
DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF VIRGINIA
THORNTON HALL
CHARLOTTESVILLE, VIRGINIA 22903-2442
(804) 982-2200 FAX: (804) 982-2214

Extensible FiLe Systems (ELFS) An Object-Ori-
ented Approach to High Performance File I/O

John F. Karpovich
Andrew S. Grimshaw

James C. French

July 22, 1994

Appeared in Proceedings of the Ninth Annual Conference on
Object-Oriented Programming Systems, Languages, and Ap-
plications, pp. 191-204, October 1994.
Also available as University of Virginia, Department of Com-
puter Science Technical Report CS-94-28 via the web @ ftp:/
/ftp.cs.virginia.edu/pub/techreports/README.html.

Work partially sponsored by NSF, NASA, CESDIS and
NRAO.

Abstract
Scientific applications often manipulate very

large sets of persistent data. Over the past decade,
advances in disk storage device performance have
consistently been outpaced by advances in the per-
formance of the rest of the computer system. As a
result, many scientific applications have become I/
O-bound, i.e. their run-times are dominated by the
time spent performing I/O operations. Conse-
quently, the performance of I/O operations has
become critical for high performance in these
applications. The ELFS approach is designed to
address the issue of high performance I/O by treat-
ing files as typed objects. Typed file objects can
exploit knowledge about the file structure and type
of data. Typed file objects can selectively apply tech-
niques such as prefetching, parallel asynchronous
file access, and caching to improve performance.
Also, by typing objects, the interface to the user can
be improved in two ways. First, the interface can be
made easier to use by presenting file operations in a
more natural manner to the user. Second, the inter-
face can allow the user to provide an “oracle”
about access patterns, that can allow the file object
to improve performance. By combining these con-
cepts with the object-oriented paradigm, the goal of
the ELFS methodology is to create flexible, extensi-
ble file classes that are easy to use while achieving
high performance. In this paper we present the
ELFS approach and our experiences with the
design and implementation of two file classes: a two
dimensional dense matrix file class and a multidi-
mensional range searching file class.1

1: Introduction

Many scientific applications require the use of
some form of persistent data storage. We usually
think of this persistent storage abstractly in terms of a
set of files each of which contains a collection of data
items. Programs may read data from files that existed
before execution of the program, may write data to
files that must remain after the program has finished
executing, or both. What programmers of such appli-
cations would like is an environment that supports
easy-to-use high performance access to stored data
and supports code reuse and extensibility of existing
code so that the effort needed to develop a new appli-
cation or to modify an existing application is mini-
mized. Ease of use, development, and maintenance
have always been desirable goals, but it is becoming
a more important issue as ever larger and more com-
plex applications are created. In addition, many appli-
cations require high performance for file operations to
avoid becoming I/O-bound, i.e. having their run-
times dominated by the time spent performing file in-
put and output. This last problem is exacerbated as
CPU performance increases faster than persistent
storage device performance. With the increase in
CPU speeds, more data can be processed per unit
time, requiring more data to be transferred to or from
storage devices which are increasingly unable to meet
this demand. This problem is further aggravated for
parallel programs where the processing power of the
application is effectively increased by using multiple
processors.

The ExtensibLe File System (ELFS) approach, first
proposed by Grimshaw and Loyot [1], is based on the
idea that in order to achieve high performance and

1. This work has been partially funded by grants NSF ASC-
9201822, NASA CS-CESDIS 5908-93, and NASA NGT-50970.

ExtensibLe File Systems (ELFS): An Object-Oriented
Approach to High Performance File I/O

John F. Karpovich, Andrew S. Grimshaw, and James C. French
Department of Computer Science, University of Virginia

{jfk3w | grimshaw | french} @virginia.edu

ease-of-use, files should be treated as typed objects.
Thus the ELFS approach introduces the notion of ap-
plying the object-oriented paradigm to file systems.
The philosophy of the ELFS approach is that the de-
sign of file objects can exploit type-specific knowl-
edge to both support ease-of-use and provide better
performance. In addition, features of the object-ori-
ented paradigm, particularly encapsulation and inher-
itance, can be exploited to ease the tasks of design,
development and maintenance of applications using
file objects. To illustrate the concepts of the ELFS ap-
proach, we will use a two dimensional matrix file ob-
ject as an example throughout the early sections of
this paper. This serves as a good example because 1)
it useful in many real-world applications; 2) the ac-
cess patterns to such data are well known and easy to
visualize; 3) many applications using such data, espe-
cially scientific applications, require high perfor-
mance.

To support ease of use file object interfaces can be
improved to allow the user to manipulate data items
in a manner that is more natural than current file ac-
cess methods available. For example, using our 2D
matrix file, the interface should present data in terms
of rows, columns or blocks, instead of bytes or
records (partial interface for a 2D matrix file object is
shown in Figure 1). Thus application programmers
can express requests in a manner that matches their
semantic model of the data. In addition, since the only
access the user has to the file object is through the in-
terface, the details of how the data is physically
stored, retrieved, coerced, and converted is kept hid-
den. The underlying implementation manages these
details, including possibly variable file formats and
data representations.

To improve file performance, a typed file object
can exploit type-specific knowledge about the kind of
data to be stored and the likely access patterns to be

class TwoDMatrixFile {
public:

int openFormatted(string fileName);
DD_array* readRow(int rowNumber);
DD_array* readColumn(int columnNumber);
int writeRow(int rowNumber, DD_array* data);
int writeColumn(int columnNumber, DD_array* data);
void setStride(int newStride);
int elementSize();
int close();

}

Figure 1 - TwoDMatrixFile Class Interface

employed. For example, the file object can use this in-
formation to organize the physical storage of the file
efficiently and to implement high performance data
retrieval techniques, including data caching, prefetch-
ing and asynchronous parallel data retrieval, sorting,
and conversion. An important feature of our object-
oriented approach is that all of the implementation de-
tails are hidden from end users - all they observe is the
object interface and the performance of the operations
when executed. Performance can be further improved
by providing an interface that allows the user to spec-
ify traits about application access patterns that can be
exploited by the implementation. Again using the 2D
matrix file as an example, the user may know that ac-
cesses will be across columns with a certain stride.
This information can then be used directly by the im-
plementation to initiate prefetching of those columns
needed next.

To support ease of development and maintenance,
file objects can exploit encapsulation and inheritance
mechanisms provided by the object-oriented para-
digm. One of the goals of the ELFS approach is that
by treating files as objects, programmers can exploit
the mechanisms of the object-oriented paradigm to in-
crease code reuse, extensibility, and modularity. We
envision that the ELFS approach will be applied to
create hierarchies of typed file classes. We want to
stress that many of the concepts behind ELFS are fa-
miliar to the object-oriented community. Our contri-
bution is the application of object-oriented
mechanisms, particularly inheritance and encapsula-
tion to the domain of high performance file systems
for the scientific computing community.

The ELFS approach is a methodology for how high
performance file systems should be developed, i.e.
through the development of file objects. The ELFS
approach is designed to work in conjunction with new
developments in file system technology, including
hardware, software and organizational improve-
ments. The advent of commercially available and af-
fordable RAID systems is a perfect example.
Improvements in retrieval algorithms and new or im-
proved file structures are two more examples. These
new technologies can and should be used when appli-
cable in the implementation of ELFS file objects. The
beauty of the file object model is that the implemen-
tation can be changed without disturbing end user
code.

ELFS has three primary goals: ease of use, high

performance, and ease of development and mainte-
nance. Current techniques employed to support file
operations are deficient in at least one of the these For
example, a UNIX-like file system using primitives,
such as seek, read, and write, does not support
ease of use or development, while high performance
can be achieved only with effort and care. The prob-
lems with UNIX-like file systems are 1) the primi-
tives provided work at a very low level that of
individual, unformatted bytes - all the effort of orga-
nizing and tracking higher-level data structures is left
to the programmer; 2) there is no notion of type that
can be exploited by the interface; 3) there is no sup-
port for encouraging reuse of this code and no guaran-
tee that the code will be easy to extend or adapt to new
uses.

The goal of this paper is to present the ELFS ap-
proach to file I/O in more detail, paying particular at-
tention to the benefits derived from using the object-
oriented paradigm. We also describe our experiences
applying the approach to two classes of files, a two di-
mensional matrix file class and a multidimensional
range searching file class designed for use at the Na-
tional Radio Astronomy Observatory (NRAO). These
implementations demonstrate that the ELFS approach
can be translated from theory into practice and that
ELFS file objects can achieve high performance in
real-world applications. In fact, the performance of
both implementations has been very encouraging.

In Section 2, we present a more detailed descrip-
tion of the current techniques most commonly used
for implementing file I/O, discussing how well they
accomplish each of the three goals we have set. Sec-
tion 3 describes the ELFS approach in detail. In Sec-
tion 4 we present the two file objects we have
designed and implemented using the ELFS approach
and discuss their respective interfaces, possible exten-
sions and modifications that can be made to these file
classes, and their performance. Section 5 presents
some related work in this area and Section 6 discusses
our conclusions and future plans for ELFS.

2: Current Methods

Application developers currently employ a wide
range of approaches for implementing operations to
store and retrieve data to/from persistent storage.
Common methods include using the native file sys-
tem of the target machine directly to develop file
structures, using a database management system, or

using library routines supporting a particular file
structure. The remainder of this section discusses how
well each of these approaches meets the requirements
of application developers who need high performance
for file operations.

Using the Native File System

Coding complex file structures using the native file
system is usually a complicated task because the in-
terface for the native system is at a low level. For ex-
ample, in a Unix style file system, the programmer
must manage all the details of the file layout and how
to translate data access requirements into the primi-
tive file system operations. Developers armed with
only the native file system who desire high perfor-
mance, often face a decision of whether to spend the
effort to implement a more complex high perfor-
mance file structure or to use a simpler, lower perfor-
mance approach (e.g. a sequential file). Because of
the ad hoc design and implementation of many of
these applications, even when a high performance ap-
proach is used it is often difficult to adapt or reuse
code for other applications. First, the implementation
of file operations is often embedded and intertwined
within the main application, making extraction and
reuse of such code difficult and time consuming. Sec-
ond, the implementation may make undocumented
assumptions about the application and its access pat-
terns. Reuse of such code is difficult because these as-
sumptions must first be found and then the new
application must match these assumptions or the code
must be revised. Third, the file operations may direct-
ly update or access application data structures. Such
code must be found and revised for any new applica-
tion. Fourth, and most importantly, many implemen-
tations are simply not designed to be reusable. Part of
the ELFS approach is a philosophy that files should
be thought of as reusable objects and designed ac-
cordingly. The OO paradigm encourages such think-
ing and supports reuse via encapsulation and
inheritance. Careful development of file objects can
improve the situation. By first developing the func-
tionality in base file classes and then extending the
basic implementation by deriving new classes, the re-
sulting code is more easily adaptable to new applica-
tions.

For many applications the native file system does
not inherently provide the best performance. Though
almost all file systems now employ caching and many

use some form of prefetching, these mechanisms are
fixed within the file system. These systems do not
provide mechanisms to allow applications to interact
with their environment and therefore, the caching and
prefetching strategies cannot be changed or tailored to
the needs of applications. In short, even if the applica-
tion can provide an “oracle” for its access patterns,
there is no way to convey this information.

Using a Database Management System (DBMS)

Database management systems have been devel-
oped partly in response to some of the problems de-
scribed above in using the native file system directly.
The goal of a DBMS is to provide a layer of software
between the user and the native file system that pro-
vides data manipulation operations to the user in a
fairly intuitive manner, and also handles the details of
guaranteeing correct, consistent execution and fault-
tolerance. A DBMS attempts to provide these servic-
es while still achieving as much performance as pos-
sible. There are a number of different approaches for
how a DBMS should be developed, including hierar-
chical, relational and object-oriented approaches [2].
Each puts different emphasis on the structure of the
DBMS implementation and interface, providing dif-
fering degrees of usability, maintenance, and perfor-
mance. However, most DBMSs are designed for
general purpose use and force users to adopt the mod-
els used by the DBMS, rather than allowing the user
to employ a model that is more natural or suited to
their needs. DBMSs generally dictate the data repre-
sentation and data manipulation models that the pro-
grammer can use (OODBMSs are generally more
flexible in these areas). DBMSs also usually enforce
a single set of sharing semantics and a single set of re-
covery semantics, which are often not the best choices
for many applications - they are either not adequate or
they are overkill.

The generality of DBMS can often hurt perfor-
mance. DBMS usually have a single underlying mod-
el for the structure of the physical storage of data.
Since the physical representation is inflexible, the
DBMS cannot provide the high performance we are
interested in for many types of data and application
access patterns. In addition, DBMS often require
overhead to maintain the guarantee of data consisten-
cy among transactions from different asynchronous
processes and the integrity of data in the face of site
failures. This overhead is often unnecessary, for ex-

ample in read-only applications or when it is knowna
priori that only one application at a time will access
the data. These performance penalties often make a
DBMS an unattractive choice for applications need-
ing high performance file operations.

File Libraries

Libraries designed to provide high performance
file operations for specific types of data or access pat-
terns have the potential to provide both high perfor-
mance and ease of use. For example, it is easy to
imagine a library supporting matrix file operations
such as those discussed in the interface shown in Fig-
ure 1. However, the extensibility of a library is heavi-
ly dependent on the design principles employed in the
original implementation and the programming lan-
guage used. Libraries developed in a language that
supports the object-oriented paradigm are more likely
to be easy to extend and maintain than those devel-
oped using less structured approaches. The file library
approach using object-oriented techniques, effective-
ly creating file objects, appears very promising in
meeting the goals we have set. In fact, this is the basis
of the ELFS approach: developing high performance
file objects.

3: The ELFS Approach

The ELFS approach is designed to address three
important issues surrounding the use of data files: 1)
ease-of-use, 2) code maintainability, extensibility and
reuse, and 3) performance. ELFS is based on the ob-
ject-oriented paradigm and, in particular, exploits the
idea that files can be thought of as objects. The ELFS
approach is comprised of four key ideas: (1) design
the user interface of a file to support ease-of-use and
also to improve performance; (2) improve perfor-
mance by matching the file structure to the access pat-
terns of the application and the type of data; (3)
selectively employ advanced I/O access techniques
such as prefetching, caching and parallel retrieval, to
improve performance; (4) encapsulate the implemen-
tation details of a file within file objects to enhance
maintainability and exploit inheritance to encourage
code reuse and extensibility. Each of these concepts
are discussed in more detail below.

3.1: Interface

There are two main objectives in the design of a file

object interface. First, the interface should closely
match the user’s semantic model of the data contained
in the file. An interface that presents data and data
manipulation operations in a manner that matches the
way a program is likely to use them is much easier to
use than an interface expressed in unnatural terms.
Possible data representations include common com-
puter language representations such as integers, float-
ing point numbers and strings, as well as higher-level
representations such as records, rows, columns, rect-
angles, lists, or any arbitrary structure that can be ex-
pressed in the implementation’s language. The end
user does not need to know how the data is physically
stored or how the data is converted from the physical
storage representation to the interface representation,
but only what the interface representation means.
This is true even if the file may be stored in many dif-
ferent formats or if the format changes over time: the
implementation can manage these different formats
and coerce or convert data as necessary. Development
in an environment where the data representations of
the file interface match the internal data representa-
tion of the application relieves the programmer of the
tasks of data extraction and conversion, a potentially
significant saving of effort.

Data representation is not the only interface design
issue. The object behaviors should also match the
functionality required by applications using the file
object. For example, in a file containing various two
dimensional objects (e.g. rectangles, circles, poly-
gons, etc.) and their positions, the interface should
provide functionality for operations needed to manip-
ulate these objects. Besides typical operations such as
retrieving, inserting or deleting a 2D object, the inter-
face might provide object intersection functions, re-
trieval of all objects within a bounded rectangle, etc.
Though different applications may require different
behaviors, each behavior only needs to be implement-
ed the first time it is needed. New applications can
then use previously defined behaviors at little or no
cost, leveraging off of the previous work.

One of the drawbacks mentioned about both
DBMSs and native file systems is that they often de-
fine a single set of sharing and recovery semantics, of-
ten providing either too strong or too weak guarantees
for particular applications. We feel that part of the
definition of a file object is its sharing and recovery
semantics. For example, some applications may need
file objects that maintain the same sharing semantics

as UNIX provides, while for other applications this is
overkill. These semantics are defined for each file
class and are exposed to the user through the class in-
terface and the behavior of its member functions. The
class implementation must then ensure that the de-
fined semantics are guaranteed.

In addition to providing an intuitive means for ma-
nipulating file data, the interface should allow the ap-
plication to declare knowledge about its usage of the
file. This knowledge can then be used by the file ob-
ject implementation to improve performance. For ex-
ample, if an application using a matrix file knows that
upcoming requests will have a particular pattern, say
every ith row will be accessed, then the interface
should provide a way for the program to express this.
The underlying implementation can exploit this addi-
tional knowledge to achieve better performance by
prefetching rows that are required in the near future.
In the absence of this knowledge, most prefetching
schemes would incorrectly retrieve the data in order,
i.e. sequentially, with the corresponding loss of per-
formance. Other examples of useful application
knowledge include declaration that data will be used
more than once within the program (allowing the im-
plementation to attempt to cache data), declaration
that the data file is read-only for a single reader (al-
lowing the implementation to shut off consistency
checks for the file object, if any are used), or declara-
tion of queries ahead of time (allowing the query re-
sults to be retrieved and buffered before they are
needed). We have observed that many applications
often do know a great deal about their future access
patterns and that this knowledge is currently not ex-
ploited. It is important to note that while the informa-
tion declaration functions do increase the size of the
interface, the user only needs to use these additional
behaviors when performance is an issue. In the ab-
sence of any user knowledge, the file object will em-
ploy a default strategy.

3.2: File Structure

There has been a great deal of work over the past
decades in developing file structures for various uses.
The database literature contains many examples of
creative file structures that are well suited for particu-
lar application needs or types of data. Examples in-
clude tree-based structures such ask-d trees [3,4] and
R trees [5], partitioning-based structures like grid files
[6] and Piecewise Linear Order-Preserving-hashing

(or PLOP) files [7,8], primary files with secondary in-
dexes, and many others. Each of these file structures
has advantages and disadvantages under different ac-
cess requirements and data attributes. For example,
indexing schemes work well for single record retriev-
al when one of the indices can be used. Because of
data locality, they also work well when a range of data
is accessed along the key by which the primary file is
sorted. However, a range retrieval along a key that is
not the primary file’s sort key will generally not per-
form well because the request will access data blocks
scattered across the file.

For I/O performance to be maximized, it is crucial
to choose file structures that best match an applica-
tion’s access requirements. The goal is to reduce the
number of file accesses required and to reduce the
cost of each access. A common method to reduce the
number of accesses needed for a file operation is to ar-
range the physical storage of the file such that data
that is likely to be used together is stored together, i.e.
exploit data locality. In this manner, an entire group
of data items can be read or written together in one
file operation, instead of requiring several separate
file operations. In addition, the cost of each operation
can be reduced (i.e. reduced latency) by proper place-
ment of data files. This is especially true in distributed
systems that may have a wide range of point-to-point
communication times. Placing data “close” to the pro-
cess that requires it will reduce the overall latency of
a file operation.

3.3: Advanced I/O Techniques

The third part of our approach, type specific access
methods, encompasses a set of orthogonal methods
that can be applied where appropriate to any file
scheme to improve effective I/O bandwidth, latency,
or both. These methods include selectively and intel-
ligently prefetching data, caching data likely to be
used again in the near future and parallelizing file op-
erations and other I/O related activities such as sort-
ing. Using an object-oriented class scheme allows the
implementor to choose which of the above methods
are appropriate for a given file type and how they will
be implemented. Selection and application of access
methods can be fine tuned in two important ways.
First, an improved interface can allow the user to act
as an oracle, directing a file object’s use of different
access techniques. Second, using inheritance from
base file classes, a user can derive application-specif-

ic file classes that tailor the use of access techniques
with potentially little effort.

Prefetching

Prefetching data involves guessing ahead and start-
ing I/O operations for data that is likely to be request-
ed in the near future. The simplest prefetching
strategy is to read the next block of data in the file af-
ter the last one read (sequential prefetching). This
method is employed in many database management
systems and some native file systems and works well
for retrievals where reads will be sequential. For ac-
cess patterns that do not behave this way, prefetching
can actually be detrimental as resources, such as buff-
er space, I/O device bandwidth, server CPU cycles
and network bandwidth are all used for reading in
poor guesses. The key is to guess correctly as often as
possible. One promising approach to achieving better
guesses is to allow the user to specify intentions for
how the file is going to be accessed. These intentions
can be used to determine whether prefetching should
be employed and if so, which data is likely to be need-
ed next. Examples of employing such a strategy in-
clude declaring the stride of accesses to a matrix file
or pre-specifying a query that will be needed in the
near future. In both cases, the file object knows what
data will be needed and can prefetch effectively.

File Caching

File caching is another popular method for reduc-
ing I/O latency and increasing effective I/O band-
width that relies on temporal locality of data
references. File caching exploits this property by
keeping recent requests in local memory so if they are
needed again, the request can be satisfied from mem-
ory instead requiring an I/O operation. This approach
is applied throughout the computer storage hierarchy
and can be very successful if references have a high
degree of temporal locality. However, in applications
where data files or subsets of data files too large to fit
into local memory are read, this scheme does not help
and may waste memory and processor resources. Like
prefetching, the user often knows the access patterns
of the application best and so it seems reasonable that
providing an interface to express the user’s intentions
will lead to better overall use of resources.

Multiple I/O Threads

Typical applications have one thread of control and
therefore completely stop and wait when an I/O oper-
ation is pending. A better model is to try to overlap
computation as much as possible with file I/O activity
by splitting I/O operations and application code into
separate threads of control that can execute in parallel
(computer hardware is already built using this mod-
el). This idea can be extended by having multiple
asynchronous I/O processes or threads that can over-
lap computation such as sorting and conversion and I/
O requests. Of course, with a single I/O device for the
entire file, the I/O device could create a bottleneck
and limit performance. However, if the file is parti-
tioned or replicated and placed on multiple devices,
then separate asynchronous I/O processes can achieve
true parallel retrieval and execution. Figure 2 shows
the case of a partitioned or replicated file and multiple
asynchronous I/O “workers”. It is important to note
that in the model shown, the end user still only sees
the file object’s normal interface, while the object’s
implementation coordinates the creation and use of
the asynchronous workers.

3.4: Encapsulation Within File Objects

Treating files as objects and implementing them in
a language that supports the object-oriented program-
ming paradigm is intended to reduce the effort needed
to develop and maintain applications that use files.
This is accomplished by exploiting encapsulation and
object inheritance. Encapsulation of the implementa-

Figure 2 - Multiple I/O Servers for a Single Task

Application Program

request
result

Worker 1 Worker nWorker 2

File Object

. . .

tion of a file object limits how the object is used and
which pieces of a program have access to hidden data
and functions. Since all interactions with an object are
defined by the object’s interface, new functionality
can be added via inheritance at any time to an existing
class without invalidating any code already using the
object. In this manner, the definition of an existing
file object can easily be extended so that new require-
ments can be satisfied or the file object can be extend-
ed to support a new application.

4: Applying the ELFS Methodology

Thus far we have described the rationale behind the
ELFS approach and given some examples where
there are opportunities to exploit the approach. We
next present our experience in applying the ELFS
methodology to real-world problems. Specifically,
we have created two file hierarchies, a two dimen-
sional dense matrix file hierarchy and a multidimen-
sional range searching file hierarchy. Both file
hierarchies were implemented using Mentat, an ob-
ject-oriented parallel processing system [9]. Mentat
programs are written in the Mentat Programming
Language (MPL), an extension of C++. The major ad-
dition to C++ in MPL is that classes can be tagged as
being Mentat classes, which means that the member
function invocations on the class are executed in par-
allel whenever possible. The Mentat system is a natu-
ral choice for implementing ELFS classes because it
supports both the object-oriented programming para-
digm and parallel execution, which is required for ex-
ample in applying prefetching or parallel sorting
techniques.

4.1: TwoDMatrixFile Class

Many applications, particularly scientific applica-
tions, use data in the form of a dense two dimensional
matrix. Some examples include solution of dense sys-
tems of linear equations, image processing applica-
tions, grid-based modeling applications, and many
others. Many of these applications require high per-
formance from the file system because the problems
and therefore the matrices are very large. If the matrix
is too large to fit into memory, the program must
move the data to and from persistent storage during
execution. Even if this is not the case, the matrix usu-
ally must be initialized with data from a file. Poor file
system performance can add significantly to the over-

all execution time of a program. The TwoDMatrix-
File class is designed to alleviate the performance
problems of these applications while simultaneously
reducing the effort required to develop the file storage
and retrieval operations.

Figure 3 demonstrates the power of an improved
interface for matrix file operations. Both code frag-
ments are designed to accomplish the same goal - read
a specific column of integers from a matrix file. The
sample code in 3a presents a possible implementation
using UNIX style file operations; 3b presents an im-
plementation using the TwoDMatrixFile and an
auxiliary two dimensional data class,
DD_intarray (DD_intarray is part of a hierar-
chy of 2D array classes derived from a base
DD_array class). The DD_intarray class in-
cludes row and column operations in its definition. In
3a the application programmer needs to know all of
the details about how the file has been physically
stored. The programmer must know that the file is
stored in row major format and therefore must iterate
over the rows to retrieve each piece of the column.
The programmer must also know the file organization
and the data storage format. Is there a file header? If
so, how is it organized? Is the data compressed or
converted to some particular representation? For the
programmer using the TwoDMatrixFile, this is
not the case. The programmer only needs to know 1)
there is a TwoDMatrixFile operation to return a
matrix column in DD_intarray format and; 2) how
to create and manipulate DD_intarray objects.

Figure 4 shows the interface for our current imple-
mentation of the TwoDMatrixFile class. As might
be expected, the interface provides member functions

Program 1:
int i, fd;
int m[maxR][maxC];

fd = open(filename);
for (i=0; i<numR; i++)
{
// file position for row i,
// column x
seek(fd, position);
read(fd, numBytes);
// convert data
m[i][x] = val;

}

. . .

close(fd);

Program 2:
TwoDMatrixFile f;

f.openFormatted(filename);
maxR = f.numRows();
maxC = f.numColumns();

DD_intarray m(maxR,maxC);

m.column(2) =
f.readColumn(2);

. . .

f.close();

(a) Unix (b) TwoDMatrixFile

Figure 3 - Matrix Column Access: UNIX vs ELFS
to create, open and close matrix files, to read and
write rows and columns of data and to retrieve infor-
mation about the matrix file - the number of rows and
columns in the file and the element size. To potential-
ly improve the performance of the file operations, the
setStride function has been included to allow the
user to change the stride that will be used for consec-
utive row or column operations (the getStride
function returns the current value of the stride param-
eter). The underlying implementation is designed to
exploit stride information by aggressively prefetching
data at the specified stride. The user has no knowl-
edge of when or how prefetching occurs. The user
also has no knowledge of how the file is physically
stored.

The TwoDMatrixFile class as presented sup-
ports only those data types for which there is an asso-
ciated DD_array class. However, by deriving a new
class from the DD_array hierarchy, the TwoDMa-
trixFile class can support new data types. In this
manner, the TwoDMatrixFile class can be incor-
porated into many new applications with little or no
effort2.

The underlying implementation of the TwoDMa-
trixFile class exploits a file structure called block
partitioning, that is designed to provide equal perfor-
mance for row and column operations. Figure 5 dem-
onstrates how block partitioning works - the matrix
file is divided into blocks each containing a rectangu-
lar region of the matrix. The matrix data for each
block is physically stored together in the file. To re-
trieve a row, several reads must be performed, one for

2. We realize that templates would be a better mechanism in this
case. However, the MPL compiler does not currently support templates.

class TwoDMatrixFile {
public:

int createFormatted(string fileName,int rows,int cols,
int size, int stride, int blockSize, int numBuffers);

int openFormatted(string fileName);
int openFormatted(string fileName, int stride,

int numBuffers);
DD_array* readRow(int rowNumber);
DD_array* readColumn(int columnNumber);
int writeRow(int rowNumber, DD_array* data);
int writeColumn(int columnNumber,

DD_array* data);
void setStride(int newStride);
int getStride();
int numRows();
int numColumns();
int elementSize();
int close();

}

Figure 4 - TwoDMatrixFile Class Interface

each block intersected by the row. While this strategy
may require more reads for row operations than if the
file were stored in row major format, this perfor-
mance penalty is more than made up with the perfor-
mance gain for column accesses (if the entire file is
read there is no such penalty). The performance deg-
radation of row operations (or conversely column op-
erations in a column-major format) is further offset by
the fact that each row retrieval also reads in β−1 addi-
tional rows, which can be accessed at no additional
cost. A possibility that we have not implemented is to
support multiple file formats, row major, column ma-
jor, and square partitioning, and to enhance the inter-
face to allow the user to specify whether the file will
be accessed by rows, columns or both. This enhanced
file object would decide the best file format (a trivial
choice in this case) and would manage access to the
chosen file format, invisibly to the end user.

A sequential version (i.e. no prefetching was em-
ployed) of the TwoDMatrixFile class achieved
comparable performance to using UNIX seeks and
reads for row retrievals. The performance for column
retrievals was about half that of row retrievals, due to
less physical locality of the reads on the disk (the disk
was not fragmented, therefore using a row major
alignment of blocks places the pieces along rows
closer together than the pieces for a column. We
would expect increased file fragmentation to bring the
row and column retrieval times closer together). The
retrieval times for columns, however, were vastly su-
perior to the UNIX column reads.

The parallel version, employing prefetching, also
performed very well. This version was tested against
the performance of the native Concurrent File System
(CFS) on a 32 node Intel iPSC/2 hypercube, using a
program that employed between 1 and 16 consumer
processes. Since the performance of prefetching de-

Figure 5 - Block Partitioning File Structure

m α

β

n

2D n x m matrix 2D α x β matrix file block

pends on the amount of computation a program per-
forms in between successive reads, the parallel
TwoDMatrixFile implementation was tested
varying the number of floating point operations per-
formed by the reader on each data element. Perfor-
mance when executing only one floating point
operation per element is close to CFS performance for
row retrievals. For 10 FLOPs per element, the TwoD-
MatrixFile outperforms CFS by a significant
margin for all numbers of reader processes. In all cas-
es the TwoDMatrixFile is far superior for column
retrievals. Figure 6 shows these results. Note that per-
formance of CFS on column reads was so low that
they are not included in the graphs. For more detailed
discussion of the TwoDMatrixFile performance
see [10].

4.2: Multidimensional Range Searching (MRS)
File Object

Multidimensional range searches appear in a wide
range of applications. Such applications view a data
set as an n-dimensional data space, where each di-
mension represents the values along a key field
present in the data. The coordinates of each data
record are its values for each of the n dimensions. Us-
ing this view, subvolumes of the data space can be de-
fined by specifying a range of values for each
dimension. For example, a data set containing a set of
time indexed two dimensional images can be viewed
as a three-dimensional data space (time, x, y). Possible
range searches for such a data set include retrieving a
specified region of each image (a rectangle in (x, y))
for all time values, retrieving full images for a certain
range of times, etc.

Our choice for implementing a file object for mul-
tidimensional range searching was motivated by a
real-world problem. The National Radio Astronomy
Observatory (NRAO) has many applications that
view data exactly as described above. In particular,
NRAO collects large volumes of interferometry data
produced by radio telescopes which is then analyzed
by scientists. These scientists view the data as a
sparsely populated n-dimensional space and are inter-
ested in looking at particular subvolumes of the data
(some of the dimensions for interferometry data in-
clude time, baseline, frequency, source, and polariza-
tion). Different scientists will need different views of
the same data, depending on the type of analysis being
performed. For example, one scientist may require all

measurements for a time range for a specific region of
the sky to study trends over time, while another scien-
tist may need measurements for only one time frame
and specific measurement frequencies but for a wider
area of the sky. Performance of NRAO file I/O oper-
ations is currently unsatisfactory and many of their
applications are now I/O-bound. Consequently,
NRAO is studying methods to alleviate their I/O
problem, including our multidimensional range
searching file object. At the same time, NRAO is in
the midst of re-engineering approximately 700,000
lines of code from FORTRAN and C to C++ to im-
prove their efficiency in code development and main-
tenance. A more detailed description of our work with
NRAO on the MRS file object is detailed in [11,12].

Our MRS file object implementation uses the
PLOP file as the basic underlying file structure [7,8].
Though other file structures could be used for multi-
dimensional range searches, it is our opinion that
none of these candidates is clearly superior to PLOP
files, while PLOP files have a relatively straightfor-

ward implementation. For a more in depth analysis of
the choice of file structure see [11]. A PLOP file
views a data set as a multidimensional data space. The
data space is partitioned by splitting each dimension
into a series of ranges called slices. The intersection
of a slice from each dimension defines one logical
data bucket. Data points are stored in the bucket that
has corresponding values in each dimension. There-
fore, within a bucket, the data points exhibit spatial
locality in all dimensions. A tree structure for each di-
mension tracks the physical location of each bucket
within the file, so that each bucket can be accessed
very efficiently. This structure allows retrievals to
eliminate parts of the file that do not correspond to
values within the range search based on all dimen-
sions, while quickly accessing those parts that may
contain valid data.

We have implemented a sequential version of the
PLOP file-based file object, (the plopFile class),
and are currently working on the development of a
parallel version that will allow us to distribute the

0

2

4

6

8

10

0 2 4 6 8 10 12 14 16

E
f
f
e
c
t
i
v
e

B
a
n
d
w
i
d
t
h

(
M
B
/
s
)

Number of Readers

CFS
ELFS, pipe depth 3
ELFS, pipe depth 2
ELFS, pipe depth 1

2

4

6

8

10

12

14

16

18

4 6 8 10 12 14 16

E
f
f
e
c
t
i
v
e

B
a
n
d
w
i
d
t
h

(
M
B
/
s
)

Number of Readers

CFS
ELFS, pipe depth 3
ELFS, pipe depth 2
ELFS, pipe depth 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 2 4 6 8 10 12 14 16

E
f
f
e
c
t
i
v
e

B
a
n
d
w
i
d
t
h

(
M
B
/
s
)

Number of Readers

ELFS, pipe depth 3
ELFS, pipe depth 2
ELFS, pipe depth 1

0

1

2

3

4

5

6

4 6 8 10 12 14 16

E
f
f
e
c
t
i
v
e

B
a
n
d
w
i
d
t
h

(
M
B
/
s
)

Number of Readers

ELFS, pipe depth 3
ELFS, pipe depth 2
ELFS, pipe depth 1

(b) Row Read Bandwidth -
10 Computations Per Row Item

(a) Row Read Bandwidth -
 1 Computation Per Row Item

(c) Row Read Bandwidth -
 1 Computation Per Column Item

(d) Column Read Bandwidth -
10 Computations Per Column Item

Figure 6 - TwoDMatrixFile Effective Bandwidth vs CFS on 32 Node Intel iPSC/2

PLOP file and apply prefetching and parallel retriev-
al, sorting, and conversion techniques. Here we will
focus on the sequential version. The sequential imple-
mentation consists of a base class (plopFile) a de-
rived class specifically designed for NRAO’s
interferometry data (IFPlopFile) and two further
derived classes for specific types of interferometry
data, “line spectrum” data and “continuum” data
(IFLinePlopFile and IFContPlopFile , re-
spectively). The resulting class hierarchy is shown in
Figure 8 As would be expected, the base class pro-
vides general functionality for multidimensional
range searching, while the derived classes add in-
creasingly more specialized functionality. The inter-
face revealed to the end user consists of a handful of
member functions: a constructor and destructor, and
open , readHeader , writeHeader , ad-
dRecord , reportStats and createFrom-
Fits functions. These few functions allow the user
to create the PLOP file and add data to it. Our current
version does not yet include update functions because
they aren’t needed for the current applications. In the
future, these functions can easily be added to the ex-
isting interface if needed.

Retrieval mechanisms for the PLOP files are im-
plemented in a separate class,queryWindow . By
packaging the retrieval portion separately from the
file, the user can define multiple data windows simul-
taneously in the same application, each related to the
same file or to different files. The interface forque-
ryWindow allows the user to easily specify the types
of queries required for multidimensional range
searches as well as specification of a sort key. Setting
up a query is done by declaring aqueryWindow ob-
ject and then setting the range or ranges to search for
each dimension and specifying the dimension by

0 .2 .4 .6 .8 1
1 1

Time

Y

X

0
∞

(a) All Times;
0.4 < X < 1.0;
15 < Y < 150

Time

X
0 .2 .4 .6 .8 1

0

250

500

10

100

1000

0
∞

Y
0

250

500

10

100

1000

(b) 0 < Time < 1;
0.3 < X < 0.5;

300 < Y < 1000

Figure 7 - Sample Range Queries

which to sort the resulting data. For example, to
search for all data with times between 0.1 and 0.2,
baselines 1 to 1000, and sorted by time, twoquery-
Window “set” calls are necessary -set(“Time”,
0.1, 0.2) andset(“Baseline”, 1, 1000)
- and one call is necessary to set the primary sort di-
mension -sortBy (“Time”, 1, ASCENDING).
Theset functions can all take multiple ranges for a
single query. The result of such a query is that all data
matching any of the ranges specified is retrieved. If
the user desires the data for times (0.1,0.2), (0.5,0.75),
and (0.9,1.0), a query can be made by using the
set() function three times, one for each range. Sin-
gle axis value queries are formed by specifying the
same value for the upper and lower part of the range,
such as (0.1,0.1). This interface was developed with
help from NRAO scientists and we feel this interface
is quite simple and intuitive for range queries.

plopFile

IFPlopFile

IFLinePlopFile IFContPlopFile

Figure 8 - PLOP File Class Hierarchy

public:
// constructor and destructor
queryWindow(IFPlopFile*);
~queryWindow();

// Reset functions
void resetAll();
void reset(int key);
void reset(char* keyName);

// sorting functions
void sortBy(int key, int sortDir);
void sortBy(char* keyName, int sortDir);

// do retrieval and collect statistics
void countPoints();

// set functions
void set(int key, int lower, int upper);
void set(char* keyName, int lower, int upper);
void set(int key, float lower, float upper);
void set(char* keyName, float lower, float upper);
void set(int key, Time lower, Time upper);
void set(char* keyName, Time lower, Time upper);

. . .

Figure 9 - QueryWindow Class Interface

To test the performance of our implementation we
converted two small to medium sized NRAO data
sets, one line spectrum file (~50 megabytes) and one
continuum file (~270 megabytes). With NRAO scien-
tists, we developed a suite of 10 queries representa-
tive of typical NRAO usage and used these to test the
performance of each of the files. The performance of
these queries for the line-spectrum file is shown in
Figure 10. All tests were run on a SPARCStation IPX
with 32 MB of RAM and an attached hard disk. The
disk has an average rotational latency of 6.95 milli-
seconds and an average seek time of 9.8 milliseconds.
The file we tested contains 6 keys: time (TM), base-
line (BL), polarization (P), U, V, W and antenna (A).
The query descriptions in Figure 10 describe those
keys that were used to narrow the search; for any keys
not listed, the entire range of values for that key are
retrieved. In addition, the results were not sorted un-
less otherwise noted. Columns 2-6 describe the size of
the requests and the accuracy of retrievals using the
PLOP file structure. Column 4 (% Good Records) de-
scribes what percentage of all records retrieved satis-
fied the query. Column 6 (% Good Data) is also a
measure of retrieval accuracy, but it also considers
overhead. The last three columns describe our perfor-
mance. Total Bandwidth measures the rate of data
read by the file object, including overhead and data
not satisfying the query. Effective bandwidth is the
rate of useful data read per second.

We are currently attempting to gather similar per-
formance statistics from existing NRAO applications.

However, since the file operation code is deeply em-
bedded within these applications it has been difficult
to isolate code for file operations and to construct
meaningful comparisons. For a more full description
and analysis of our test results refer to [11,12].

5: Related Work

Many researchers have attacked the issue of high
performance I/O from many different angles. Hard-
ware designers are constantly trying to improve the
performance of raw I/O devices. New organizational
techniques, such as RAIDs [13], have been developed
to better structure and use the devices currently avail-
able. Research has been done on better file organiza-
tion [3-8] and there have been extensions made to
programming languages to support high performance
I/O, for example extensions to HPF Fortran detailed
by Brezany, et al [14]. High performance file systems
have been specially made for specific architectures,
such as the Concurrent File System (CFS) for Intel su-
percomputers [15].

Other researchers have looked into user interface
issues for manipulating persistent data. Examples in-
clude Kotz’s work on multiprocessor file system in-
terfaces [16], the Vesta Parallel File System
introduced by Corbett, et al [17] and the many works
in the OODBMS field.

These are just a few examples of related work in
the field, but they do illustrate some of the variety of
approaches used. All of these works are important

Query Description
Total

Records
Retrieved

Good
Records

%
Good

Records

Total
Data

Retrieved
 (KBytes)

% Good
Data

(Accuracy)

Time
(seconds)

Total
BW

(KBytes
/sec)

Effective
BW

(KBytes/
sec)

All data 126,092 126,092 100% 63,232 78.7% 38.3 1,651 1,299

All data, sorted by TM 126,092 126,092 100% 63,232 78.7% 40.4 1,565 1,231

All data, sorted by BL 126,092 126,092 100% 63,232 78.7% 187.4 337 266

10% TM range 14,742 12,636 85.7% 7,584 65.7% 5.8 1,308 859

10% TM range, sorted by U 14,742 12,636 85.7% 7,584 65.7% 7.2 1,053 692

1 TM, 1 P 702 351 50% 316 43.8% 0.23 1,374 601

10% TM range, 1 P 7,371 6,318 85.7% 3,792 65.7% 2.33 1,627 1,079

50% TM range, 1 BL 752 186 24.7% 416 17.6% 1.45 287 51

50% TM, 1 A 15,026 4,836 32.2% 7,488 25.5% 14.5 516 132

1 BL, 1 P, sorted by TM 720 180 25% 400 17.7% 1.3 308 54

Figure 10 - Query Performance for Line-Spectrum PLOP File

pieces to providing an easy-to-use, high performance
I/O system. One of the key advantages of the ELFS
approach is that the encapsulation of files into objects
simplifies the process of implementing new tech-
niques as they emerge.

The idea of applying the object-oriented paradigm
to database systems is not new [18,19]. What distin-
guishes our work is our objective. Rather than con-
centrate on flexibility, extensibility, and fidelity to the
object-oriented paradigm, our work is targeted to the
scientific programming community which places a
premium on performance. Thus, we would be willing
to sacrifice some flexibility for performance if it be-
came necessary.

Our contribution is that we propose that I/O tech-
nologies should be exploited by selectively employ-
ing them when applicable and to combine them with
the object-oriented paradigm to produce type-specific
file objects. The result is extensible, ease-to-use, high
performance file objects that meet the needs of scien-
tific users.

6: Summary and Future Work

Our goals for designing the ELFS approach are to
increase ease-of-use, improve file performance for
those applications most in need of high performance,
and to increase ease of development and mainte-
nance. The object-oriented paradigm through object
encapsulation and inheritance supports a program-
ming style conducive to easing the burden of applica-
tion development and modification. For these
reasons, we feel that this model of programming
should be applied to the development of file objects
that are designed to manage access to persistent data.
In particular, we feel that there is a need to apply the
object-oriented paradigm to file objects designed for
high performance. The reason for this is twofold.
First, there is a growing need, especially in the scien-
tific community, for high performance I/O, mainly
due to inadequate improvements in storage device
speeds. Second, high performance file objects, espe-
cially those employing parallel access techniques, are
usually difficult to implement and will benefit greatly
from OO techniques.

The ExtensibLe File System described in this pa-
per, provides an approach for creating such file ob-
jects, exploiting the OO programming paradigm. We
have demonstrated the feasibility of applying the
ELFS approach to real-world problems by developing

two useful file objects, a two dimensional matrix file
and a multidimensional range searching file. So far,
we are pleased with the performance of both objects.
The success of these two objects leads us believe that
the ELFS approach is a good model for high perfor-
mance I/O support and can be applied successfully to
a wide range of applications domains.

We are currently developing a new version of our
multidimensional range searching file object with an
emphasis on improving the interface and implement-
ing a distributed file scheme and parallel access tech-
niques. Planned improvements to the interface are to
include data retrieval functions, to provide functions
for specifying user knowledge about access patterns,
such as the number of times data will be read, and to
allow the user to pre-specify queries so that their re-
trieval can be performed in advance. We have devel-
oped a distributed PLOP file structure that provides
several different distribution patterns, including pat-
terns akin to striped and segmented strategies used in
distributing array data in parallel languages like For-
tran D. The new version will exploit the distributed
file implementation, using parallel access to the file to
improve performance. In addition, the new version
will exploit parallelism by implementing selective
prefetching and parallel sorting and conversion. It is
our hope that this improved version will be a file ob-
ject that meets all of the goals we wished to achieve.

Though our initial findings for the MRS file object
have been very promising, we have tested it using
only two closely related types of files in one applica-
tion domain. We intend like to incorporate the MRS
file object into other real-world applications. This
will be useful in determining how easy it is tailor to an
existing object for new applications. It would be par-
ticularly useful for a programmer outside of the ELFS
project group to develop an application using one of
our file objects, thus giving us an unbiased opinion
about how easy it is to use the file object.

The objects developed so far have been developed
basically in isolation from each other, each being de-
veloped mostly from scratch. Each implementation is
a significant amount of work. It is useful to define
which functionality is common across all or large
classes of file object implementations and which
functionality is unique. A long term goal of the ELFS
project is to identify common functionality and to im-
plement this functionality in a modular fashion. Pro-
grammers requiring a new file object can then use this

base functionality in their implementation, avoiding
the need to re-invent a portion of their code.

7: References

[1] A. S. Grimshaw and E. C. Loyot, Jr., “ELFS:
Object-Oriented Extensible File Systems,” Uni-
versity of Virginia, Computer Science TR 91-14,
July 1991.

[2] C. J. Date,An Introduction to Database Systems,
Volume I, Addison-Wesley, Reading, Mass.,
1986.

[3] J.L. Bentley and J.H. Friedman, “Data Structures
for Range Searching”,ACM Computing Surveys,
Vol. 11, No. 4, pp. 397-409, December 1979.

[4] J. T. Robinson, “The K-D-B-Tree: A Search
Structure for Large Multidimensional Dynamic
Indexes”,ACM SIGMOD Proceedings of Annual
Meeting, pp. 10-18, 1981.

[5] A. Guttman, “R-Trees: A Dynamic Index Struc-
ture for Spatial Searching”,Proceedings of
Annual Meeting, ACM SIGMOD Record, Vol. 14,
No. 2, pp. 47-57, 1984.

[6] J. Nievergelt and H. Hinterberger, “The Grid File:
An Adaptable, Symmetric Multikey File Struc-
ture”, ACM Transactions on Database Systems,
Vol. 9, No. 1, pp. 38-71, March 1984.

[7] H. Kriegel and B. Seeger, “PLOP-Hashing: A
Grid File without a Directory”,Proceedings of
the Fourth International Conference on Data
Engineering, pp. 369-376, February 1988.

[8] H. Kriegel and B. Seeger, “Techniques for
Design and Implementation of Efficient Spatial
Access Methods”,Proceedings of the 14th VLDB
Conference, pp. 360-370, 1988.

[9] A. S. Grimshaw, “Easy to Use Object-Oriented
Parallel Programming with Mentat”,IEEE Com-
puter, pp. 39-51, May, 1993.

[10] B. Pane, “Efficient Manipulation of Out-of-Core
Matrices”, University of Virginia, Department of
Computer Science.

[11] J. F. Karpovich, Andrew S. Grimshaw, James C.
French, “Breaking the I/O Bottleneck at the
National Radio Astronomy Observatory”, Uni-
versity of Virginia, Computer Science, in
progress.

[12] J. F. Karpovich, Andrew S. Grimshaw, James C.
French, “High Performance Access to Radio
Astronomy Data: A Case Study”, to appear in
Proceedings of 7th International Working Con-
ference on Scientific and Statistical Database

Management, September 1994.

[13] D. A. Patterson, G. Gibson, and R. H. Katz, “A
Case for Redundant Arrays of Inexpensive Disks
(RAID)”, Proceedings of SIGMOD International
Conference on Management of Data, pp. 109-
116, 1988.

[14] P. Brezany, M. Gerndt, P. Mehrotra, and H. Zima,
“Concurrent File Operations in High Perfor-
mance Fortran”, ICASE Report No. 92-46, pp. 1-
15, 1992.

[15] P. Pierce, “A Concurrent File System for a Highly
Parallel Mass Storage Subsystem”,Proceedings
of 4th Conference on Hypercubes, Concurrent
Computers, and Applications, vol I, pp. 155-160,
1989.

[16] D. Kotz, “Multiprocessor File System Inter-
faces”, Dartmouth College, Dept. of Mathematics
and Computer Science, technical report PCS-
TR92-179, 1992.

[17] P. F. Corbett, D. G. Feitelson, J-P. Prost, and S. J.
Baylor, “Parallel Access to Files in the Vesta Par-
allel File System”,Proceedings of Supercomput-
ing ‘93, pp. 472-481, 1993.

[18] S. B. Zdonik and D. Maier, Readings in Object-
Oriented Database Systems, Morgan Kaufmann
Publishers, Inc., San Mateo CA, 1990.

[19] F. Manola, S. Heiler, D. Georgakopoulos, M.
Homick, and M. Brodie, “Distributed Object
Management”,International Journal of Intelli-
gent and Cooperative Information Systems, Vol.
1, No. 1, June 1992.

