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Abstract

Memory bandwidth is rapidly becoming the performance bottleneck in the application of
high performance microprocessors to veditax algorithms, including the “Grand Chal-
lenge” scientific problems. Caching is not the sole solution for these applications due to
the poor temporal and spatiatality of their data accesses. Morequée nature of mem-
ories themselves has changed. Achieving greater bandwidth requires exploiting the char-
acteristics of memory componerit the other side of the cache” — they should not be
treated as uniform access-time RAM.

This paper describes the use of hardware-assstess ordering in symmetric multipro-

cessor (SMP) systems. Our technique combines compile-time detection of memory access
patterns with a memory subsystem (callegiraam Memory Controller, or SMC) that

decouples the order of requests generated by the computational elements from that issued
to the memory system. This decoupling permits the requests to be issued in an order that
optimizes use of the memory system. Our simulations indicate that SMP SMC systems
can consistently deliver nearly the full system bandwidth.
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1. Introduction

Processor speeds are increasing much faster than memory speeds [Kat89, Hen90]. As a
result, memory bandwidth is rapidly becoming the limiting performance factor for many
applications. A comprehensive, successful solution to the memory bandwidth problem
must exploit the richness of thél memory hierarchyThis requires not only finding ways

to improve cache performance, but providing alternatives for computations for which

caching is insdicient.

Most memory-bandwidth studies focus on cache hit rates, but these only address one aspect
of the problem. Most memory devices manufactured in the last decade provide special
capabilities that make it possible to perform some access sequences faster than others
[[EE92, Ram92, Qui9l], and exploiting these component characteristics can dramatically
improve efective bandwidth. For applications that perform vedte& memory accesses,

for instance, bandwidth can be increased by reordering the requests to take advantage of
device properties such as fast-page motleisaccess orderi ng is straightforward to apply

and requires no heroic compiler technolofygcess ordering yields a dramatic

performance improvement over traditional caching of vector operands, especially for non-

unit stride vector computations.

Access ordering may be performed statigatycompile time, or dynamicallst run time.
Moyer derives compile-time access-ordering algorithms relative to a precise analytic
model of memory systems [Moy93]. This approach unrolls loops and orders non-caching

memory operations to exploit architectural and device features of ¢fe taemory

1. These devices behave as if implemented with a single on-chip cache fiage.@ memory

access falling outside the address range of the current DRAM page forces a new page to be set up.
The overhead time required to do this makes performing such an access significantly slower than
one that hits the current page.
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system. McKee et. al. propose a uniprocessor architecture for performing access ordering
at run time [McK94a]. Simulation studies indicate that dynamic access ordering is a
valuable technique for improving uniprocessor memory performance for stream
computations — the SMC, &ream Memory Controller, consistently delivers almost the

entire available bandwidth [McK93a, McK94b, McK93c].

The applicability of dynamic access ordering is not limited to uniprocessor environments.
This paper discusses thdegtiveness of dynamic access ordering with respect to the
memory performance of symmetric multiprocessor (SMP) systems. Our simulation results
show that a modest number of computational elements (CEs) sharing an SMC can achieve

a similar percentage of peak bandwidth as a uniprocessor SMC system.

2. The Stream Memory Controller

Access ordering systems span a spectrum ranging from purely compile-time to purely run-
time approaches. A general taxonomy of access ordering systems is presented in
[McK93a]. Based on our analysis and simulations, we believe that the best engineering
choice is to detect streams at compile time, and to defer access ordering and issue to run
time. Here we describe in general terms how such a scheme might be incorporated into an
overall system architecture, first for a uniprocessor system and then for a symmetric shared-

memory multiprocessor system.

The approach we suggest will be described based on the simplified architectures df Figure
and Figure?. In the uniprocessor system depicted in Figumemory is interfaced to the
computational element, or “CE”, through a controller labeled “MSU” for Memory
Scheduling Unit. The MSU includes logic to issue memory requests as well as logic to
determine the order of requests during streaming computations. For non-stream accesses,

the MSU provides the same functionality and performance as a traditional memory
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controller This is crucial — the access-ordering circuitry of the MShbtdn the critical

path to memory and in no wayfedts scalar processing.
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Figurel Uniprocessor SMC Organization

The MSU has full knowledge of all streams currently needed by the processor: given the
base address, vector stride, and vector length, it can generate the addresses of all elements
in a stream. The scheduling unit also knows the details of the memory architecture,
including interleaving and device characteristics. The access-ordering circuitry uses this
information to issue requests for individual stream elements in an order that attempts to

optimize memory system performance.

A separate Stream Hef Unit (SBU) provides memory-mapped control registers that the
processor uses to specify stream parameters and high-spsed fmrfstream operands.

These buers are implemented as FIFOs that are asynchronously filled from (or drained to)
memory by the access/issue logic. Each stream of the computation is assigned to one FIFO,
and load instructions from (or store instructions to) a particular stream reference the FIFO
head via a memory-mapped regisées with the stream-specific parts of the MSU, the SBU

is not on the critical path to memognd the speed of non-vector accesses is not adversely
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affected by its presence. Together, the MSU and SBU comprise a Stream Memory
Controller (SMC) system.

When adapting this general framework to an SMP system, a number of options exist
regarding placement of SMC components, depending on where we draw chip boundaries.
The most efficient organization is one in which the entire SMC system and all
computational elements reside on asingle chip; thisis the organization we consider here.
If asingle-chip implementation is not feasible, several possibilities remain. Placing a full
SMC system on each processor chip islikely to scale poorly and be prohibitively
expensive, since extensive inter-M SU communication would be needed to coordinate
accesses to the shared memory system. In contrast, asingle, centralized, external SMC
should perform well for amoderate number of processors. A third, hybrid approach places

the SBUs on-chip while the centralized access-order/issue logic remains external.

SBU mem
CE
CACHE mem
o o ? |_fmem
o o >
(o]
SBU o
CE
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Figure2 Symmetric Multiprocessor SM C Organization

Inthe SMP SMC system in Figure 2, al computational elements are interfaced to memory
through a centralized MSU. The architecture is essentially that of the uniprocessor SMC,

but with more than one CE and a corresponding SBU for each. Note that since cache
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placement does not affect the SMC, the system could consist of asingle cache for all CEs
or separate caches for each. Figure 2 depicts separate caches to emphasize the fact that the

SBUs and cache reside at the same level of the memory hierarchy.

Due to both the high communication requirements for afully distributed approach and the
limitations on the number of processors that may share a centralized resource, we do not
expect SMP SMC systemsto scale to large numbers of processors. This paper focuses on

the performance of SMP systems with two to eight computational elements.

3. Simulation Environment

In order to validate the SM C concept for shared-memory multiprocessor systems, we have
simulated a wide range of SMC configurations and benchmarks, varying:

- FIFO depth,

- dynamic order/issue policy,

- number of memory banks,

- DRAM speed,

- benchmark agorithm,

- vector length, stride, and alignment with respect to memory banks, and

- number of computational elements.
The simulations discussed here use unit-stride vectors aligned to have no DRAM pagesin
common. All memories modeled consist of interleaved banks of page-mode DRAMS,
where each page is 4K bytes (512 double words), and the DRAM page-miss cycletimeis

four times that of aDRAM page-hit. These memory system parameters are representative

of current technology. SMC initialization requires two writes to memory-mapped registers
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for each stream. Since this small overhead does not significaietty afir results, it is not

included here.

Arithmetic and control are assumed never to be a computational bottleneck, thus we model
the processor as a generator of load and store requestEloslglaces maximum stress on

the memory system by assuming a computation rate that out-paces the rmeaiitity’to

transfer data. Scalar and instruction accesses are assumed to hit in the cache for the same

reason.

We chose vector lengths of 10,000 and 80,000 elements for our experiments. Here “vector
length” refers to the amount of data processed by the entire parallel computation, not just
by one CE. The 10,000-element vectors facilitate comparisons between SMP and
uniprocessor systems, since this is one of the vector lengths used in the uniprocessor SMC
studies [McK93a, McK93c]. These vectors are long enough that SMC startup transients
become insignificant in most cases, but as the number of CEs increases, the amount of data
processed by each CE decreases, and stafagisdhecome more evident under certain
parallelization techniques. &\present 8-CE SMC simulation results for 80,000-element

vectors in order to demonstrate the performance of such systems ugdenarkloads.

We assume that the system is balanced so that the bandwidth between the SMC and
memory equals that between the computational elements and the SMC. The number of
accesses that the MSU can issue in one processor cycle is thus proportional to the number
CEs. The order of future accesses is computed concurrently with the initiation of the current
set of accesses. ikady access refers to an empty position in a read FIFO (that position is
ready to be filled with the appropriate data element) or a full position in a write FIFO (the

corresponding data element is ready to be written to memory).

Note that if the number of memory banks in the sysereeds the depth of the FIFOs in

the SBU, more than one bank will take turns servicing a single FIFO position. This can have
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some interesting &fcts on performance, depending on the Sélynhamic ordering policy

and the nature of the computation. For instance, under certain conditions, shallower FIFOs
may deliver a greater percentage of peak bandwidth than deeper ones. These performance
anomalies are discussed in Section 5.3. Fi§wsleows an example mapping of memory

banks to FIFO positions for a stride-one vector when the length of the FIFOs is less than

the number of banks.

rotating 1l Set I: bankao, bF, b2|:
FIFO v 4y Set II: banksby, b1, Bopy 1 ...

“head” coo
Set lll: bankaz, b|:+2, b2|:+2

A

Figure3 Mapping of Memory Banks to Positions in a FIFO of Depth-

3.1 Benchmark Suite

The benchmark suite used is the same as in previous SMC studies [McK93a, McK93c,
McK94a, McK94b], and is described in FigyteThese benchmarks represent access
patterns found in real scientific codes, including the who@ps of blocked algorithms. The
Suite constitutes a representative subset goatible access patterns for computations
involving a small number of vectors. Thgdro andtridiag benchmarks share the same
access pattern, thus their results for these simulations are identical, and are presented

together

3.2 Task Scheduling
The way in which a problem is partitioned for a multiprocessor system can have a marked
effect on performance. Three general scheduling techniques are commonly used to

parallelize workloadsprescheduling, static scheduling, anddynamic scheduling [Ost89].
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copy: i Yi < X

daxpy: i Yi <« axi+y,

hydro: i Xi « Q+Y; X (I X2% 10+ X 2%, 11)
scale: i X « ax

swap: Oi tmp vy, Yi < X; X; < tmp
tridiag: i Xi — % (Y, =% _4)

vaxpy: Ui Y < X%ty

Figure4 Benchmark Algorithms
Prescheduling requires that the programmer divide the workload among the CEs before

compiling the program. There is no notion of dynamic load balancing with respect to data
size or number of CEs. This type of scheduling is particularly appropriate for applications
exhibiting functional parallelism, where each CE performsfareift task. Since

performance on a single CE is relatively independent of access pattern [McK93a], we
model prescheduled computations by running the same benchmark on all CEs. The vector
is split into approximately equal-size pieces, and each CE performs the computation on a
single piece. Figurd depicts this data distribution for a stride-one vector and the

corresponding code for the inner loops on a 2-CE system.

address a address (a + kx 8 bytes) CEy's code: for (i =0; i <L/2; i++) {
/* operations on x[i]*/

vector X | | | J

L CEyscode: for (i = L2 i <L i+
CE; /* operations on x[i]*/

}

CE,

Figure5 Prescheduling: Data Distribution for 2-CE System

In static scheduling, tasks are divided among the CEs at runtime, but the partitioning is
performed in some predetermined walyus a process on a CE must determine which tasks
it must do, perform that work, then wait for other processes to finish their tasksotlél

static scheduling by distributing loop iterations among the CEs, as in BRANRDOALL
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loop. If thereare M CEs participating in a computation whose vector stride was originally
S, this parallelization scheme makes the effective stride for the computation M x S at each
CE. Figure 6 illustrates the data distribution and code for this scheme. Note that a static

scheduling scheme could break the vector datainto hunks, but the SMC simulation results

for such a scheme would be identical to those presented for prescheduling.
addressa address (o + L x 8 bytes) CEy's code: for (i =0; i <L; i +=2) {
/* operations on x[i]*/

}

[
TC/E TC/E C/E CEy'scode:  for (i =1; i <L, i +=2) {
CEy lch lch ' /* operations on x[i]*/
}
Figure 6 Static Scheduling: Data Distribution tfor a 2-CE System

vector X: |

In dynamic scheduling, a pool of tasksis maintained. Each CE schedulesits own tasks by
repeatedly removing atask from the pool and performing it; if the pool is empty, the CEs
wait for tasks to appear. Recall that within our simulation framework, arithmetic and
control are abstracted out of the computation. Since we are only simulating the inner loops,
SMP SMC performance for dynamic scheduling issimilar to either prescheduling or static
scheduling, depending on how the work is apportioned into tasks. We therefore omit

separate simulation results for this scheduling technique.

3.3 Ordering Policy

The overwhelming similarity of the performance curves presented in the uniprocessor
SMC studies [McK93a, McK93c, McK94a, McK94b] indicates that neither the ordering
strategy nor the processor’s access pattern has alarge effect on the MSU’s ability to
optimize bandwidth. For moderately long vectors whose stride is relatively prime to the

number of memory banks, the SMC consistently delivers nearly the full system bandwidth.

In SMP SMC systems, however, there are more factors that can potentially affect
performance, thus different scheduling techniques and vector alignments may benefit from

different ordering algorithms. For instance, the scheduling technique may:
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- change the effective vector stride on any CE (as in static scheduling), and

- affect the “working set” of DRAM pages that are needed during a portion of the
computation (with static scheduling, all CEsarelikely to be using the same set of
DRAM pages, whereaswith prescheduling, different CEsarelikely to beworking

on different sets of pages).

The SMC attempts to exploit the underlying memory architecture to issue accessesin an
order that optimizes bandwidth. For any memory system composed of interleaved banks of
DRAM components, there are at least two facets to this endeavor: taking advantage of
available concurrency among the interleaved banks, and taking advantage of device
characteristics. At each decision point (each available memory bus cycle), the SMC must
decide how best to achieve these goals. The design space of access-order/issue algorithms
can be divided into two subspaces. algorithms that first choose a bank (Bank-Centric

schemes), and algorithms that first choose a FIFO (FIFO-Centric schemes).

In order to select the “best” FIFO or bank to use next, an access ordering scheme must
either consider all possibilitiesin parallel, or it must impose some ordering on the resources
(FIFOs or banks) so that it can examine them sequentially. Our simul ations assume that not
all possihilities can be evaluated at once. We therefore model SMC systems using several

resource-ordering variations, in order to determine their effects on performance.

For instance, the order in which the FIFOs are considered for service can affect delivered
bandwidth. We investigate two different ways in which the MSU selects the next FIFO to
service: by examining the FIFOS in sequential round-robin order by processor (all of CEy's
FIFOs are considered before any of CE,’s), and by examining the FIFOsin an interleaved,
round-robin order (in which the MSU first considers FIFO for CE, then FIFO, for CE;,

etc., before considering FIFO, for CE).

10
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3.3.1 The Bank-Centric Approach
In any Bank-Centric ordering policy, the MSU’s task can be broken into two subtasks:
selecting the banks to which accesses will be initiated, and then deciding which accesses

from which FIFOs will be issued to those banks.

Bank Selection

We consider two strategies for making the bank selection: Exhaustive Round-Robin
Selection and Token Round-Robin Selection. In the Exhaustive Round-Raobin (or just
Exhaustive) selection scheme, the MSU considers each bank in turn until it hasinitiated as
many accesses as it can, or it has considered all banks. This strategy starts its search by

considering the next bank after the last one to which the MSU initiated an access.

With Token Round-Robin selection (Token), the MSU only considers a subset of the banks
at each decision point, attempting to issue accesses to the idle ones. We examine two
different waysof partitioning the banksinto subsets. If theMSU canissueupto N accesses
at atime, the first algorithm considers the next set of N banks in sequence. Thus the first
set containsbanks { by, ..., by_,}, thesecond contains { by, ..., b,y _;}, and soforth. In
the second variation, a set contains all banks whose indices are congruent modulo the

number of CEs: { b, by, b,y --.}, €tc.

FIFO Section

Oncethe MSU has selected a set of banks, it must then decide which accessesto issue. We
examine two related schemes for choosing the FIFO to service. We refer to the first FIFO-
selection policy assimply the Bank-Centric algorithm, or BC. For a selected memory bank,
b;, the algorithm examinesthe FIFOsin order, beginning with last FIFO for which an access
to b; was initiated. If the MSU finds aready access that hits b;’s current DRAM page, it
issues that access. If no ready accesses for the bank hit the current DRAM page, then an

access is issued for the FIFO requiring the most service from bank b;.

11
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The second FIFO-selection algorithm is a more sophisticated variant of the first. Consider
the case where no ready accesses hit the current DRAM page. Instead of initiating an access
for the FIFO requiring the most service from the current bank, the MSU issues an access
only if a FIFO meets a certain threshold-of-service criterion. In this case, the portion of a
read FIFO for which the current memory bank is responsible must be at least half empty,
or the corresponding portion of awrite FIFO must be at least half full. This ensures that
there will be several fast accesses over which to amortize the cost of switching the DRAM

page. We refer to this scheme as the Threshold Bank-Centric agorithm, or TBC.

3.3.2 The FIFO-Centric Approach

The second, general class of access-ordering schemes contains those that first choose a
FIFO to service, and then issue accesses from that FIFO to their corresponding banks as
appropriate. We investigate avery simple FIFO-Centric algorithm, or FC: the SMC looks

at each FIFO in turn, issuing accesses for the same FIFO stream while:
1) not all elements of the stream have been accessed, and
2) thereisroom inthe FIFO for another read operand, or another write operand is
present in the FIFO.

If the current FIFO contains no ready accesses to an idle bank, no accessisinitiated.

3.3.3 Algorithms Simulated

There are many possible means of choosing which banksto access, which FIFOsto service,
and in what order to consider each of these resources in making these decisions, and these
elements can be combined in myriad ways. Here we focus on five strategies that generally
perform well and are representative examples from the design space of dynamic ordering

policies:

1) Exhaustive Round-Robin Bank-Centric selection with sequential bank sets,

12
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2) Token Round-Robin Bank-Centric selection with sequential bank sets,
3) Token Round-Robin Bank-Centric selection with modular bank sets,

4) Token Round-Robin Threshold Bank-Centric selection with sequential bank sets,

and

5) FIFO-Centric Selection

Access-Ordering Policies

Bank-Centric FIFO-Centric
Exhaustive Token
Bank Selection Bank Selection
No No
Threshold-of-Service Threshold-of-Service Threshold-of-Service

Criterion Criterion Criterion
sequential sequential modular sequential
bank sets bank sets bank sets bank sets

Figure7 TheFive Ordering Policies

We expect dken selection to perform about the same as exhaustive selection, but the

former should be less expensive to implememiWestigate two types obKen selection

— one using sequential bank sets and one using modular band sets — in order to determine

what efects the bank-ordering scheme has on performaneeal$¥ look at dken

selection with a threshold-of-service requirement to determine whether implementing a

threshold criterion improves performance, and if so, by how much. Fiwallgompare the

performance of the Bank-Centric approaches to that of our simple, FIFO-CentricGlicy

13
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is the most economical policy to implement, but we expect that it will not perform as well
as the more sophisticated BC policies for some system configurations and workloads. The
relationships between the elements of these ordering strategies can be represented as a tree

in which the path to each leaf designates a particular paicin Figure? .

4. Performance Factors

The percentage of peak bandwidth delivered is ultimately determined by thes stSlity
to exploit both fast accesses (in the form of DRAM page hits) and the memory system’

concurrencyThe MSUS efectiveness can be influenced by several factors, including:
- data distribution
- FIFO depth, and

- workload distribution.

These contribute in varying degrees to SMP SMC performance, thus we first take a closer

look at them in order to better interpret the results presented in Section 5 and the Appendix.

4.1 Data Placement

SMC performance is dramaticallyf@fted by whether the working sets of DRAM pages
needed by dierent CEs overlap during the course of the computation. If they do overlap,
the set of FIFOs using data from a page will bgdaiith more bufer space devoted to

operands from that page, more (fast) accesses can be issued to it in succession.

Each DRAM page holds 512 double-word vector elements. Thus on an 8-way interleaved
memory for instance, we incur an initial page miss on each bank, but the computation does
not cross page boundaries umll?2 x 8 = 4096 elements of a given vector have been
accessed. On a 16-bank system, the vectors cross DRAM page boundaries at element 8192;

on a 32-bank system, at element 16,384; and so on. Mgilustrates the layout of a vector

1. In the uniprocessor SMC stydiC is calledAl, Token BC isT1, Token TBC isT2, and Exhaus-
tive BC isR1. [McK93a].

14
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with respect to DRAM pages for cases where the page size times the interleaving factor is

slightly less than the amount of data to be processed at edthCas.

addressx acgressc( + vectorlen/ M x 8 bytes)
Vv ////////] [
-+— CE CE

[_] DRAM page A¥/4 DRAM page B[__| DRAM page C

Figure8 Example Vector Layout in Memory

Prescheduling

On a 2-CE system with 8 banks, prescheduling divides a 10,000-element vector so that each
CE processes approximately 5000 elements, thus the streams for the two computational
elements never share pages during the computation. The data layout for each bank is
pictured in Figur®. This figure presents much the same information as in Régeapecept

that the vector chunks for each CE have been arranged vertically to emphasize the portions

of data that are being processed in parallel by tlerdift CEs.

address addressd + 5000 x 8 bytes)

CEO | //]
CRlV S/ /A |

Figure9 Distribution of 10,000-Element Vector for 8 Banksand 2 CEs

Figure10 shows the distribution of the same 10,000-element vector on a 4-CE system with

8 banks; the pattern of DRAM page-sharing between CE 0 and CE 1 is essentially the same
as for a 2-CE, 16-bank system (but in that case each CE would process 5000 elements). CEs
0 and 1 share DRAM pages for almost two-thirds of the computation, and CEs 3 and 4 share

for the initial one-third. At the end, CEs 2 and 3 will be on the same pages.

On a 4-CE system with 16 banks, all CEs share the same pages for about one-third of the

computation, with three CEs sharing throughout. On a 32-bank, 4-CE system the

15
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address a address (o + 2500 x 8 bytes)

CEy | |
CEy | /A
CE
CEs ¥/ /A |

Figure 10 Distribution of 10,000-Element Vector for 8 Banksand 4 CEs
computation never crosses a page boundary. This high degree of page-sharing among CEs

maximizes the MSU’s ability to issue fast accesses.

When we use prescheduling to parallelize a computation on 80,000-element vectors, no
page-sharing among CEsis possible for the modest-size SMP systems we investigate here.
For an 8-CE system, the datais divided so that each CE processes 10,000 elements. Thus
each CE crosses at least two DRAM page boundaries during its computation. This data
layout, pictured in Figure 11, causes the MSU to switch DRAM pages frequently, which

decreases effective bandwidth.

address, address (a + 10,000 x 8 bytes)

CE | v/ / /] |
CEy | I ANNNNNNN]
CE; N %%}

CEs KXXXZ AT
CE4
CEs
CEs
CE7 | I NN\

Figure11l Distribution of 80,000-Element Vector for 8 Banksand 8 CEs

Satic Scheduling

For static task scheduling, each of M CEs performs every M th iteration of the loop being
parallelized. Thus all CEs access the same set of DRAM pages during any phase of the

computation, resulting in fewer page misses and higher bandwidth.

16
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4.2 FIFO depth

The second factor f#cting SMC performance is FIFO depth. Thieeff of using deeper

FIFOs is similar to that for increasing DRAM page-sharing among the CEs: deeper FIFOs
provide more buér space devoted to operands from a given page, enabling the MSU to
amortize DRAM page-miss overheads over a greater number of fast accesses. This has an

interesting dkct on SMC behavior at the beginning of a computation.

Recall that under our five access-ordering policies, the MSU attempts to perform as much
work as possible for a given FIFO before moving on to anofiess the first operand of a
stream will not be fetched until its memory bank has performed as many fast accesses as it
can for the FIFOs preceding it. As FIFO depth increases, the CEs must wait longer for all
the operands of the first iteration of the computation. If the amount of data to be processed
by each CE is small relative to the FIFO depth, there will not lfieisatly many accesses

in the computation over which to amortize these startup costs. This results in lower

performance. A detailed analysis of this phenomenon is presented elsewhere.

4.3 Workload Distribution

Workload distribution is the third factor influencing SMC performance. Data distribution
and FIFO depth can interact to create an uneven distribution of the workload with respect
to time. Depending on when a CE starts its computation and on the pattern of DRAM page-
sharing among the CEs, some CEs may finish earlier than others. For instance,
computational elements with a higher degree of DRAM page-sharing are likely to finish
before other CEs. This happens because the MSU accesses their pages more frequently
attempting to perform as many fast accesses as it can before turning to accesses that
generate DRAM page-misses. When a CE drops out of the computation, the pBU’

of potential accesses shrinks. While the last CEs are finishing up at the end of the

computation, the MSU may not be able to keep the memory banksAsusiFO depth

17
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increases, the“faster” CEstend to finish even earlier, the ending phase becomeslonger, and

performance suffers even more.

5. Reaults

All results are given as a percentage of peak bandwidth, where peak bandwidth represents
the performance that would be attained if amemory access could be completed by each CE
on every cycle. The performance of each SMP SMC system is presented as a function of
FIFO depth and number of memory banks (or available concurrency in the memory
system). Unless otherwise stated, all vectors are aligned to DRAM page boundaries, tasks
are apportioned such that all vectors (and each CE’s vector chunks, for prescheduled
workloads) are aligned to begin in bank by, and the MSU uses interleaved FIFO ordering.

Appendix A gives complete results for all SMC configurations simulated.

The number of memory banks is kept proportiona to the number of CEs, thus the curves
for an 8-CE system represent performance on a system with four times the number of
memory banks as the corresponding curves for a 2-CE system. We keep the peak memory
system bandwidth and DRAM page-miss/page-hit cost ratio constant. An 8-bank system

therefore has four times the DRAM page-miss latency as a 2-bank system.

Our results demonstrate a common phenomenon: increasing the number of banks often
reduces relative performance. More banks resultsin fewer total accessesto each, therefore
page-miss costs are amortized over fewer fast accesses. Thus the performance curves for
the system with 16 banks represent a smaller percentage of amuch larger bandwidth when
compared to those of a 2-bank system. To illustrate this, Figure 12 depicts SMC
performance for the copy benchmark on a 2-CE system. Figure 12(a) illustrates
performance as a percentage of peak bandwidth for each memory system, and Figure 12(b)
depicts the same data as a percentage of peak relative to the total bandwidth of a 2-bank

system.
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Figure 12 Prescheduled Token BC copy Performance for 2 CEs

5.1 Prescheduling

This section presents SMP SMC performance for prescheduled workloads on systems
implementing the ordering policies outlined in Section 3.3. Recall that prescheduling (as
described in Section 3.2) essentially breaks the vectors into chunks, assigning each chunk
to adifferent CE to be processed. The effectsof changesin relative vector alignment, vector
length, or the implementation of an ordering policy (e.g. different FIFO orderings) are
fairly independent of the processor’s access pattern, thus the graphs presented here focus
on asingle benchmark, daxpy. Complete results for al benchmarks can be found in
Appendix A. Like the uniprocessor SMC systems studied [McK93a], SMP SMC
performance approaches (and often exceeds) 90% of the peak system bandwidth for
sufficiently long vectors and appropriately-sized FIFOs.

Figure 13 through Figure 15 present performance curves for each of our five ordering
schemes on SMP SMC systems with 2, 4, and 8 computational elements. Figure 13
illustrates SMC performance for daxpy using 10,000-element vectors on systems with 2
CEs. Figure 14 illustrates the same information for SMC systems with 4 CEs, and Figure

15 presents performance curves for 8-CE systems and 80,000-element vectors.
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The overwhelming similarity of the curves within each figure (combined with the fact that
these results are representative of those for all benchmarks) leads usto conclude that small
variations in the dynamic access-ordering policy have little effect on performance. For
instance, in most cases Token Bank-Centric ordering (TBC), with its threshold-of-service
criterion, performs amost identically to simple Bank-Centric ordering (BC). When their

performances differ, TBC delivers adightly lower percentage of peak.

20



Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

100

% of peak bandwidth

8 16 32 64 128 256 512
fifo depth
(a) Exhaustive BC
100
80

60—, -

40+ 2

% of peak bandwidth

20—

0 T T T T 1
8 16 32 64 128 256 512
fifo depth

(c) Token BC (seqg. sets)
100

80

60 —

% of peak bandwidth
5
|

0

I I I I | |
8 16 32 64 128 256 512
fifo depth
(e) FC

—— 2 banks
—-—- 4banks

- 8 banks

100 4

% of peak bandwidth

8 16 32 64 128 256 512
fifo depth
(b) Token BC (mod sets)

100 4
80 —

60—, -

40 2

20—

% of peak bandwidth

0 T T T T 1
8 16 32 64 128 256 512
fifo depth

(d) Token TBC (seq. sets)

Figure 13 Prescheduled daxpy Performancefor 2 CEs

21



Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

100

% of peak bandwidth

8 16 32 64 128 256 512
fifo depth
(a) Exhaustive BC
100
80

60 —

% of peak bandwidth
5
|

1T T T T 1
8 16 32 64 128 256 512
fifo depth

(c) Token BC (seqg. sets)
100

80

60 —

% of peak bandwidth
5
|

0

I I I I | |
8 16 32 64 128 256 512
fifo depth
(e) FC

—— 4 banks

—-—- 8banks

— ——- 16 banks

------ 32 banks ;5 _
~ 4
S
=
©
8
o]
g
'.5 20 —
L i

0

8 16 32 64 128 256 512
fifo depth
(b) Token BC (mod sets)

100 4
80 —

60 —

% of peak bandwidth
S
|

8 16 32 64 128 256 512
fifo depth
(d) Token TBC (seq. sets)

Figure 14 Prescheduled daxpy Performancefor 4 CEs

22



Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

—— 8 banks
—-—- 16 banks
— — —- 32 banks
0+ T 64banks 1, _
ey B Nl 4
5 S
= =
© ©
@ 8
O o]
; ;
6 ks
X 1 X 1
0 T T T T 1 0 — T T T T 1
8 16 32 64 128 256 512 8 16 32 64 128 256 512
fifo depth fifo depth
(a) Exhaustive BC (b) Token BC (mod sets)

100 100 —
80 — 80 —

60 — 60

% of peak bandwidth
5
|

% of peak bandwidth
S
|

20—- 20_-
0 T T T T 1 0 T T T T 1
8 16 32 64 128 256 512 8 16 32 64 128 256 512
fifo depth fifo depth
(c) Token BC (seg. sets) (d) Token TBC (seqg. sets)

100 4
80

60 —

% of peak bandwidth
5
|

0 — T T T T 1
8 16 32 64 128 256 512
fifo depth

(e) FC

Figure 15 Prescheduled daxpy Performancefor 8 CEs (L onger Vectors)

23



Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

Similarly, Exhaustive bank-selection affords little advantage over either variation of the
simpler Token bank selection. The one instance where the exhaustive strategy performs
better than the othersisfor eight CEs, 64 banks, and 16-deep FIFOs. This phenomenon is
due more to serendipity than to an inherent superiority of the ordering strategy. Note that
this particular system configuration constitutes the one instance exhibiting a noticeable
differencein the various schemes’ performance: the causes behind thiswill be examinedin

Section 5.3.

Note that FIFO-Centric ordering performs slightly worse than Bank-Centric ordering for
relatively shallow FIFO depths. The ssmpler FC scheme concentrates on servicing asingle
FIFO for aslong as possible, thus it cannot take full advantage of DRAM page-sharing
among different FIFOs. Nonetheless, for FIFOs of depth 256 or 512, FC's performanceis
competitivewith BC's. Henceforth when werefer to BC access ordering we mean BC using
the Token Round Robin variation with sequential bank ordering. This particular schemeis
representative of the family of general Bank-Centric schemes: they all perform similarly.

Section 5.4 discusses the tradeoffs in implementing BC over FC, or vice versa.

Recall that for the simulations used to generate the results in Figure 12 through Figure 15,
all vector chunks were aligned to begin in by. In order to evaluate the effects of operand
alignment on performance, we again simulated our benchmark suite on the various system
configurations, this time apportioning the tasks so that the vector data for CE; beginsin
bank b; . g, » Where B isthe number of banksand N is the number of CEs. Figure 16
illustrates performance for daxpy using BC ordering with both operand alignments. These
results indicate that differencesin aignment have little effect on performance for this
ordering strategy. The only significant difference occurs for the 4-CE systems with 32
banksand FIFOs of depth 32. Inthiscasethe SMC delivers 78.5% of peak bandwidth when
the operands are aligned to a single bank, as opposed to 72.3% when they are staggered.

This effect is due to bank concurrency, and is discussed in Section 5.3.
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SMC systems using FIFO-Centric ordering appear to be more sensitive to differencesin
operand alignment than those using Bank-Centric ordering. Figure 17 illustrates the
performance differences caused by different vector alignmentsfor SMC systemswith 2, 4,
and 8 CEs. Performance is relatively immune to differencesin vector alignment for the 2-
CE systems, but performance differences for the 4-CE and 8-CE systems are more

pronounced.

In some cases, the staggered alignment yields better bandwidth than when all vectors are
aligned to the same bank. A 4-CE system with 8-deep FIFOs, 32 banks, and the staggered
vector alignment in Figure 17(d) delivers 11.2% of peak more than the same system using
the alignment of Figure 17(c). The a staggered alignment offers a similar performance
advantage at a FIFO depth of 64. Unfortunately, staggered alignment offers no consistent
advantage. For example, the 4-CE, 32-bank system with 16-deep FIFOs yields over 15%
of peak less when vectors are staggered to begin in different banks. Even for deep FIFOs,
performance for the staggered alignment is slightly less on this system. Both vector
alignmentsinduce essentially the same pattern of DRAM page-sharing among the CEs and
cross the same page boundaries, thus the discrepancies result from variations in bank

utilization.

The minor implementation details of the SMC’sordering policy haverelatively little effect
on performance. Figure 13 through Figure 15 demonstrate that permutationsin bank order
and details such as a threshold of service have little or no effect on delivered bandwidth.
Figure 18 illustrates the effects of two different FIFO orderings on performance. If we let
the FIFO number indicate its order within a CE’s bank of FIFOs and let the subscript
indicate the corresponding CE, then the graphs on the | eft were generated by examining the
FIFOsintheorder {0, 0,,0,, ..., 1, ...} . Those on the right were generated by

considering theminthe order {0,, 1, 2, ..., 0, ...}.
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For all benchmarks, differences in the performance of the two algorithm variations are in
most cases less than 1% of peak, with neither ordering producing consistently superior
results. Larger differences (up to 15% of peak for scale using 8-deep FIFOs) occasionally
appear for systemsin which the number of banks matches or exceeds the FIFO depth. The
combination of shallow FIFOs and these particular FIFO orderings can cause poor bank

utilization, resulting in significant performance drops.

5.2 Static Scheduling

Whereas prescheduling parallelizes atask by breaking avector into chunksand distributing
them among the CEs, static scheduling interleaves|oop iterations across the computational
elements, thus each of the M CEs participating in a computation would be responsible for
every Mth iteration. Figure 19 through Figure 21 illustrate performance for SMP SMC
systems using static scheduling. These systems have 2 to 8 CEs, and all CEsare used in
each computation. Since al CEs use the same DRAM pages throughout the computation,
the percentages of peak bandwidth delivered by SMP SMC systems using this scheduling
techniqueisamost identical to that for the anal ogous uniprocessor SMC systems: for long
vectors, deep FIFOs, and workloadsthat allow the M SU to fully exploit bank concurrency,
the SMC can consistently deliver amost the full system bandwidth [McK933a].

Figure 19 illustrates the percentages of peak bandwidth attained for the daxpy benchmark
for 2-CE systems under the five dynamic access-ordering policies on which we' vefocused.

Figure 20 and Figure 21 depict the analogous results for SMC systems with 4 and 8 CEs.

These results demonstrate that SMP SMC performance is insensitive to variationsin the
Bank-Centric ordering schemes, and isamost constant for agiven ratio of CEsto memory
banks. For instance, the bandwidth attained by the 8-CE systems with FIFO depths up to
32 differs from that delivered by the analogous 2-CE systems by less than 1% of peak
bandwidth. At a FIFO depth of 512, these differences are less than 4.3% of peak.
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In contrast, as the number of CEsincreases, attainable bandwidth for the FIFO-Centric
schemeis severely limited by lack of bank concurrency. Recall that with static scheduling,
the effective stride for each FIFO becomes the natural stride multiplied by M, the number
of participating CEs, since each CE operates only on every Mth vector element. The
effective stride thus causes each FIFO to use only 1/M of the banks used by the natural
stride. Thismeansthat when M = N, an SMC system using FC ordering will probably not
be able to exploit the full system bandwidth. When all vectors are aligned to begin in the
same bank, performance for a computation whose natural stride isrelatively primeto the
number of banksisgenerally limited to 50% of peak bandwidth for the 2-CE systems, 25%
for the 4-CE system, and 12.5% for the 8-CE systems. Performance for other natural strides

will be even lower.

Static scheduling may still be used profitably with FC ordering by using only a subset of
the CEs, the size of which must be chosen to be relatively prime to the number of memory
banks. The effective stride will also be relatively prime, thereby maximizing the MSU’s
ability to exploit memory system concurrency. Attainable bandwidth becomes limited by
the percentage of CEs used, rather than by the percentage of memory banks used. To see
this, consider the graphs in Figure 22. The graphs in the left column show daxpy
performance for SMP SMC systemswith FC ordering when all CEs are used. Those on the
right indicate performance when one fewer CE is used. Whether or not using fewer CEs

yields a net performance gain depends on the total number of CEs and the FIFO depth.

For instance, in Figure 22(a), performance is limited to 50% of peak becausethe MSU is
ableto use only one memory bank at atime. Performanceisalso limited to 50% of peak in
Figure 22(b), but for adifferent reason: here only one computational element isbeing used.
Even though the attainable performance for very deep FIFOs is the same in both cases,
performance for shallower FIFOsis not identical: at FIFO depths of 32 to 256, the

workloads of Figure 22(b) achieve a greater percentage of peak bandwidth.
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Systems with alarge number of banks are able to deliver better performance for very
shallow FIFOs because the FC ordering mechanism forcesthe M SU to switch FIFOs often.
The phenomenon is evident in the performance curves for systemswith 8N banksin

Figure 22, and will be discussed further in Section 5.3.

In general, for systems with adequate FIFO depth, using one fewer CEs with FC ordering
and statically scheduled workloads dramatically improves performance. For example, the
4-CE system with 4 banks in Figure 22(d) delivers 74.6% of peak bandwidth at a FIFO
depth of 32, as compared with 24.3% for the anal ogous system of Figure 22(c). Asthe
number of CEsincreases, performance differences become even more dramatic. The 8-CE
system with 8 banks in Figure 22(f) delivers 83.2% of peak at a depth of 128 when only 7
CEsare used. In contrast, the same system using all 8 CEs reaches only 12.3% of peak, as
depicted in Figure 22(e).

Figure 23 illustrates comparative SMC performance for two different operand alignments.
The vectors used to generate the results on the left were all aligned to begin in the same
memory bank. For the results on theright, the i th vector of the computation was aligned to
begin in bank b;. Again, performanceisfairly constant for a given ratio of CEsto banks,
with all systemsdelivering almost thefull system bandwidth for deep FIFOs. The staggered
vector alignment slightly inhibits bank concurrency in systems with relatively shallow
FIFOs, hence we see dips in some of the performance curves. For the 2-CE systems,
performance differences due to vector alignment are less than 7.5% of peak bandwidth.
When FIFOs are only 8-deep, the difference in operand alignment causes a 12.6% of peak
drop in performancefor the system with 4 CEs and 32 banks. For all other FIFO depths and
numbers of banks, the bandwidth delivered for both alignments differs by less than 6.4%
of peak. Performance differences are similar for systems with 8 CEs. The differences
diminish as FIFO depth increases: at a depth of 512, performances differ by less than 1%
of peak for the systemswith 2 and 4 CEs, and by lessthan 3% of peak for the 8-CE systems.
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Figure 23 Effectsof Vector Alignment on Static Token BC Performance
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Figure 24 Effectsof FIFO Ordering on Static BC Performance
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Our results indicate that statically scheduled workloads are even less sensitive to changes
in operand alignment than preschedul ed workloads. Figure 24 depictsthe effect of different
FIFO orderings on Token BC performance. The graphs on the left illustrate performance
when the MSU uses interleaved FIFO ordering; those on the right illustrate performance
for sequential ordering. Systems that differ only in the MSU’s FIFO ordering deliver
essentially identical performances: for all benchmarks, differencesarelessthan 1% of peak

bandwidth for FIFO depths of 16 or more, and less than 2% of peak for 8-deep FIFOs.

5.3 Performance Trends

The performance factors outlined in Section 4 al interact to shape the performance curves
presented here. Most curves show bandwidth growing steadily as FIFO depth increases, but
several anomalies appear repeatedly throughout many of the graphs. These phenomenacan
be attributed to startup effects, consequences of the size of the workload on each CE, and

general effects due to memory bank utilization and concurrency.

Tail-Off

Asthe number of computational elements increases, the amount of data processed by each
element decreases. This contributes to the slight tail-off of the performance curvesin
Figure 25 as FIFO depth increases. The effect is most pronounced for prescheduled
workloads and 8-CE systems using 10,000-element vectors, as in Figure 25(b),

Figure 25(f), and Figure 26. Like that encountered for short vectors (100 elements) on
uniprocessor SMC systems [McK93a], this phenomenon illustrates the net effect of

competing performance factors associated with FIFO depth:

1) The MSU needs sufficiently deep FIFOs to be able to keep the banks busy most

of the time and to amortize page-miss costs over a number of page-hits.

2) Deeper FIFOs cause longer startup delays for the CEs, and performance declines

when there are not enough accesses over which to amortize startup costs.
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Figure26 Prescheduled Token BC Performancefor 8 CEs
(10,000-Element Vectors)

Another factor comes into play for prescheduled workloads under BC ordering: shallow
FIFOs force the MSU to switch FIFOs fairly often, causing it to service the FIFOs of all
CEsrelatively evenly. This prevents any one CE from getting too far ahead of the others,
resulting in amore even workload for the MSU throughout the course of the computation,
This, in turn, can yield better bank utilization.Thus even though shallow FIFOs usually
hinder the MSU’s ability to optimize bandwidth, they provide an occasional benefit.

Unfortunately, the circumstances under which they perform well are hard to predict.

Just asit did in the uniprocessor case, thetail-off effect disappears under larger workloads.
Thisisevident in Figure 27: at a FIFO depth of 512, we have not yet hit the point of

diminishing returns.
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Higher Performance for More Banks

Recall that relative bandwidth tendsto decrease as the number of memory banksincreases.
In spite of this, for prescheduled workloads on SMC systems with four and eight CEs and
BC access-ordering, systems with a greater number of banks sometimes perform

competitively with those with fewer banks. Thisis due largely to the data partitioning.

For instance, for prescheduled computations on vectors of 10,000 elements, the datais
partitioned such that for systemswith 32 or 64 banks, all CEs are operating on the same set
of DRAM pages. Since the systems with more banks incur fewer page-misses, their raw

performance is occasionally as good as or better than that for systems with fewer banks.

The scale benchmark is agood example. This benchmark accesses asingle vector, thus on
systems with 32 or more banks, the computation never crosses aDRAM page boundary.
The only page misses are the initial ones at each bank. Given the simplicity of the access
pattern and the fact that all CEs are working on the same page, the MSU is able to keep
each bank busy most of thetime. Thusasystemwith N CEsand 4N or 8N banks (and the
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extra concurrency they afford) often performs better than one with fewer banks. Figure 28
illustrates this effect for 2-CE and 4-CE systems.
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Figure28 Prescheduled Token BC Performancefor scale

An interesting exception to this occurs when FIFO depth is less than the number of banks.
In Figure 26(b), the prescheduled scale benchmark on an 8-CE, 64-bank system with 8-
deep FIFOsislimited to 46.5% of peak: the shallow FIFO depth prevents the MSU from
keeping the banks busy. In contrast, each bank in the 32-bank system spends much lesstime
sitting idle, hence the SMC is able to exploit 90.2% of the avail able system bandwidth.
Increasing the FIFO depth increases the available work for each bank at any given time. At

depths of 64 or more, systems with 32 and 64 banks perform virtually identically.

Performance Curve Humps

Shallow FIFO depths can sometimes increase bank concurrency. For our prescheduled
benchmarks, thisgenerally occursfor FIFOs of 16 to 32 elements, and results from the way
BC ordering with shallow FIFOs promotes good bank utilization and a more even rate of
progress among the CEs. This causes the “humps” in the performance curves of the
prescheduled 32 and 64-bank systemsin Figure 29. The FIFO depths at which this

serendipity occurs depend on the number of streamsin the computation, the degree of page-
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sharing among the CEs, the number of CEs, the DRAM cycle time, and the number of

memory banks.

This effect is less noticeable under alarger workload for the 8-CE systems. The 80,000-
element vectors are divided so that each CE processes roughly 10,000 elements. The data
layout is such that no CEs share any DRAM pages during any portion of the computation
(asin Figure 11). Startup and page-sharing effects are minimized. The MSU must switch
between pages more often, and the size of the data set causes the computation to cross more
page boundaries, thus the curvesin Figure 29(c) are smoother than the corresponding
curves for the shorter vectorsin Figure 29(f), but performance for shallow FIFOsis much

lower.

Another interesting peak occursin Figure 29(e), which depictsthe performance of an 8-CE,
64-bank system using FC ordering for a statically scheduled workload. In general, this
phenomenon occurs for systems with alarge number of banks and shallow FIFOs. In our
simulations, whenever the MSU switches FIFOs, accesses are initiated for the new FIFO
while others are still being completed for the old FIFO. If different FIFOs use different
subsets of the memory banks, thismay yield better bank utilization. Note that in such cases,
good performance depends on the FIFO ordering scheme used by the dynamic access-
ordering policy: when all vectors are aligned to begin in the same bank, interleaving the
FIFOs of all CEswill allow more bank concurrency than servicing the FIFOs of asingle

CE in sequence.

With the particular data layout of Figure 29(e), the i th elements of each vector reside in
different banks, thusall FIFOs do not require service from the same set of banks at the same
time. The shallow FIFO depth causes the MSU to change FIFOs often. Together, the data
alignment and the frequent switching allow the M SU to keep morethan 1/N of the banks
busy at atime. Thusin this case the MSU is able to deliver more than 12.5% of peak

bandwidth, in spite of the limitations of FC ordering for non-unit stride vectors.
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Figure30 Prescheduled FC Performancefor 8 CEs (10,000-Element Vectors)

For SMP SMC systems using prescheduling and FC ordering, these anomalies tend to
occur whenever thereisahigh degree of DRAM page-sharing among the CEsand the FIFO
depth equals the number of banks. Systems configured so that FIFO depth matches the
interleaving factor allow all banks to work on the same FIFO at once, thereby promoting
bank concurrency. The FIFOs are shallow enough that the M SU must switch FIFOs often,
thus the CEs proceed at afairly even pace. More than one CE is using the same set of
DRAM pages, so many page-hitsare possible. Figure 30 illustrates this effect for scaleand

swap with vectors of length 10,000 on 8-CE systems.

5.4 Choosing an Access-Ordering Scheme

With shallow FIFOs, performance for our FIFO-Centric ordering policy is consistently
lower than that for Bank-Centric ordering. This emphasizes the importance of having

sufficiently deep FIFOs for systems with FC ordering.

Of the two families of ordering schemes examined here, FC is easier to implement in

hardware, sinceit requires lessinformation in order to select the MSU’s next access. With
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deep FIFOs, FC systems end up amortizing DRAM page-miss overheads over alarge
number of fast accesses, even though the algorithm doesn’t explicitly attempt to maximize
page hits. For vector stridesthat are relatively prime to the number of banks, FC isableto
successfully exploit the memory system’s available concurrency. Under these

circumstances, FC's performance is competitive with BC's.

Nonetheless, FC ordering is much more sensitive to changes in vector length and
alignment, and FC consistently delivers alower percentage of peak bandwidth for shallow
to medium-depth FIFOs. Moreover, when the vector stride is not relatively prime to the

number of memory banks, FC is severely limited inits ability to exploit bank concurrency.

Bank-Centric ordering, on the on the other hand, provides more consistent, robust
performance at the cost of slightly more complicated reordering circuitry. The variationsto
BC ordering that we' veinvestigated here have little impact on performance. No consistent

trends are discernible, thus the simplest BC scheme should perform adequately.

Our results indicate that the order in which the MSU considers the FIFOs for service can
interact with other performance factors to impact results. The optimal FIFO ordering
algorithmwould give priority to any FIFOswith accessesto current DRAM pages, and then
to the FIFOs that, if not serviced, will cause a CE to stall soonest (either waiting for read
datato arrive or for aposition in awrite FIFO to become available). The two schemes
implemented here are simple (and easily implemented) heuristics, neither of which has

proved consistently superior to the other.

On SMP SMC systems, Bank-Centric access ordering is the clear implementation choice,
for it allows the MSU to exploit locality of DRAM page references across FIFOs for all
CEs. If hardware requirements and cost preclude the use of BC ordering, FC ordering may

perform adequately, although more care must be taken in parallelizing tasks.
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6. Recommendations

Our results indicate that appropriately-sized FIFOs and sufficiently many memory banks
arerequired to amortize DRAM page-miss costs and to sustain concurrency in the memory
system. However, if these conditions are met, an SMC system can deliver nearly all the

bandwidth the memory hasto offer.

In general, static scheduling (viainterleaving iterations across CEs) yields better memory

performance than prescheduling. The advantages to this approach include:

- even workload distribution (the CEs proceed at a more even pace than they

generaly do using prescheduling),

- DRAM page sharing benefits (in general, all CEsare using the same set of DRAM

pages during all phases of the computation).

The exception to this occurs when FC ordering is used for a computation whose effective
stride is not relatively prime to the number of memory banks. If all CEsin the system are
used for the computation, the attainable bandwidth is limited by the percentage of memory
banks used by each FIFO. If instead only a subset of the CEsis used, and if this subset is
chosen to be relatively prime to the number of banks, then attainable bandwidth will be

limited by the percentage of CES used.

All our results underscore the importance of using an appropriate FIFO depth for a
particular computation: FIFO depth should be settable at runtime. The optimal number of
CEsto use depends on the vector length and alignment, parallelization technique, dynamic
ordering policy, and parameters of the memory system. For instance, for SMC systemswith
BC ordering, prescheduled tasks should distributed data so as to promote DRAM page
sharing among the CEs whenever possible. In all cases, each CE needs to process enough
data to effectively amortize communication costs and SMC startup effects. Equations to

determine optimal FIFO depth are presented el sewhere.
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7. Related Work

There is a lage body of research characterizing and evaluating the memory performance

of scientific codes. Most of this research focuses on:

a) hiding or tolerating memory latency
b) decreasing the number of cache misses incurred, or

c) avoiding bank conflicts in an interleaved memory system.

Prefetching and nonblocking caches can be used to overlap memory accesses with
computation, or to overlap the latencies of more than one access [Bae91, Cal91, Gup91,
Kla91, Mow92, Soh91]. These techniques can improve processor performance, but
techniques that simply mask latency do nothing to increésetigé bandwidth. Such
schemes are still useful, but they will be mostaifve when combined with

complementary technology to exploit memory component capabilities.

Modifying the computation to increase the reuse of cached data can improve performance
dramatically [Gal87, Gan87, Car89, Por8%190, Lam91, €m93]. These techniques will

also deliver better performance when integrated with access ordering.

Several schemes for avoiding bank contention, either by address transformations, skewing,
or prime memory systems, have been published [Bud71, Gao93, Har87, Har89, Rau91]; we
do not discuss them, other than to note that these, too, are complementary to the access

ordering.

8. Conclusions

As processors become fast@emory bandwidth is rapidly becoming the performance
bottleneck in the application of high performance microprocessors to i&etor

algorithms. These computations lack the temporal and spatial locality required for caching

alone to bridge the performance gap.
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Achieving greater bandwidth requires exploiting the characteristics of the entire memory
hierarchy: it cannot be treated as though it were uniform access-time RAM. This
knowledge should guide processor designs and operating system implementations.

M echanisms to take advantage of memory component capabilities should be readily

available to the user.

Dynamic access ordering can optimize accesses to exploit the underlying memory
architecture. By combining compile-time detection of streams with execution-time
selection of the access order and issue, we achieve near-optimal bandwidth for vector-like
accesses relatively inexpensively. This complements more traditional cache-based
schemes, so that overall effective memory performance need not be a bottleneck.
Moreover, dynamic access ordering requires no heroic compiler technology, and is

complementary to other common code optimizations.

Here we have reported the basic design of a Stream Memory Controller (SMC) for modest-
size symmetric multiprocessor systems, and have analyzed its performance for awide
variety of design parameter values. Our results indicate that for long vectors and deep

FIFOs, an SMP SMC system can deliver nearly the full memory system bandwidth.
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Appendix A
Unless otherwise noted, FIFO order is interleaved, Token bank-selection schemes use
sequential sets, and vectors are aligned to begin in bank by. All vectors are 10,000 double-

word elements, unless otherwise noted; “longer” vectors are 80,000 elements.

Figure 31 through Figure 66 depict performance for our benchmarks when prescheduling
is used to parallelize the tasks. Figure 31 through Figure 34 illustrate the performance of
Exhaustive Bank-Centric ordering. Figure 35 through Figure 42 depict results for Token
Bank-Centric ordering for both modular and sequential bank sets. Figure 43 through
Figure 46 illustrate results for Token Threshold Bank-Centric ordering. Figure 47 through
Figure 50 indicate Token BC performance for a different operand alignment. “ Staggered
alignment” here refers to apportioning the tasks so that the vector data for CE; beginsin

bank b.

i (B/N) * where B isthe number of banksand N is the number of CEs. Figure 51

through Figure 54 present the analogous information for Token TBC ordering. Figure 55
through Figure 58 illustrate the combined effects of staggered operand alignment and
sequential FIFO ordering on Token BC performance. Prescheduled FC performance for
both operand alignmentsisillustrated in Figure 59 through Figure 66.

Figure 67 through Figure 100 illustrate SMP SMC performance for our access-ordering
policieswhen static scheduling isused to generate the parallel tasks. For these experiments,
“staggered aignment” means that the i th vector in the computation beginsin bank b; .
Figure 67 through Figure 70 show results for Exhaustive Bank-Centric access ordering.
Figure 71 through Figure 74 depict the performance of Token Bank-Centric access
ordering. Figure 75 through Figure 78 illustrate the anal ogous data for computations using
astaggered vector alignment. Figure 79 through Figure 82 give results for the Token BC
algorithm with sequential FIFO ordering when used on computations with staggered
vectors. Figure 83 through Figure 90 present data for Token Threshold Bank-Centric
ordering for both aligned and staggered vectors. Figure 91 through Figure 96 give results
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for FIFO-Centric ordering when all CEs are used, and Figure 97 through Figure 100 show
performance for FC ordering when one fewer CE is employed on computations with

aligned vector data.

51



Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

—— 2 banks
—-—- 4banks
— ——- 8banks
------ 16 banks
100 — . 100 —
= 1 > - = 1
S 80 S 80
= | = ]
© ‘ © ‘
S 60 - S 60
o 1 g o] i .
§ a0 0 § 407
o 17 o ¥
S 20 S 20
X 1 X 1
0 — T T T T 1 0 — T T T T 1
8 16 32 64 128 256 512 8 16 32 64 128 256 512
fifo depth fifo depth
(a) copy (b) daxpy
100 — 100 —
= 1 - < 1
S 80— S 80—
= i = 1.
© © i
S 60— S 60
O 1. i O i
§ 4 L § 40-
o I o 4
S 20 S 20
X 1 X 1
0 [ [ [ [ [ 1 0 [ [ [ [ [ 1
8 16 32 64 128 256 512 8 16 32 64 128 256 512
fifo depth fifo depth
(c) hydro/tridiag (d) scale
100 — 100 —
= 1 = 1
S 80— S 80—
2 | = |
o . S i
S 60— S 60 .
e 1 o ] g
§ 404 § 20,7
o 4 o Y.
S 20 S 20
X 1 X 1
0 [ [ [ [ [ 1 0 [ [ [ [ [ 1
8 16 32 64 128 256 512 8 16 32 64 128 256 512
fifo depth fifo depth
(e) swap (f) vaxpy
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Figure 35 Prescheduled Token BC Performance for 2 CEs (Modular Bank Sets)
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Figure 36 Prescheduled Token BC Performancefor 4 CEs (Modular Bank Sets)
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Figure 37 Prescheduled Token BC Performance for 8 CEs (Modular Bank Sets)
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Figure 38 Prescheduled Token BC Performance for 8 CEs
(Longer Vectors, Modular Bank Sets)
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Figure39 Prescheduled Token BC Performancefor 2 CEs
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Figure40 Prescheduled Token BC Performancefor 4 CEs
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Figure42 Prescheduled Token BC Performancefor 8 CEs(Longer Vectors)
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Figure46 Prescheduled Token TBC Performancefor 8 CEs(Longer Vectors)
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Figure 47 Prescheduled Token BC Performancefor 2 CEs(Staggered Alignment)
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Figure 48 Prescheduled Token BC Performancefor 4 CEs (Staggered Alignment)
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Figure 49 Prescheduled Token BC Performancefor 8 CEs (Staggered Alignment)
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Figure 50 Prescheduled Token BC Performancefor 8 CEs
(Longer Vectors, Staggered)
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Figure51 Prescheduled Token TBC Performancefor 2 CEs
(Staggered Alignment)
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Figure52 Prescheduled Token TBC Performancefor 4 CEs
(Staggered Alignment)

73



Dynamic Access Ordering for Symmetric Shared-Memory Multiprocessors

100
80—

60

40"

% of peak bandwidth

20+

0

1T T T T 1
8 16 32 64 128 256 512
fifo depth

(a) copy

100 —
80 —

60

a0

% of peak bandwidth

20 —

0 I I I I I 1
8 16 32 64 128 256 512
fifo depth

(c) hydro/tridiag

100 —

80 —

60—,

% of peak bandwidth

0 I I I I I 1
8 16 32 64 128 256 512
fifo depth

(e) swap

—— 8banks
—-—- 16 banks
— ——- 32 bhanks
------ 64 banks
100

80—

60 -

404

% of peak bandwidth

20

0

1T T T T 1
8 16 32 64 128 256 512
fifo depth

(b) daxpy

100 —

80

601~
40 4

20 —

% of peak bandwidth

0

1 1T T 1 1
8 16 32 64 128 256 512

fifo depth

(d) scale

100

80 —

60 —,~

% of peak bandwidth

0 I I I I I 1
8 16 32 64 128 256 512
fifo depth

(f) vaxpy

Figure53 Prescheduled Token TBC Performancefor 8 CEs
(Staggered Alignment)
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Figure54 Prescheduled Token TBC Performancefor 8 CEs
(Longer Vectors, Staggered Alignment)
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Figure55 Prescheduled Token BC Performancefor 2 CEs
(Sequential FIFO Ordering, Staggered Alignment)
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Figure56 Prescheduled Token BC Performancefor 4 CEs
(Sequential FIFO Ordering, Staggered Alignment)
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Figure57 Prescheduled Token BC Performancefor 8 CEs
(Sequential FIFO Ordering, Staggered Alignment)
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Figure58 Prescheduled Token BC Performancefor 8 CEs
(Sequential FIFO Ordering, Longer Vectors, Staggered Alignment)
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Figure59 Prescheduled FC Performancefor 2 CEs
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Figure 70 Static Exhaustive BC Performance for 8 CEs (Longer Vectors)
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Figure 74 Static Token BC Performance for 8 CEs (Longer Vectors)
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Figure 77 Static Token BC Performance for 8 CEs (Staggered Alignment)
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Figure 78 Static Token BC Performancefor 8 CEs
(Longer Vectors, Staggered Alignment)
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(Sequential FIFO Ordering, Staggered Alignment)
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Figure80 Static Token BC Performancefor 4 CEs
(Sequential FIFO Ordering, Staggered Alignment)
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(Sequential FIFO Ordering, Staggered Alignment)
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