Gate - A Genetic Algorithm for
Compacting Randomly Generated Test Sets

J. H. Alyor, 1. P. Cohoon
E. L. Feldhousen, B. W. Johnson

Computer Science Report No. TR-90-27
September 3, 1990



GATE — A GENETIC ALGORITHM FOR
COMPACTING RANDOMLY GENERATED TEST SETST

J. H. Aylor, J. P. Cohoon, E. L. Feldhousen,* B. W. Johnson

Center for Semicustom Integrated Systems
University of Virginia
Charlottesville, VA 22903

ABSTRACT

A new technique, named GATE, is presented for the generation of compact test sets.
GATE combines a previously proven method for random test pattern generation with
the adaptive searching capabilities of genetic algorithms to produce very high quality
test sets. A series of experiments demonstrated that our technique performed con-
sistently better than the traditional method with respect to both fault coverage and
test set size.

t  This research was supported in part by the Virginia Center for Innovative
Technology through grant 5-30971 and by the Defense Advanced Projects
Research Agency (DARPA) through contract NO0014-89-J1699.

¥ This author's current address is Cardiology Business Unit, Hewlett-Packard
Company, 1700 S. Baker Street, McMinnville, OR 97128.



1. INTRODUCTION

The generation of test vectors for combinational VLSI circuits continues to be an
important research area. The current situation, which has significant costs associated
with test generation and application, is due largely both to the NP-completeness of
deterministic test pattern generation [FuJi82, IBAR75] and to the incompleteness of
random techniques. As a result, great effort has been spent developing efficient test
generation techniques that use a variely of methods to produce compact test sets with
high fault coverage. These methods range [rom the deterministic ones that attempt to
generate at least one test for each single stuck-at fault in a circuit, to random and
pseudo-random test generation that are used in conjunction with built-in self test, and
to exhaustive methods that apply all possible input combinations [CART85, FuJI83,
GOEL81, MccL81, ROTHE6]. While all these methods are appropriate under the proper
circumstances, they can be [urlther improved. For example, deterministic algorithmic
methods attempt to generate at least one test for each single stuck-at fault in a circuit.
And while they are complete in the sense that given enough time, they will determine a
test for all detectable faults in a circuit [FuJi85s), the required computation time for the
fastest algorithm grows exponentially with circuit size [BRAH87]. Similar concerns can

be expressed about other methods,

The work presented here uses genetic algorithms to offer an improved test
generation technique, where a genelic algorithm [GOLD89, HOLL75] is an optimization
method that resembles the mechanics of natural evolution that seems particularly
well-suited to VLSI problems [CoHO91]. Specifically, this research focuses on new
ways of creating compact test sels [rom tfest sels that were generated with random
techniques. Methods that improve the coverage of such test sets and approaches to
minimizing the computational cost of this new technique are also presented. This is

achieved in part by extending and exploiling the successful SOFE method of random

-2 .



pattern generation and fault simulation developed by Carter, Dennis, Iyengar, and

Rosen [CARTS5H],

The remainder of this paper is organized in the following fashion. Section 2
provides background information on genetic algorithms, as well as the fault simulation
method SOFE upon which GATE is based. Seclions 3 and 4 detail the GATE method,
and Section 5 discusses experimental results. The computation of the GATE method is
analyzed in Section 6 and Section 7 presents conclusions and areas for continued

investigation.

2. PRELIMINARIES

The genetic algorithm paradigm {HoLL75] has been previously proposed to
generate solutions to a wide range of problems [GoLD89]. In particular, it has been

applied successfully to the VLSI problem domain {COHO87, COHO91, SMITE5]

In a genetic algorithm (GA}, a population of solutions is maintained and successive
generations are produced by manipulating the solutions in the current population,
Each solution has a filness that measures its competence. New solutions are formed
typically by merging two previous ones via a crossover operator. Other new solutions
are simply modifications of previous ones, using a mutation operator. Successive
generations are produced with new solutions probabilistically replacing older ones
based on relative fitness. An ad hoc termination condition is often used and the best

seen solution is normally reported.

The following helps to illusirate more concretely the operation of genetic
algorithms, Assume that the population of a GA contains n solutions, each of which is
encoded using a string of finite length. During the crossover stage, a percentage C of
the total population is chosen through probabilistic selection by fitness to participate in

producing offspring solutions (i.e. soluiions with the highest filness are weighted most

-3 -



for G iterations do
while nxC < number of oflspring created do
Select two solutions
Crossover the two solutions to create offspring
end
Add offspring to population
Calculate fitnesses
Select a population of n elements
Generate nxM random mutations
end

Figure 1. — High-level code for genetic algorithm [COHO91].

favorably to be parents and solutions with the lowest fitness are minimally weighted).
After crossover and a probabilistic selection of the most fit solutions for survival, a
fixed percentage of the surviving population, M, is then mutated. The algorithm
repeats this process for G generations. The high level code in Figure 1 shows the

general operation of a GA [COHO91].

By selecting the most fit solutions to participate in crossover, and by coding the
solutions in an intuitively meaningful way [SUH87], the best parts of the best solutions
may be combined to form better solutions. Thus, genetic algorithms can take
advantage of the high quality building blocks in the best solutions found so far. In
addition, genetic algorithms benefit from the simplicity of crossover and mutation
operations, which are simple string copying and modification tasks, as opposed to

algorithms which require a detailed knowledge of the problem being solved [{GOLD89].

Besides using the adaptive searching capabilities of genetics algorithm, GATE also
exploits and extends the successful SOFE method of random pattern generation and
fault simulation developed by Carter et al [CART85] Their SOFE method first

constructs an initial test set using random pattern generation. This is followed by the



application of heuristics to permute the subsequent test sets coupled with multiple
fault simulations to reduce the size of the test sets. The fault simulation procedure
ceases simulating a particular fault as soon as the first test in a set detects that fault.
Thus, the method is called Stop On First Error, or SOFE. In their scheme, “two or
more trials” (SOFE/ 2+) are performed. Each trial involves fault simulation of the
current test set. The first {rial randomly generates a set of tests and then fault
simulates them using the SOFE principle, keeping only tests that detect a new fault.
The second trial reverses the order of test set and re-invokes fault simulation using
the SOFE principle. The heuristic reduction in the new test set size arises from the
expectation that tests generated late in the previous trial found both hard to detect
faults and many of the easier, earlier detected faults, Further trials with other test set
orderings are performed to realize additional important reductions. To make this
procedure more efficient, a covering heuristic is applied in tandem. The benefits of the
covering heuristic stem from the fact that the fault simulator processes multiple tests
in parallel. After each group of tests is simulated in parallel, the heuristic can be used
to remove tests that are covered by other tests in that group. For the ISCAS-85
Automatic Test Pattern Generation {ATPG) Benchmarks [BRGL85S], SOFE /6 when used
in conjunction with the covering heuristic removed on average half of the tests
obtained in the first {rial. In addition, almost all further improvement was found in
the second trial. However, Carler et al. note that since the great majority of the fault
simulation computational effort occurs during the first trial, the cost of trials 3-6 is
insignificant. They also speculate that an important avenue of future SOFE research

is the determination of intelligent permutations for further SOFE trials.



3. GENETIC ALGORITHM APPROACH

Our technique first randomly generates a population of n test sets where each set hasg
reasonable fault coverage. GATE then uses this population and its adaptive search
ability to effectively explore the solution space. To speed-up the convergence of GATE,
the initial sets are pre-processed in a SOFE-like manner. An additional benefit of this
- pre-processing is an early identification of some of the crossover building blocks.
Fault simulation or a covering heuristic determines the amount of fault coverage and
test set length for each test set in the population, thus allowing fitness to be
calculated. Fitness-based probabilistic selection is then used to determine which test
sets should be used in crossover. The crossover operator exchanges subsets of the
current population test sets to produce offspring. In addition, some test sets are
mutated by either changing the order of tests in the test set or by adding new tests to
the set. This adding of new {ests to the population has the favorable side-effect of
often increasing coverage. The relative filnesses of all the test sets are then
determined, and the most fit solutions are favored probabilistically to survive into the
next generation. The algorithm runs normally until a particular coverage or
compactness figure-of-merit is reached, or until some predetermined number of
generations have passed. The test set solution with the highest fitness is returned as

the solution of the problem.

In the remainder of this section we discuss in more detail several of the above

components that comprise GATE.

Initial Population Generation

Although the initial population is generated randomly, several options are still
available. The test sets that form the population may be generated using a pure

random (uniform) distribution, using one or more weighted distributions [LiSA86], or

-6 -



using a combination of uniform and weighted random distributions. The results
presented here resulted from an initial population generated using a uniform
distribution. In the future, we plan to consider the other options. One possible

scenario is to use a separate GA to generate the initial population for GATE.

Crossover

Once a population has been generated, probabilistic selection by fitness is used to
select members of the population to participate in crossover. The crossover operators
that we considered involved either one-way or two-way transfers of portions of test sets

from members of the populations; other methods are also possible.

Two sample members u and v of a population are given in Figure 2 to illustrate

these several possible operations. The top and bottom sections of these members are

u v
T, T,
I, Jy
O
o
[o]
Jj
B,
o
I
B,

Figure 2. — Two sample population mermbers.




identified respectively as T, {T,) and B, (B,). While we may not expect the interior
region to be densely packed with tesls for difficult to detect faults, some such tests
may be present due to the random nature of the pattern generation. Also, as the
genetic algorithm continues, the test set orderings are permuted and the “valuable”
tests become more evenly distributed. Therefore, we divide the interiors of u and v
into sections I, ...,; and J;, ... .J; respectively. Several crossover operators are
considered. For example, given two tests sets u and v as in Figure 2, one possible
crossover is to combine into an offspring either the top (bottom) section T, (B,) with
the interior and bottom {lop} sections J, and B, (T,). Some other crossover operators
that we considered, combined T, and B, with all of v. Other simple combinational

crossover operators are readily conceived.

A second type of crossover is the two-way crossover that produces two offspring
for each crossover. For example, T\, might be combined with all of the parent v to form
one offspring, while at the same {ime B, might be combined with u to form another
offspring. Other combinations of top, bottom, and interior section exchanges
constitute the various possible crossover operations of this type. An important
crossover issue is whether the transferred section or sections should be placed at the
top, in the interior or at the end of the resulling offspring. Another important issue is
whether to simply add or replace the patierns of the transferred sections. Simply
adding the patterns is attractive since it prevents a reduction in fault coverage, while

replacement is atiractive as it maintains compactness.

Mutation

Mutation is performed during each generation on randomly selected members of the
population, It serves two purposes: it prevents premature convergence by perturbing

the elements that comprise the population and it introduces additional information



into the system. Several mutation operators were considered. They were selected to
aid in one or both purposes. For example, one mutation operator simply randomly
permuted the sections of a given test, and another randomly permuted the tests within
a given section. Such permutations are quite simple to perform and relatively
inexpensive since the cost of fault simulation is already incurred due to the need to

evaluate new offspring.

Another mutation operator that we considered added a new test to one or more
members of the population. Like the generation of the initial population, the new test
may be generated using either a random or weighted scheme. If a weighted scheme is
used, the distribution could be determined from the existing tests in the given set.
Another considered mutation operator was one that randomly permuted or

complemented the bit pattern of a given test.

Fitness Evaluation

Individual test sets in the population must be evaluated to determine their fitnesses.
Fitness is used both in determining which individuals are selected for crossover, and
which individuals are allowed to survive across generations. The fitness function f(x)
is a weighted function with two terms, fi{x) and f.{x), that are related respectively to

size and coverage. Both f;(x) and f.(x) have the following form

i - score{x) + oo
200

where p and ¢ are respectively' the mean and standard deviation of the population

scores (i.e., size or coverage} and o is a normalization constant.

We investigated two approaches for [itness evaluation that are related to the
approach of Carter et al. [CART85]. One approach uses fault simulation to gather
statistics regarding test set size and coverage; the other approach uses a covering

heuristic. Due to the nature of our fault simulator, it was not possible to combine

-9-



effectively these two approaches.

When pure fault simulation is used for fitness evaluation, it is very desirable to
minimize the total amount of such simulation. This follows from the computational
complexity of fault simulation which is at least O(n?) [DUBASS], where n is a measure
of circuit complexity. Thus, for algorithmic feasibility it is necessary that the genetic
operators and paramelers be chosen in a manner that guarantees rapid convergence
of the algorithm to a satisfactory solution. Even if heuristics are used to reduce the
amount of fault simulation, the cost of fault simulation for offspring evaluation

remains the dominating factor in the GA’s cost.

Our alternative to fault simulation for fitness evaluation, was a covering heuristic.
If a reasonably elficient heuristic is used, the overaﬂ algorithmic efficiency may
improve significantly. The appeal of the covering heuristic stems from the repeated
simulation of the same test patterns as the patterns disseminate throughout the
population. With the covering heuristic approach, a single simulation is performed for
each test pattern and the result is recorded in a fault table. Fitness evaluation is
calculated using the fault table. The principle drawback of this approach is the size of

the table, which is a function of the number of test patterns and faults.

The “wallclock” cost of fitness evaluation may be improved with a parallel or
distributed implementation. Since the evaluation of each offspring is largely
independent, acceleration of fitness evaluation step is possible through the use of a
parallel or distributed processor architecture. In a related research project, we are

evaluating the effectiveness of a new parallel genetic algorithm [CoHO91].

4. IMPLEMENTATION DETAILS

In the experiments summarized in the next section, we used a population size of ten

test sets. Each test set was derived from a dilferent random collection of 256 tests

- 10 -



that had a SOFE/ 1-like procedure applied to them before they were incorporated into
the initial population. Our preliminary experiments indicated that both sufficlent
diversity was present and that the computation costs associated with GATE's genetic
algorithm operators remained feasible. If a circuit of far different complexity is to be

processed, the number of tests and the number of test sets may need to be modified.

We found in our preliminary experiments that the preferred crossover operator
was a simple one-way crossover that divided a test set u into approximately four
equally-sized sections, Ty, I, I, and B,. A section {rom one parent was combined at
the beginning of a second parent. The section selecited to combine was chosen

probabilistically using a crossover weight vector.

Since the available fault simulator was relatively primitive, a covering heuristic
became the method of choice to delermine fitness. The covering heuristic that we
used was a straight-forward greedy one that repeatedly selected from a given test set,
the test pattern that covered the greatest number of remaining faults. The only real
efficiency that was infroduced was a pre-processing step that automatically included

all test patterns that uniquely covered a fault,

The preferred mutation operator was one that produced a significantly different
test set, but not one so different that it was nearly a completely new, randomily
generated test set. The mutation operator that worked best, inserted a small number

of new patterns at or near the beginning of the test set to be mutated.

5. EXPERIMENTAL RESULTS

As a result of a preliminary investigation using two simple circuits and three circuits
from ISCAS-85 ATPG benchmark set [BRGL85S], a baseline implementation of GATE was

constructed. The parameters settings for the baseline GATE are defined in Table 1.

-11 -



Population size: 10

Crossover rate: 100%

Crossover type: one way
Sections: 4

Crossover weight vector: (0.8, 0.125, 0.125, 0.45)
Self-crossover: not permitted
Mutation rate; 10%

Mutation range: 25%

Fitness relative weights: (0.5, 0.5)
Maximum initial test set size: 256
Number of generations: 18

Table 1. — Baseline GATE parameter settings.

The table indicates that for each of the 18 generations of the GA, GATE creates 10
offspring (i.e., 100% crossover rate). In creating a test set, 256 test patterns are
generated one at-a-time. I the current pattern covers a new fault with respect to the
patterns in the test set so far, it is added to the test set. The fitness {function evenly
weights the contributions of test size and coverage. The table also indicates that the
one-way crossover operation probabilistically favors the bottom section the most, the
top section next, and the two interior sections the least. Mutation insertions are done

in the first 25% of a selected iest set,

Results associated with C432 from the ATPG benchmark using fault simulation
for fitness calculation are typical of the five circuit instances, and are summarized in
Table 2. The results demonstrate that GATE is a very effective tool with respect to both
figures of merit (i.e., coverage and size). On average it improved the initial population
test sets with respect to fault coverage by 2.7% and with respect to test set compaction
by 18.7%. Note, in this and subsequent tables that labels C and S denote respectively

coverage and size.

-12 -



Average Initial Baseline GATE GATE Population

Statistic SOFE Results Results Improvement
C (%0) S C (%) S C (%) S {%)
Worst 95,15 53.3 98.50 43.0 2.2 17.6
Best 96.26 51.0 98.50 42.0 3.4 19.5
Average 95.80 52.2 98.50 42.4 2.7 18.7

Since the cost of using the faull simulator to determine fitness was deemed too

great for its use subsequently, the remaining experiments used the covering heuristic

Table 2. — Preliminary results for C432.

to evaluate fitness.

Tables 3 and 4 summarize 20 trials of both our baseline GATE and a GATE-variant
with a single interior section on the ATPG benchmarks C432 and C3540. For both
circuits, the GATE implementations were quite effective with respect to the two figures
of merit. We also note that the use of covering heuristic improved GATE's performance
with respect to the preliminary experiment where GATE used faull simulation to
determine fitness. The labels “average”, “max”, and “min”, indicate the standard

associated statistic with respect to the population in question. The label “top” refers to

the test set with the best fitness with respect to the population in question.

Initial Baseline Variant
Statistic Population GATE GATE
C {(9%) S C (%) S C (%) S
Average | 96.35 51.7 | 99.24 39.3 | 99.24 39.4
Max 97.56 0.0 | 99.25 44,0 | 99.256 43.0
Min 93.05 46.0 | 99.06 37.0 | 99.06 37.0
Top 97.18 49.0 | 99.25 37.0 | 99.25 37.0

Table 3. — Results for C432 with covering heuristic,

<13 -




Initial Baseline Variant
Statistic Population GATE GATE
C (%) S C (%) S C (%} S
Average | 94.29 1534 | 95.90 1283 | 95,97 128.0
Max 94,77 158.0 | 95,97 133.0 | 95.97 128.0
Min 93.01 1460 } 95,83 122,0 9595 128.0
Top 94,77 152.0 | 95.83 122.0 | 95.97 128.0

Table 4. — Results for C3540 with covering heuristic.

Note in Table 3, the maximum coverage shown for C432 is 99.25%, which is greater
than the maximum value of 99.23% given by Carter et al. [CART85]. This small
discrepancy exists because in the TEGAS system, gates with more than four inputs
are expanded into multiple gates, thus slightly altering the total number of faults and

the maximum possible coverage. This situation also applies to circuit C3540.

Table 5 compares the performances of GATE and SOFE/ 2. This table (as with the
previous tables) indicates statistically that GATE is a very effective compactor. For
ATPG circuits C432 and C3540, GATE produces a typical improvement of
approximately 24% and 16% respectively with respect to SOFE/ 2 (regardless of the
statistic in question). Although not indicated in i‘he table, GATE's coverage was higher

by approximately 3% and 2% respectively for the two circuits.

SOFE/ 2 GATE Improvement
Circuit Size Size 96}
Average Best | Average DBest | Average Best
C432 51.7 49.0 39.4 37.0 23.8 24.5
C3540 | 1b53.4 152.0 | 128,00 128.0 16.5 15.8

Table 5. — Performance comparison with SOFE/ 2.

Table 6 compares the performance of GATE with SOFE/ 6 as the previous table did
with SOFE/2. Once again GATE proves to an effective compactor—it produced
solutions for the two circuits in question that were on average approximately 12% and

14% better respectively than the complete SOFE scheme, Similarly, with respect to

-14 -



the best performance statistic, GATE was able to produce a solution almost 18% better.
Although not indicated in this table, GATE’s coverage was marginally higher on average
than the complete SOFE scheme by approximately 0.01%. However, we do not believe

that GATE’s coverage improvement is statistically significant for this circuit.

SOFE/ 6 GATE Improvement
Circuit Size Size (%6)
Average Best | Average DBest | Average Best
C432 45.0 45.0 39.4 37.0 12.4 17.8
C3540 149.0 149.0 | 128.00 128.0 14.1 14,1

Table 6. — Performance comparison with SOFE/ 6.

From these experiments, we conclude that the GATE approach is a very effective
test tool. In particular, the GATE implementation using a covering heuristic produces
superior test set solutions—its solutions are experimentally on average 13% better

than those produced by the traditional SOFE techniques.

6. COMPUTATION COSTS

Besides test set size and coverage, the other important characteristic of a test set
generator is computation cost. The standard figure of merit for the cost of fault
simulation is gate-fault-patterns. This is a fair estimate of the fault simulation effort, if
the number of faults being simulated at every point in the fault simulation procedure
is used. In estimating the costs, we assumed that all gates are simulated for the
remaining undetected faults. Using this approach it is possible to estimate and
compare the costs of SOFE/ 6, the GATE implementation using fault simulation, and

the cost of the initial population generation [or the GATE implementation using the

covering heuristic.

It is difficult to estimate the total cost of GATE implementation using the covering

heuristic, as the gate-fault-patterns melric is not applicable. Thus, to relate the cost

- 18 -



of a specific amount of fault simulation effort to a specific amount of covering heuristic
effort, a proportionality constant p is used. Constant B relates the cost of a basic unit
of fault simulation work with a basic unit of covering heuristic work, where the basic
unit of work is the evaluation of one offspring from a crossover operation. In our
preliminary GATE implementation, it was observed that the computation time for
evaluating one offspring by a covering heuristic is approximately 10% of that of the
fault simulation cost. Accordingly, in the computation cost results presented below,

the ratio is assumed to be in the range 0.05 to 0.25.

Figures 3 and 4 show the range of dilferences between the costs of the

approaches. Both graphs show the ratio of the two GATE approaches for the €3540

40

30

Cost Ratio: 20

GATE
SOFE / 6

10

Generations, G

Figure 3. — Relative costs of GATE and SOFE/ 6 for C3540.

-16 -



60

50

40 |
Cost Ratio: 30
GATE
SOFE /630
10 |4

512

Figure 4. — Relative cost of GATE and SOFE / 6 for C3540.

benchmark to SOFE/6. The solid curves are for the covering heuristic
implementation, and the dashed curve is for the fault sirnulation implementation. The
parameter 3 in the figures is the proportionality constant discussed above. In the
computations for both graphs, the number of patterns, P,, simulated in GATE’s initial
population generation is one eighth of those simulated in the SOFE/ 1 portion of
SOFE / 6 (Ps). This is a reasonable assumption for two reasons. Firstly, each method
begins with approximately the same coverage potential; and secondly, the population
in all GATE instances is comprised of 10 test sets. Figure 3 shows the relationship
between B, the number of generations, G, and the cost ratios. The nurmber of patterns

used here for initial population generation is the same as those used for the baseline

- 17 -



results of the previous section. Figure 4 shows the relationship between the number
of patterns initially generated and the ratios. In this figure, the number of generations
(18) is the number used typically by GATE. Note that the cost ratio improves as the

number of initial patterns grows larger.

While the graphs demonstrate the marked superiority of the GATE implementation
using a covering heuristic over the GATE implementation using fault simulation, they
also demonsirate that GATE's solution quality over SOFE comes at a price. Its
computation cost is approximately six to nine times greater than the computation cost

of SOFE / 6.

These costs imply that GATE should be used in an environment where test set
length has significance. The most obvious example is for integrated -circuits
manufactured in very large quantities, where any tester time savings would be
multiplied because of the large quantities. The additional computation cost required
by GATE would be justified because of the multiplied tester time savings. A more
specific and possibly more appropriate area is in the testing of circuits using one of
the scan techniques such as LSSD [EICH78] or Scan Path [FUNA75). Such scan
techniques require each bit of each test pattern to be shifted into scan sirings, the
savings associated with eliminating a single pattern will consist of the test pattern
application and output comparison time, and as many shift operations as the longest
scan string in the circuit. These savings could be multiplied even further if the
integrated circuit is manufactured in high volumes. Another potential area is in the
testing of very large combinational circuits. Because of the exponential growth of the
computation requirements of purely deterministic test generation, test generation
might be feasible for such circuits only using methods based upon, at least partially,
random pattern generation and fault simulation, as fault simulation costs are

bounded by a polynomial. If test set length is a concern, then the GATE test generation

- 18 -



approach or the SOFE / 6 approach are good candidates for creating the compact test
sets. The preference of GATE over SOFE depends upon the relative importance of test

set length,

7. SUMMARY AND CONCLUSIONS

This paper describes GATE, a new approach to test generation and compaction. GATE
uses the adaptive searching capabilifies of the genetic algorithm paradigm fo find

compact test sets from a population of randomly generated fest sets.

Two implementations of GATE were performed. Based on experimental analysis,
we conclude that the implementation using a covering heuristic for fitness evaluation
provides the best results, both in terms of test set gquality and computation cost. In
particular, for two well-known benchmark circuits GATE produced test sets that are
approximately 20% smaller than a random starting configuration. To place this in
perspective, GATE's solutions are on average 13% more compact than results obtained
by the traditional random test generation and compaction technique SOFE /6 with no
loss in fault coverage. In fact, GATE produces on average a solution with a slight
coverage increase, We estimate the computation cost of a non-parallel GATE approach
to be about seven times more than the cost of the SOFE /6. However, a parallel GATE
implementation is estimated to be able to reduce the wallclock computation cost by a

factor in the range of 2 to 7.

8. ACKNOWLEDGEMENTS

The authors’ work has been supported in part by the Virginia Center for Innovative
Technology through grant 5-30971 and by the Defense Advanced Projects Research
Agency (DARPA) through contract N00014-89-J1699. Their support is greatly

appreciated.

-19 -



9. REFERENCES

[BRAH87]

[BRGLEB]

[CARTS5E)

D. 8. Brahme and J. A. Abraham, Knowledge Based Test Generation for
VLSI Circuits, IEEE International Conference on Computer-Aided Design,
Santa Clara, CA, November 1987, 292-295.

F. Brglez, R. Pownall and R. Hum, Accelerated ATPG and Fault Grading via
Testability Analysis, Proceedings of the 1985 IEEE International Symposiurn
on Circuits and Systems, June 1985, 695-698.

J. L. Carter, S. F. Dennis, V. S. Iyengar and B. K. Rosen, ATPG via Random
Pattern Simulation, Proceedings of the 1985 International Symposium on
Circuits and Systerns, June 1985, 683-686.

[CoHO87] J. P. Cohoon and W, D. Paris, Genetic Placement, IEEE Transactions on

Cornputer-Aided Design of Integrated Circuits and Systems CAD-G,6
(November 1987), 956-964.

fCoHo91] J. P. Cohoon, S. U. Hegde, W. N. Martin and D. S. Richards, Floorplan

[DUBA8SH]

[EICH78]

[Fung82]

[FuJi83]

[FuJi85]

[FUNA75]

[GOEL81]

[{GoLD89]
[HoLL75]
[IBAR7D)

[LisA86]

Design Using Distributed Genetic Algorithms, IEEE Transactions on:
Computer-Aided Design of Integrated Circuits and Systems CAD-9{(1991).

P. A. Dubam, R. K. Roy, J. A. Abraham and W. A. Rogers, Fault Simulation
in a Distributed Environment, 22nd Design Automction Conference
Proceedings, Las Vegas, NV, 1985, 686-691.

E. B. Eichelberger and T. W. Williams, A Logic Design Structure for LS!
Testability, Jownal of Design Automation and Fault Tolerant Computing
2(May 1978}, 165-178.

H. Fujiwara and S. Toida, The Complexity of Fault Detection Problems for
Combinational Logic Circuits, IEEE Transactions on Computers C-31{June
1982}, 555-560.

H. Fujiwara and T. Shimono, On the Acceleration of Test-Generation
Algorithms, IEEE Transactions on Computers C-32{December 1983), 1137-
1144,

H. Fujiwara, FAN: A Fanout Oriented Test Pattern Generation Algorithm,
Proceedings of the 1985 IEEE Intemnational Symposium on Circuits and
Systemns, 1985, 671-674,

S. Funatsu, N. Wakatsuki and T. Arima, Test Generation Systems in Japan,
Proceedings of the 12th Design Autornation Conference 2{June 1975), 114-
122.

P. Goel, An Implicit Enumeration Algorithm to Generate Tests for
Combinational Logic Circuits, IEEE Transactions on Computers C-30(March
1981), 215-222.

D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine
Learning, Addison-Wesley, Reading, MA, 1989,

J. H. Holland, Adaptation in Natural and Artificial Systems, University of
Michigan Press, Ann Arbor, MI, 1975,

0. H. Ibarra and S. K. Sahni, Polynomially Complete Fault Detection
Problems, IEEE Transactions on Computers C-24(March 1975), 242-249.

R. Lisanke, F. Brglez, A, de Geus and D. Gregory, Testability-Driven Random
Pattern Generation, IEEE International Conference on Computer-Aided Design
Proceedings, Santa Clara, CA, November 1986, 144-147.

- 20 -



[MccL81] E. J. McCluskey and 8. Bozorgui-Nesbat, Design for Autonomous Test, [EEE
Transactions on Computers C-30(November 1981), 866-875.

[RoTH66] J. P. Roth, Diagnosis of Automata Failures: A Calculus and a Method, IBM
Journal of Research and Development Vol. 10(July 1966), 278-291.

[SMiT85] D. Smith, Bin Packing with Adaptive Search, Proceedings of an International
Conference on Genetic Algorithms and Their Applications, Pittsburgh, PA,
1985, 202-206.

[Sun87] J.Y. Suh and D. V. Gucht, Incorporating Heuristic Information into Genetic
Search, Proceedings of the Second International Conference on Genetic
Algorithms and Their Applications, Boston, MA, 1987, 100-107.

-921 -



