
Dynamic Access Ordering for Symmetric
Shared-Memory Multiprocessors

Sally A. McKee

Computer Science Report No. CS-94-14
May, 1994

Abstract

Dynamic Access Ordering for Symmetric Shared-
Memory Multiprocessors

Sally A. McKee
Department of Computer Science

University of Virginia
Charlottesville, VA 22903

mckee@cs.virginia.edu

Memory bandwidth is rapidly becoming the performance bottleneck in the application of
high performance microprocessors to vector-like algorithms, including the “Grand Chal-
lenge” scientific problems. Caching is not the sole solution for these applications due to
the poor temporal and spatiallocality of their data accesses. Moreover, the nature of mem-
ories themselves has changed. Achieving greater bandwidth requires exploiting the char-
acteristics of memory components“on the other side of the cache” — they should not be
treated as uniform access-time RAM.

This paper describes the use of hardware-assistedaccess ordering in symmetric multipro-
cessor (SMP) systems. Our technique combines compile-time detection of memory access
patterns with a memory subsystem (called aStream Memory Controller, or SMC) that
decouples the order of requests generated by the computational elements from that issued
to the memory system. This decoupling permits the requests to be issued in an order that
optimizes use of the memory system. Our simulations indicate that SMP SMC systems
can consistently deliver nearly the full system bandwidth.

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

1

Dynamic Access Ordering for Symmetric Shared-
Memory Multiprocessors

1. Introduction

Processor speeds are increasing much faster than memory speeds [Kat89, Hen90]. As a

result, memory bandwidth is rapidly becoming the limiting performance factor for many

applications. A comprehensive, successful solution to the memory bandwidth problem

must exploit the richness of thefull memory hierarchy. This requires not only finding ways

to improve cache performance, but providing alternatives for computations for which

caching is insufficient.

Most memory-bandwidth studies focus on cache hit rates, but these only address one aspect

of the problem. Most memory devices manufactured in the last decade provide special

capabilities that make it possible to perform some access sequences faster than others

[IEE92, Ram92, Qui91], and exploiting these component characteristics can dramatically

improve effective bandwidth. For applications that perform vector-like memory accesses,

for instance, bandwidth can be increased by reordering the requests to take advantage of

device properties such as fast-page mode.1 Thisaccess ordering is straightforward to apply,

and requires no heroic compiler technology. Access ordering yields a dramatic

performance improvement over traditional caching of vector operands, especially for non-

unit stride vector computations.

Access ordering may be performed statically, at compile time, or dynamically, at run time.

Moyer derives compile-time access-ordering algorithms relative to a precise analytic

model of memory systems [Moy93]. This approach unrolls loops and orders non-caching

memory operations to exploit architectural and device features of the target memory

1. These devices behave as if implemented with a single on-chip cache line, orpage. A memory
access falling outside the address range of the current DRAM page forces a new page to be set up.
The overhead time required to do this makes performing such an access significantly slower than
one that hits the current page.

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

2

system. McKee et. al. propose a uniprocessor architecture for performing access ordering

at run time [McK94a]. Simulation studies indicate that dynamic access ordering is a

valuable technique for improving uniprocessor memory performance for stream

computations — the SMC, orStream Memory Controller, consistently delivers almost the

entire available bandwidth [McK93a, McK94b, McK93c].

The applicability of dynamic access ordering is not limited to uniprocessor environments.

This paper discusses the effectiveness of dynamic access ordering with respect to the

memory performance of symmetric multiprocessor (SMP) systems. Our simulation results

show that a modest number of computational elements (CEs) sharing an SMC can achieve

a similar percentage of peak bandwidth as a uniprocessor SMC system.

2. The Stream Memory Controller

Access ordering systems span a spectrum ranging from purely compile-time to purely run-

time approaches. A general taxonomy of access ordering systems is presented in

[McK93a]. Based on our analysis and simulations, we believe that the best engineering

choice is to detect streams at compile time, and to defer access ordering and issue to run

time. Here we describe in general terms how such a scheme might be incorporated into an

overall system architecture, first for a uniprocessor system and then for a symmetric shared-

memory multiprocessor system.

The approach we suggest will be described based on the simplified architectures of Figure1

and Figure2. In the uniprocessor system depicted in Figure1, memory is interfaced to the

computational element, or “CE”, through a controller labeled “MSU” for Memory

Scheduling Unit. The MSU includes logic to issue memory requests as well as logic to

determine the order of requests during streaming computations. For non-stream accesses,

the MSU provides the same functionality and performance as a traditional memory

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

3

controller. This is crucial — the access-ordering circuitry of the MSU isnot in the critical

path to memory and in no way affects scalar processing.

The MSU has full knowledge of all streams currently needed by the processor: given the

base address, vector stride, and vector length, it can generate the addresses of all elements

in a stream. The scheduling unit also knows the details of the memory architecture,

including interleaving and device characteristics. The access-ordering circuitry uses this

information to issue requests for individual stream elements in an order that attempts to

optimize memory system performance.

A separate Stream Buffer Unit (SBU) provides memory-mapped control registers that the

processor uses to specify stream parameters and high-speed buffers for stream operands.

These buffers are implemented as FIFOs that are asynchronously filled from (or drained to)

memory by the access/issue logic. Each stream of the computation is assigned to one FIFO,

and load instructions from (or store instructions to) a particular stream reference the FIFO

head via a memory-mapped register. As with the stream-specific parts of the MSU, the SBU

is not on the critical path to memory, and the speed of non-vector accesses is not adversely

mem

mem

mem

mem
M

SUCE

Figure 1 Uniprocessor SMC Organization

SBU

CACHE

FIFO

FIFO

FIFO

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

4

affected by its presence. Together, the MSU and SBU comprise a Stream Memory

Controller (SMC) system.

When adapting this general framework to an SMP system, a number of options exist

regarding placement of SMC components, depending on where we draw chip boundaries.

The most efficient organization is one in which the entire SMC system and all

computational elements reside on a single chip; this is the organization we consider here.

If a single-chip implementation is not feasible, several possibilities remain. Placing a full

SMC system on each processor chip is likely to scale poorly and be prohibitively

expensive, since extensive inter-MSU communication would be needed to coordinate

accesses to the shared memory system. In contrast, a single, centralized, external SMC

should perform well for a moderate number of processors. A third, hybrid approach places

the SBUs on-chip while the centralized access-order/issue logic remains external.

In the SMP SMC system in Figure 2, all computational elements are interfaced to memory

through a centralized MSU. The architecture is essentially that of the uniprocessor SMC,

but with more than one CE and a corresponding SBU for each. Note that since cache

CE

mem

mem

mem

mem

M
SU

Figure 2 Symmetric Multiprocessor SMC Organization

SBU

CACHE

SBU

CACHE

CE

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

5

placement does not affect the SMC, the system could consist of a single cache for all CEs

or separate caches for each. Figure 2 depicts separate caches to emphasize the fact that the

SBUs and cache reside at the same level of the memory hierarchy.

Due to both the high communication requirements for a fully distributed approach and the

limitations on the number of processors that may share a centralized resource, we do not

expect SMP SMC systems to scale to large numbers of processors. This paper focuses on

the performance of SMP systems with two to eight computational elements.

3. Simulation Environment

In order to validate the SMC concept for shared-memory multiprocessor systems, we have

simulated a wide range of SMC configurations and benchmarks, varying:

- FIFO depth,

- dynamic order/issue policy,

- number of memory banks,

- DRAM speed,

- benchmark algorithm,

- vector length, stride, and alignment with respect to memory banks, and

- number of computational elements.

The simulations discussed here use unit-stride vectors aligned to have no DRAM pages in

common. All memories modeled consist of interleaved banks of page-mode DRAMs,

where each page is 4K bytes (512 double words), and the DRAM page-miss cycle time is

four times that of a DRAM page-hit. These memory system parameters are representative

of current technology. SMC initialization requires two writes to memory-mapped registers

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

6

for each stream. Since this small overhead does not significantly affect our results, it is not

included here.

Arithmetic and control are assumed never to be a computational bottleneck, thus we model

the processor as a generator of load and store requests only. This places maximum stress on

the memory system by assuming a computation rate that out-paces the memory’s ability to

transfer data. Scalar and instruction accesses are assumed to hit in the cache for the same

reason.

We chose vector lengths of 10,000 and 80,000 elements for our experiments. Here “vector

length” refers to the amount of data processed by the entire parallel computation, not just

by one CE. The 10,000-element vectors facilitate comparisons between SMP and

uniprocessor systems, since this is one of the vector lengths used in the uniprocessor SMC

studies [McK93a, McK93c]. These vectors are long enough that SMC startup transients

become insignificant in most cases, but as the number of CEs increases, the amount of data

processed by each CE decreases, and startup effects become more evident under certain

parallelization techniques. We present 8-CE SMC simulation results for 80,000-element

vectors in order to demonstrate the performance of such systems under larger workloads.

We assume that the system is balanced so that the bandwidth between the SMC and

memory equals that between the computational elements and the SMC. The number of

accesses that the MSU can issue in one processor cycle is thus proportional to the number

CEs. The order of future accesses is computed concurrently with the initiation of the current

set of accesses. Aready access refers to an empty position in a read FIFO (that position is

ready to be filled with the appropriate data element) or a full position in a write FIFO (the

corresponding data element is ready to be written to memory).

Note that if the number of memory banks in the systemexceeds the depth of the FIFOs in

the SBU, more than one bank will take turns servicing a single FIFO position. This can have

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

7

some interesting effects on performance, depending on the SMC’s dynamic ordering policy

and the nature of the computation. For instance, under certain conditions, shallower FIFOs

may deliver a greater percentage of peak bandwidth than deeper ones. These performance

anomalies are discussed in Section 5.3. Figure3 shows an example mapping of memory

banks to FIFO positions for a stride-one vector when the length of the FIFOs is less than

the number of banks.

3.1 Benchmark Suite

The benchmark suite used is the same as in previous SMC studies [McK93a, McK93c,

McK94a, McK94b], and is described in Figure4. These benchmarks represent access

patterns found in real scientific codes, including the inner-loops of blocked algorithms. The

suite constitutes a representative subset of allpossible access patterns for computations

involving a small number of vectors. Thehydro andtridiag benchmarks share the same

access pattern, thus their results for these simulations are identical, and are presented

together.

3.2 Task Scheduling

The way in which a problem is partitioned for a multiprocessor system can have a marked

effect on performance. Three general scheduling techniques are commonly used to

parallelize workloads:prescheduling, static scheduling, anddynamic scheduling [Ost89].

Set I:

Set II:

Set III :

I II III

Figure3 Mapping of Memory Banks to Positions in a FIFO of DepthF

rotating
FIFO
“head”

banksb0, bF, b2F …
banksb1, bF+1, b2F+1 …
banksb2, bF+2, b2F+2 …

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

8

Prescheduling requires that the programmer divide the workload among the CEs before

compiling the program. There is no notion of dynamic load balancing with respect to data

size or number of CEs. This type of scheduling is particularly appropriate for applications

exhibiting functional parallelism, where each CE performs a different task. Since

performance on a single CE is relatively independent of access pattern [McK93a], we

model prescheduled computations by running the same benchmark on all CEs. The vector

is split into approximately equal-size pieces, and each CE performs the computation on a

single piece. Figure5 depicts this data distribution for a stride-one vector and the

corresponding code for the inner loops on a 2-CE system.

In static scheduling, tasks are divided among the CEs at runtime, but the partitioning is

performed in some predetermined way. Thus a process on a CE must determine which tasks

it must do, perform that work, then wait for other processes to finish their tasks. We model

static scheduling by distributing loop iterations among the CEs, as in a FORTRAN DOALL

Figure 4 Benchmark Algorithms

copy:

daxpy:

hydro:

scale:

swap:

tridiag:

vaxpy:

i∀ yi xi←

i∀ yi axi yi+←

i∀ xi q yi r zxi 10+× t zxi 11+×+()×+←

i∀ xi axi←

i∀ tmp yi← yi xi← xi tmp←

i∀ xi zi yi xi 1––()×←

i∀ yi aixi yi+←

Figure 5 Prescheduling: Data Distribution for 2-CE System

CE0 CE1

for (i = 0; i < L/2; i++) {
/* operations on x[i]*/

}

for (i = L/2; i < L; i++) {
/* operations on x[i]*/

}

vector x:

CE0’s code:

CE1’s code:

address a address (a + L× 8 bytes)

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

9

loop. If there are CEs participating in a computation whose vector stride was originally

, this parallelization scheme makes the effective stride for the computation at each

CE. Figure 6 illustrates the data distribution and code for this scheme. Note that a static

scheduling scheme could break the vector data into hunks, but the SMC simulation results

for such a scheme would be identical to those presented for prescheduling.

In dynamic scheduling, a pool of tasks is maintained. Each CE schedules its own tasks by

repeatedly removing a task from the pool and performing it; if the pool is empty, the CEs

wait for tasks to appear. Recall that within our simulation framework, arithmetic and

control are abstracted out of the computation. Since we are only simulating the inner loops,

SMP SMC performance for dynamic scheduling is similar to either prescheduling or static

scheduling, depending on how the work is apportioned into tasks. We therefore omit

separate simulation results for this scheduling technique.

3.3 Ordering Policy

The overwhelming similarity of the performance curves presented in the uniprocessor

SMC studies [McK93a, McK93c, McK94a, McK94b] indicates that neither the ordering

strategy nor the processor’s access pattern has a large effect on the MSU’s ability to

optimize bandwidth. For moderately long vectors whose stride is relatively prime to the

number of memory banks, the SMC consistently delivers nearly the full system bandwidth.

In SMP SMC systems, however, there are more factors that can potentially affect

performance, thus different scheduling techniques and vector alignments may benefit from

different ordering algorithms. For instance, the scheduling technique may:

M

S M S×

CE0

CE1
CE0

CE1
CE0

CE1

…vector x:

Figure 6 Static Scheduling: Data Distribution for a 2-CE System

address α address (α + L × 8 bytes) for (i = 0; i < L; i += 2) {
/* operations on x[i]*/

}

for (i = 1; i < L; i += 2) {
/* operations on x[i]*/

}

CE0’s code:

CE1’s code:

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

10

- change the effective vector stride on any CE (as in static scheduling), and

- affect the “working set” of DRAM pages that are needed during a portion of the

computation (with static scheduling, all CEs are likely to be using the same set of

DRAM pages, whereas with prescheduling, different CEs are likely to be working

on different sets of pages).

The SMC attempts to exploit the underlying memory architecture to issue accesses in an

order that optimizes bandwidth. For any memory system composed of interleaved banks of

DRAM components, there are at least two facets to this endeavor: taking advantage of

available concurrency among the interleaved banks, and taking advantage of device

characteristics. At each decision point (each available memory bus cycle), the SMC must

decide how best to achieve these goals. The design space of access-order/issue algorithms

can be divided into two subspaces: algorithms that first choose a bank (Bank-Centric

schemes), and algorithms that first choose a FIFO (FIFO-Centric schemes).

In order to select the “best” FIFO or bank to use next, an access ordering scheme must

either consider all possibilities in parallel, or it must impose some ordering on the resources

(FIFOs or banks) so that it can examine them sequentially. Our simulations assume that not

all possibilities can be evaluated at once. We therefore model SMC systems using several

resource-ordering variations, in order to determine their effects on performance.

For instance, the order in which the FIFOs are considered for service can affect delivered

bandwidth. We investigate two different ways in which the MSU selects the next FIFO to

service: by examining the FIFOS in sequential round-robin order by processor (all of CE0’s

FIFOs are considered before any of CE1’s), and by examining the FIFOs in an interleaved,

round-robin order (in which the MSU first considers FIFO0 for CE0, then FIFO0 for CE1,

etc., before considering FIFO1 for CE0).

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

11

3.3.1 The Bank-Centric Approach

In any Bank-Centric ordering policy, the MSU’s task can be broken into two subtasks:

selecting the banks to which accesses will be initiated, and then deciding which accesses

from which FIFOs will be issued to those banks.

Bank Selection

We consider two strategies for making the bank selection: Exhaustive Round-Robin

Selection and Token Round-Robin Selection. In the Exhaustive Round-Robin (or just

Exhaustive) selection scheme, the MSU considers each bank in turn until it has initiated as

many accesses as it can, or it has considered all banks. This strategy starts its search by

considering the next bank after the last one to which the MSU initiated an access.

With Token Round-Robin selection (Token), the MSU only considers a subset of the banks

at each decision point, attempting to issue accesses to the idle ones. We examine two

different ways of partitioning the banks into subsets. If the MSU can issue up to accesses

at a time, the first algorithm considers the next set of banks in sequence. Thus the first

set contains banks , the second contains , and so forth. In

the second variation, a set contains all banks whose indices are congruent modulo the

number of CEs: , etc.

FIFO Selection

Once the MSU has selected a set of banks, it must then decide which accesses to issue. We

examine two related schemes for choosing the FIFO to service. We refer to the first FIFO-

selection policy as simply the Bank-Centric algorithm, or BC. For a selected memory bank,

bi, the algorithm examines the FIFOs in order, beginning with last FIFO for which an access

to bi was initiated. If the MSU finds a ready access that hits bi’s current DRAM page, it

issues that access. If no ready accesses for the bank hit the current DRAM page, then an

access is issued for the FIFO requiring the most service from bank bi.

N

N

b0 … bN 1–, ,{ } bN … b2N 1–, ,{ }

b0 bN b2N …, , ,{ }

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

12

The second FIFO-selection algorithm is a more sophisticated variant of the first. Consider

the case where no ready accesses hit the current DRAM page. Instead of initiating an access

for the FIFO requiring the most service from the current bank, the MSU issues an access

only if a FIFO meets a certain threshold-of-service criterion. In this case, the portion of a

read FIFO for which the current memory bank is responsible must be at least half empty,

or the corresponding portion of a write FIFO must be at least half full. This ensures that

there will be several fast accesses over which to amortize the cost of switching the DRAM

page. We refer to this scheme as the Threshold Bank-Centric algorithm, or TBC.

3.3.2 The FIFO-Centric Approach

The second, general class of access-ordering schemes contains those that first choose a

FIFO to service, and then issue accesses from that FIFO to their corresponding banks as

appropriate. We investigate a very simple FIFO-Centric algorithm, or FC: the SMC looks

at each FIFO in turn, issuing accesses for the same FIFO stream while:

1) not all elements of the stream have been accessed, and

2) there is room in the FIFO for another read operand, or another write operand is

present in the FIFO.

If the current FIFO contains no ready accesses to an idle bank, no access is initiated.

3.3.3 Algorithms Simulated

There are many possible means of choosing which banks to access, which FIFOs to service,

and in what order to consider each of these resources in making these decisions, and these

elements can be combined in myriad ways. Here we focus on five strategies that generally

perform well and are representative examples from the design space of dynamic ordering

policies:

1) Exhaustive Round-Robin Bank-Centric selection with sequential bank sets,

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

13

2) Token Round-Robin Bank-Centric selection with sequential bank sets,

3) Token Round-Robin Bank-Centric selection with modular bank sets,

4) Token Round-Robin Threshold Bank-Centric selection with sequential bank sets,

and

5) FIFO-Centric Selection

We expect Token selection to perform about the same as exhaustive selection, but the

former should be less expensive to implement. We investigate two types of Token selection

— one using sequential bank sets and one using modular band sets — in order to determine

what effects the bank-ordering scheme has on performance. We also look at Token

selection with a threshold-of-service requirement to determine whether implementing a

threshold criterion improves performance, and if so, by how much. Finally, we compare the

performance of the Bank-Centric approaches to that of our simple, FIFO-Centric policy. FC

Access-Ordering Policies

Bank-Centric FIFO-Centric

Exhaustive Token

sequential modular

Threshold-of-Service
No

Bank Selection Bank Selection

Threshold-of-Service
Criterion Criterion

No
Threshold-of-Service

Criterion

bank sets bank sets
sequential
bank sets

sequential
bank sets

Figure 7 The Five Ordering Policies

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

14

is the most economical policy to implement, but we expect that it will not perform as well

as the more sophisticated BC policies for some system configurations and workloads. The

relationships between the elements of these ordering strategies can be represented as a tree

in which the path to each leaf designates a particular policy, as in Figure7.1

4. Performance Factors

The percentage of peak bandwidth delivered is ultimately determined by the MSU’s ability

to exploit both fast accesses (in the form of DRAM page hits) and the memory system’s

concurrency. The MSU’s effectiveness can be influenced by several factors, including:

- data distribution

- FIFO depth, and

- workload distribution.

These contribute in varying degrees to SMP SMC performance, thus we first take a closer

look at them in order to better interpret the results presented in Section 5 and the Appendix.

4.1 Data Placement

SMC performance is dramatically affected by whether the working sets of DRAM pages

needed by different CEs overlap during the course of the computation. If they do overlap,

the set of FIFOs using data from a page will be larger. With more buffer space devoted to

operands from that page, more (fast) accesses can be issued to it in succession.

Each DRAM page holds 512 double-word vector elements. Thus on an 8-way interleaved

memory, for instance, we incur an initial page miss on each bank, but the computation does

not cross page boundaries until elements of a given vector have been

accessed. On a 16-bank system, the vectors cross DRAM page boundaries at element 8192;

on a 32-bank system, at element 16,384; and so on. Figure8 illustrates the layout of a vector

1. In the uniprocessor SMC study, FC is calledA1, Token BC isT1, Token TBC isT2, and Exhaus-
tive BC isR1. [McK93a].

512 8× 4096=

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

15

with respect to DRAM pages for cases where the page size times the interleaving factor is

slightly less than the amount of data to be processed at each of CEs.

Prescheduling

On a 2-CE system with 8 banks, prescheduling divides a 10,000-element vector so that each

CE processes approximately 5000 elements, thus the streams for the two computational

elements never share pages during the computation. The data layout for each bank is

pictured in Figure9. This figure presents much the same information as in Figure8, except

that the vector chunks for each CE have been arranged vertically to emphasize the portions

of data that are being processed in parallel by the different CEs.

Figure10 shows the distribution of the same 10,000-element vector on a 4-CE system with

8 banks; the pattern of DRAM page-sharing between CE 0 and CE 1 is essentially the same

as for a 2-CE, 16-bank system (but in that case each CE would process 5000 elements). CEs

0 and 1 share DRAM pages for almost two-thirds of the computation, and CEs 3 and 4 share

for the initial one-third. At the end, CEs 2 and 3 will be on the same pages.

On a 4-CE system with 16 banks, all CEs share the same pages for about one-third of the

computation, with three CEs sharing throughout. On a 32-bank, 4-CE system the

M

CE0 CE1

DRAM page A DRAM page B

addressα address (α + vectorlen / M × 8 bytes)

DRAM page C

…

Figure 8 Example Vector Layout in Memory

CE0

CE1

Figure 9 Distribution of 10,000-Element Vector for 8 Banks and 2 CEs

addressα address (α + 5000 × 8 bytes)

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

16

computation never crosses a page boundary. This high degree of page-sharing among CEs

maximizes the MSU’s ability to issue fast accesses.

When we use prescheduling to parallelize a computation on 80,000-element vectors, no

page-sharing among CEs is possible for the modest-size SMP systems we investigate here.

For an 8-CE system, the data is divided so that each CE processes 10,000 elements. Thus

each CE crosses at least two DRAM page boundaries during its computation. This data

layout, pictured in Figure 11, causes the MSU to switch DRAM pages frequently, which

decreases effective bandwidth.

Static Scheduling

For static task scheduling, each of CEs performs every th iteration of the loop being

parallelized. Thus all CEs access the same set of DRAM pages during any phase of the

computation, resulting in fewer page misses and higher bandwidth.

CE0

CE3

CE2

CE1

Figure 10 Distribution of 10,000-Element Vector for 8 Banks and 4 CEs

address α address (α + 2500 × 8 bytes)

CE0

CE3

CE2

CE1

Figure 11 Distribution of 80,000-Element Vector for 8 Banks and 8 CEs

address α address (α + 10,000 × 8 bytes)

CE4

CE7

CE6

CE5

M M

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

17

4.2 FIFO depth

The second factor affecting SMC performance is FIFO depth. The effect of using deeper

FIFOs is similar to that for increasing DRAM page-sharing among the CEs: deeper FIFOs

provide more buffer space devoted to operands from a given page, enabling the MSU to

amortize DRAM page-miss overheads over a greater number of fast accesses. This has an

interesting effect on SMC behavior at the beginning of a computation.

Recall that under our five access-ordering policies, the MSU attempts to perform as much

work as possible for a given FIFO before moving on to another. Thus the first operand of a

stream will not be fetched until its memory bank has performed as many fast accesses as it

can for the FIFOs preceding it. As FIFO depth increases, the CEs must wait longer for all

the operands of the first iteration of the computation. If the amount of data to be processed

by each CE is small relative to the FIFO depth, there will not be sufficiently many accesses

in the computation over which to amortize these startup costs. This results in lower

performance. A detailed analysis of this phenomenon is presented elsewhere.

4.3 Workload Distribution

Workload distribution is the third factor influencing SMC performance. Data distribution

and FIFO depth can interact to create an uneven distribution of the workload with respect

to time. Depending on when a CE starts its computation and on the pattern of DRAM page-

sharing among the CEs, some CEs may finish earlier than others. For instance,

computational elements with a higher degree of DRAM page-sharing are likely to finish

before other CEs. This happens because the MSU accesses their pages more frequently,

attempting to perform as many fast accesses as it can before turning to accesses that

generate DRAM page-misses. When a CE drops out of the computation, the MSU’s pool

of potential accesses shrinks. While the last CEs are finishing up at the end of the

computation, the MSU may not be able to keep the memory banks busy. As FIFO depth

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

18

increases, the “faster” CEs tend to finish even earlier, the ending phase becomes longer, and

performance suffers even more.

5. Results

All results are given as a percentage of peak bandwidth, where peak bandwidth represents

the performance that would be attained if a memory access could be completed by each CE

on every cycle. The performance of each SMP SMC system is presented as a function of

FIFO depth and number of memory banks (or available concurrency in the memory

system). Unless otherwise stated, all vectors are aligned to DRAM page boundaries, tasks

are apportioned such that all vectors (and each CE’s vector chunks, for prescheduled

workloads) are aligned to begin in bank b0, and the MSU uses interleaved FIFO ordering.

Appendix A gives complete results for all SMC configurations simulated.

The number of memory banks is kept proportional to the number of CEs, thus the curves

for an 8-CE system represent performance on a system with four times the number of

memory banks as the corresponding curves for a 2-CE system. We keep the peak memory

system bandwidth and DRAM page-miss/page-hit cost ratio constant. An 8-bank system

therefore has four times the DRAM page-miss latency as a 2-bank system.

Our results demonstrate a common phenomenon: increasing the number of banks often

reduces relative performance. More banks results in fewer total accesses to each, therefore

page-miss costs are amortized over fewer fast accesses. Thus the performance curves for

the system with 16 banks represent a smaller percentage of a much larger bandwidth when

compared to those of a 2-bank system. To illustrate this, Figure 12 depicts SMC

performance for the copy benchmark on a 2-CE system. Figure 12(a) illustrates

performance as a percentage of peak bandwidth for each memory system, and Figure 12(b)

depicts the same data as a percentage of peak relative to the total bandwidth of a 2-bank

system.

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

19

5.1 Prescheduling

This section presents SMP SMC performance for prescheduled workloads on systems

implementing the ordering policies outlined in Section 3.3. Recall that prescheduling (as

described in Section 3.2) essentially breaks the vectors into chunks, assigning each chunk

to a different CE to be processed. The effects of changes in relative vector alignment, vector

length, or the implementation of an ordering policy (e.g. different FIFO orderings) are

fairly independent of the processor’s access pattern, thus the graphs presented here focus

on a single benchmark, daxpy. Complete results for all benchmarks can be found in

Appendix A. Like the uniprocessor SMC systems studied [McK93a], SMP SMC

performance approaches (and often exceeds) 90% of the peak system bandwidth for

sufficiently long vectors and appropriately-sized FIFOs.

Figure 13 through Figure 15 present performance curves for each of our five ordering

schemes on SMP SMC systems with 2, 4, and 8 computational elements. Figure 13

illustrates SMC performance for daxpy using 10,000-element vectors on systems with 2

CEs. Figure 14 illustrates the same information for SMC systems with 4 CEs, and Figure

15 presents performance curves for 8-CE systems and 80,000-element vectors.

Figure 12 Prescheduled Token BC copy Performance for 2 CEs

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

2 banks
4 banks
8 banks
16 banks

(a) normalized bandwidth (b) scaled bandwidth

8 16 32 64 128 256 512

fifo depth

0

200

400

600

800

%
 b

an
dw

id
th

		o

f
2-

ba
nk

 s
ys

te
m

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

20

The overwhelming similarity of the curves within each figure (combined with the fact that

these results are representative of those for all benchmarks) leads us to conclude that small

variations in the dynamic access-ordering policy have little effect on performance. For

instance, in most cases Token Bank-Centric ordering (TBC), with its threshold-of-service

criterion, performs almost identically to simple Bank-Centric ordering (BC). When their

performances differ, TBC delivers a slightly lower percentage of peak.

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

21

Figure 13 Prescheduled daxpy Performance for 2 CEs

2 banks
4 banks
8 banks
16 banks

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

(a) Exhaustive BC (b) Token BC (mod sets)

(c) Token BC (seq. sets) (d) Token TBC (seq. sets)

(e) FC

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

22

Figure 14 Prescheduled daxpy Performance for 4 CEs

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

(a) Exhaustive BC (b) Token BC (mod sets)

(c) Token BC (seq. sets) (d) Token TBC (seq. sets)

(e) FC

4 banks
8 banks
16 banks
32 banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

23

Figure 15 Prescheduled daxpy Performance for 8 CEs (Longer Vectors)

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

(a) Exhaustive BC (b) Token BC (mod sets)

(c) Token BC (seq. sets) (d) Token TBC (seq. sets)

(e) FC

8 banks
16 banks
32 banks
64 banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

24

Similarly, Exhaustive bank-selection affords little advantage over either variation of the

simpler Token bank selection. The one instance where the exhaustive strategy performs

better than the others is for eight CEs, 64 banks, and 16-deep FIFOs. This phenomenon is

due more to serendipity than to an inherent superiority of the ordering strategy. Note that

this particular system configuration constitutes the one instance exhibiting a noticeable

difference in the various schemes’ performance: the causes behind this will be examined in

Section 5.3.

Note that FIFO-Centric ordering performs slightly worse than Bank-Centric ordering for

relatively shallow FIFO depths. The simpler FC scheme concentrates on servicing a single

FIFO for as long as possible, thus it cannot take full advantage of DRAM page-sharing

among different FIFOs. Nonetheless, for FIFOs of depth 256 or 512, FC’s performance is

competitive with BC’s. Henceforth when we refer to BC access ordering we mean BC using

the Token Round Robin variation with sequential bank ordering. This particular scheme is

representative of the family of general Bank-Centric schemes: they all perform similarly.

Section 5.4 discusses the tradeoffs in implementing BC over FC, or vice versa.

Recall that for the simulations used to generate the results in Figure 12 through Figure 15,

all vector chunks were aligned to begin in b0. In order to evaluate the effects of operand

alignment on performance, we again simulated our benchmark suite on the various system

configurations, this time apportioning the tasks so that the vector data for CEi begins in

bank , where is the number of banks and is the number of CEs. Figure 16

illustrates performance for daxpy using BC ordering with both operand alignments. These

results indicate that differences in alignment have little effect on performance for this

ordering strategy. The only significant difference occurs for the 4-CE systems with 32

banks and FIFOs of depth 32. In this case the SMC delivers 78.5% of peak bandwidth when

the operands are aligned to a single bank, as opposed to 72.3% when they are staggered.

This effect is due to bank concurrency, and is discussed in Section 5.3.

bi B N⁄()× B N

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

25

Figure 16 Effects of Vector Alignment on Prescheduled BC Performance

(a) 2 CEs, aligned (b) 2 CEs, staggered

(c) 4 CEs, aligned (d) 4 CEs, staggered

(e) 8 CEs, aligned (long vectors) (f) 8 CEs, staggered (long vectors)

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

N banks
2N banks
4N banks
8N banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

26

SMC systems using FIFO-Centric ordering appear to be more sensitive to differences in

operand alignment than those using Bank-Centric ordering. Figure 17 illustrates the

performance differences caused by different vector alignments for SMC systems with 2, 4,

and 8 CEs. Performance is relatively immune to differences in vector alignment for the 2-

CE systems, but performance differences for the 4-CE and 8-CE systems are more

pronounced.

In some cases, the staggered alignment yields better bandwidth than when all vectors are

aligned to the same bank. A 4-CE system with 8-deep FIFOs, 32 banks, and the staggered

vector alignment in Figure 17(d) delivers 11.2% of peak more than the same system using

the alignment of Figure 17(c). The a staggered alignment offers a similar performance

advantage at a FIFO depth of 64. Unfortunately, staggered alignment offers no consistent

advantage. For example, the 4-CE, 32-bank system with 16-deep FIFOs yields over 15%

of peak less when vectors are staggered to begin in different banks. Even for deep FIFOs,

performance for the staggered alignment is slightly less on this system. Both vector

alignments induce essentially the same pattern of DRAM page-sharing among the CEs and

cross the same page boundaries, thus the discrepancies result from variations in bank

utilization.

The minor implementation details of the SMC’s ordering policy have relatively little effect

on performance. Figure 13 through Figure 15 demonstrate that permutations in bank order

and details such as a threshold of service have little or no effect on delivered bandwidth.

Figure 18 illustrates the effects of two different FIFO orderings on performance. If we let

the FIFO number indicate its order within a CE’s bank of FIFOs and let the subscript

indicate the corresponding CE, then the graphs on the left were generated by examining the

FIFOs in the order . Those on the right were generated by

considering them in the order .

00 01 02 … 10 …, , , , ,{ }

00 10 20 … 01 …, , , , ,{ }

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

27

Figure 17 Effects of Vector Alignment on Prescheduled FC Performance

(a) 2 CEs, aligned (b) 2 CEs, staggered

(c) 4 CEs, aligned (d) 4 CEs, staggered

(e) 8 CEs, aligned (long vectors) (f) 8 CEs, staggered (long vectors)

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

N banks
2N banks
4N banks
8N banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

28

Figure 18 Effects of FIFO Ordering on Prescheduled BC Performance

(a) 2 CEs, interleaved fifo order (b) 2 CEs, sequential fifo order

(c) 4 CEs, interleaved fifo order (d) 4 CEs, sequential fifo order

(e) 8 CEs, interleaved fifo order (f) 8 CEs, sequential fifo order

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

N banks
2N banks
4N banks
8N banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

29

For all benchmarks, differences in the performance of the two algorithm variations are in

most cases less than 1% of peak, with neither ordering producing consistently superior

results. Larger differences (up to 15% of peak for scale using 8-deep FIFOs) occasionally

appear for systems in which the number of banks matches or exceeds the FIFO depth. The

combination of shallow FIFOs and these particular FIFO orderings can cause poor bank

utilization, resulting in significant performance drops.

5.2 Static Scheduling

Whereas prescheduling parallelizes a task by breaking a vector into chunks and distributing

them among the CEs, static scheduling interleaves loop iterations across the computational

elements, thus each of the CEs participating in a computation would be responsible for

every th iteration. Figure 19 through Figure 21 illustrate performance for SMP SMC

systems using static scheduling. These systems have 2 to 8 CEs, and all CEs are used in

each computation. Since all CEs use the same DRAM pages throughout the computation,

the percentages of peak bandwidth delivered by SMP SMC systems using this scheduling

technique is almost identical to that for the analogous uniprocessor SMC systems: for long

vectors, deep FIFOs, and workloads that allow the MSU to fully exploit bank concurrency,

the SMC can consistently deliver almost the full system bandwidth [McK93a].

Figure 19 illustrates the percentages of peak bandwidth attained for the daxpy benchmark

for 2-CE systems under the five dynamic access-ordering policies on which we’ve focused.

Figure 20 and Figure 21 depict the analogous results for SMC systems with 4 and 8 CEs.

These results demonstrate that SMP SMC performance is insensitive to variations in the

Bank-Centric ordering schemes, and is almost constant for a given ratio of CEs to memory

banks. For instance, the bandwidth attained by the 8-CE systems with FIFO depths up to

32 differs from that delivered by the analogous 2-CE systems by less than 1% of peak

bandwidth. At a FIFO depth of 512, these differences are less than 4.3% of peak.

M

M

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

30

Figure 19 Static daxpy Performance for 2 CEs

2 banks
4 banks
8 banks
16 banks

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

(a) Exhaustive BC (b) Token BC (mod sets)

(c) Token BC (seq. sets) (d) Token TBC (seq. sets)

(e) FC

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

31

Figure 20 Static daxpy Performance for 4 CEs

4 banks
8 banks
16 banks
32 banks

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

(a) Exhaustive BC (b) Token BC (mod sets)

(c) Token BC (seq. sets) (d) Token TBC (seq. sets)

(e) FC

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

32

Figure 21 Static daxpy Performance for 8 CEs (Longer Vectors)

8 banks
16 banks
32 banks
64 banks

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

(a) Exhaustive BC (b) Token BC (mod sets)

(c) Token BC (seq. sets) (d) Token TBC (seq. sets)

(e) FC

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

33

In contrast, as the number of CEs increases, attainable bandwidth for the FIFO-Centric

scheme is severely limited by lack of bank concurrency. Recall that with static scheduling,

the effective stride for each FIFO becomes the natural stride multiplied by , the number

of participating CEs, since each CE operates only on every th vector element. The

effective stride thus causes each FIFO to use only of the banks used by the natural

stride. This means that when , an SMC system using FC ordering will probably not

be able to exploit the full system bandwidth. When all vectors are aligned to begin in the

same bank, performance for a computation whose natural stride is relatively prime to the

number of banks is generally limited to 50% of peak bandwidth for the 2-CE systems, 25%

for the 4-CE system, and 12.5% for the 8-CE systems. Performance for other natural strides

will be even lower.

Static scheduling may still be used profitably with FC ordering by using only a subset of

the CEs, the size of which must be chosen to be relatively prime to the number of memory

banks. The effective stride will also be relatively prime, thereby maximizing the MSU’s

ability to exploit memory system concurrency. Attainable bandwidth becomes limited by

the percentage of CEs used, rather than by the percentage of memory banks used. To see

this, consider the graphs in Figure 22. The graphs in the left column show daxpy

performance for SMP SMC systems with FC ordering when all CEs are used. Those on the

right indicate performance when one fewer CE is used. Whether or not using fewer CEs

yields a net performance gain depends on the total number of CEs and the FIFO depth.

For instance, in Figure 22(a), performance is limited to 50% of peak because the MSU is

able to use only one memory bank at a time. Performance is also limited to 50% of peak in

Figure 22(b), but for a different reason: here only one computational element is being used.

Even though the attainable performance for very deep FIFOs is the same in both cases,

performance for shallower FIFOs is not identical: at FIFO depths of 32 to 256, the

workloads of Figure 22(b) achieve a greater percentage of peak bandwidth.

M

M

1 M⁄

M N=

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

34

Figure 22 Performance Effects of Using Fewer CEs with FC Ordering

and Static Scheduling

(a) 2 CEs (b) 2 CEs, only using 1

(c) 4 CEs (d) 4 CEs, only using 3

(e) 8 CEs (long vectors) (f) 8 CEs, only using 7 (long vectors)

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

N banks
2N banks
4N banks
8N banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

35

Systems with a large number of banks are able to deliver better performance for very

shallow FIFOs because the FC ordering mechanism forces the MSU to switch FIFOs often.

The phenomenon is evident in the performance curves for systems with banks in

Figure 22, and will be discussed further in Section 5.3.

In general, for systems with adequate FIFO depth, using one fewer CEs with FC ordering

and statically scheduled workloads dramatically improves performance. For example, the

4-CE system with 4 banks in Figure 22(d) delivers 74.6% of peak bandwidth at a FIFO

depth of 32, as compared with 24.3% for the analogous system of Figure 22(c). As the

number of CEs increases, performance differences become even more dramatic. The 8-CE

system with 8 banks in Figure 22(f) delivers 83.2% of peak at a depth of 128 when only 7

CEs are used. In contrast, the same system using all 8 CEs reaches only 12.3% of peak, as

depicted in Figure 22(e).

Figure 23 illustrates comparative SMC performance for two different operand alignments.

The vectors used to generate the results on the left were all aligned to begin in the same

memory bank. For the results on the right, the th vector of the computation was aligned to

begin in bank bi. Again, performance is fairly constant for a given ratio of CEs to banks,

with all systems delivering almost the full system bandwidth for deep FIFOs. The staggered

vector alignment slightly inhibits bank concurrency in systems with relatively shallow

FIFOs, hence we see dips in some of the performance curves. For the 2-CE systems,

performance differences due to vector alignment are less than 7.5% of peak bandwidth.

When FIFOs are only 8-deep, the difference in operand alignment causes a 12.6% of peak

drop in performance for the system with 4 CEs and 32 banks. For all other FIFO depths and

numbers of banks, the bandwidth delivered for both alignments differs by less than 6.4%

of peak. Performance differences are similar for systems with 8 CEs. The differences

diminish as FIFO depth increases: at a depth of 512, performances differ by less than 1%

of peak for the systems with 2 and 4 CEs, and by less than 3% of peak for the 8-CE systems.

8N

i

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

36

Figure 23 Effects of Vector Alignment on Static Token BC Performance

(a) 2 CEs, aligned (b) 2 CEs, staggered

(c) 4 CEs, aligned (d) 4 CEs, staggered

(e) 8 CEs, aligned (long vectors) (f) 8 CEs, staggered (long vectors)

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

N banks
2N banks
4N banks
8N banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

37

Figure 24 Effects of FIFO Ordering on Static BC Performance

(a) 2 CEs, interleaved fifo order (b) 2 CEs, sequential fifo order

(c) 4 CEs, interleaved fifo order (d) 4 CEs, sequential fifo order

(e) 8 CEs, interleaved fifo order (f) 8 CEs, sequential fifo order

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

N banks
2N banks
4N banks
8N banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

38

Our results indicate that statically scheduled workloads are even less sensitive to changes

in operand alignment than prescheduled workloads. Figure 24 depicts the effect of different

FIFO orderings on Token BC performance. The graphs on the left illustrate performance

when the MSU uses interleaved FIFO ordering; those on the right illustrate performance

for sequential ordering. Systems that differ only in the MSU’s FIFO ordering deliver

essentially identical performances: for all benchmarks, differences are less than 1% of peak

bandwidth for FIFO depths of 16 or more, and less than 2% of peak for 8-deep FIFOs.

5.3 Performance Trends

The performance factors outlined in Section 4 all interact to shape the performance curves

presented here. Most curves show bandwidth growing steadily as FIFO depth increases, but

several anomalies appear repeatedly throughout many of the graphs. These phenomena can

be attributed to startup effects, consequences of the size of the workload on each CE, and

general effects due to memory bank utilization and concurrency.

Tail-Off

As the number of computational elements increases, the amount of data processed by each

element decreases. This contributes to the slight tail-off of the performance curves in

Figure 25 as FIFO depth increases. The effect is most pronounced for prescheduled

workloads and 8-CE systems using 10,000-element vectors, as in Figure 25(b),

Figure 25(f), and Figure 26. Like that encountered for short vectors (100 elements) on

uniprocessor SMC systems [McK93a], this phenomenon illustrates the net effect of

competing performance factors associated with FIFO depth:

1) The MSU needs sufficiently deep FIFOs to be able to keep the banks busy most

of the time and to amortize page-miss costs over a number of page-hits.

2) Deeper FIFOs cause longer startup delays for the CEs, and performance declines

when there are not enough accesses over which to amortize startup costs.

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

39

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

Figure 25 Performance Curve Tail-Off for daxpy (10,000-Element Vectors)

(a) Prescheduled Token BC, 4 CEs (b) Prescheduled Token BC, 8 CEs

(c) Static Token BC, 4CEs (d) Static Token BC, 8CEs

(e) Prescheduled FC, 4CEs (f) Prescheduled FC, 8 CEs

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

N banks
2N banks
4N banks
8N banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

40

Another factor comes into play for prescheduled workloads under BC ordering: shallow

FIFOs force the MSU to switch FIFOs fairly often, causing it to service the FIFOs of all

CEs relatively evenly. This prevents any one CE from getting too far ahead of the others,

resulting in a more even workload for the MSU throughout the course of the computation,

This, in turn, can yield better bank utilization.Thus even though shallow FIFOs usually

hinder the MSU’s ability to optimize bandwidth, they provide an occasional benefit.

Unfortunately, the circumstances under which they perform well are hard to predict.

Just as it did in the uniprocessor case, the tail-off effect disappears under larger workloads.

This is evident in Figure 27: at a FIFO depth of 512, we have not yet hit the point of

diminishing returns.

Figure 26 Prescheduled Token BC Performance for 8 CEs

(10,000-Element Vectors)

(a) hydro/tridiag (b) scale

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 banks
16 banks
32 banks
64 banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

41

Higher Performance for More Banks

Recall that relative bandwidth tends to decrease as the number of memory banks increases.

In spite of this, for prescheduled workloads on SMC systems with four and eight CEs and

BC access-ordering, systems with a greater number of banks sometimes perform

competitively with those with fewer banks. This is due largely to the data partitioning.

For instance, for prescheduled computations on vectors of 10,000 elements, the data is

partitioned such that for systems with 32 or 64 banks, all CEs are operating on the same set

of DRAM pages. Since the systems with more banks incur fewer page-misses, their raw

performance is occasionally as good as or better than that for systems with fewer banks.

The scale benchmark is a good example. This benchmark accesses a single vector, thus on

systems with 32 or more banks, the computation never crosses a DRAM page boundary.

The only page misses are the initial ones at each bank. Given the simplicity of the access

pattern and the fact that all CEs are working on the same page, the MSU is able to keep

each bank busy most of the time. Thus a system with CEs and or banks (and the

(a) prescheduled

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

(b) static

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 banks
16 banks
32 banks
64 banks

Figure 27 daxpy Token BC Performance for 8 CEs (80,000-Element Vectors)

N 4N 8N

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

42

extra concurrency they afford) often performs better than one with fewer banks. Figure 28

illustrates this effect for 2-CE and 4-CE systems.

An interesting exception to this occurs when FIFO depth is less than the number of banks.

In Figure 26(b), the prescheduled scale benchmark on an 8-CE, 64-bank system with 8-

deep FIFOs is limited to 46.5% of peak: the shallow FIFO depth prevents the MSU from

keeping the banks busy. In contrast, each bank in the 32-bank system spends much less time

sitting idle, hence the SMC is able to exploit 90.2% of the available system bandwidth.

Increasing the FIFO depth increases the available work for each bank at any given time. At

depths of 64 or more, systems with 32 and 64 banks perform virtually identically.

Performance Curve Humps

Shallow FIFO depths can sometimes increase bank concurrency. For our prescheduled

benchmarks, this generally occurs for FIFOs of 16 to 32 elements, and results from the way

BC ordering with shallow FIFOs promotes good bank utilization and a more even rate of

progress among the CEs. This causes the “humps” in the performance curves of the

prescheduled 32 and 64-bank systems in Figure 29. The FIFO depths at which this

serendipity occurs depend on the number of streams in the computation, the degree of page-

(a) 2 CEs

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

(b) 4 CEs

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

N banks
2N banks
4N banks
8N banks

Figure 28 Prescheduled Token BC Performance for scale

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

43

sharing among the CEs, the number of CEs, the DRAM cycle time, and the number of

memory banks.

This effect is less noticeable under a larger workload for the 8-CE systems. The 80,000-

element vectors are divided so that each CE processes roughly 10,000 elements. The data

layout is such that no CEs share any DRAM pages during any portion of the computation

(as in Figure 11). Startup and page-sharing effects are minimized. The MSU must switch

between pages more often, and the size of the data set causes the computation to cross more

page boundaries, thus the curves in Figure 29(c) are smoother than the corresponding

curves for the shorter vectors in Figure 29(f), but performance for shallow FIFOs is much

lower.

Another interesting peak occurs in Figure 29(e), which depicts the performance of an 8-CE,

64-bank system using FC ordering for a statically scheduled workload. In general, this

phenomenon occurs for systems with a large number of banks and shallow FIFOs. In our

simulations, whenever the MSU switches FIFOs, accesses are initiated for the new FIFO

while others are still being completed for the old FIFO. If different FIFOs use different

subsets of the memory banks, this may yield better bank utilization. Note that in such cases,

good performance depends on the FIFO ordering scheme used by the dynamic access-

ordering policy: when all vectors are aligned to begin in the same bank, interleaving the

FIFOs of all CEs will allow more bank concurrency than servicing the FIFOs of a single

CE in sequence.

With the particular data layout of Figure 29(e), the th elements of each vector reside in

different banks, thus all FIFOs do not require service from the same set of banks at the same

time. The shallow FIFO depth causes the MSU to change FIFOs often. Together, the data

alignment and the frequent switching allow the MSU to keep more than of the banks

busy at a time. Thus in this case the MSU is able to deliver more than 12.5% of peak

bandwidth, in spite of the limitations of FC ordering for non-unit stride vectors.

i

1 N⁄

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

44

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

Figure 29 Anomalies in Performance Curves for daxpy

(a) Prescheduled Token BC, 4 CEs (b) Prescheduled FC, 4 CEs

(c) Prescheduled Token BC, 8 CEs (d) Prescheduled FC, 8 CEs

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

N banks
2N banks
4N banks
8N banks

(80,000-Element Vectors)

(e) Static FC, 8 CEs

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

(80,000-Element Vectors, Staggered Data)

(10,000-Element Vectors)

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

(f) Prescheduled Token BC, 8 CEs
(10,000-Element Vectors)

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

45

For SMP SMC systems using prescheduling and FC ordering, these anomalies tend to

occur whenever there is a high degree of DRAM page-sharing among the CEs and the FIFO

depth equals the number of banks. Systems configured so that FIFO depth matches the

interleaving factor allow all banks to work on the same FIFO at once, thereby promoting

bank concurrency. The FIFOs are shallow enough that the MSU must switch FIFOs often,

thus the CEs proceed at a fairly even pace. More than one CE is using the same set of

DRAM pages, so many page-hits are possible. Figure 30 illustrates this effect for scale and

swap with vectors of length 10,000 on 8-CE systems.

5.4 Choosing an Access-Ordering Scheme

With shallow FIFOs, performance for our FIFO-Centric ordering policy is consistently

lower than that for Bank-Centric ordering. This emphasizes the importance of having

sufficiently deep FIFOs for systems with FC ordering.

Of the two families of ordering schemes examined here, FC is easier to implement in

hardware, since it requires less information in order to select the MSU’s next access. With

(a) scale (b) swap

Figure 30 Prescheduled FC Performance for 8 CEs (10,000-Element Vectors)

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 banks
16 banks
32 banks
64 banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

46

deep FIFOs, FC systems end up amortizing DRAM page-miss overheads over a large

number of fast accesses, even though the algorithm doesn’t explicitly attempt to maximize

page hits. For vector strides that are relatively prime to the number of banks, FC is able to

successfully exploit the memory system’s available concurrency. Under these

circumstances, FC’s performance is competitive with BC’s.

Nonetheless, FC ordering is much more sensitive to changes in vector length and

alignment, and FC consistently delivers a lower percentage of peak bandwidth for shallow

to medium-depth FIFOs. Moreover, when the vector stride is not relatively prime to the

number of memory banks, FC is severely limited in its ability to exploit bank concurrency.

Bank-Centric ordering, on the on the other hand, provides more consistent, robust

performance at the cost of slightly more complicated reordering circuitry. The variations to

BC ordering that we’ve investigated here have little impact on performance. No consistent

trends are discernible, thus the simplest BC scheme should perform adequately.

Our results indicate that the order in which the MSU considers the FIFOs for service can

interact with other performance factors to impact results. The optimal FIFO ordering

algorithm would give priority to any FIFOs with accesses to current DRAM pages, and then

to the FIFOs that, if not serviced, will cause a CE to stall soonest (either waiting for read

data to arrive or for a position in a write FIFO to become available). The two schemes

implemented here are simple (and easily implemented) heuristics, neither of which has

proved consistently superior to the other.

On SMP SMC systems, Bank-Centric access ordering is the clear implementation choice,

for it allows the MSU to exploit locality of DRAM page references across FIFOs for all

CEs. If hardware requirements and cost preclude the use of BC ordering, FC ordering may

perform adequately, although more care must be taken in parallelizing tasks.

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

47

6. Recommendations

Our results indicate that appropriately-sized FIFOs and sufficiently many memory banks

are required to amortize DRAM page-miss costs and to sustain concurrency in the memory

system. However, if these conditions are met, an SMC system can deliver nearly all the

bandwidth the memory has to offer.

In general, static scheduling (via interleaving iterations across CEs) yields better memory

performance than prescheduling. The advantages to this approach include:

- even workload distribution (the CEs proceed at a more even pace than they

generally do using prescheduling),

- DRAM page sharing benefits (in general, all CEs are using the same set of DRAM

pages during all phases of the computation).

The exception to this occurs when FC ordering is used for a computation whose effective

stride is not relatively prime to the number of memory banks. If all CEs in the system are

used for the computation, the attainable bandwidth is limited by the percentage of memory

banks used by each FIFO. If instead only a subset of the CEs is used, and if this subset is

chosen to be relatively prime to the number of banks, then attainable bandwidth will be

limited by the percentage of CEs used.

All our results underscore the importance of using an appropriate FIFO depth for a

particular computation: FIFO depth should be settable at runtime. The optimal number of

CEs to use depends on the vector length and alignment, parallelization technique, dynamic

ordering policy, and parameters of the memory system. For instance, for SMC systems with

BC ordering, prescheduled tasks should distributed data so as to promote DRAM page

sharing among the CEs whenever possible. In all cases, each CE needs to process enough

data to effectively amortize communication costs and SMC startup effects. Equations to

determine optimal FIFO depth are presented elsewhere.

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

48

7. Related Work

There is a large body of research characterizing and evaluating the memory performance

of scientific codes. Most of this research focuses on:

a) hiding or tolerating memory latency,

b) decreasing the number of cache misses incurred, or

c) avoiding bank conflicts in an interleaved memory system.

Prefetching and nonblocking caches can be used to overlap memory accesses with

computation, or to overlap the latencies of more than one access [Bae91, Cal91, Gup91,

Kla91, Mow92, Soh91]. These techniques can improve processor performance, but

techniques that simply mask latency do nothing to increase effective bandwidth. Such

schemes are still useful, but they will be most effective when combined with

complementary technology to exploit memory component capabilities.

Modifying the computation to increase the reuse of cached data can improve performance

dramatically [Gal87, Gan87, Car89, Por89, Wol90, Lam91, Tem93]. These techniques will

also deliver better performance when integrated with access ordering.

Several schemes for avoiding bank contention, either by address transformations, skewing,

or prime memory systems, have been published [Bud71, Gao93, Har87, Har89, Rau91]; we

do not discuss them, other than to note that these, too, are complementary to the access

ordering.

8. Conclusions

As processors become faster, memory bandwidth is rapidly becoming the performance

bottleneck in the application of high performance microprocessors to vector-like

algorithms. These computations lack the temporal and spatial locality required for caching

alone to bridge the performance gap.

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

49

Achieving greater bandwidth requires exploiting the characteristics of the entire memory

hierarchy: it cannot be treated as though it were uniform access-time RAM. This

knowledge should guide processor designs and operating system implementations.

Mechanisms to take advantage of memory component capabilities should be readily

available to the user.

Dynamic access ordering can optimize accesses to exploit the underlying memory

architecture. By combining compile-time detection of streams with execution-time

selection of the access order and issue, we achieve near-optimal bandwidth for vector-like

accesses relatively inexpensively. This complements more traditional cache-based

schemes, so that overall effective memory performance need not be a bottleneck.

Moreover, dynamic access ordering requires no heroic compiler technology, and is

complementary to other common code optimizations.

Here we have reported the basic design of a Stream Memory Controller (SMC) for modest-

size symmetric multiprocessor systems, and have analyzed its performance for a wide

variety of design parameter values. Our results indicate that for long vectors and deep

FIFOs, an SMP SMC system can deliver nearly the full memory system bandwidth.

Acknowledgments

This work was supported in part by a grant from Intel Supercomputer Division and by NSF

grant MIP-9307626.

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

50

Appendix A

Unless otherwise noted, FIFO order is interleaved, Token bank-selection schemes use

sequential sets, and vectors are aligned to begin in bank b0. All vectors are 10,000 double-

word elements, unless otherwise noted; “longer” vectors are 80,000 elements.

Figure 31 through Figure 66 depict performance for our benchmarks when prescheduling

is used to parallelize the tasks. Figure 31 through Figure 34 illustrate the performance of

Exhaustive Bank-Centric ordering. Figure 35 through Figure 42 depict results for Token

Bank-Centric ordering for both modular and sequential bank sets. Figure 43 through

Figure 46 illustrate results for Token Threshold Bank-Centric ordering. Figure 47 through

Figure 50 indicate Token BC performance for a different operand alignment. “Staggered

alignment” here refers to apportioning the tasks so that the vector data for CEi begins in

bank , where is the number of banks and is the number of CEs. Figure 51

through Figure 54 present the analogous information for Token TBC ordering. Figure 55

through Figure 58 illustrate the combined effects of staggered operand alignment and

sequential FIFO ordering on Token BC performance. Prescheduled FC performance for

both operand alignments is illustrated in Figure 59 through Figure 66.

Figure 67 through Figure 100 illustrate SMP SMC performance for our access-ordering

policies when static scheduling is used to generate the parallel tasks. For these experiments,

“staggered alignment” means that the th vector in the computation begins in bank .

Figure 67 through Figure 70 show results for Exhaustive Bank-Centric access ordering.

Figure 71 through Figure 74 depict the performance of Token Bank-Centric access

ordering. Figure 75 through Figure 78 illustrate the analogous data for computations using

a staggered vector alignment. Figure 79 through Figure 82 give results for the Token BC

algorithm with sequential FIFO ordering when used on computations with staggered

vectors. Figure 83 through Figure 90 present data for Token Threshold Bank-Centric

ordering for both aligned and staggered vectors. Figure 91 through Figure 96 give results

bi B N⁄()× B N

i bi

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

51

for FIFO-Centric ordering when all CEs are used, and Figure 97 through Figure 100 show

performance for FC ordering when one fewer CE is employed on computations with

aligned vector data.

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

52

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

Figure 31 Prescheduled Exhaustive BC Performance for 2 CEs

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

2 banks
4 banks
8 banks
16 banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

53

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

Figure 32 Prescheduled Exhaustive BC Performance for 4 CEs

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

4 banks
8 banks
16 banks
32 banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

54

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

Figure 33 Prescheduled Exhaustive BC Performance for 8 CEs

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 banks
16 banks
32 banks
64 banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

55

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

Figure 34 Prescheduled Exhaustive BC Performance for 8 CEs (Longer Vectors)

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 banks
16 banks
32 banks
64 banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

56

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

Figure 35 Prescheduled Token BC Performance for 2 CEs (Modular Bank Sets)

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

2 banks
4 banks
8 banks
16 banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

57

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

Figure 36 Prescheduled Token BC Performance for 4 CEs (Modular Bank Sets)

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

4 banks
8 banks
16 banks
32 banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

58

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

Figure 37 Prescheduled Token BC Performance for 8 CEs (Modular Bank Sets)

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 banks
16 banks
32 banks
64 banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

59

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

Figure 38 Prescheduled Token BC Performance for 8 CEs

(Longer Vectors, Modular Bank Sets)

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 banks
16 banks
32 banks
64 banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

60

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

Figure 39 Prescheduled Token BC Performance for 2 CEs

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

2 banks
4 banks
8 banks
16 banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

61

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

Figure 40 Prescheduled Token BC Performance for 4 CEs

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

4 banks
8 banks
16 banks
32 banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

62

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

Figure 41 Prescheduled Token BC Performance for 8 CEs

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 banks
16 banks
32 banks
64 banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

63

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

Figure 42 Prescheduled Token BC Performance for 8 CEs (Longer Vectors)

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 banks
16 banks
32 banks
64 banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

64

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

Figure 43 Prescheduled Token TBC Performance for 2 CEs

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

2 banks
4 banks
8 banks
16 banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

65

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

Figure 44 Prescheduled Token TBC Performance for 4 CEs

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

4 banks
8 banks
16 banks
32 banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

66

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

Figure 45 Prescheduled Token TBC Performance for 8 CEs

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 banks
16 banks
32 banks
64 banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

67

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

Figure 46 Prescheduled Token TBC Performance for 8 CEs (Longer Vectors)

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 banks
16 banks
32 banks
64 banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

68

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

Figure 47 Prescheduled Token BC Performance for 2 CEs (Staggered Alignment)

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

2 banks
4 banks
8 banks
16 banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

69

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

Figure 48 Prescheduled Token BC Performance for 4 CEs (Staggered Alignment)

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

4 banks
8 banks
16 banks
32 banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

70

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

Figure 49 Prescheduled Token BC Performance for 8 CEs (Staggered Alignment)

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 banks
16 banks
32 banks
64 banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

71

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

Figure 50 Prescheduled Token BC Performance for 8 CEs

(Longer Vectors, Staggered)

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 banks
16 banks
32 banks
64 banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

72

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

Figure 51 Prescheduled Token TBC Performance for 2 CEs

(Staggered Alignment)

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

2 banks
4 banks
8 banks
16 banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

73

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

Figure 52 Prescheduled Token TBC Performance for 4 CEs

(Staggered Alignment)

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

4 banks
8 banks
16 banks
32 banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

74

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

Figure 53 Prescheduled Token TBC Performance for 8 CEs

(Staggered Alignment)

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 banks
16 banks
32 banks
64 banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

75

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

Figure 54 Prescheduled Token TBC Performance for 8 CEs

(Longer Vectors, Staggered Alignment)

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 banks
16 banks
32 banks
64 banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

76

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

Figure 55 Prescheduled Token BC Performance for 2 CEs

(Sequential FIFO Ordering, Staggered Alignment)

(a) copy (b) daxpy

(c) hydro/tridiag (d) swap

(e) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

2 banks
4 banks
8 banks
16 banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

77

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

Figure 56 Prescheduled Token BC Performance for 4 CEs

(Sequential FIFO Ordering, Staggered Alignment)

(a) copy (b) daxpy

(c) hydro/tridiag (d) swap

(e) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

4 banks
8 banks
16 banks
32 banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

78

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

Figure 57 Prescheduled Token BC Performance for 8 CEs

(Sequential FIFO Ordering, Staggered Alignment)

(a) copy (b) daxpy

(c) hydro/tridiag (d) swap

(e) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 banks
16 banks
32 banks
64 banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

79

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

Figure 58 Prescheduled Token BC Performance for 8 CEs

(Sequential FIFO Ordering, Longer Vectors, Staggered Alignment)

(a) copy (b) daxpy

(c) hydro/tridiag (d) swap

(e) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 banks
16 banks
32 banks
64 banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

80

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

Figure 59 Prescheduled FC Performance for 2 CEs

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

2 banks
4 banks
8 banks
16 banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

81

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

Figure 60 Prescheduled FC Performance for 4 CEs

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

4 banks
8 banks
16 banks
32 banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

82

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

Figure 61 Prescheduled FC Performance for 8 CEs

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 banks
16 banks
32 banks
64 banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

83

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

Figure 62 Prescheduled FC Performance for 8 CEs (Longer Vectors)

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 banks
16 banks
32 banks
64 banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

84

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

Figure 63 Prescheduled FC Performance for 2 CEs (Staggered Alignment)

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

2 banks
4 banks
8 banks
16 banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

85

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

Figure 64 Prescheduled FC Performance for 4 CEs (Staggered Alignment)

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

4 banks
8 banks
16 banks
32 banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

86

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

Figure 65 Prescheduled FC Performance for 8 CEs (Staggered Alignment)

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 banks
16 banks
32 banks
64 banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

87

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

Figure 66 Prescheduled FC Performance for 8 CEs

(Longer Vectors, Staggered Alignment)

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 banks
16 banks
32 banks
64 banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

88

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

Figure 67 Static Exhaustive BC Performance for 2 CEs

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

2 banks
4 banks
8 banks
16 banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

89

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

Figure 68 Static Exhaustive BC Performance for 4 CEs

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

4 banks
8 banks
16 banks
32 banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

90

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

Figure 69 Static Exhaustive BC Performance for 8 CEs

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 banks
16 banks
32 banks
64 banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

91

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

Figure 70 Static Exhaustive BC Performance for 8 CEs (Longer Vectors)

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 banks
16 banks
32 banks
64 banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

92

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

Figure 71 Static Token BC Performance for 2 CEs

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

2 banks
4 banks
8 banks
16 banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

93

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

Figure 72 Static Token BC Performance for 4 CEs

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

4 banks
8 banks
16 banks
32 banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

94

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

Figure 73 Static Token BC Performance for 8 CEs

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 banks
16 banks
32 banks
64 banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

95

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

Figure 74 Static Token BC Performance for 8 CEs (Longer Vectors)

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 banks
16 banks
32 banks
64 banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

96

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

Figure 75 Static Token BC Performance for 2 CEs (Staggered Alignment)

(a) copy (b) daxpy

(c) hydro/tridiag (d) swap

(e) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

2 banks
4 banks
8 banks
16 banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

97

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

Figure 76 Static Token BC Performance for 4 CEs (Staggered Alignment)

(a) copy (b) daxpy

(c) hydro/tridiag (d) swap

(e) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

4 banks
8 banks
16 banks
32 banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

98

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

Figure 77 Static Token BC Performance for 8 CEs (Staggered Alignment)

(a) copy (b) daxpy

(c) hydro/tridiag (d) swap

(e) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 banks
16 banks
32 banks
64 banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

99

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

Figure 78 Static Token BC Performance for 8 CEs

(Longer Vectors, Staggered Alignment)

(a) copy (b) daxpy

(c) hydro/tridiag (d) swap

(e) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 banks
16 banks
32 banks
64 banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

100

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

Figure 79 Static Token BC Performance for 2 CEs

(Sequential FIFO Ordering, Staggered Alignment)

(a) copy (b) daxpy

(c) hydro/tridiag (d) swap

(e) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

2 banks
4 banks
8 banks
16 banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

101

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

Figure 80 Static Token BC Performance for 4 CEs

(Sequential FIFO Ordering, Staggered Alignment)

(a) copy (b) daxpy

(c) hydro/tridiag (d) swap

(e) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

4 banks
8 banks
16 banks
32 banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

102

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

Figure 81 Static Token BC Performance for 8 CEs

(Sequential FIFO Ordering, Staggered Alignment)

(a) copy (b) daxpy

(c) hydro/tridiag (d) swap

(e) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 banks
16 banks
32 banks
64 banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

103

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

Figure 82 Static Token BC Performance for 8 CEs

(Sequential FIFO Ordering, Longer Vectors, Staggered Alignment)

(a) copy (b) daxpy

(c) hydro/tridiag (d) swap

(e) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 banks
16 banks
32 banks
64 banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

104

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

Figure 83 Static Token TBC Performance for 2 CEs

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

4 banks
8 banks
16 banks
32 banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

105

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

Figure 84 Static Token TBC Performance for 4 CEs

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

4 banks
8 banks
16 banks
32 banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

106

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

Figure 85 Static Token TBC Performance for 8 CEs

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 banks
16 banks
32 banks
64 banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

107

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

Figure 86 Static Token TBC Performance for 8 CEs (Longer Vectors)

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 banks
16 banks
32 banks
64 banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

108

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

Figure 87 Static Token TBC Performance for 2 CEs (Staggered Alignment)

(a) copy (b) daxpy

(c) hydro/tridiag (d) swap

(e) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

2 banks
4 banks
8 banks
16 banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

109

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

Figure 88 Static Token TBC Performance for 4 CEs (Staggered Alignment)

(a) copy (b) daxpy

(c) hydro/tridiag (d) swap

(e) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

4 banks
8 banks
16 banks
32 banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

110

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

Figure 89 Static Token TBC Performance for 8 CEs (Staggered Alignment)

(a) copy (b) daxpy

(c) hydro/tridiag (d) swap

(e) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 banks
16 banks
32 banks
64 banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

111

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

Figure 90 Static Token TBC Performance for 8 CEs

(Longer Vectors, Staggered Alignment)

(a) copy (b) daxpy

(c) hydro/tridiag (d) swap

(e) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 banks
16 banks
32 banks
64 banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

112

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

Figure 91 Static FC Performance for 2 CEs

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

2 banks
4 banks
8 banks
16 banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

113

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

Figure 92 Static FC Performance for 4 CEs

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

4 banks
8 banks
16 banks
32 banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

114

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

Figure 93 Static FC Performance for 8 CEs

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 banks
16 banks
32 banks
64 banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

115

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

Figure 94 Static FC Performance for 2 CEs (Staggered Alignment)

(a) copy (b) daxpy

(c) hydro/tridiag (d) swap

(e) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

2 banks
4 banks
8 banks
16 banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

116

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

Figure 95 Static FC Performance for 4 CEs (Staggered Alignment)

(a) copy (b) daxpy

(c) hydro/tridiag (d) swap

(e) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

4 banks
8 banks
16 banks
32 banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

117

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

Figure 96 Static FC Performance for 8 CEs (Staggered Alignment)

(a) copy (b) daxpy

(c) hydro/tridiag (d) swap

(e) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 banks
16 banks
32 banks
64 banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

118

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

Figure 97 Static FC Performance for 2-CE System Using 1 CE

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

2 banks
4 banks
8 banks
16 banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

119

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

Figure 98 Static FC Performance for 4-CE System Using 3 CEs

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

4 banks
8 banks
16 banks
32 banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

120

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

Figure 99 Static FC Performance for 8-CE System Using 7 CEs

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 banks
16 banks
32 banks
64 banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

121

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

Figure 100 Static FC Performance for 8-CE System Using 7 CEs (Longer Vec-

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 banks
16 banks
32 banks
64 banks

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

122

References

[Abu79] Abu-Sufah, W., Kuck, D.J., and Lawrie, D.H., “Automatic Program
Transformations for Virtual Memory Computers”, Proc. 1979 National
Computer Conference, June, 1979.

[Abu86] Abu-Sufah, W., and Malony, A., “Vector Processing on the Alliant FX/8
Multiprocessors”, Proc. 1986 International Conference on Parallel
Processing, August, 1986.

[Bae91] Baer, J.L., and Chen, T.F., “An Effective On-Chip Preloading Scheme to
Reduce Data Access Penalty”, Proc. Supercomputing ‘91, November, 1991.

[Bud71] Budnik, P., and Kuck, D., “The Organization and Use of Parallel
Memories”, IEEE Trans. Comput., 20, 12, 1971.

[Cal91] Callahan, D., Kennedy, K., and Porterfield, A., “Software Prefetching”,
Proc. Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, April, 1991.

[Car89] Carr, S., Kennedy, K., “Blocking Linear Algebra Codes for Memory
Hierarchies”, Proc. Fourth SIAM Conference on Parallel Processing for
Scientific Computing, 1989.

[Con90] “CONVEX Architecture Reference (C200 Series)”, CONVEX Computer
Corporation Document No. 081-009220-000, 5th ed., September 1990.

[Dav91] Davidson, J.W., and Benitez, M.E., “Code Generation for Streaming: An
Access/Execute Mechanism”, Proc. Fourth International Conference on
Architectural Support for Programming Languages and Operating Systems,
April, 1991.

[Dig92] Alpha Architecture Handbook, Digital Equipment Corporation, 1992.

[Don79] Dongarra, J.J., et. al., “Linpack User’s Guide“, SIAM, Philadelphia, 1979.

[Don90] Dongarra, J.J., DuCroz, J., Duff, I., and Hammerling, S., “A set of Level 3
Basic Linear Algebra Subprograms”, ACM Trans. Math. Softw., 16:1-17,
1990.

[Far92] Farmwald, M., and Morring, D., “A Fast Path to One Memory”, in
[IEEE92], pp. 50-51, October 1992.

[Gal87] Gallivan, K., Jalby, W., Meier, U., and Sameh, A., “The Impact of
Hierarchical Memory Systems on Linear Algebra Algorithm Design”,
Technical Report UIUCSRD 625, University of Illinois, 1987.

[Gan87] Gannon, D., and Jalby, W., “The Influence of Memory Hierarchy on

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

123

Algorithm Organization: Programming FFTs on a Vector Multiprocessor”,
in The Characteristics of Parallel Algorithms. MIT Press, 1987.

[Gao93] Gao, Q.S., “The Chinese Remainder Theorem and the Prime Memory
System”, Proc. 20th International Symposium on Computer Architecture,
May 1993.

[Gol93] Golub, G., and Ortega, J.M., Scientific Computation: An Introduction with
Parallel Computing, Academic Press, Inc., 1993.

[Gup91] Gupta, A., Hennessy, J., Gharachorloo, K., Mowry, T., and Weber, W.-D.,
“Comparative Evaluation of Latency Reducing and Tolerating Techniques”,
Proc. 18th International Symposium on Computer Architecture, May 1991.

[Har87] Harper, D. T., Jump, J., “Vector Access Performance in Parallel Memories
Using a Skewed Storage Scheme”, IEEE Trans. Comput., 36, 12, 1987.

[Har89] Harper, D. T., “Address Transformation to Increase Memory Performance”,
1989 International Conference on Supercomputing.

[Har92] Hart, C., “Dynamic RAM as Secondary Cache”, in [IEEE92], p. 48,
October, 1992.

[Hen90] Hennessy, J., and Patterson, D., “Computer Architecture: A Quantitative
Approach”, Morgan Kaufmann, San Mateo, CA, 1990.

[IEEE92] “High-speed DRAMs”, Special Report, IEEE Spectrum, vol. 29, no. 10,
October 1992.

[Int91] i860 XP Microprocessor Data Book, Intel Corporation, 1991.

[Int92] i860 Microprocessor Family Programmer’s Reference Manual, Intel
Corporation, 1991.

[Jon92] Jones, F., “A New Era of Fast Dynamic RAMs”, in [IEEE92], pp. 43-49,
October, 1992.

[Kat89] Katz, R., and Hennessy, J., “High Performance Microprocessor
Architectures”, University of California, Berkeley, Report No. UCB/CSD
89/529, August, 1989.

[Lai92] Laird, M., “A Comparison of Three Current Superscalar Designs”,
Computer Architecture News, 20:3, June, 1992.

[Lam91] Lam, M., Rothberg, E., and Wolf, M., “The Cache Performance and
Optimizations of Blocked Algorithms”, Proc. ASPLOS-IV.

[Law79] Lawson, et. al., “Basic Linear Algebra Subprograms for Fortran Usage”,

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

124

ACM Trans. Math. Soft., 5, 3, 1979.

[Lee91] Lee, K. “Achieving High Performance on the i860 Microprocessor”, NAS
Technical Report RNR-91-029, NASA Ames Research Center, Moffett
Field, CA, October 1991.

[Lee92] Lee, K. “On the Floating Point Performance of the i860 Microprocessor”,
NAS Technical Report RNR-90-019, NASA Ames Research Center,
Moffett Field, CA, July 1992.

[Lee93] Lee, K. “The NAS860 Library User’s Manual”, NAS Technical Report
RND-93-003, NASA Ames Research Center, Moffett Field, CA, March
1993.

[Los92] Loshin, D., and Budge, D., “Breaking the Memory Bottleneck, Parts 1 & 2”,
Supercomputing Review, January/February, 1992.

[Mea92] Meadows, L., Nakamoto, S., Schuster, V., “A Vectorizing Software
Pipelining Compiler for LIW and Superscalar Architectures”, Proc. RISC
92.

[McK69] McKeller, A.C., and Coffman, E.G., “The Organization of Matrices and
Matrix Operations in a Paged Multiprogramming Environment”, CACM,
12:3, 1969.

[McK93a] McKee, S.A, “Hardware Support for Access Ordering: Performance of
Some Design Options”, University of Virginia, Department of Computer
Science, Technical Report CS-93-08, August 1993.

[McK93b] McKee, S.A., “An Analytic Model of SMC Performance”, University of
Virginia, TR CS-93-54, November, 1993.

[McK93c] McKee, S.A., “Uniprocessor SMC Performance on Vectors with Non-unit
Strides”, University of Virginia, TR CS-93-67, December, 1993.

[McK94a] McKee, S.A., Klenke, R.H., Schwab, A.J., Wulf, Wm.A., Moyer, S.A.,
Hitchcock, C., Aylor, J.H., “Experimental Implementation of Dynamic
Access Ordering”, Proc. HICSS-27, Maui, HI, January 1994; also
University of Virginia, TR CS-93-42, August 1993.

[McK94b] McKee, S.A., Moyer, S.A., Wulf, Wm.A., Hitchcock, C., “Increasing
Memory Bandwidth for Vector Computations”, Proc. Conf. on Prog. Lang.
and Sys. Arch., Zurich, Switzerland, March 1994; also University of
Virginia, TR CS-93-34.

[McM86] McMahon, F.H., “The Livermore Fortran Kernels: A Computer Test of the
Numerical Performance Range”, Lawrence Livermore National Laboratory,
UCRL-53745, December 1986.

Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

125

[Mow92] Mowry, T.C., Lam, M., and Gupta, A., “Design and Evaluation of a
Compiler Algorithm for Prefetching”, Proc. Fifth International Conference
on Architectural Support for Programming Languages and Operating
Systems, September, 1992.

[Moy93] Moyer, S.A., “Access Ordering and Effective Memory Bandwidth”, Ph.D.
Dissertation, Department of Computer Science, University of Virginia,
Technical Report CS-93-18, April 1993.

[Ost89] Osterhaug, Anita, ed.,Guide to Parallel Programming on Sequent
Computer Systems, Prentice Hall, 1989.

[Ous90] Ousterhout, J. “Why aren’t Operating Systems Getter Faster As Fast As
Hardware?” Proc. 1990 USENIX Summer Conference, June 1990.

[Por89] Porterfield, A.K., “Software Methods for Improvement of Cache
Performance on Supercomputer Applications”, Ph.D. Thesis, Rice
University, May, 1989.

[Qui91] Quinnell, R., “High-speed DRAMs”, EDN, May 23, 1991.

[Ram92] “Architectural Overview”, Rambus Inc., Mountain View, CA, 1992.

[Rau91] Rau, B. R., “Pseudo-Randomly Interleaved Memory”, 18th International
Symposium on Computer Architecture, May 1991.

[Soh91] Sohi, G., and Franklin, M., “High Bandwidth Memory Systems for
Superscalar Processors”, Proc. Fourth International Conference on
Architectural Support for Programming Languages and Operating Systems,
April, 1991.

[Tha81] Thabit, K.O., “Cache Management by the Compiler”, Ph.D. thesis,
University of Illinois, October, 1982.

[Tem93] Temam, O., Granston, E.D., and Jalby, W., “To Copy of Not to Copy: A
Compile-Time Technique for Assessing When Data Copying Shoud Be
Used to Eliminate Cache Conflicts”, Proc. Supercomputing’93, December,
1993.

[Wal85] Wallach, S., “The CONVEX C-1 64-bit Supercomputer”, Compcon Spring
85, February 1985.

[Wol87] Wolfe, M., “Iteration Space Tiling for Memory Hierarchies”, Proc. Third
SIAM Conference on Parallel Processing for Scientific Computing,
December, 1987.

[Wol89] Wolfe, M., “More Iteration Space Tiling”, Proc. Supercomputing ‘89, 1989.

