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Abstract
As processor speeds increase relative to memory speeds,

memory bandwidth is rapidly becoming the limiting
performance factor for many applications. Several
approaches to bridging this performance gap have been
suggested. This paper examines one approach, access
ordering, and pushes its limits to determine bounds on
memory performance. We present several access-ordering
schemes, and compare their performance, developing
analytic models and partially validating these with
benchmark timings on the Intel i860XR.

1. Introduction

Processor speeds are increasing much faster than
memory speeds, thus memory bandwidth is rapidly
becoming the limiting performance factor for many
applications, particularly scientific computations.
Proposed solutions range from software prefetching [4, 16,
27] and iteration space tiling [5, 8, 9, 18, 32, 38], to address
transformations [12, 13], unusual memory systems [3, 10,
33, 36], and prefetching or non-blocking caches [1, 6, 34].
Here we take one technique,access ordering, and examine
it in depth by analyzing the performance of five different
access-ordering schemes. Our techniques for increasing
memory bandwidth are not new, but our goal here is to
determine the upper bounds on their performance in order
to aid architects and compiler designers in making good
choices among them.

Memory components are commonly assumed to require
about the same time to access any random location, but this
no longer applies to modern memory devices. For instance,
nearly all current DRAMs implement a form of page-mode
operation [30]. Other common devices offer similar
features (nibble-mode, static column mode, or a small
amount of SRAM cache on chip) or exhibit novel
organizations (such as Rambus [31], Ramlink, and the new
synchronous DRAM designs [14]). The order of requests
strongly affects the performance of all these components.

A comprehensive, successful solution to the memory
bandwidth problem must exploit the richness of the full
memory hierarchy, both its architecture and its component
characteristics. One way to do this is via access ordering,
any technique for changing the order of memory requests
to increase bandwidth. For applications that perform
vector-like memory accesses, for instance, bandwidth can
be increased by reordering the requests to take advantage of
device properties such as fast-page mode.1

In order to analyze the performance of a representative
subset of access ordering techniques, we have selected five
implementation schemes:

- naive ordering, or using caching loads to access
vector elements in the natural order of the
computation;

- streaming elements using non-caching loads, and
then copying them to cache;

- block-prefetching vector elements to cache
(before entering the inner loop);

- static access ordering at the register level, using
non-caching loads; and

- hardware-assisteddynamic access ordering.

The first, naive ordering, provides a basis for comparing
the performance improvements of the other schemes. None
of the techniques requires heroic compiler technology: the
compiler need only detect streams, as in Benitez and
Davidson’s algorithm [2]. Dynamic access ordering
requires a small amount of special-purpose hardware [25],
and both static and dynamic access ordering depend on the
availability of non-caching load instructions. Although
rare, these instructions are available in some commercial
processors, such as the Convex C-1 [37] and Intel i860
[15]. Other architectures, such as the DEC Alpha [7],
provide a means of specifying some portions of memory as

1. These devices behave as if implemented with a single on-chip
cache line, orpage. A memory access falling outside the address range of
the current DRAM page forces a new page to be accessed. The overhead
time required to do this makes servicing such a request significantly
slower than one that hits the current page.
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non-cacheable (but the ability to set such things is not
generally available at user level).

Our investigation targets one aspect of cache
performance that has been overlooked: the time to load a
vector, independent of whether data is reused. We therefore
focus not on the cache miss rates, but on memory access
costs, and we are concerned only with the parts of programs
affected by vector access-time, the inner loops.

Although we suspect that the performance of these
schemes (at least for unit-stride vectors) will be ranked as

, we wish to
verify these relationships, and to quantify the differences in
performance. To this end, we develop general analytic
models for each scheme. We then show what the actual
performance differences between schemes is for one
particular set of real machine parameters, those of the
i860XR. Due to limitations of available hardware, only
three of the techniques could be implemented and tested,
but the results of these experiments give us at least a partial
validation of our models in the context of a real system.

2. Performance models

In this section, we develop analytic performance models
for a memory system composed of page-mode DRAMS. In
order to derive upper bounds on performance, we assume
that there are no cache conflicts, pages are infinitely long,
and vectors are aligned to cache-line boundaries.

In order to avoid notational clutter, we omit the ceiling
functions in our formulas. We also assume that the amount
of data transferred by each bus transaction (or by a caching
reference) is the size of one vector element. These formulas
are independent of the number of banks in an interleaved
memory system, since we assume that the page-miss
latencies for separate banks can be overlapped. Let:

s be the vectorstride;

b be the number of vector elements in ablock, or
submatrix, of data that we wish to load;

m be the size of thememory (in terms of the size of
vector elements) that must be fetched to load the
block (for caching loads, ,
and for non-caching loads, ); and

l be the number of vector elements that fit in a
cacheline.

We add a few definitions to characterize memory access
costs and the amount of useful data in a cache line. Let:

tcrd be the cost of reads that hit in the cache;

tcwr be the cost of writes that hit in the cache;

tmiss be the DRAM page-miss cost, in cycles;

thit be the DRAM page-hit cost, in cycles; and

dl be thedensity of vector elements in a cache
line ( ).

naive stream prefetch sao dao< < < <

m b min s l,( )×=
m b=

dl 1 min s l,( )⁄=

Section 2.1 through Section 2.5 introduce each scheme
and present the corresponding performance model.
Comparative results for the models are given in Section 3.

2.1  Naive accessing

As a baseline for comparison, we wish to determine
performance for a computation in which no attempt is
made to tailor access order to memory system parameters.
We calculate the average number of cycles used by caching
instructions to load vector elements in the natural order of
the computation. We assume that for each cache-line fill,
the first access incurs the DRAM page-miss overhead. The
DRAM page status may have been flushed by accesses to
other data in between cache line fills for a particular vector.
Each remaining access in the line hits the current page.
Unfortunately, when , some of these accesses fetch
data that will not be used.

Assuming that the cost of reading from cache is
subsumed by the cost of performing a cache-line fill, the
average per-element cost of using caching loads in this
manner is the number of cycles to fill a line, divided by the
amount of useful data contained therein:

(1)

This formula describes effective bandwidth whenever
vectors are accessed in the computation’s natural order,
even when loop-unrolling is applied. Note that the
effectiveness of naive ordering decreases rapidly as vector
stride increases.

2.2  Block prefetching

Blocking or tiling changes a computation so that
subblocks of data are repeatedly manipulated [8, 9, 18, 32,
38]. A familiar example is multiplication of  matrices
stored in row-major order:

for i = 1 to n do
for j = 1 to n do

load A[i,j] into register r
for k = 1 to n do

C[i,k] = C[i,k] + r * B[j,k];

Unless the cache is large enough to hold at least one of
the matrices, the elements ofB in the inner loop will be
evicted by the time they are reused on the next iteration of
the outer loop. Likewise, whether the row ofC remains
resident until the next iteration of thej loop depends on the
size of the cache. If instead the code is modified to act on a

 submatrix ofB, this data will be reusedb times each
time it is loaded. The blocking factorb is chosen so that the
submatrix and a corresponding portion of a row ofC fit in
cache:

s 1>

Tnaive

tmiss l 1–( ) thit+

ldl

-----------------------------------------=

n n×

b b×
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for j_block = 1 to n by b do
for k_block = 1 to n by b do

for i = 1 to n do
for j = j_block to min(j_block+b-1, n) do

load A[i,j] into register r
for k = k_block to min(k_block+b-1, n) do

C[i,k] = C[i,k] + r * B[j,k];

This optimization can be applied at many levels of the
memory hierarchy, including registers, cache, the TLB, and
virtual memory. Blocking reduces average access latency
by reusing data at a faster level of the hierarchy.

We can also apply the notion of blocking to caching
vector-accesses: to minimize the total DRAM page-miss
overhead, vector elements can be prefetched into the cache
in chunks. When the processor uses the vector block within
an inner loop, the data should still be cache-resident. Even
though we are not specifically concerned with data reuse,
there may be other memory references between when the
data is fetched and when it is referenced by the processor,
thus we must still consider issues of interference.
Determining optimal block size in the presence of cache
conflicts may be difficult, but algorithms to address this
problem have been presented elsewhere [18, 35]. The ideas
presented here can be incorporated into those algorithms to
yield even better memory performance.

Ideally, we would like to use non-blocking loads. Even
if these are not available, the optimization may still be
worthwhile, provided that the cost of DRAM page misses
is sufficiently high in relation to page hits and cache
accesses: the overhead of preloading the data and retrieving
it from cache is offset by the number of fast accesses that
can be performed. Note that the processor need not
explicitly readall data values in order to preload the vector:
touching one element per line will bring the entire line into
cache (of course, the cache controller must still fetch each
word from memory). Even fewer instructions are required
on architectures that prefetch larger blocks, such as the
Alpha with its 512-byte FETCH [7].

The mean cost of block-prefetching a vector element to
cache and reading it from there during the computation is:

(2)

For unit-stride vectors and large blocks, the first term
approaches the minimum  cycles per vector element.

2.3  Streaming into local memory

Copying improves memory system performance by
moving non-contiguous data to be reused into a contiguous
area, much like a vector-processorgather operation. For
instance, in parallelizing a Fast Fourier Transform, Gannon
and Jalby use copying to generate the transpose of a matrix,

Tprefetch

tmiss m 1–( ) thit+

b
-------------------------------------------- tcrd+=

thit

giving both row-wise and column-wise array accesses the
same locality of reference [9]. Lam et. al. investigate
blocking in conjunction with copying in order to eliminate
self-interference, or cache misses caused by more than one
element of a given vector mapping to the same location
[18]. This optimization also reduces TLB misses and
increases the number of data elements that will fit in cache
when the vector being copied is of non-unit stride.

Copying essentially attempts to explicitly manage the
cache as a fast, local memory. By exploiting memory
properties, this technique may also benefit single-use
vectors and those that do not remain in cache between uses.
For example, when accessing non-unit stride vectors,
streaming data via non-caching loads and then writing it to
cache avoids fetching extraneous data, and thus may yield
better performance than the previous, block-prefetching
scheme. Since each read of a vector element incurs a read
from memory as well as a cache write and read, streaming
will provide the most benefit when cache accesses and
DRAM page hits cost much less than page misses. This
optimization may also prove valuable for caching unit-
stride vectors if page misses are relatively expensive and
block prefetching is inefficient due to hardware limitations.

Assuming a write-back cache, the cost per element
copied includes the costs of reading the data using non-
caching loads, writing it to the cache, and reading it back
from cache later:

(3)

Note that the cost of initially allocating the local
memory is not reflected in this formula. For unit-stride
vectors, theTcopy differs fromTprefetch only by the time to
write the vector elements to cache. On some architectures,
it may be possible to overlap the writes to cache with non-
caching loads, in which casetcwr drops out of the equation.

2.4  Static access ordering

Moyer introduces static access ordering to maximize
bandwidth for non-caching register loads, and derives
compile-time access-ordering algorithms relative to a
precise analytic model of memory systems [29]. This
approach unrolls loops and orders non-caching memory
operations to exploit architectural and device features of
the target memory system. As an example, consider the
familiar dot product:

sum = 0
for i = 1 to n do

sum = sum + A[i] * B[i]

Naive scalar code for this example involves fetching an
alternating sequence ofA’s andB’s: .
Using a single memory bank with page-mode DRAMS and

Tcopy

tmiss b 1–( ) thit+

b
------------------------------------------ tcwr tcrd+( )+=

A1 B1, A2 B2 …,,,〈 〉
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non-caching loads, the alternating sequence may flush the
page status on each request, negating the potential gains
from this type of memory. Unrolling once and accessing
the data as  improves the performance of
this particular loop; unrolling it more would be even better.

Using this approach, the average per-element cost for
fetching a block of the vector is:

(4)

This formula assumes that the first access to each block
incurs the DRAM page-miss overhead. Subsequent
accesses in that block hit the current page, and thus happen
faster. This allows us to amortize the overhead of the page
miss over as many accesses as there are registers available
to hold data. The Intel i960MM has a local register cache
with 240 entries that could be used to store vector elements
for this scheme [17], but most processors have far fewer
registers at their disposal. Assuming  for double-
word vectors would probably be optimistic for most
computations and current architectures. Note that for unit-
stride vectors, Tsao differs from Tprefetch only by the last
term in the latter, which is constant for a given architecture.

2.5  Dynamic access ordering

Performing register-level access ordering at compile
time can significantly improve effective memory
bandwidth, but the extent to which the optimization can be
applied is limited by the number of available registers and
by the lack of alignment information generally available
only at run-time. Cache-level access ordering by block
prefetching or streaming alleviates register pressure, but
these are still compile-time approaches, thus they also
suffer from the lack of data placement and alignment
information. As with other forms of cache blocking, the
effectiveness of these techniques depends on the amount of
cache interference. For good performance, block size
should be adapted to cache and computation parameters.
Finally, caching vectors inevitably displaces scalar data
that would otherwise remain resident.

These limitations exist in part because the ordering is
being done at compile time, and in part because of the
program’s demands on registers and cache. A system that
reorders accesses at runtime and provides separate buffer
space can reap the benefits of access ordering without these
disadvantages, at the expense of adding a relatively small
amount of special-purpose hardware.

One such scheme is depicted in Figure 1 [23, 25]. In this
organization, memory is interfaced to the processor
through a controller (or Memory Scheduling Unit) that
includes logic to issue memory requests and logic to
determine the order of requests during streaming
computations. A set of control registers allow the processor

A1 A2, B1 B2 …,,,〈 〉

Tsao

tmiss b 1–( ) thit+

b
------------------------------------------=

b 8=

to specify stream parameters (base address, stride, length,
and data size), and a set of high-speed buffers holds stream
operands. The stream buffers are implemented logically as
a set of FIFOs, with each stream assigned to one FIFO.

Detailed performance models and simulation results for
this organization are presented elsewhere [23, 24, 25].
What follows is an approximate model to determine
memory performance for a single vector of a computation.
Accurate prediction requires knowledge of the entire
computation, since performance for each stream depends
on the nature and number of other streams.

Let  be the FIFO depth in vector elements, and let
represent the number of elements that can be fetched in
succession. FIFO depth here is analogous to the block size
of previous examples. If we assume that the FIFO is
initially empty, the mean time to load a vector element is:

(5)

Obviously as  grows, this tends to , the minimum
time to perform a DRAM access. If the vector is completely
fetched before the processor starts consuming data, then

, but if the processor consumes data from the FIFO
while the memory system is filling it,  becomes more
complex. Let  represent the number of vectors in the
computation. If the processor accesses the FIFOs (in round
robin order) at the same rate as the memory system, then
while the memory is filling a FIFO of depth , the
processor will consume  more data elements from that
stream, freeing space in the FIFO. While the memory
supplies  more elements, the processor removes ,
and so on. The total number of accesses required to fill the
FIFO can be represented as a series that, in the limit,
converges to:

(6)
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3. Examples

For purposes of comparison, we wish to focus on a
single platform in both the analytic and experimental
portions of this work. The Intel i860XR was selected
because it provides the non-caching load instructions
necessary for our experimental measures. Unless otherwise
specified, the data presented here is generated using
parameters from that system:

- vector elements are double words,

- cache lines are 32 bytes, or 4 double words
,

- pipelined loads fetch one double word, and
DRAM page misses and page hits take 10 and 2
cycles, respectively,

- caching loads and stores that hit the cache can
transfer a quad word  in one cycle

,

- the write-back cache holds 8K bytes, and is two-
way set associative with pseudo-random
replacement, and

- DRAM pages are 4K bytes.

3.1  Analytic results

Figure2 illustrates the comparative performance of the
five access schemes described in Section 2. Although
blocking is not relevant to accessing vector elements in
their natural order — all blocks are the size of a cache line
— we include that line for reference. The dynamic access
ordering results given here are for a computation involving
three vector operands (such as the first and fifth Livermore
Loops,hydro fragment andtri-diagonal elimination [26]).
Average cycles per element will be slightly lower for
computations involving fewer vectors and slightly higher
for computations requiring more. Note that for dynamic
access ordering, block size corresponds to FIFO depth.

Figure2(a) shows the average cycles per element to
fetch a unit stride vector using each of our schemes. The
four schemes that consider access order consistently
perform better than the naive, natural-order access pattern.
Note that thestream, prefetch, and sao curves are a
constant distance apart: they differ only by the cost of the
cache accesses involved in each. The curve forsao may be
a bit misleading, since most architectures provide too few
registers for static access ordering to be used with block
sizes greater than 8. These curves are grayed slightly in
Figure2 to call attention to this fact. Nonetheless, we
depict the theoretical performance attainable if such an
implementation were possible.

To emphasize the impact that order has on effective
bandwidth, Figure2(b) illustrates the corresponding
percentages of peak system bandwidth delivered by each of

l 4=( )

c 2=( )
tcrd tcwr 1= =( )

the ordering schemes. Naive ordering uses only 50% of the
available bandwidth. Streaming and block-prefetching can
deliver over 65% and 78%, respectively, for block sizes of
128 or more elements. Using blocks of size 8, static access
ordering achieves 67% of the total system bandwidth.This
scheme could deliver 80% of peak with 16 registers to hold
stream operands. Of the five schemes, dynamic access
ordering makes most efficient use of the memory system,
delivering over 96% of peak bandwidth for a FIFO depth of
only 32 elements. Performance converges on 100% for
FIFOs that are over 128 elements deep.

As DRAM page misses become comparatively more
expensive, accessing data in the natural order delivers less
and less bandwidth, but the performance of the other four
schemes stays relatively constant for block sizes of 64 or
more. Figure3 depicts both average time to access a vector
element and percentage of peak bandwidth attained as
DRAM access costs change.

Figure3(a) shows memory performance when page hits
occur three times as fast as page misses, a ratio
representative of current technology. Static access
ordering, dynamic access ordering, and block prefetching
all out-perform the naive ordering for block sizes greater
than 8. Dynamic access ordering delivers data at nearly the
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Figure 3  Vector load performance for increasing page miss/hit cost ratios

naive
stream
prefetch
sao
dao

maximum rate for FIFO depths of 32 or more. Streaming
only makes sense for these parameters if it can be done in
large blocks, since the extra cache write and read are
expensive relative to memory access costs.

When DRAM page misses cost six times as much as
page hits, naive ordering delivers less than half of the
available bandwidth, as depicted in Figure 3(b). In this
case, all four of the other schemes yield better performance
for all block sizes. At a page-miss/page-hit cost ratio of
twelve, shown in Figure 3(c), the differences are even more
striking: naive ordering barely uses one-quarter of the peak
system bandwidth. In contrast, at a block size of only 64,
streaming, block-prefetching, and dynamic access ordering
deliver 60%, 70%, and 95% of peak, respectively.

Note that the miss/hit ratio is likely to increase as a
result of a reduction in page-hit time, rather than an
increase in page-miss time, hence the cycle time for
Figure 3(c) is much less than that in Figure 3(a). The
curves in Figure 3(c) represent a percentage of a much
larger bandwidth. To illustrate this, we held page-miss
costs constant, and reduced page-hit times proportionately
to create Figure 4, which depicts how the best and worst
performances for the system in Figure 3(a) compares to
those for Figure 3(c).

Figure 5 illustrates the results of using each of our
schemes for non-unit stride vectors. As stride increases, the
performance of naive ordering degrades sharply — from
50% of available bandwidth at stride one to 25% at stride
two, 16.7% at stride three, and 12.5% at strides of four or
more. Cache performance is constant for strides greater
than the line size, since for such strides only one element
resides in each line. Like naive ordering, block-prefetching
suffers from fetching extraneous data. Prefetching
amortizes page-miss overheads over a greater number of
accesses, thus it yields better performance than accessing
data in the natural order.

The cost of performing the extra cache write and read
limit stream’s performance to 50% of available bandwidth.
For non-unit strides, however, streaming is always
preferable to block-prefetching. Again, dynamic access
ordering exploits nearly the full bandwidth for FIFOs of
depth 64 or more. Note that the percentage of bandwidth
delivered for any of the schemes using non-caching loads
is independent of vector stride: performance begins to
degrade only when vector stride becomes large with
respect to DRAM page size.
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3.2  Empirical results

In order to at least partially validate our formulas, we
have implemented three of the accessing schemes on an
Intel i860XR processor: naive ordering, streaming, and
static access ordering. The i860XR cache controller
prevents us from implementing block-prefetching as
described in Section 2.2. On this processor, each successive
cache-line fill incurs a seven cycle delay [28]. This is long
enough for the memory controller to transition to its idle
state, causing the next memory access to take the same time

Figure 4  Scaled vector load performance for
decreasing page-hit costs
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as a DRAM page-miss, regardless of whether or not it lies
in the same page as the previous access. The i860XR
supports a dual-instruction mode, however, allowing writes
to cache to be overlapped with pipelined, non-caching
loads. Under these circumstances, block-prefetching unit-
stride vectors uses the same number of instruction cycles as
streaming. We may therefore take the measured streaming
performance to be some indication of the performance we
could expect from an implementation of block-prefetching.

Hardware to support dynamic access ordering is under
development, but is not yet available for gathering general
empirical data. We currently have an initial, partial
implementation that has shallow FIFOs, but runs at-speed;
a full implementation is currently being fabricated. We
have thus far generated only a single data point, and it
appears to agree with our analysis and simulation results.
Obviously, it is still too early to make any definitive claims
about the hardware’s performance. Based on the results of
Section 3.1, though, we expect an efficient implementation
of dynamic ordering to perform asymptotically about the
same as static access ordering; this is part of the motivation
for investigating the performance of static ordering for
unrealistically large block sizes.

The measured results presented here represent the
performance of three routines to load doubleword vectors:
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Figure 5  Vector load performance for increasing stride
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- naive() uses caching loads (fld.q for stride one,
fld.d for others) to bring the vector into cache.

- sao() uses non-caching loads (pfld.d) to read the
vector. The routine reuses registers in order to
simulate large block sizes.

- stream() overlaps non-caching instructions loads
with quadword stores to local (cache-resident)
memory, reloading the data to registers after the
entire block has been written to cache.

Recall that here we are only concerned with determining
bounds on memory system performance, hence these
routines are designed to put maximum stress on the
memory by assuming that arithmetic computation is
infinitely fast. We’ve examined the effects of these
techniques on other programs: the results are similar, but
space limitations prevent us from discussing them here.
The cache was flushed before each call, and each routine
was timed 100 times using dclock(). The mean of these
timings is presented. All vectors used here are 1024
doubleword elements in length. The time to allocate local
memory is not included in the streaming results. If the local
memory will be reused, this overhead will be amortized
over many vector accesses that hit the cache. If not, the
allocation cost must be taken into account when deciding
whether to apply the optimization.

Figure6 presents vector-load performance for vectors
of various strides. Note that the analytic results for
streaming were generated using Eq. 3 from Section 2.3,
modified to account for the overlapping of writes with non-
caching reads. In all cases, measured performance
approaches theoretical performance for large block sizes.
Dif ferences for smaller blocks can be attributed to
overhead costs for each subroutine and to page misses
caused by crossing DRAM page boundaries (our models do
not account for such “compulsory” misses).

Note that the performance ofstream and sao is
relatively independent of vector stride, whereas the average
cost per access of naive ordering rises steadily as the stride
grows up to the cache line size. For these machine
parameters, static access ordering always beats naive
ordering for blocks larger than the cache-line size. The
point at which streaming yields better memory
performance than naive caching depends on stride and the
amount of overhead in the subroutine call. If the code to
perform streaming were generated by the compiler, or if
function in-lining were used to mitigate the costs of the
subroutine call, streaming might become profitable for
even smaller block sizes.

4. Related work

There is a large body of research characterizing and
evaluating the memory performance of scientific codes.

Most of this research focuses on:

a) hiding or tolerating memory latency,

b) decreasing the number of cache misses, or

c) avoiding bank conflicts in an interleaved memory
system.
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Prefetching and nonblocking caches can be used to
overlap memory accesses with computation, or to overlap
the latencies of more than one access [1, 4, 11, 16, 27, 34].
These methods can improve processor performance, but
techniques that simply mask latency do nothing to increase
effective bandwidth. Such techniques are still useful, but
they will be most effective when combined with
complementary technology to exploit memory component
capabilities.

Modifying the computation to increase the reuse of
cached data can improve performance dramatically [8, 9, 5,
32, 38, 18, 35]. These studies assume a uniform memory
access cost, thus they don’t address minimizing the time to
load vector data into cache. These techniques will also
deliver better performance when integrated with methods
to make more efficient use of memory resources.

Lam et. al. develop a model of data conflicts and
demonstrate that the amount of cache interference is highly
dependent on block size and vector stride, with large
variations in performance for matrices of different sizes
[18]. For best results, block size for a computation must be
tailored to matrix size and cache parameters, and efficient
blocked access patterns tend to use only a relatively small
portion of the cache. This may limit the applicability of
cache-based access ordering techniques discussed here.
Block-size limitations can be circumvented by providing a
separate buffer space for vector operands.

Lee develops a subroutine library, called NASPACK, to
mimic Cray instructions on the Intel i860XR [20]. Included
are routines for streaming vector elements into cache. Data
is read in blocks via non-caching load instructions, and is
written into pre-allocated local memory. Meadows, et. al.,
describe a similar scheme used by the PGI i860 compiler
[22], and a Loshin and Budge give a general description of
the technique [21]. The Loshin and Budge article is
intended only to introduce the concept of Memory
Hierarchy Management (MHM) by the compiler, and the
NASA and PGI studies address streaming in conjunction
with other operations. Thus these reports neither develop a
general performance model nor present measured timing
results specific to this optimization.

Copying incurs an overhead cost proportional to the
amount of data being copied, but the benefits often
outweigh the cost [18], and Temam et. al. present a
compile-time technique for determining when copying is
advantageous [35]. Using caching loads to create the copy
can cause subtle problems with self-interference, though.
As new data from the original vector is loaded, it may evict
cache lines holding previously copied data. Explicitly
managing the cache becomes easier when a cache bypass
mechanism is available. Note that coherency issues must
be addressed when vectors are shared.

Research on blocking and copying has focused
primarily on improving performance for data that is reused,
the traditional assumption being that there is no advantage
to applying these transformations to data that is only used
once. In contrast, reports on the NASPACK routines and
the PGI compiler suggest that by exploiting memory
properties, these techniques may also benefit single-use
vectors and those that do not remain in cache between uses.
Our results support these conclusions.

Several schemes for avoiding bank contention, either by
address transformations, skewing, or prime memory
systems, have been published [3, 10, 12, 13, 33]; these, too,
are complementary to the techniques for improving
bandwidth that we analyze here.

Moyer [28] and Lee [19] investigate the floating point
and memory performance of the i860XR. Our examples for
this architecture agree largely with their findings.

5. Conclusions

As processors become faster, memory bandwidth is
rapidly becoming the performance bottleneck in the
application of high performance microprocessors to vector-
like algorithms. Here we have examined the time to load a
vector using five different access-ordering schemes,
putting maximum stress on the memory system in order to
determine performance bounds. Four of these schemes are
purely software techniques; one requires the addition of a
modest amount of supporting hardware. The more efficient
schemes exploit the ability to bypass the cache.

A comprehensive, successful solution to the memory
bandwidth problem must exploit the richness of the full
memory hierarchy: it cannot be treated as though it were
uniform access-time RAM. This requires not only finding
ways to improve cache performance, but providing
alternatives for computations that don’t exhibit the
properties necessary to make caching effective.

This knowledge should guide processor designs and
operating system implementations. To get good memory
performance, the user needs more control over what gets
cached and how, and mechanisms to take advantage of
memory component capabilities should be readily
available. Unfortunately, this is not the case for most
current microprocessor systems. For cases where such
mechanisms are available, we have demonstrated how
several straightforward techniques can improve bandwidth
dramatically. These schemes require no heroic compiler
technology, and are complementary to other common code
optimizations. Our results indicate that access ordering can
deliver nearly the full memory system bandwidth.
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