
Increasing the Computational Potential of the
World Wide Web

S. D. Reilly, J. L. Pfaltz, J. C. French

CS-96-02
February 9, 1996

Dept. of Computer Science
School of Engineering and Applied Science

University of Virginia
Charlottesville, VA 2290l

This research was supported in part by
DOE Grant #DEFG05-95ER25254

Abstract

For many World Wide Web applications there is a need to provide session semantics so that
users have the impression of a continuous interaction. This is true, for example, when one
searches a database interactively. Because WWW servers are stateless some extra mechanism is
necessary to give the impression of session semantics. This report discusses a strategy for
implementing session semantics over a WWW application. Apart from the need to maintain
state during interactive sessions, there is also the need to control the application. Under any cir-
cumstances this is a tedious activity. This report also discusses a mechanism for modeling a
WWW application as a finite state automaton and describes a tool, the Stateful Server Applica-
tion Tool (SSAT), built to assist in the development of these applications.

1. Introduction
The implementation of the World Wide Web is designed to minimize network traffic. In

particular all web servers are stateless. That is, no web server can store any state regarding prior
interactions with a particular client. One does not have a "web session" in which there is a
"login" and a "logout". This limits the functions that web pages and browsers may provide. For
example, if a user requests a document, the HTTP server returns the document to the client and
then forgets about the transaction. The next request from that user (if there is one at all), is com-
pletely separate. Such a web interface is essential because it is infeasible for HTTP servers to
maintain state information about clients. First, there may be an arbitrary number of clients with
a valid state at any one time; to keep track of all the clients on the server site might overload the
server’s capacity. Second, the server has no way of knowing if a client has terminated; so it
would need a timeout mechanism to determine when to release a client’s state information. And
third, the amount of state information for some clients may be too large; thereby overloading the
server and affecting all active clients.

For all these reasons, keeping web servers stateless makes sense. The lack of state informa-
tion on the server’s side greatly simplifies the server process and allows "web surfing", in which
the casual user touches web pages and then disappears.

But, while this might be an efficient approach to engineering the web, the stateless servers
that make up the web can not support a wide variety of applications in which some retention of
state is required. This has proven to be particularly true in developing a web interface for the
Department of Energy’s Atmospheric Radiation Measurement (ARM) archive [DOE91]. To
develop these applications we have had to create stateful web servers, or at least web servers
which behave as if they retained information about the client’s state. A description of this facil-
ity is the primary focus of this report.

What we have done is: first, to implement a mechanism for creating the image of a stateful
session through a World Wide Web interface in which a user can "login" and perform a coopera-
tive sequence of actions that together behave as a session in which state information is preserved
in between user requests for service. This allows a user’s previous steps and input to be
recorded, and thus significantly extends the usefulness of a World Wide Web interface to the
ARM archive. This is achieved by creating a mechanism in which each client keeps track of its
own state and tells the server about its current state with each interaction.1

A simple example of where this might be useful is a situation in which many different "lev-
els" of users want to access information through the World Wide Web. This approach is funda-
mental to the current design of EOSDIS (Earth Orbiting System Data and Information System)
being developed by Hughes for NASA. The server may want to present different versions of the
data for different levels of users. A high school student accessing the ARM web site might need
to be presented with broad brush, perspective information describing the data and be spared the
technical jargon that scientists use. On the other hand, a scientist who accesses the same infor-
mation won’t need all of the perspective information and is happy using the specialized termi-
nology that makes it easier for him to apply the data being accessed. In the EOSDIS design,
���

1 Since this work was completed, Netscape now provides a mechanism for maintaining state on the client side.
As we will see, the precise mechanism used to maintain the state is unimportant. The main contribution of this
report is to show how the retained state can be used to control the ‘‘session’’ and how the process of characterizing
the session sometimes can be automated.

these terminological levels are accomodated by having different thesauri for different classes of
users. In this case it is a good idea to get the user level of the client and to store that informa-
tion, taking it into account when serving information during subsequent references.

Another example of the utility of a stateful session would be a user running a query on a
database that may require more than one step to finalize the query. Let’s say a user wants to find
data recorded from devices located at a particular set of sites. The query might start off with the
user entering or choosing a set of sites and the server returning the kinds of devices located at
those sites. The user would then pick the devices that he is interested in and re-submit the query
for only those devices at the chosen sites. But, with a completely stateless session, the user
would have to re-enter the desired sites because the initial query would be lost. If the set of sites
were somehow retained, they could be incorporated into the final query without the user having
to re-enter them, thus simulating a stateful session.

These examples are fairly simple ones, and the fact is that if some kind of state information
can be retained, the operations that can be performed using web clients and servers is extended
dramatically. In Section 3, we give examples and show how this is done using standard HTTP
servers, HTML web browsers, and CGI scripts. Then in Section 4, we develop a tool which
greatly simplifies the task of creating appropriate CGI scripts. But first, some background on
HTML and HTTP is necessary to understand the implementation.

2. HTTP and HTML Background
Most people think of HTML as a simple markup language that is used simply to present

documents in a pleasing manner. This was its intended purpose, but it has expanded, incorporat-
ing "forms" with which the user can interact and send information back to the server.

An HTML form is a fairly simple construct in which the programmer specifies a set of input
fields and their properties using HTML syntax. (C.f. Figure 2-1.) This form cretes a window
displaying 3 values, "A", "B", and "C", from which the user may select any one. Like most
HTML constructs, HTML forms have a simple syntax. There are three parts to an HTML form:

(1) the form header <FORM ... > and footer </FORM>. The header specifies the location
of the CGI script to which the form should be sent and the manner of submitting the form to
the script, e.g. by GET or by POST.

<FORM>
Pick one:

<SELECT NAME="letter" MULTIPLE>
<OPTION>A
<OPTION>B
<OPTION>C

</SELECT>
</FORM>

An extremely simple HTML form

Figure 2-1

2

(2) The body of the form specifies the input fields, their type, and their contents.

(3) The initiator of form submission actually "sends" the form from the client process to the
server process. This is usually just a "submit" button.

The body of the form of Figure 2-1 consists of the single line (asking the user to "Pick
one") followed by a selection clause supporting the choice of any of the three letter values A, B,
or C. If one executes the form using mosaic or netscape, it will look something like Figure 2-2.
Clicking the mouse on any of its three lines will select that option.

Form displayed by the HTML code of Figure 2-1
Figure 2-2

One normally creates more "elegant" forms. This is deliberately "plain" to emphasize the essen-
tial features of the form. We also note that there is no initiator in this form; there is no "submit"
button in Figure 2-2. Consequently, there is no way of actually submitting the chosen value to
the server and no exit from the form.

All forms have a method of "submitting" the form information (usually through the press of
a "submit" button). The form information currently can be submitted through two methods,
POST and GET. These will be discussed later. In both cases the information contained in the
form is sent to a CGI script on the server’s machine when the user "submits" the form. The CGI
script basically consists of any executable code that can be invoked by the HTTP server.

In Figure 2-3, the URL of the CGI script has been identified in the ACTION clause as:
http://www.cs.virginia.edu/cgi-bin/post-query

The method clause specifies that the form will be submitted using the POST method.

The form of Figure 2-3 is only a bit more complex; but it is a complete form. It illustrates
the kind of query interface used in the ARM project, in which the user can request a response
based on various temperatures and/or amounts of water present. In this example, the form lets
the user select multiple entries from a list of choices, and their choices will be submitted to the
script with the name "variables". It also provides a mechanism so that the client can send the
form to the HTML server. The INPUT TYPE="submit" line actually makes a push button in
the client window that the user clicks on to submit the form. The INPUT TYPE="reset" just
resets the form values to their original state (handled entirely by the browser). The following
form shows how to specify a form in which the user can select several items from a list. When
the form in Figure 2-3 is viewed on an HTML client, it will look something like Figure 2-4.

3

<FORM METHOD="POST" ACTION="http://www.cs.virginia.edu/cgi-bin/post-query">

<SELECT NAME="variables" MULTIPLE SIZE=8>
<OPTION>23.8 GHz sky brightness temperature
<OPTION>31.4 GHz sky brightness temperature
<OPTION>IR Brightness Temperature
<OPTION>Total liquid water along LOS path
<OPTION>Total water vapor along LOS path
</SELECT>

<INPUT TYPE="submit" VALUE="Submit">
<INPUT TYPE="reset" VALUE="Reset">
</FORM>

A query submission form

Figure 2-3

Terminal display generated by Figure 2-3
Figure 2-4

Clicking the mouse on any of the five lines will select that option. We observe that there is room
for three more lines in the selection window because its SIZE was specified as 8. Further the
MULTIPLE keyword in the form header indicates that the user is able to select zero or more of
the items specified by the <OPTION> tag. Say for example, that the user chose the last two
options ("Total liquid water along LOS path", and "Total water vapor along LOS path") and sub-
mitted the form. The two name-value pairs sent to the form would be:

4

Name Value

(variables, "Total liquid water along LOS path")
(variables, "Total water vapor along LOS path")

Both the POST and GET methods send the form information to the CGI script in the form
of name-value pairs which are parsed by the script and used to perform whatever function the
script is intended to perform. The difference between the two methods is that the GET method
sends the form information to the CGI code through the command line when the script is
invoked, and the data in the POST method is sent to the standard input of the script where it can
subsequently be read by the script after it is invoked. Some servers also limit access to the GET
and POST operations differently. Try submitting the form and you will see the form information
that is sent to the CGI script. All inputs to the scripts (i.e. all form data), is organized into
name-value pairs in which every value has a name associated with it. There may be many
name-value pairs with the same name such as in this case where the name "variables" is associ-
ated with several of the presented values.

One important aspect of the HTML form is that it allows "hidden" attributes. This means
that you can insert a name-value pair into the form without the user seeing it (unless they view
the HTML source). This means that you can have additional data that is submitted with the
form, that the user doesn’t see. This hidden attribute is the key to increasing the computational
power of the world wide web.

HTTP servers are crucial components of the world wide web, they take requests and serve
documents to clients, and they receive form data and invoke CGI scripts. One of their biggest
advantages, as well as shortfalls, is that they are stateless servers. When a request for a docu-
ment or form submission is received, it is served and then forgotten. Each request is indepen-
dent from all others. When a form is submitted, it sends the server the method of submitting the
form (GET or POST), the location of the script to be invoked, and the name-value pairs con-
tained in the form. The server then invokes the form and sends it the name-value pairs, encoded
in the command line for the GET method, or encoded and sent to the stdin of the script for the
POST method. The POST method is more generally used because data sent to a script through
the command line often has a size limit.

In this section, we have examined very vanilla HTML forms being used in the manner for
which they were designed — accepting and displaying information. It is essential background
for the following section, in which we use these kinds of forms to simulate the states of a finite
state machine, and to accept input from the user which will perform an action and transfer to
another state.

3. What do we mean by ‘Increasing the Computational Potential’
As we have noted, the World Wide Web is a very simple mechanism that can only perform

simple stateless operations. If a finite state machine could be implemented on the web, it would
increase the computational power because it could maintain state information. We have imple-
mented a cgi-script that operates on the web which is functionally a finite automaton. This auto-
maton creates a stateful session for the user where state information (as well as other data) is
stored to create a continuous session for a user to access a remote web site. The key components
to this system are recursive cgi-scripts and hidden HTML form attributes. A recursive cgi-script

5

is one that outputs new forms which will be submitted back to the same cgi-script. A hidden
attribute is just like the attribute pairs, (a_name, a_value) that we saw in the preceding section.
The only difference is that the user never sees a hidden attribute; its value is set by the cgi-script,
passed to the client with the form, not displayed, and returned unaltered when the user re-
submits the form back to the cgi-script.

Instead of storing only state information, we can input and store arbitrary data along with
the state information that may or may not affect the next state of the machine (but it should
affect the function of the output). Figure 3-1 presents a schematic of the kind of interaction we
might expect between a client and the ARM interface. A user must first validate that he is a
registered user. Then this value is passed back and forth between the client and the server with
no subsequent need for re-entry.

��
�
�
�
�
�
�
���

�
�
�
�
�
�
�

���

�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�

���

���

���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�� �

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���

(state, ‘1’)

(login_id, ‘225430557’)

Hidden:

User Input:

(state, ‘2’)

Hidden:

(login_id, ‘225430557’)

User Input:

(function, ‘query’)

if (state == ‘1’)
{
if (accept(login_id))

{
print (‘welcome ...’);
state = ‘2’;
}

else
{

print (‘message ...’);

state = ‘3’;
}

else if (state == ‘2’)
{
.
.
.

Forms cgi-script

An example of interaction between the client and server
Figure 3-1

We can imagine that this registry number also encodes various privileges to perform some data-
base functions, but not others.

Another example of this additional use of client input might be a database querying appli-
cation in which the user specifies criteria for a query. The initial state might be the query
specification state in which the user inputs the query criteria. The next state might always be the
query retrieval state independent of the query criteria. The data returned from the query might
be different, but the state (query retrieval) will always be the same at this point. The query
information entered by the user has no impact on the state of the system, only on the function of
the invoked procedure (querying the database). It is in this way that a fairly complicated

6

application can be modeled on top of a finite automaton by adding only a small amount of extra
functionality.

Even without the added functionality, we have reached our goal: "A level of computability
modeled by a Finite Automaton." This is an improvement over the current level of computabil-
ity of the World Wide Web -- a stateless machine.

4. A Working Example
Perhaps the simplest form of computational capability is that embodied by a finite automa-

ton (FA) or finite state machine (FSM). Figure 4-1 illustrates a fairly simple finite state machine,
in which the states {s 0 , s 1 , s 2 , s 3 , s 4} are denoted by circles and transitions between these
states denoted by arcs.

������������������� ������������������� ������������������� �����������������0 1 2 3 4
A

A

A A B

A

A simple finite state automaton
Figure 4-1

Above each arc is a character, in this case either "A" or "B". When in state si , input of one of
these characters will cause a transition from state si to state sk if there is such a labelled arc
between the states. Otherwise, the automaton defaults into an error state. Some states can be
designated as final states. In Figure 4-1, there is only one final state and it is denoted by the dou-
ble circles.

As is well known, c.f. Hopcroft and Ullman [HoU79], every finite state machine defines a
finite state language (or regular), and conversely. The finite state machine pictured here accepts
the regular language aaa[aaa | baa]*b.

The source code used to implement this automaton is given in Appendix B. Each state
{s 0 , s 1 , s 2 , s 3 , s 4} in the automaton is represented by a form with a hidden state value. When
the form is submitted, the input and the state is sent with the form to the script, and the next state
is determined. Once the next state is determined, the new form for that state (with the
corresponding hidden values) is returned to the client (html browser). If the new state cannot be
determined (i.e. the automaton does not accept the input), the machine goes to the halted state
and the user can start again from the initial state. If the automaton is in state 4, the user has the
option to exit (or return to the beginning).

This FA was fairly easy to implement on the web. The main part of the script that
represents the FA is contained in automata.C (see appendix B). This script is invoked for
every form submission in the FA. When invoked, the script figures out which state it is in (if
any) and takes the appropriate action based on the state, input, and any other data that may be
available. If the input is valid for the current state, the form for the next state is output along
with all of the hidden attributes that hold the state information and data. If the input is not valid
for the current state, the new state becomes the halted state and the halted state form is sent back
to the client.

7

While the finite automaton of Figure 4-1, with only 5 states, is fairly simple, this need not
be the case in general. Transition tables can become far more complex. If in addition, the pro-
grammer must worry about form generation and additional operations to be performed in each
state it becomes easy to lose the forest for the trees. Although the finite automaton of Figure 4-1
is almost trivial, the code of Appendix B is certainly non-trivial. If this means of extending the
computational power of the net is to be practical, there must be a simpler way of generating
these CGI scripts.

5. A Tool for Creating Stateful Web Sessions

5.1. Overview of SSAT — Stateful Server Application Tool
If creating a stateful machine that operates over the world wide web is a useful endeavor,

then it would be practical to create a tool that would make it easy for any HTML author to create
these machines. I have created a tool (SSAT - Stateful Server Application Tool) that will accept
a description of a machine and output the source code for a machine that fits the description.
The description of the machine includes the form contents for each state, the initial state of the
machine, static variables and lists, and a transition function. The SSAT allows authors of such
stateful machines to create and modify the machine without needing to be aware of all of the
complexities of writing CGI scripts. They need only describe the functionality of their machine
and they can have the code for the CGI script that generates the machine automatically created
for them

For a sample description of a machine, see appendix A for the description of the machine
that implements the automaton shown in figure 4-1. This description is read by the SSAT and
the corresponding C++ source code for the script is created along with the necessary utility files.
Once the code is compiled, the executable must be put in a location accessible by an HTTP
server, and then the script is ready to act as a stateful server application.

One of the most important features that the SSAT provides is that the script it creates is a
stateful machine. The variables and lists specified in the description of the machine are static
throughout the machines execution. This means that the value a user inputs on the first "page" of
his session is retained and can be used in subsequent pages without the value having to be
recomputed or re-entered by the user.

Another useful feature of the SSAT is that the transitions from page to page are handled by
a transition function that returns state numbers instead of the current method using hard-coded
URLs which can be difficult to keep up to date and consistent. In the stateful machine, the only
hardcoded URL is the location of the single CGI script.

This brings us to the next feature that is added to the current interface. In this machine, a
whole set of "pages" or states is contained in one single CGI script as opposed to a set of HTML
documents and scripts that may become out of date and inconsistent with each other. This
increases the simplicity of maintaining such a set of pages because the relations between "pages"
can be examined by simply looking at the transition function of the machine instead of travers-
ing through many separate HTML documents looking for hard-coded URL’s.

This method of creating a stateful machine is superior to standard CGI scripts because the
only source code that the author writes is that which performs the work specific to the applica-
tion being written. The author need not be concerned with the details of how the code interacts

8

with the HTTP server, environment variables, and the numerous other specifics that make writ-
ing CGI scripts tedious and error prone.

The SSAT along with the scripts that it produces allow us to implement a finite state
machine on the world wide web, with the added functionality of having static data.

5.2. Using the SSAT
The SSAT expects a descriptive file (suffixed with .web) consisting of five parts:

(1) a specification of the initial state of the form
initial state: 0;

(2) the variables, both hidden and overt, that are to retain their values through the session, as in
variables: { xxx, yyy, zzz }

(3) a specification of the applications lists, as in
lists: { aaa, bbb }

(Lists are similar to variables in that they are maintained between states, but they contain
multiple strings. Lists are represented as C++ class instantiations with the appropriate
methods for the author to access and modify them.)

(4) the body of each form for each state in the application, such as
form0:

{
<h1>Welcome to this test application</h1>
Choose "next" to transfer to the next state.
<INPUT TYPE="submit" Value="next">
}

(The header and footer of each form will be created automatically by SSAT.)

(5) the finite state transition function, as in
int transition (int current_state, char *output)

{
int next_state;
strcpy (output, "");
switch (current_state)

{
case 0:

next_state = 1;
case 1:

next_state = 0;
default:

next_state = 0;
}

return next_state;
}

Readily this is the transition table of a trivial automaton which oscillates between the states
s 0 and s 1 regardless of the input.

An entire test automaton is shown below

9

initial state: 0;

variables: { }

lists: { }

form0:
{
<h1>Welcome to this test application</h1>
Choose "next" to transfer to the next state.
<INPUT TYPE="submit" Value="next">
}

form1:
{
<h1>You have successfully transferred to this state</h1>
Choosing "next" will transfer you back to the initial state
<INPUT TYPE="submit" Value="next">
}

code:

#include <stdio.h>
#include <stdlib.h>
int transition (int current_state, char *output)

{
int next_state;
strcpy (output, "");
switch (current_state)

{
case 0:

next_state = 1;
case 1:

next_state = 0;
default:

next_state = 0;
}

return next_state;
}

Notice that in this code we have used neither variables nor lists.

5.3. How the SSAT works
As described earlier, when an HTML browser submits a form to the HTTP server, it sub-

mits the form name (and location) along with the all of the name-value pairs that were filled in
on the form. Unless there is an error, the output of the script is then sent to the client to be
viewed as another "page". This resulting page can itself include a form, and that is one aspect of
how the FA works. The new form that is output is submitted to the same script that created it.
This creates a recursive situation where the script creates forms that are in turn submitted to and
interpreted by itself. It is because of this that a whole web of pages can be contained in one CGI
script. Since it is also an executable script that creates the forms, the pages can be created
dynamically making them much more powerful.

10

Also described earlier is the fact that a form can contain "hidden" attributes, basically
name-value pairs that the user doesn’t see, but that are treated just like any other form data when
the form is submitted. This allows us to hold state information, as well as other data, in a form
that the user doesn’t see instead of on the HTTP server’s side where it would create many prob-
lems.

The current state is stored in each HTML form in a variable (name-value pair) named
WEB_state. The hidden variable WEB_state is automatically provided by SSAT. It is ini-
tialized to 0, and passed to transition as its first argument, and reset by the value returned from
transition.2 When each form is submitted, the script reads the WEB_state variable and figures
out which state the machine is currently in. The script then reads in the rest of the name-value
pairs submitted with the form (hidden or otherwise). After all of the state information and data
is read by the script, the next state is determined by the transition function that the author sup-
plies. This transition function takes as input the current state of the machine as well as any static
variables and lists, or other data input by the form. The transition function computes the next
state based on all of this information and returns the next state of the machine. The correspond-
ing form, along with the new state information and other static variables and lists (stored as hid-
den values) is then sent to the client to be presented to the user and the cycle is repeated for the
next state.

The transition function is where the function of the machine is defined. It is the only exe-
cutable part of the script that is written by the user, and it can be used to implement database
queries, interactive sessions, and many other applications that are not possible using current web
interfaces and CGI scripts.

The FA described in figure 4-1 was created using this tool. The description of the machine
is located in appendix A, and the resulting C++ code produced by the tool is located in appendix
B.

6. References

[HoU79] J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages, and
Computation, Addison-Wesley, Reading, MA, 1979.

[DOE91] Proc. Second Atmospheric Radiation Measurement (ARM) Science Team Meeting,
U.S. Dept. Of Energy, Conf.-9110336, Denver, CO, Oct. 1991.

���

2 Note: The form in figure 2-1 was not generated by this tool.

11

Appendix A
This is the SSAT description of the automata that was used to produce the code in appendix

B, and the finite state machine in figure 4-1. Notice how the form definitions do not include the
form header, and the only C++ code written by the machine’s author is the transition function.
Also, note how the input variable determines the next state (as computed by the transition
function). Also, the machine depicted in Figure 4-1 does not have a state 5 even though there is
one in the desciption of the machine. This is because state 5 is used as a halted state in this
instance.

/* automaton.web */

initial state: 0;

variables: { name, input }

lists: { }

form0:
{
<h1>Welcome to the initial state in the FA</h1>
This whole set of pages is created from one script.
To see the source code, click
here.

This page is state 0 of the finite state machine

<SELECT NAME="input" >
<OPTION>A
</SELECT>

<INPUT TYPE="submit" VALUE="Step" SIZE=50>
}

form1:
{
<h1> This is state 1 </h1>
<SELECT NAME="input" >
<OPTION>A
</SELECT>

<INPUT TYPE="submit" VALUE="Step" SIZE=50>
}

form2:
{
<h1> This is state 2 </h1>
<SELECT NAME="input" >
<OPTION>A
</SELECT>

<INPUT TYPE="submit" VALUE="Step" SIZE=50>
}

form3:
{
<h1> This is state 3 </h1>
<SELECT NAME="input" >
<OPTION>A
<OPTION>B
</SELECT>

12

<INPUT TYPE="submit" VALUE="Step" SIZE=50>
}

form4:
{
<h1> This is state 4 </h1>
<SELECT NAME="input" >
<OPTION>A
</SELECT>

<INPUT TYPE="submit" VALUE="Step" SIZE=50>
}

form5:
{
<h1>Welcome to the halted state in the FA</h1>
For some reason, there was an error.
<INPUT TYPE="submit" VALUE="Go back to the initial state" SIZE=50>
}

code:
#include<stdio.h>
#include<stdlib.h>

int transition(int current_state, char *output)
{
int next_state = 5;
output = strdup("");
switch(current_state)
{
case 0:

if(!strcmp(input, "A"))
next_state = 1;

break;
case 1:

if(!strcmp(input, "A"))
next_state = 2;

break;
case 2:

if(!strcmp(input, "A"))
next_state = 3;

break;
case 3:

if(!strcmp(input, "A"))
next_state = 1;

else if(!strcmp(input, "B"))
next_state = 4;

break;
case 4:

if(!strcmp(input, "A"))
next_state = 2;

break;
case 5:

next_state = 0;
}

return next_state;
}

13

Appendix B
This is the C++ source code that implements the finite automata presented in figure 4-1.

This code was generated using the SSAT tool for creating stateful sessions described in this
paper from the description given in Appendix A.

/* masterform.C */

#include <sys/types.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "web_util.h"

#define ERROR_FORM "Error.\n"

#define FORM0 "\
<h1>Welcome to the initial state in the FA</h1>\
This whole set of pages is created from one script. \
To see the source code, click \
<a href=\"../cgi-src/

This page is state 0 of the finite state machine
\
<SELECT NAME=\"input\" >\
<OPTION>A\
</SELECT>\
<INPUT TYPE=\"submit\" VALUE=\"Step\" SIZE=50>\
"

#define FORM1 "\
<h1> This is state 1 </h1>\
<SELECT NAME=\"input\" >\
<OPTION>A\
</SELECT>\
<INPUT TYPE=\"submit\" VALUE=\"Step\" SIZE=50>\
"

#define FORM2 "\
<h1> This is state 2 </h1>\
<SELECT NAME=\"input\" >\
<OPTION>A\
</SELECT>\
<INPUT TYPE=\"submit\" VALUE=\"Step\" SIZE=50> \
"

#define FORM3 "\
<h1> This is state 3 </h1>\
<SELECT NAME=\"input\" >\
<OPTION>A\
<OPTION>B\
</SELECT>\
<INPUT TYPE=\"submit\" VALUE=\"Step\" SIZE=50> \
"

#define FORM4 "\
<h1> This is state 4 </h1>\
<SELECT NAME=\"input\" >\
<OPTION>A\
</SELECT>\
<INPUT TYPE=\"submit\" VALUE=\"Step\" SIZE=50> \
"

14

#define FORM5 "\
<h1>Welcome to the halted state in the FA</h1>\
For some reason, there was an error.\
<INPUT TYPE=\"submit\" VALUE=\"Go back to the initial state\" SIZE=50>\
"

#define WEB_init_state 0

class LIST
{
char **strings;
int size;
int MAX_SIZE;

public:
LIST (int max_size)

{
strings = (char**)malloc(sizeof(char*) * max_size);
size = 0;
MAX_SIZE = max_size;
}

int add_string(char *string)
{
if(size < MAX_SIZE)

{
strings[size] = strdup(string);
size++;
return size-1;
}

else
{
return -1;
}

}

char* get_string(int string_num)
{
if(string_num < size && string_num >=0)

{
return strdup(strings[string_num]);
}

else
{
return NULL;
}

}

int get_number() {return size;}
};

typedef char* VARIABLE;

VARIABLE WEB_state;

VARIABLE name;
VARIABLE input;

int PROTECTED;
int ERROR_FLAG;

/* This is where the user code goes. */
#include<stdio.h>

15

#include<stdlib.h>

int transition (int current_state, char *output)
{
int next_state = 5;

output = strdup("");
switch(current_state)
{
case 0:

if(!strcmp(input,"A"))
next_state = 1;

break;
case 1:

if(!strcmp(input,"A"))
next_state = 2;

break;
case 2:

if(!strcmp(input,"A"))
next_state = 3;

break;
case 3:

if(!strcmp(input,"A"))
next_state = 1;

else if(!strcmp(input,"B"))
next_state = 4;

break;
case 4:

if(!strcmp(input,"A"))
next_state = 2;

break;
case 5:

next_state = 0;
}

return next_state;
}

/* End user code */

int main (int argc, char *argv[])
{
entry entries[MAX_ENTRIES];
register int x,m = 0;
int cl, i, WEB_got_a_state = 0, tmp;
int WEB_state_num, WEB_next_state;
char *WEB_exe_filename, *buffer;

PROTECTED = 0;
ERROR_FLAG = 0;

name = strdup("");
input = strdup("");

/* print out the proper cgi-script heading: */
printf("Content-type: text/html%c%c",10,10);

/* Check to see if we are operating in a
protected environment */

if(getenv("AUTH_TYPE") != NULL)
PROTECTED = 1;

WEB_exe_filename = strdup(argv[0]); /* first acquire the name of
this file so that it can be
referenced in future URLs.

16

Also filter out any crap
that may have come with
it (i.e. PATH info). */

for(i=0; i<strlen(WEB_exe_filename); i++)
{
if(WEB_exe_filename[i] == ’ ’)

{
WEB_exe_filename[i] = ’\0’;
break;
}

}
i--;
for(i=i-1; i>=0; i--)

{
if(WEB_exe_filename[i] == ’/’)

{
WEB_exe_filename += (i+1);
break;
}

}
fprintf(stderr,"%s\n",WEB_exe_filename);

if(strcmp(getenv("REQUEST_METHOD"),"POST"))
{ /* By default, just go to the initial

state if something is screwy, the
generated forms will take care of it
from there. */

printf("<form method=\"POST\" action=\"%s\" >\n",
WEB_exe_filename);

printf("<input type=\"hidden\" name=\"WEB_state\" value=\"%d\">\n",
WEB_init_state);

printf("%s\n",FORM0);
printf("</form>\n");
exit(1);
}

if(strcmp(getenv("CONTENT_TYPE"),"application/x-www-form-urlencoded"))
{
printf("This script can only be used to decode form results.\n");
exit(1);
}

/* use environment variable to determine
how much data there is */

cl = atoi(getenv("CONTENT_LENGTH"));
/* put name-value pairs from form into

an array for processing */
for(x=0;cl && (!feof(stdin));x++)

{
m = x;
entries[x].val = fmakeword(stdin,’&’,&cl);
plustospace(entries[x].val);
unescape_url(entries[x].val);
entries[x].name = makeword(entries[x].val,’=’);
}

/* read values from form; put into
_data variables; set error flags */

for(x=0; x<=m; x++)
{
if (!strcmp(entries[x].name,"WEB_state"))

{
WEB_state = strdup(entries[x].val);
WEB_got_a_state = 1;

17

}
if(!strcmp(entries[x].name,"name"))

{
name = strdup(entries[x].val);
}

if(!strcmp(entries[x].name,"input"))
{
input = strdup(entries[x].val);
}

} /* end of for loop, finished
going through form data */

if (WEB_got_a_state)
{
WEB_state_num = atoi(WEB_state);
}

else
{
fprintf(stderr,"Error: No State information sent with POST.\n");
exit(1);
}

WEB_next_state = transition(WEB_state_num, buffer);

printf("<FORM METHOD=\"POST\" ACTION=\"%s\">\n",
WEB_exe_filename);

printf("<input type=\"hidden\" name=\"WEB_state\" value=\"%d\">\n",
WEB_next_state);

printf("<input type=\"hidden\" name=\"name\" value=\"%s\">\n",
name);

printf("<input type=\"hidden\" name=\"input\" value=\"%s\">\n",
input);

switch(WEB_next_state)
{
case 0:

printf("%s", FORM0);
break;

case 1:
printf("%s", FORM1);
break;

case 2:
printf("%s", FORM2);
break;

case 3:
printf("%s", FORM3);
break;

case 4:
printf("%s", FORM4);
break;

case 5:
printf("%s", FORM5);
break;

default:
printf("%s", FORM0);
break;

}
printf("</form>\n");
return 1;
}

18

Appendix C
Below is a listing of the SSAT.

/* main.C */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "util.h"
#define MAX_TRANSITIONS 1000
#define MAX_STATES 200
#define MAX_VARIABLES 200
#define MAX_LISTS 200
#define MAX_FORM_SIZE 3000

class LIST
{

public:
char *name;
int size;
};

int init_state;

int states[MAX_STATES];
int num_states;

char *forms[MAX_STATES];
int num_forms;

char *variables[MAX_VARIABLES];
int num_variables;

LIST *lists[MAX_LISTS];
int num_lists;

char* strip(char *string)
{
int i;

for(i=strlen(string)-1; i>=0; i--)
{
if(!(string[i]==’\n’ || string[i] == ’ ’))

{
string[i+1]=’\0’;
break;
}

}
while(string[0]==’ ’ || string[0]==’\t’ || string[0]==’\n’)

string++;
return string;
}

void read_initial_state(FILE *fp)
{
char *buffer;

buffer=getexp(fp);
buffer=strip(buffer);
if(strcasecmp(buffer,"initial state:"))

{
fprintf(stderr,"Error: Expected \"initial state\"\n");
exit(1);
}

19

buffer=getexp(fp);
buffer=strip(buffer);

if(buffer[strlen(buffer)-1] != ’;’)
{
fprintf(stderr,"Expected the initial state at %s\n",buffer);
exit(1);
}

init_state = atoi(buffer);
}

char* get_variable(FILE *fp)
{
char *buffer;
char inchar;

do {
inchar = next_char(fp);
} while(inchar == ’ ’ || inchar == ’\n’);

if(inchar ==’}’)
return 0;

else
put_char_back(inchar,fp);

buffer = getword(fp);
buffer = strip(buffer);

return buffer;
}

void read_variables(FILE *fp)
{
char *buffer, *var;
char inchar;
int i, error=0;;

buffer = getexp(fp);
buffer = strip(buffer);
if(strcasecmp(buffer,"variables:"))

{
fprintf(stderr,"Error: Expected \"variables:\" \n");
exit(1);
}

do {
inchar = next_char(fp);
} while(inchar == ’ ’ || inchar ==’\n’);

if(inchar != ’{’)
{
fprintf(stderr,"Error: Expected ’{’\n");
exit(1);
}

while(var = get_variable(fp))
{
error=0;
for(i=0;i<num_variables;i++)

{
if(!strcmp(var, variables[i]))

{
printf("Warning: Duplicate variable: %s\n", var);
error=1;
}

}
if(!error)

20

{
variables[num_variables] = strdup(var);
num_variables++;
}

}
}

char* get_list(FILE *fp, int &size)
{
char *buffer, *bracket;
char inchar;

do {
inchar = next_char(fp);
} while(inchar == ’ ’ || inchar == ’\n’);

if(inchar ==’}’)
return 0;

else
put_char_back(inchar,fp);

buffer = getword(fp);
buffer = strip(buffer);

bracket=strchr(buffer,’[’);
if(bracket==NULL)

{
fprintf(stderr,"Error: Expected ’[’\n");
exit(1);
}

size = atoi(bracket+1);
bracket[0]=’\0’;

return buffer;
}

void read_lists(FILE *fp)
{
char *buffer, *list;
char inchar;
int size, error, i;

buffer = getexp(fp);
buffer = strip(buffer);
if(strcasecmp(buffer,"lists:"))

{
fprintf(stderr,"Error: Expected \"lists:\" \n");
exit(1);
}

do {
inchar = next_char(fp);
} while(inchar == ’ ’ || inchar ==’\n’);

if(inchar != ’{’)
{
fprintf(stderr,"Error: Expected ’{’\n");
exit(1);
}

while(list = get_list(fp,size))
{
error=0;
for(i=0;i<num_lists;i++)

{

21

if(!strcmp(list,lists[i]->name))
{
printf("Warning: Duplicate list name: %s\n",list);
error=1;
}

}
if(!error)

{
lists[num_lists] = new LIST;
lists[num_lists]->name = strdup(list);
lists[num_lists]->size = size;
num_lists++;
}

}
}

void output_prog_header(FILE *in, FILE *out)
{
char *buffer;

while(buffer = getline(in))
{
if(strcmp(buffer,"<code1>\n"))

putline(out,buffer);
else

break;
}

}

void output_definitions(FILE *in, FILE *out)
{
char *buffer;

while(buffer = getline(in))
{
if(strcmp(buffer,"<code2>\n"))

putline(out,buffer);
else

break;
}

}

char* get_form(FILE *fp, int &stateno)
{
char *buffer;
char form[MAX_FORM_SIZE];
char ch;
int i=0;

stateno = 0;
buffer = getexp(fp);
buffer = strip(buffer);
if(!strcmp(buffer,"code:"))

return NULL;
if(strncasecmp(buffer,"form",4))

{
fprintf(stderr,"Error: form#: expected, got %s\n",buffer);
exit(1);
}

for(i=0;i<strlen(buffer);i++)
{
stateno = atoi(buffer+4);

22

}
do {

ch = getc(fp);
} while (ch != ’{’);

i = 0;
do {

ch = getc(fp);
if (ch != ’}’)

{
form[i] = ch;
i++;
}

} while(ch != ’}’&& i < MAX_FORM_SIZE-1);
form[i] = ’\0’;
return form;
}

void print_form(int num, char *buf, FILE *fp)
{
int i=0;

fprintf(fp,"#define FORM%d \"",num);
for(i=0;i<strlen(buf);i++)

{
if(buf[i]==’"’)

{
fputc(’\\’,fp);
}

if(buf[i]==’\n’)
{
fprintf(fp,"\\");
}

fputc(buf[i],fp);
}

fprintf(fp," \"\n\n");
}

void read_and_output_forms(FILE *in, FILE *out)
{
char *buffer;
char inchar;
int error, i=0, form_num, found_state;

while(buffer = get_form(in,form_num))
{
for(i=0;i<num_states;i++)

{
if(states[i]==form_num)

{
fprintf(stderr,"Error: Multiple forms defined for state %d.\n",

form_num);
exit(1);
}

}
states[num_states]=form_num;
num_states++;
print_form(form_num,buffer,out);
}

fprintf(out,"\n#define WEB_init_state %d\n",init_state);
}

void output_variables(FILE *out)
{

23

int i=0;

fprintf(out,"/* Variable definitions */\n");
for(i=0; i<num_variables; i++)

{
fprintf(out,"VARIABLE %s;\n", variables[i]);
}

fprintf(out,"\n\n/* List definitions */");

for(i=0;i<num_lists;i++)
{
fprintf(out,"LIST %s(%d);\n",lists[i]->name,lists[i]->size);
}

fprintf(out,"\n\n");
}

void read_and_output_user_code(FILE *insrc, FILE *incode, FILE *out)
{
char *buffer;

while(buffer = getline(incode))
{
if(strcmp(buffer,"<code3>\n"))

putline(out,buffer);
else

break;
}

while(buffer = getline(insrc))
{
putline(out,buffer);
}

}

void output_initialize_variables(FILE *incode, FILE *out)
{
char *buffer;
int i=0;

while(buffer = getline(incode))
{
if(strcmp(buffer,"<code10>\n"))

putline(out,buffer);
else

break;
}

for(i=0;i<num_variables;i++)
{
fprintf(out,"%s = strdup(\"\");\n", variables[i]);
}

}

void output_code1(FILE *incode, FILE *out)
{
char *buffer;
int i=0;

while(buffer = getline(incode))
{
if(strcmp(buffer,"<code4>\n"))

putline(out,buffer);
else

24

break;
}

fprintf(out," printf(\"%%s\\n\",FORM%d);\n",init_state);
}

void output_code2(FILE *incode, FILE *out)
{
char *buffer;
int i=0;

while(buffer = getline(incode))
{
if(strcmp(buffer,"<code5>\n"))

putline(out,buffer);
else

break;
}

for(i=0; i < num_variables; i++)
{
fprintf(out,"if(!strcmp(entries[x].name,\"%s\"))\n {\n",

variables[i]);
fprintf(out," %s = strdup(entries[x].val);\n }\n ",

variables[i]);
}

while(buffer = getline(incode))
{
if(strcmp(buffer,"<code6>\n"))

putline(out,buffer);
else

break;
}

for(i=0; i < num_lists; i++)
{
fprintf(out,"if(!strcmp(entries[x].name,\"%s\"))\n {\n",

lists[i]->name);
fprintf(out," %s.add_string(entries[x].val);\n",

lists[i]->name);
fprintf(out," }\n");
}

/* list
if ((!strcmp(entries[x].name,"platforms"))

&& (num_platforms < MAX_PLATFORMS)
{
platforms[num_platforms] = strdup(entries[x].val);
num_platforms++;
}

*/
}

void output_code3(FILE *incode, FILE *out)
{
char *buffer;
int i=0;

while(buffer = getline(incode))
{
if(strcmp(buffer,"<code7>\n"))

putline(out,buffer);
else

break;

25

}
/*

for(i=0;i<num_transitions;i++)
{
fprintf(out,"WEB_state_num == %d && WEB_next_state == %d ||\n",

transitions[i]->from_state,
transitions[i]->to_state);
}

*/
fprintf(out,"0\n");
}

void output_code4(FILE *incode, FILE *out)
{
char *buffer;
int i=0;

while(buffer = getline(incode))
{
if(strcmp(buffer,"<code8>\n"))

putline(out,buffer);
else

break;
}

for(i=0;i<num_variables;i++)
{
fprintf(out," printf(\"<input type=\

variables[i], variables[i]);
}

for(i=0;i<num_lists;i++)
{
fprintf(out," for(i=0;i<%s.get_number();i++) {\n",

lists[i]->name);
fprintf(out," printf(\"<input type=\

lists[i]->name, lists[i]->name);
fprintf(out," }\n");
}

}

void output_code5(FILE *incode, FILE *out)
{
char *buffer;
int i=0;

while(buffer = getline(incode))
{
if(strcmp(buffer,"<code9>\n"))

putline(out,buffer);
else

break;
}

for(i=0;i<num_states;i++)
{
fprintf(out," case %d: printf(\"%%s\",FORM%d);\n",i,i);
fprintf(out," break;\n");
}

fprintf(out," default: printf(\"%%s\",FORM%d);\n",init_state);
fprintf(out," break;\n");

}

void output_code6(FILE *incode, FILE *out)

26

{
char *buffer;

while(buffer = getline(incode))
{
putline(out,buffer);
}

}

void copy_code(FILE *src, FILE *dest)
{
char *buffer;

while(buffer = getline(src)) fprintf(dest,"%s",buffer)
;

}

int main(int argc, char *argv[])
{
char *buffer;
FILE *src, *dest1, *dest2, *dest3, *code1, *code2, *code3;
int i=0;

init_state = 0;
num_variables = 0;
num_states = 0;
num_lists = 0;
num_forms = 0;
for(i=0; i<MAX_STATES; i++)

states[i] = -1;

printf("<<%s>>\n", argv[1]);

src = fopen(argv[1],"r");

/* read_transitions(src); */
read_initial_state(src);
read_variables(src);

read_lists(src);

dest1 = fopen("masterform.C","w");
dest2 = fopen("web_util.C","w");
dest3 = fopen("web_util.h","w");
code1 = fopen("/home/sdr4p/web/src/code1.C","r");
code2 = fopen("/home/sdr4p/web/src/code2.C","r");
code3 = fopen("/home/sdr4p/web/src/code3.C","r");

output_prog_header(code1,dest1);

read_and_output_forms(src,dest1);

output_definitions(code1,dest1);

output_variables(dest1);

read_and_output_user_code(src, code1, dest1);
output_initialize_variables(code1,dest1);

/* Need to copy the supporting */
/* files to the source directory */

output_code1(code1,dest1);
output_code2(code1,dest1);
output_code3(code1,dest1);

27

output_code4(code1,dest1);
output_code5(code1,dest1);
output_code6(code1,dest1);

copy_code(code2,dest2);
copy_code(code3,dest3);

printf("<<<<<<<<<<<<<<>>>>>>>>>>>>>>\n");
for(i=0;i<num_states;i++)

printf("State: %d\n",states[i]);
for(i=0;i<num_variables;i++)

printf("Variable: %s\n", variables[i]);
for(i=0;i<num_lists;i++)

printf("List: %s {%d}\n",lists[i]->name,lists[i]->size);
return 0;
}

28

