
Analysis of Deadline-Driven Scheduling Algorithms
Using Function-Driven Techniques

W. Timothy Strayer

Computer Science Report No. TR-92-11
May 4, 1992

This work is supported in part by the U.S. Naval Ocean Systems Center
and the Office of Naval Research under contract N00014-91-J-1514.

1

Analysis of Deadline-Driven Scheduling Algorithms
Using Function-Driven Techniques

W. Timothy Strayer

University of Virginia
Charlottesville, Virginia

wts4x@virginia.edu
May 4, 1992

Abstract
Real-time systems must be responsive to task deadlines, hence deadline-
driven scheduling algorithms pervade real-time scheduling. Scheduling
algorithms, whether for real-time system or not, often focus one or only a
few of the task attributes or system characteristics for discriminating among
competing tasks. The task set is comprised of tasks that either are dependent
on the particular attributes or are forced to be. Expression of scheduling
algorithms using function-driven techniques, in particular the importance
abstraction [STRA92] employs functions to profile task importance; the
scheduler greedily chooses the most important task at every point in time.
We explore the use of this abstraction for the class of task sets that have at
least some deadline-driven tasks but are not limited to tasks with only
deadlines as attributes or which are dependent only on deadlines for their
importance.

1. Introduction

Scheduling algorithms impose an ordering on a set of tasks such that a scheduling

policy is maintained. This policy specifies what properties the schedule should have.

Ideally a system designer would set a policy based on the goal of the system, then construct

an algorithm to implement that policy. The algorithm is then analyzed to determine if

indeed the schedules produced meet the properties dictated by the scheduling policy. Other

questions about the schedules are also asked. These include: Is a given task set schedulable?

Under what conditions will a certain task be serviced? Under what conditions will a task

fail to meet its deadline. Unfortunately, the progression from policy to algorithm to analysis

is difficult since many policies, if not sufficiently restricted, require NP-Complete

2

algorithms to implement them. Consequently, the progression is typically from an

algorithm with rich analytical results to a policy that can exploit these results. The task sets

are then forced to fit the profile of the algorithm. A example of such a well-studied

algorithm is the rate monotonic algorithm introduced in [LIU73]; while this algorithm is

designed for periodic task sets only, much work has been done to modify the algorithm to

include aperiodic tasks, tasks with a secondary level of criticality, and task sets with

unknown sizes. The techniques used to modify rate monotonic theory to include these cases

are surveyed in [SHA90].

The importance abstraction [STRA92] is a framework for describing scheduling

policies by focusing on how importance each task is to the system. Every system has a goal

and the tasks within the system are processed with the intent of meeting the system goal. A

task within the system is viewed as “important” to the systemvis-a-vis how that task can

contribute to accomplishing the system goal. As the system progresses and its state

changes, various tasks become more or less important to the system. The importance

abstraction is a framework for expressing those conditions under which tasks within a

system become important to the system.

The importance abstraction includes within its framework a set of functions called

importance functions which describe the tasks within the system, and a scheduler that uses

the importance functions to determine which tasks should receive service. By using this

abstraction to consider scheduling problems, we shift the emphasis from the analysis of the

scheduling algorithm to the analysis of a set of functions. Other important efforts in

function-based scheduling include [BERN71], [RUSC77], and [JENS85].

In this paper we examine the problem of meeting task deadlines. The nearest

deadline first (NDF) algorithm is known to meet all deadlines if any schedule exists that

meets all deadlines. Since we can emulate this algorithm within the importance abstraction,

3

we prove this statement for tasks with arbitrary arrivals. We continue by relaxing various

restrictions on the task set and including various other attributes; in all cases we use the

importance abstraction as the framework within which we prove or construct results.

2. Importance Functions

If the importance of a task could be quantified at every point in time, it could be

expressed as a function over time to profile a task’s importance to the system. Since the

importance of a task depends upon the state of the system and the attributes of that task, the

pertinent components of the system state and the attributes of the task must be the

parameters to the function. If we can identify each possible task in the system, and under

what conditions that task will become important to the system, we can associate with each

task a function that reflects the task’s importance. Hence, for each taski in the task setT, an

importance function Ii(t) is constructed that reflects the conditions for taski to be important.

An importance function for a task returns a value that ranks that task among all

other active tasks competing for the processor according to how important it is for that task

to be processed at that moment in time. The set of importance functions are used to

schedule the tasks as well as represent the tasks in analysis done on the scheduling policy

imposed by the importance functions.

When a set of importance functions has been associated with a task set, the tasks

within that task set are scheduled according to the values of the importance functions. Let

IT be the set of all importance functions for the task setT. At every point in time the

scheduler must evaluate the functionM:IT → T, whereM takes the set of importance

functions and returns a task. Without loss of generality we assume that the tasks inT are

indexed, in no particular order, so that a task is identified by its index. The functionM

evaluates each importance function in the setIT and returns the taski ∈ T whose importance

4

function has the maximum value at that point in time. If, at some point in time, the

scheduler finds that two or more tasks are most important simultaneously, the scheduler will

arbitrarily choose one of those tasks as the task to receive service, and will continue to

allow that task to receive service until some other task becomes most important. This model

assumes that all of the tasks in the task set are preemptable.

We can express the actions of the scheduler with some mathematical constructs.

The boolean relation (M(IT) = i) returns the value 1 if the most important task at the time of

evaluation is the task i, and the value 0 otherwise.1 By using this boolean relation as a

function of time, we can determine how long a specific task has been most important over

a certain period. Let the value represent the amount of work applied to the task i from

time t1 to time t2. The equation

Eq 1

shows the relationship between the importance functions and the amount of work done to

a particular task. This equation states that the amount of work received by task i over the

period from t1 to t2 is equal to the amount of time that the function M returns task i from

time t1 to t2.

An interesting and important aspect of the importance abstraction is the ability to

emulate traditional scheduling policies within its framework. The importance abstraction is

said to emulate an arbitrary scheduling policy in that it makes exactly the same scheduling

decisions at exactly the same time. In the importance abstraction the act of scheduling

always remains the same: choose the most important task to perform at each decision point;

1. The convention of using a boolean expression within a set of parentheses to denote a function that
returns 1 if the boolean expression is true and 0 if it is false is used in Graham, Knuth, and Patash-
nik’s book Concrete Mathematics (1988); they attribute the convention to Iverson in the program-
ming language APL.

wi t1

t2

wi t1

t2 M IT() i=() tdt1

t2∫=

5

the various scheduling policies are actually implemented by defining appropriate

importance functions. The importance functions must be defined in such a way that a task

becomes most important at precisely the same instant as the conventional scheduling policy

would have chosen it.

3. Meeting Deadlines

An important question that we ask about task sets within real-time systems is: Does

there exist a schedule that will ensure that all deadlines of all tasks are met? We know from

[LIU73] that the nearest deadline first (NDF) algorithm will meet all deadlines for a periodic

task set whose fixed size is known a priori. It is widely held that NDF will meet all

deadlines of any fixed size task set, periodic or aperiodic, if any schedule exists that can

meet all deadlines. Readily, NDF is sufficient for meeting all deadlines for a feasible task

set, but it is not necessary; given any feasible task set a permutation of the tasks, as long as

no task requires work past its deadline, is also a feasible schedule. Since we assume

preemptable tasks, there are an infinite number of such permutations, and hence an infinite

number of schedules that meet all deadlines.

In this section we prove that the nearest deadline first algorithm will meet all

deadlines for a fixed size aperiodic task set if any schedule exists that meets all deadlines.

We then consider the same question for task sets with arbitrary sizes. Next we consider task

sets where the tasks have both a deadline and a criticality. Again we consider deadlines and

criticality, but this time where the task set contains tasks dependent on either one or the

other but not both. Finally, we consider the heterogeneous task set where tasks may have a

deadline, a criticality, or both, and find that we can construct an importance function for a

task within this task set such that all deadlines of the most critical tasks are met if any

schedule exists that will meet them.

6

3.1. Nearest Deadline First

The nearest deadline first scheduling algorithm ranks all tasks by the nearness of

their deadlines: a taski with a deadlinedi that is nearer than the deadlinedj of taskj is more

important. We construct importance functions to emulate this algorithm such that:

Eq 2

There are many functions that satisfy this property—one such function is given by:

Eq 3

Note that there are two discontinuities, one at the moment that the task becomes active and

one at the moment it misses its deadline. Also note that the task becomes infinitely

important just as the deadline is reached.

Liu and Layland [LIU73] have shown that, if deadlines can be met for a given task

set, they will be met using the nearest deadline first policy. However, Liu and Layland show

this for a set of periodic tasks by proving that nearest deadline first will schedule tasks to

meet deadlines if theutilization factor (the sum over all tasks of the ratios of work required

to length of period) for the task set is 1 or less. Unfortunately, the utilization factor proof in

[L IU73] only holds for periodic task (a counterexample: task 1 has arrival timea1 = 5, work

requiredw1 = 10, deadlined1 = 15, and task 2 hasa2 = 15,w2 = 10,d2 = 25; the utilization

factor is 2, yet the task set is feasible).

To show that the nearest deadline first algorithm will meet all deadlines for an

aperiodic task set if there exists any schedule which can meet all deadlines, we must show

that the completion timec for each task is always less than or equal to the task’s deadline

di dj< Ii t() Ij t()>⇒ i j, T∈()∀,

i T∈() ,∀ Ii t()
0,�if t ai<()

di t−() 1− ,�if di t ai≥>()
0,�if di t≤()

=

7

d; that is, for each task i with deadline di, ci ≤ di. We prove this by constructing an

expression for the conditions under which any schedule of n tasks will meet all deadlines.

For a schedule to meet every deadline in the task set the schedule must ensure that the

following is true for all points in time:

Eq 4

where n = |T| is the size of the task set. This is actually a set of conditions, all of which must

be true. Consider t = 0. For j = 1, the amount of work done on task 1 over all time must not

exceed its deadline. For j = 2, the amount of work done on task 2 in addition to the work

done on task 1 must not exceed the deadline d2. For j = n, where n = |T|, the amount of work

done on all n tasks must not exceed the deadline of task n.

Theorem 1

Given a task set T for which there exists some schedule that meets all deadlines,
then a schedule imposed by the nearest deadline first algorithm will also meet all
deadlines.

Proof

Assume the tasks of task set T are scheduled by a set of importance functions for
which Eq 5 is a property. Let T be ordered such that d1 ≤ d2 ≤ … ≤ dn. Let task k be
the lowest indexed task for which ck > dk, where ck is the completion time and dk is
the deadline for task k.

There are two cases. First, if there is no idle time between time 0 and time ck, then
the sum of all of the work done on all tasks over that interval is the length of the
interval and equals ck. Therefore:

Eq 5

Since the property given in Eq 5 holds for this task set, only the tasks whose
deadlines are dk or prior are serviced over the interval 0 to ck; we may rewrite Eq 7
as:

AND

1 j n≤ ≤
wi t

∞

i 1=

j

∑ max dj t− 0,()≤

wi 0

ck

i 1=

n

∑ ck=

8

Eq 6

Also, these tasks are run to completion before task k is completed, so we can replace
 with wi:

Eq 7

But the kth condition of Eq 6, for t = 0, states:

Eq 8

Since equals all of the work required by the task, this expression in Eq 10 can
be replace by the value wi:

Eq 9

By substitution of Eq 9 into Eq 11, we arrive at ck ≤ dk, a contradiction of our initial
assumption that ck > dk.

For the second case, if there is at least one gap of idle time between time 0 and time
ck, let tg be the time when the last gap ends so that on the interval tg to ck there is no
idle time. The work done over that interval must sum to the length of the interval:

Eq 10

Since Eq 5 holds, no tasks of index greater than k will be serviced during this
interval, so we can change the upper limit of the summation. Also, since each task

with index k or less will finish before time ck, we can replace the expression

with :

Eq 11

The kth condition of Eq 6, for t = tg, yields:

wi 0

ck

i 1=

k

∑ ck=

wi 0

ck

wi
i 1=

k

∑ ck=

wi 0

∞

i 1=

k

∑ max dk 0− 0,()≤ dk=

wi 0

∞

wi
i 1=

k

∑ dk≤

wi tg

ck

i 1=

n

∑ ck tg−=

wi tg

ck

wi tg

∞

wi tg

∞

i 1=

k

∑ ck tg−=

9

Eq 12

By substitution of Eq 13 into Eq 14, we arrive at:

Eq 13

Again, we find the contradiction.

Therefore, if there exists a schedule which can meet all deadlines in a task set, then
the schedule imposed by the importance functions which emulate the nearest
deadline first algorithm will also meet all deadlines. Since the importance functions
and the algorithm impose the same schedule, then the result holds for the nearest
deadline first algorithm as well.

❚

For rate monotonic, each task is instantiated exactly once during the task’s period.

This instantiation must complete before its period expires and the new instantiation is

created. We can therefore think of each instantiation of a task as a separate task, and the end

of the period as that task’s deadline. In this sense rate monotonic is similar to the nearest

deadline first algorithm where the deadline di is given by di = ai + Ti, where Ti is the period

for task i.

3.2. Deadline-Driven Tasks with Arbitrary Task Set Size

Theorem 1 assumes that the task set T has a constant cardinality n and is known a

priori. In a system where the task set T can not be known a priori, and where the cardinality

is not known to be a constant (i.e., there may be arbitrary future arrivals), we can not prove

that all deadlines will be met. We can, however, create a test which will identify as early as

possible when a task will miss its deadline.

wi tg

∞

i 1=

k

∑ max dk tg− 0,()≤

ck tg− dk tg−≤

ck dk≤

10

Let tasks be requested at arbitrary times such that the request time for task i is less

than or equal to the arrival time for task i; that is, reqi ≤ ai. Index the tasks such that, for all

tasks i, j ∈ T

Eq 14

Thus the tasks are indexed primarily by when they are requested, and secondarily be when

they arrive.

We need to define a few functions for convenience. Let D:T → N be a function that

takes a task and returns a natural number representing the task’s current order with respect

to deadline nearness. If task i has the jth nearest deadline, then D(i) = j. Let D′:N → T be

the inverse function which, given a natural number j, returns the task index whose deadline

is currently the jth nearest. Let n(t) be a function that returns the cardinality of the set T at

time t. The condition for meeting all deadlines for the task set T at time t is:

Eq 15

This condition is similar to the condition given in Eq 6. This condition states that,

at some time t and for all tasks j from 1 to the current cardinality of the task set T, the sum

of the work required by all tasks whose deadlines are priori to task j must be less than or

equal to the amount of time between the current time and task j’s deadline. We define the

term overload to be the state of the task set at time t such that Eq 17 is not true.

Theorem 2

Let T be an arbitrarily large task set containing tasks with arbitrary request times.
The nearest deadline first algorithm will meet all deadlines if any algorithm can
meet all deadlines.

Proof

Assume that a system requests work on tasks at arbitrary time such that the size of
the task set is not known a priori. Assume that task k is requested at time reqk, and

i j> reqi reqj<()⇒ reqi reqj=() ai aj<()∧()∨

AND
1 j n t()≤ ≤ wD ' i() t

∞

i 1=

D j()

∑ max dj t− 0,()≤

11

at that time an overload occurs such that some task m can not meet its deadline using
the nearest deadline first algorithm. At time reqk we can construct a task set Tk
which includes all tasks requested from time 0 to time reqk. Let these tasks be
indexed according to the nearness of their deadlines such that i < j ⇒ di < dj. By
application of Theorem 1 we know that no algorithm can meet all deadlines if the
nearest deadline first algorithm can not meet all deadlines.

❚

3.3. Meeting Critical Deadlines, with Arbitrary Task Set Size

One of the problems with a pure nearest deadline first algorithm is that the tasks are

not otherwise ranked in the presence of missed deadlines such that the most critical tasks

are given preference at the expense of the least critical. The importance abstraction can

easily express this bilevel ranking, where the nearest deadline first policy is augmented by

considering criticality measures associated with each task. Let us call this new for of

nearest deadline first the nearest critical deadline first (NCDF). From the representation of

the NCDF policy within the importance abstraction we seek the conditions under which a

given task k will meet its deadline, and from that prove that NCDF maximizes a quantity

based on the criticality of the tasks serviced.

Let each task i have two attributes: the deadline di and a criticality pi. Assume that

the criticality pi is an element of L, where L is the set of natural numbers in the range

MINCRIT to MAXCRIT. To construct a set of importance functions which will implement

the NCDF policy we define a few auxiliary functions for convenience. Define the function

Over:{T}×time → Boolean as:

Eq 16

The function Over returns one if the task set T will not meet all deadlines at time t, zero

otherwise. Note that this is a functional representation of the conditions from Eq 17. Define

Over T t,() AND
1 j T≤ ≤ wD ' i() t

∞

i 1=

D j()

∑ max dj t− 0,()>

 =

12

Crit:L → ℘(T) as a function that takes the criticality level from the set L and returns the

subset of T that share this criticality level. Finally, we define a function

InMostCrit:T×time → Boolean that takes a task and a time and returns one if the task is in

the set of tasks whose deadlines will be met because they are among the most critical at that

time, and returns zero otherwise. Now for the importance function:

Eq 17

Given a task k with an importance function defined as above, we seek the conditions

under which this task k will meet its deadline. Since we are now considering a task set with

arbitrary future arrivals, we can not predict a priori that task k will meet its deadline; rather,

we can show the conditions necessary at certain points in time for task k to meet its

deadline. At time reqk, task k is schedulable if the following is true:

Eq 18

We must check this condition not at time reqk but every time a request for service is made,

hence:

Eq 19

This expression states that, for each time t that a new task arrives between the request of

task k and task k’s deadline, the following must be true: the sum of the work remaining for

tasks whose deadlines are nearer than task k’s and whose criticality is at least as great as

task k’s must be less than or equal to the difference between task k’s deadline and the time

we are considering.

i T∈() ,∀ Ii t()
0,�if t ai<()

di t−() 1− ,�if di t ai≥>() InMostCrit i t,()∧()
0,�otherwise

=

wD ' i() reqk

∞() pD ' i() pk≥()
i 1=

D k()

∑

dk reqk−≤

AND
t reqj reqk reqj dk≤ ≤()= wD' i() t

∞() pD ' i() pk≥()
i 1=

D k()

∑

dk t−()≤

13

Biyabani et al. explore this kind of bilevel ranking in [BIYA88]. Most notably they

offer a new sematic for the term guarantee that reflects the uncertainty of the future task set

composition. They state that at request time a task is guaranteed to meet its deadline if (1)

it is among the most critical tasks in the current task set, and (2) the arrivals of subsequent

tasks do not cause this task to leave the set of the most critical tasks. The system guarantees

that the most critical tasks will meet their deadlines; however, we can not predict which

tasks will be in the set of most critical tasks.

We constructed the importance functions so that only the most critical tasks are

serviced to completion. When the system presents more tasks than can be serviced without

missing a deadline, some tasks must be pruned. The condition InMostCrit is used within

the importance functions of Eq 19 to do this pruning. We can quantify how well the goal of

meeting most critical deadlines is being met by summing the criticality values for all tasks

whose deadlines have been met by time t. Define the quantity CritCount as:

Eq 20

When the work done on a task i is greater than or equal to the work required, the criticality

value of task i is added to the criticality count CritCount. Because the NCDF policy is

greedy, we expect the CritCount for the schedule produced to be optimal among all

policies. The following lemma supports a theorem that proves that NCDF is optimal with

respect to maximizing this quantity.

Lemma 1

Any task set that is schedulable by the nearest deadline first (NDF) policy is also
schedulable by the NCDF policy

Proof

Let T be a task set that is schedulable by NDF. Thus, by Eq 17 we know that, for all
time t, the following is true:

CritCount wi ai

di wi≥() pi
i 1=

n t()

∑=

14

Eq 21

Since the only difference in NDF and NCDF is the presence of the condition
InMostCrit, as long as InMostCrit is true for some task i over all time t, then task i
will be scheduled by both algorithms at exactly the same time, for exactly the same
duration, and having exactly the same completion time. Let task k be a task
schedulable by NDF but not by NCDF. Thus, InMostCrit(k,t) must not be true for
some time t. This implies by Eq 18 that

Eq 22

But from Eq 23 we know that

Eq 23

This is a contradiction.

❚

Theorem 3

The NCDF policy maximizes the criticality count CritCount among all scheduling
policies.

Proof

Assume that there exists some scheduling policy A that, at some time t, produces a
schedule that has a higher value for CritCount than NCDF. Let TA be the set of tasks
scheduled by policy A by time t, and TNCDF be the set of tasks scheduled by NCDF.
If these tasks are equal then their CritCounts must also be equal and thus we have
a contradiction.

If the task sets are not equal, then the set of tasks chosen by policy A must contain
some tasks not chosen by NCDF. For the quantity CritCount of TA to be higher than
that for TNCDF, policy A either scheduled more tasks or instead scheduled tasks of
greater criticality. By Theorem 1 we know that the task set TA can be scheduled by
NDF. By Lemma 1 we know that any task set schedulable by NDF is also
schedulable by NCDF. Therefore, policy A could not have scheduled more tasks
than NCDF; instead, to have a higher value for CritCount, policy A must have
scheduled different, more critical tasks.

AND
1 j n t()≤ ≤ wD' i() t

∞

i 1=

D j()

∑ max dj t− 0,()≤

wD ' i() t

∞

i 1=

D k()

∑ dk t−>

wD ' i() t

∞

i 1=

D k()

∑ dk t−≤

15

Since, at every point in time, NCDF chooses the most critical task with the nearest
deadline, any more critical tasks chosen by policy A, and therefore schedulable by
both NDF and NCDF, would have also been chosen by NCDF. Thus policy A could
not have scheduled more critical tasks than NCDF, and a contradiction results.

❚

3.4. Meeting Deadlines for Heterogeneous Task Sets

Consider a task set that contains some tasks that are only deadline-driven and some

tasks that are only priority-driven. Because the priority-driven tasks do not have a time

constraint, most policies schedule the deadline-driven tasks first and use any remaining

processor cycles to service the priority-driven tasks. Policies of this type are easily

constructed within the importance abstraction by using the following importance functions:

Let Td be the subset of T that are deadline-driven tasks and Tp be the subset of T that are

priority-driven tasks. Let p be equal to MAXCRIT. The importance functions for both types

of tasks are given by:

Eq 24

Since the importance of a deadline-driven task is always higher than the importance

of any priority-driven task, Theorems 1 and 2 from the previous sections still hold with

respect to Td. A characteristic of schedules produced using this set of importance function

is that priority-driven tasks are always deferred until there are no deadline-driven tasks in

the set to be serviced. Thus, as a consequence of trying to meet the deadlines of the tasks

of subset Td the priority-driven tasks must wait until there are no active deadline-driven

tasks.

i T∈()∀ Ii t()
di t−() 1− p+ �if� i Td∈ ai t di<≤∧(),

pi �if� i Tp∈ ai t≤∧(),

0 �otherwise,

=

16

Consider a system that must meet all deadlines as well as attempt to minimize the

average response time to the priority-driven tasks. If there is no stated benefit from

servicing the deadline-driven tasks sooner rather than later, as long as the deadline is met

if it can be met, then we want a schedule that defers deadline-driven tasks to the last

possible moment. Unfortunately, deferring deadline-driven tasks without a priori

knowledge of future task arrivals may indeed cause some deadlines to be missed where not

deferring the tasks (as with NDF and NCDF) would have met the deadlines. Consequently

there must be restrictions on the task set in order to explore a policy that uses

procrastination of deadline-driven tasks to reduce the response time for priority-driven

tasks.

Clearly, the most conservative restriction is to require a fixed size task set that is

known a priori. Let each of the n tasks in T be indexed thus: tasks 1 through m are elements

of Tp and are ordered by increasing arrival times, and tasks m+1 through n are the elements

of Td and are ordered by increasing deadlines. To keep the procrastination of deadline-

driven tasks from causing some task’s deadline to be missed, the latest possible starting

time for a given task i such that it can still meet its deadline must be determined. Define si

to be this latest possible starting time:

Eq 25

The restriction of a fixed size task set known a priori can be relaxed to allow

arbitrary arrivals with conditions placed on when the request for service for each task is

made. Assume that the tasks are now indexed by their request times such that

i < j ⇒ reqi < reqj. The restriction must ensure that, if any two tasks’ deadlines are

sufficiently close together, then the tasks must be requested appropriately. Recall that D′(i)

returns the index of the task whose deadline is the ith nearest. If the difference between the

si
min

i j n≤ ≤
dj wk

k i=

j

∑−()=

17

deadlines of tasks D′(i+1) and D′(i) is less than the quantity wD′(i+1), then it is possible for

task D′(i) to be deferred in such a way as to interfere with the meeting of task D′(i+1)’s

deadline. Both tasks can be taken into account if the task whose deadline is later is known

about at the same time as or before the task whose deadline is nearer. Specifically, the

request times for tasks D′(i) and D′(i+1) must be ordered such that:

Eq 26

Rewriting Eq 27 to reflect indexing tasks by request time order, the latest starting

time for some task i is given by:

Eq 27

In either case, a set of importance functions for a procrastination policy is:

Eq 28

3.5. Meeting Critical Deadlines for Heterogeneous Task Sets with Arbitrary Sizes

We can combine the conditions from the importance functions of Eq 19 and Eq 30

to form a set of importance functions that provide guaranteed service to the most critical

deadline-driven tasks while minimizing the average response time for tasks that are

priority-driven. Assuming the restrictions on the request times for the task set as given in

Eq 28, the importance functions are:

dD ' i 1+() wD ' i 1+()− dD ' i()< reqD ' i 1+() reqD ' i()≤⇒

si
min

D i() j Td≤ ≤ dD ' j() wD ' k()
k i=

j

∑−()=

i T∈()∀ Ii t()
di t−() 1− p+ �if i Td∈ si t di<≤∧(),

pi �if i Tp∈ ai t≤∧(),

0 �otherwise,

=

18

Eq 29

In the nearest deadline first policy processor idle time occurs only after the

deadlines of all of the active tasks are met. With a heterogeneous task set, the idle time is

used to service the priority-driven tasks. When the deadline-driven tasks are deferred until

the last possible moment, the priority-driven tasks are serviced sooner, thus moving the idle

time in between the servicing of tasks from Tp and tasks from Td. The final variation on the

nearest deadline first policy presented here observes that, although there may be no benefit

from servicing deadline-driven tasks earlier than later, there is no benefit from waiting to

serve them while idle time exists. We construct a set of importance functions that

implement a policy that (1) meets the deadlines for tasks in Td, (2) prunes the least critical

deadline-driven tasks when necessary, (3) reduces the response time for tasks in Tp, and (4)

eliminates processor idle time if any task is active.

Define the function Active:{T} → Boolean to take a task set and return the value

one if the set has any tasks which have arrived but for whom service is not completed, and

return value zero otherwise. The set of importance functions is:

Eq 30

i T∈()∀ Ii t()

di t−() 1− ,�if i Td∈()
� si t di<≤()∧
� InMostCrit i t,()∧

pi �if i Tp∈ ai t≤∧(),

0 �otherwise,

=

i T∈()∀ Ii t()

di t−() 1− ,�if i Td∈()
� si t di<≤()∧
� InMostCrit i t,()∧

pi �if i Td∈ ai t≤ si Active Tp()¬∧<∧(),
pi �if i Tp∈ ai t≤∧(),
0 �otherwise,

=

19

Schedules produced using these importance functions will service deadline-driven

tasks in criticality order during what would have been idle time until either some priority-

driven task becomes active or the current time equals the latest possible start time for this

task.

Since servicing tasks from Td during the idle time will affect the latest possible start

time, the term si can be made into a continuous function si(t):

Eq 31

Replacing si with si(t) in Eq 32 will constantly update the latest possible start time. As this

time is made later, the priority-driven tasks are given longer service times before being

preempted for the deadline-driven tasks. This further reduces the average response time for

tasks in Tp.

4. Conclusions

The importance abstraction has been shown to provide a general framework for

expressing and analyzing scheduling policies. In particular, traditional scheduling

algorithms such as nearest deadline first can easily be expressed, and their resulting

schedules emulated, within this framework. Since the framework places emphasis on what

makes an individual task important to the system, complex scheduling policies are also

easily expressed. Here we have taken the NDF scheduling algorithm and proven some

widely held results; more interestingly, however, we deviate from the pure NDF and

include for consideration additional attributes. We are able to consider these variations on

the NDF algorithm by changing the importance functions without changing the framework.

si t() min
D i() j Td≤ ≤ dD ' j() wD' k() t

∞

k i=

j

∑−()=

20

5. References

[BERN71] Bernstein, A. J. and Sharp, J. C., “A Policy-Driven Scheduler for a Time-
Sharing System,”Communications of the ACM, Vol. 14, No. 2, pp. 74-78
(February 1971).

[BIYA88] Biyabani, S. R., Stankovic, J. A. and Ramamritham, K., “The Integration of
Deadline and Criticalness in Hard Real-Time Scheduling,”Proceedings of
the 1988 IEEE Real-Time Systems Symposium, Huntsville, Alabama, pp.
152-160 (December 6-8, 1988).

[JENS85] Jensen, E. D., Locke, C. D. and Tokuda, H., “A Time- Driven Scheduling
Model for Real-Time Operating Systems,”Proceedings of the Real-Time
Systems Symposium, pp. 112-122 (December 3-6, 1985).

[L IU73] Liu, C. L. and Layland, J. W., “Scheduling Algorithms for
Multiprogramming in a Hard Real-Time Environment,”Journal of the
ACM, Vol. 20, No. 1, pp. 46-61 (January 1973).

[RUSC77] Ruschitzka, M. and Fabry, R. S., “A Unifying Approach to Scheduling,”
Communications of the ACM, Vol. 20, No. 7, pp. 469-477 (July 1977).

[SHA90] Sha, L. and Goodenough, J. B., “Real-Time Scheduling Theory and Ada,”
IEEE Computer, Vol. 23, No. 4, pp. 53-62 (April 1990).

[STRA92] Strayer, W. T., “Function-Driven Scheduling: A General Framework for
Expression and Analysis of Scheduling,” Dissertation, University of
Virginia, Department of Computer Science, May 1992.

