was motivated by a
real-world problem. The National Radio Astronomy
Observatory (NRAO) has many applications that
view data exactly as described above. In particular,
NRAO caollects large volumes of interferometry data
produced by radio telescopes which is then analyzed
by scientists. These scientists view the data as a
sparsely populated n-dimensional space and areinter-
ested in looking at particular subvolumes of the data
(some of the dimensions for interferometry data in-
clude time, baseline, frequency, source, and polariza-
tion). Different scientists will need different views of
the same data, depending on the type of analysisbeing
performed. For example, one scientist may require all
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Figure6 - TwoDMat ri xFi | e Effective Bandwidth vs CFS on 32 Node Intel iPSC/2

measurementsfor atime range for aspecific region of
the sky to study trends over time, while another scien-
tist may need measurements for only one time frame
and specific measurement frequencies but for awider
area of the sky. Performance of NRAO file 1/O oper-
ations is currently unsatisfactory and many of their
applications are now 1/O-bound. Consequently,
NRAO is studying methods to aleviate their 1/0
problem, including our multidimensional range
searching file object. At the same time, NRAO isin
the midst of re-engineering approximately 700,000
lines of code from FORTRAN and C to C++ to im-
provetheir efficiency in code devel opment and main-
tenance. A more detailed description of our work with
NRAO on the MRS file object isdetailed in [11,12].
Our MRS file object implementation uses the
PLOP file as the basic underlying file structure [7,8].
Though other file structures could be used for multi-
dimensional range searches, it is our opinion that
none of these candidates is clearly superior to PLOP
files, while PLOP files have a relatively straightfor-

ward implementation. For amorein depth analysis of
the choice of file structure see [11]. A PLOP file
views adataset asamultidimensional dataspace. The
data space is partitioned by splitting each dimension
into a series of ranges called slices. The intersection
of a dlice from each dimension defines one logical
data bucket. Data points are stored in the bucket that
has corresponding values in each dimension. There-
fore, within a bucket, the data points exhibit spatial
locality inall dimensions. A tree structure for each di-
mension tracks the physical location of each bucket
within the file, so that each bucket can be accessed
very efficiently. This structure allows retrievals to
eliminate parts of the file that do not correspond to
values within the range search based on all dimen-
sions, while quickly accessing those parts that may
contain valid data.

We have implemented a sequential version of the
PLOP file-based file object, (the pl opFi | e class),
and are currently working on the development of a
paralel version that will allow us to distribute the
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public:
/I constructor and destructor

Figure 7 - Sample Range Queries

queryWndow(IFPlopFile*);

PLOP file and apply prefetching and parallel retriev-
al, sorting, and conversion techniques. Here we wil
focus on the sequential version. The sequential imple
mentation consists of a base clgdsgFile ) a de-

rived class specifically designed for NRAO'’s
interferometry datalFPlopFile ) and two further

derived classes for specific types of interferometn
data, “line spectrum” data and “continuum” data
(IFLinePlopFile and IFContPlopFile , re-

spectively). The resulting class hierarchy is shown ii
Figure 8 As would be expected, the base class pr
vides general functionality for multidimensional
range searching, while the derived classes add i
creasingly more specialized functionality. The inter-
face revealed to the end user consists of a handful

~queryWndow();

/I Reset functions

void resetAll();

void reset(int key);

void reset(char* keyName);

/I sorting functions
void sortBy(int keyint sortDir);
void sortBy(char* keyName, int sortDir);

/I do retrieval and collect statistics
void countPoints();

/I set functions

void set(int keyint lower, int upper);

void set(char* keyName, int lowent upper);
void set(int keyfloat lower float upper);

void set(char* keyName, float lowdloat upper);
void set(int key Time lower Time upper);

void set(char* keyName,iifie lower Time upper);

member functions: a constructor and destructor, an
open, readHeader , writeHeader , ad-
dRecord , reportStats and createFrom-
Fits functions. These few functions allow the useiwhich to sort the resulting data. For example, to
to create the PLOP file and add data to it. Our curreisearch for all data with times between 0.1 and 0.2,
version does not yet include update functions becaubaselines 1 to 1000, and sorted by time, qwery-
they aren’t needed for the current applications. In thWindow “set” calls are necessaryset(“Time”,
future, these functions can easily be added to the €0.1,0.2)  andset(“Baseline”, 1, 1000)
isting interface if needed. - and one call is necessary to set the primary sort di-
Retrieval mechanisms for the PLOP files are immension sortBy (“Time”, 1, ASCENDING ).
plemented in a separate clagseryWindow . By  Theset functions can all take multiple ranges for a
packaging the retrieval portion separately from thesingle query. The result of such a query is that all data
file, the user can define multiple data windows simulmatching any of the ranges specified is retrieved. If
taneously in the same application, each related to tfthe user desires the data for times (0.1,0.2), (0.5,0.75),
same file or to different files. The interface épre-  and (0.9,1.0), a query can be made by using the
ryWindow allows the user to easily specify the typesset() ~ function three times, one for each range. Sin-
of queries required for multidimensional rangegdle axis value queries are formed by specifying the
searches as well as specification of a sort key. Settirsame value for the upper and lower part of the range,
up a query is done by declaring@éeryWindow ob- such as (0.1,0.1). This interface was developed with
ject and then setting the range or ranges to search fhelp from NRAO scientists and we feel this interface
each dimension and specifying the dimension bis quite simple and intuitive for range queries.

Figure 9 - QueryWindow Class I nterface




Total % Total % Good _ Total | Effective
Query Description Records sGOOd Good Data Data Time BW BW
Retrieved ecords Records Retrieved (Accuracy) (seconds) | (KBytes| (KBytes/
(KBytes) /sec) Sec)
All data 126,092 126,092 100% 63,232 78.7% 38.3 1,651 1,299
All data, sorted by TM 126,092 126,092 100% 63,232 78.7% 40.4 1,565 1,231
All data, sorted by BL 126,092 126,092 100% 63,232 78.7% 187.4 337 266
10% TM range 14,742 12,636 85.7% 7,584 65.7% 58 1,308 859
10% TM range, sorted by U 14,742 12,636 85.7% 7,584 65.7% 7.2 1,053 692
1TM, 1P 702 351 50% 316 43.8% 0.23 1,374 601
10% TM range, 1 P 7,371 6,318 85.7% 3,792 65.7% 2.33 1,627 1,079
50% TM range, 1 BL 752 186 24.7% 416 17.6% 145 287 51
50% TM, 1A 15,026 4,836 32.2% 7,488 25.5% 145 516 132
1BL, 1R sorted by TM 720 180 25% 400 17.7% 13 308 54

Figure 10 - Query Performance for Line-Spectrum PLOP File

To test the performance of our implementation we
converted two small to medium sized NRAO data
sets, one line spectrum file (~50 megabytes) and one
continuum file (~270 megabytes). With NRAO scien-
tists, we developed a suite of 10 queries representa
tive of typical NRAO usage and used these to test the
performance of each of the files. The performance of
these queries for the line-spectrum file is shown in
Figure 10. All testswere run on a SPARCStation | PX
with 32 MB of RAM and an attached hard disk. The
disk has an average rotational latency of 6.95 milli-
seconds and an average seek time of 9.8 milliseconds.
The file we tested contains 6 keys: time (TM), base-
line (BL), polarization (P), U, V, W and antenna (A).
The query descriptions in Figure 10 describe those
keysthat were used to narrow the search; for any keys
not listed, the entire range of values for that key are
retrieved. In addition, the results were not sorted un-
less otherwise noted. Columns 2-6 describe the size of
the requests and the accuracy of retrievals using the
PLOPfile structure. Column 4 (% Good Records) de-
scribes what percentage of all records retrieved satis-
fied the query. Column 6 (% Good Data) is also a
measure of retrieval accuracy, but it also considers
overhead. The last three columns describe our perfor-
mance. Total Bandwidth measures the rate of data
read by the file object, including overhead and data
not satisfying the query. Effective bandwidth is the
rate of useful dataread per second.

We are currently attempting to gather similar per-
formance statistics from existing NRAO applications.

However, since the file operation code is deeply em-
bedded within these applications it has been difficult
to isolate code for file operations and to construct
meaningful comparisons. For a more full description
and analysis of our test results refer to [11,12].

5: Related Wor k

Many researchers have attacked the issue of high
performance /O from many different angles. Hard-
ware designers are constantly trying to improve the
performance of raw /O devices. New organizational
techniques, such asRAIDs[13], have been devel oped
to better structure and use the devices currently avail-
able. Research has been done on better file organiza-
tion [3-8] and there have been extensions made to
programming languages to support high performance
I/O, for example extensions to HPF Fortran detailed
by Brezany, et al [14]. High performancefile systems
have been specially made for specific architectures,
such asthe Concurrent File System (CFS) for Intel su-
percomputers[15].

Other researchers have looked into user interface
issues for manipulating persistent data. Examplesin-
clude Kotz's work on multiprocessor file system in-
terfaces [16], the Vesta Paradlel File System
introduced by Corbett, et a [17] and the many works
in the OODBM S field.

These are just a few examples of related work in
the field, but they do illustrate some of the variety of
approaches used. All of these works are important



pieces to providing an easy-to-use, high performance
I/O system. One of the key advantages of the ELFS
approach isthat the encapsulation of filesinto objects
simplifies the process of implementing new tech-
nigues as they emerge.

The idea of applying the object-oriented paradigm
to database systems is not new [18,19]. What distin-
guishes our work is our objective. Rather than con-
centrate on flexibility, extensibility, and fidelity to the
object-oriented paradigm, our work is targeted to the
scientific programming community which places a
premium on performance. Thus, we would be willing
to sacrifice some flexibility for performance if it be-
came necessary.

Our contribution is that we propose that 1/0 tech-
nologies should be exploited by selectively employ-
ing them when applicable and to combine them with
the object-oriented paradigm to produce type-specific
file objects. Theresult is extensible, ease-to-use, high
performance file objects that meet the needs of scien-
tific users.

6: Summary and Future Work

Our goals for designing the ELFS approach are to
increase ease-of-use, improve file performance for
those applications most in need of high performance,
and to increase ease of development and mainte-
nance. The object-oriented paradigm through object
encapsulation and inheritance supports a program-
ming style conducive to easing the burden of applica
tion development and modification. For these
reasons, we feel that this model of programming
should be applied to the development of file objects
that are designed to manage access to persistent data.
In particular, we feel that there is a need to apply the
object-oriented paradigm to file objects designed for
high performance. The reason for this is twofold.
First, there is a growing need, especialy in the scien-
tific community, for high performance 1/0, mainly
due to inadeguate improvements in storage device
speeds. Second, high performance file objects, espe-
cially those employing parallel access techniques, are
usually difficult to implement and will benefit greatly
from OO techniques.

The ExtensibLe File System described in this pa-
per, provides an approach for creating such file ob-
jects, exploiting the OO programming paradigm. We
have demonstrated the feasibility of applying the
ELFS approach to real-world problems by devel oping

two useful file objects, atwo dimensional matrix file
and a multidimensional range searching file. So far,
we are pleased with the performance of both objects.
The success of these two objects leads us believe that
the ELFS approach is a good maodel for high perfor-
mance |/O support and can be applied successfully to
awide range of applications domains.

We are currently developing a new version of our
multidimensional range searching file object with an
emphasis on improving the interface and implement-
ing a distributed file scheme and parallel accesstech-
nigues. Planned improvements to the interface are to
include data retrieval functions, to provide functions
for specifying user knowledge about access patterns,
such as the number of times data will be read, and to
alow the user to pre-specify queries so that their re-
trieval can be performed in advance. We have devel-
oped a distributed PLOP file structure that provides
severa different distribution patterns, including pat-
terns akin to striped and segmented strategies used in
distributing array data in parallel languages like For-
tran D. The new version will exploit the distributed
fileimplementation, using parallel accesstothefileto
improve performance. In addition, the new version
will exploit parallelism by implementing selective
prefetching and parallel sorting and conversion. It is
our hope that this improved version will be afile ob-
ject that meets all of the goals we wished to achieve.

Though our initial findings for the MRS file object
have been very promising, we have tested it using
only two closely related types of filesin one applica-
tion domain. We intend like to incorporate the MRS
file object into other real-world applications. This
will be useful in determining how easy it istailor to an
existing object for new applications. It would be par-
ticularly useful for aprogrammer outside of the ELFS
project group to develop an application using one of
our file objects, thus giving us an unbiased opinion
about how easy it isto use the file object.

The objects developed so far have been devel oped
basically in isolation from each other, each being de-
veloped mostly from scratch. Each implementationis
a significant amount of work. It is useful to define
which functionality is common across all or large
classes of file object implementations and which
functionality isunique. A long term goal of the ELFS
project isto identify common functionality and to im-
plement this functionality in a modular fashion. Pro-
grammersrequiring anew file object canthen usethis



base functionality in their implementation, avoiding
the need to re-invent a portion of their code. [13]
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