A Parallel Object-Oriented Framework for Stencil
Algorithms

John F. Karpovich
Matthew Judd
W. Timothy Strayer
Andrew S. Grimshaw

January 27, 1993

Appeared in Proceedings of the Second | nternational Sympo-
sium on High Performance Distributed Computing, pp. 34-41,
July 1993.

Also availableas University of Virginia, Department of Com-
puter Science Technical Report CS-93-13 viatheweb @ ftp:/
[ftp.cs.virginia.edu/pub/techreportYREADME.html.

Work partially sponsored by NSF and DOE.

DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF VIRGINIA
THORNTON HALL

CHARLOTTESVILLE, VIRGINIA 22903-2442
(804) 982-2200 FAX: (804) 982-2214

A Parallel Object-Oriented Framework for Stencil Algorithms

John FKarpovich, Matthew Judd, Wimothy Strayerand Andrew S. Grimshaw
Department of Computer Science, University ofihia
{ifk3w | mrj2p | wts4x | grimshaw} @wyinia.edu

Abstract galling when one considers the basic, underlying similarity
We present an object-oriented framework for constructing of these algorithms.
parallel implementations of stencil algorithms. This The object-oriented programming paradignfers an

framework simplifies the development ogess by elegant solution to this problem: design a base class that
encapsulating the common aspects of stencil algorithms in encapsulates the essence of stencil algorithm behavior
a base stencil class so that application-specific derived implement that class for parallel execution, then derive

classes can be easily defined via inheritance and application-specific stencil classes that implement the

overloading. In addition, the stencil base class contains details that distinguish the application. This approach

mechanisms for parallel execution. Thesult is a high- allows the programmer to concentrate on the specifics of the
performance, parallel, application-specific stencil class. problem at hand, and to leveragé thfe work of others.

We present the design rationale for the base class and Ideally, this should result in both reduced implementation

illustrate the derivation mcess by defining two sub- time and better performing parallel code (because parallel
classes, an image convolution class and a PDE soler programming experts can implement the base class).
classes have been implemented in Mentat, an object- Additionally, if the underlying base class is portable to a

oriented parallel pogramming system that is available on wide variety of architectures, then the derived classes
a variety of platforms. Performancesults ae given for a should be as well.

network of Sun SRCstation IPCk This paper reports on our work on a stencil base class
with the properties described aboves Y\ave implemented
1. Introduction a base classSt enci | er, and two application-specific

. L . .. derived classes in the Mentat Programming Language

There is a class_of app_hcatlons whose_ |mplementat|on is (MPL). Mentat [1-3] is an object-oriented parallel
realized usmg;t_enql algprlthmslnastencn aI.gorlthm,Fhe programming system that has been implemented on a
value of a multi-dimensional array elemgnt is a function of variety of platforms including networks of workstations.
the values of other e_IemenFs W'th.m a neighborhood of th"?‘t The implementation of the stencil base class has been a
e'eme“t- Exactly W.h'Ch neighboring elements are used is success: the stencil class provides the basis for application-
defmed by astencil Fpr example, the four connectgd specific stencil algorithms, and the parallel implementation
pelghbors are usgd to fmd the qext value of an elementin aNof the base class member functionfraf the application
iterative partial diferential equation (PDE) solver good performance.

Stenpil algorithms are generally computationa!ly We present the stencil problem in more detail,
expensive and, as a consequence, they are good Cand'dateconcentrating on the data decomposition and data
for pa}rallel gxecunon. Indeed, parallel |mplem¢ntat|ops of communication implications. then provide a high-level
stencil algorithms abquqd. Furthermore, stencil algorithms overview of the implementation of the base class. it
are struc_turally very similar . present the implementations of two fdient derived

St_encn algorithms have been ported widely to parallel classes, an image convolution class and a PDE solver
architectures. Each port represents a Cor]S'der""blefoIIowed by the performance of both implementations on a

!nvestment_ of ime and ey much of which is spent network of Sun IPC workstations. a\conclude with a
implementing the same code structures that have alreadydiscussion of our future plans

been done by others. This wastedorfis particularly

2. Stencil Algorithms

This work is partially supported by NSF grants ASC- Stencil algorithms are used in a wide range of scientific
9201822 and CDA-8922545-01, and DOE grant DE-F605- 5 jications, such as image convolution, solving partial
88ER25063.

corner

(] | +1 +1 +1 boundary Block0 :- —: Block1 ;- -: Block2r -: Block3
et hien -1 et] H a H
.2‘ Fij = 4 rk‘i‘f‘“‘f‘,“‘:‘f‘“"i .
) D D D __Sde
(a) 2D 3x 3 NEWS stencil and sample function 1= g - —:--!— —— —:— i boundary
L 2 2 7"_'1‘|___|‘|___'|f‘|““_
AL | |
] H Fii= > > Uincnjri-1*M) bottom/toptf———*p—-——*tn---*pn---"-n
i, itk=1,j+1-1 k1 [IS Y YU I YN N N —— Y
1 I &% boundary *|”giock12r | Block1at (Blocki4! | Block1s
Bl Bl |
(b) 2D 3x 3 eight-connected stencil and sample functio = = =
F - final matrix, | - input matrix, M - convolution mask Figure 2 - A 4x4 rectangular decomposition
0/1/0 1/2|1 . .
10/t AR may be decomposed into several smaller pieces, each
ol1l0 1/2]1 computed in parallel. The stencil defines the region of the
(c) 2D NEWS Stenci (d) 2D 3x 3 Gaussian filter input data set needed to calculate a piece of the output data

set and, as a consequence, also defines the pattern of
Figure 1 - Typical 2 dimensional stencils. communication between the decomposed pieces. As shown
in Figure 2, if the 2D image convolution problem is
differential equations (PDg), and correlation algorithms. decomposed into a # 4 matrix of rectangular “blocks,”
Stencil algorithms are a class of algorithms that haveeach of the 16 processors needs its block of input data points
several features in common: (1) the input data set is an arraas well as data points from the boundary regions of
of arbitrary dimension and size, (2) there istemcil that processors above, belpand to the sides of the block. Each
defines a local neighborhood around a data point, (3) sompiece must therefore exchange data with its eight connected
function is applied to the neighborhood of points that areneighbors. In a parallel implementation this implies
“covered” when the stencil is centered on a particular point,communication between worker objects.
and (4) this function is applied to all points in the data setto Different stencils require dérent communications
obtain a new data set. patterns. Stencil algorithms that doréquire data from a
Figure 1 shows a two dimensional 8 3 stencil that neighbor eliminate the need to communicate with that
indicates that each output value will depeanlly on the neighbor The problem decomposition pattern alsteett
“north,” “east,” “west,” and “south” (called NEWS) the communication pattern needed. In a 2D problem there
neighboring points of the corresponding point in the input are 3 common decompositions: groups of rows, groups of
array The associated function is an example of a stencilcolumns, or rectangular blocks. For a given number of
function that uses NEWS neighbors. Figuceshows the pieces, decomposing into rows or columns requires fewer
representation of a NEWS stencil in our implementation. communications, but also requires more overall data
Figure b shows the stencil pattern needed for a 2D volume to be exchanged than a rectangular decomposition.
image convolution. In two dimensional image convolution, This is a classic tradefofand determining which
a small matrix, called mask, is applied to the input array of decomposition is best depends on the specific
image data. One such mask is shown in FigateEhch communications costs of each parallel system.
point in the result is calculated by multiplying the value of
each point in the mask by the appropriate neighbor of the2.2. Parallel Object-Oriented Solution
corresponding point in the input image and summing. The
equation in Figure L shows how to calculate the value of
the filtered image at point, {) when using a 3 3 mask.

The objective of all object-oriented solutions is to
provide a framework that exploits the commonality among
stencil algorithms and provides an environment for
2 1. Paralld Solution developing dicient parallel code to take advantage of the

inherent data parallelism. The object-oriented

The fact that the same function is applied to all points in programming paradigm, through object inheritance,
the input data set in any order and the calculation of eactsupports exploiting the common attributes of objects while
output point uses a regular pattern of neighborhood pointsallowing the user to redefine or augment specific details.
around the corresponding input point makes parallelizingOur solution is the creation of a 2D parallel stencil class
stencil algorithms a straight-forward process. Since allusing the object-oriented parallel programming system
calculations logically occur in any ordéhere is no data- Mentat.
dependence between the output data points, so the problel

user ™ M .
provided H

parallel stencil framework provided |my_DD_array| [DD_intarray| | my Stenciler | [Convolver |
by base stencil class

C++ Classes Mentat Classes

Figure 3 - Object-Oriented Stenciler Framework Figure 4 - Class Hierarchies

We have defined a base stencil class that is designed t
manage those areas that are common to all stenci
algorithms while providing a framework for the user to
create derived classes that can be tailored to specific | g 1 [
applications (Figure 3). The base class contains built-in *
member functions to perform common tasks, such as lovd 2
managing data communication between pieces. The bas
class also contains well-commented stubs for member
functions that the user must define, such as the stenci
function. This approach minimizes thefcet needed to types, includingchar, i nt, f| oat, anddoubl e. Two
create new stencil applications through reuse of commorfeatures of thédD_ar r ay class hierarchy are important:
code while supporting flexibility in creating parallel stencil (1) memory space for the matrix is contiguous, and (2) the
applications. hierarchy can easily be extended to include a richer set of

Our approach is not unique. In fact, there has recentlybase data types, including classes and structures, such as a
been a movement towards using the object-orientedDD conpl exarr ay class The contiguous allocation of
paradigm in traditionally FORRAN-dominated scientific memory allows Mentat to pa®¥D _arr ay data between
computation and numeric analysis applications. An annualprocess objects easily
conference has beerganized for this growing community Senciler Class Hierarchy

and the first one was held in April 1993 [4]. This approach) .
has also been used in developing parallel gas combustio '€ Stenci | er class provides the framework for

level O (root)

Figure 5 - Sample tree of Stenciler instances

code [5]. creating 2D stencil applications. The user creates a new
class derived fror8t enci | er. This derived class inherits
3. Implementation Sketch all of the member functions of the base class, so instances

of this new class have all of the built-in common functions

Our implementation consists of two class hierarchies, aprovided with theStencil er class. The user then
C++ DD_array class hierarchy and a Mentstenciler supplies the application-specific code by overloading
hierarchy (Figure 4). Mentat classes are very similar to C++certain virtual member functions.
classes [6] except that member functions of instances 0 An instance of aSt encil er or derived class is
Mentat classes may be executed in parallel. The Mentadesigned to handle one piece of the total arisch
system manages the communication and synchronization oSt enci | er instance can create additional workers to split
Mentat object member function invocations, exploiting the work-load into smaller pieces. These pieces, in turn,
both data and functional parallelism. may be further divided, creating a general tree structure of
DD_array Class Hierarchy pieces as shown in Figure 5. Each new level of the tree has
a “contained-in” relationship to the previous higher level.
The pieces at leaves of this tree structure are the workers
who perform the stencil function. The interior instances are
managers for the workers below them; the managers
distribute and synchronize the work of their sub-piece and
collect the results. This hierarchical tree structure of
processes is a powerful and flexible tool for decomposing a
stencil problem, especially when running onfediént
‘hardware platforms.

Stencil definitions and input and output data sets of 2D
stencil applications are simply 2D arrays. In order to
facilitate using arrays in the Mentat environment, a
hierarchy of two dimensional array classes has beer
developed (the 2D array classes should really be &
polymorphic class, but we do not currently have a compiler
that supports C++ templates). The base cléBsar r ay,
defines commonly used functions including creating arrays
extracting or overlaying sub-arrays, row and point access
etc. This base class has been extended through the creatic
of derived sub-classes for most of the primitive C data

persistent mentat class Stenciler {

public:

// *kkkkkkkkk BUILT_IN FUNCT'ONS *kkkkkkkkk
int addStencil (stencil *sten)
int doStencil();
int getNumRows();
int getNumCols();
MATRIX_TYPE *getRegion(int ulr, int ulc, int Irr, int Irc);
void init();
int putRegion(int ulr, int ulc, MATRIX_TY PE *matrix);
int setDest(string *dNm); // set destination file name
int setGoal(float convGoal); // set convergence test goal
int setlterations(int numlterations);// set number of iterations
int setPieces(int xPieces); // set number of worker pieces
int setRowsAndCols(int rows, int cols); // set size of data set
int setRowPieces(int rowPieces); // set number of vertical pieces
int setSource(string *sNm); // set source file name
int setWindow(int w_ulrow, int w_ulCal,

int w_IrRow, int w_IrCol);

float checkConvergence();
int checkConvergence();

[[**Fxxxxxx | JSER DEFINED FUNCTIONS! *****x %%
float checkConvergencePiece();
int doStencilPiece(stencil *sten);
int getMatrixPiece();
stencil *getNextStencil();
int prepareDest();
int putMatrixPiece(); };

Figure 6 - Stenciler class interface

3.1. UserDefined Functions

The St enci | er class contains two kinds of member
functions: built-in functions to handle common tasks, and
user-defined functions for application-specific code (Figure
6 shows the Stenciler class interface). Stencil
applications are tailored by overloading several provided
function stubs with user-defined functions. The
doStencil Piece(), getNextStencil() and
checkConver gencePi ece() functions are the heart
of the stencil application, defining the work to be done for
each data point and controlling which stencil to apply and
when processing is compl ete. In addition to these functions,
three user-defined functions, get Matri xPi ece(),
put Matri xPi ece() and prepareDest(), are
needed to handl e application-specific file 1/O operations.

Sencil Function

ThedoSt enci | Pi ece() function (Figure 7) defines
the stencil function. This is where the actual work of
calculating each worker's piece of the result is
accomplished. For example, in image convolution this
function is a4-nested loop for performing the multiply and
sum necessary to calculate each output value. The stub
provided for this function contains information for how a
typical stencil function may be coded. Often, the user only
needs to copy the stub and provide a small amount of
additional code to implement the stencil function.

int Convolver::doStencil Piece(stencil* sten) {
[/ variable declarations (omitted)

/I The following functionality is IN THE STUB (omitted here)
/I - calc rows and colsin current stencil (stenRows, stenCols)
/I - calc coords of this piece’s working window (ulr, ulc, Irr, Irc)

/I calculate divisor - USER PROVIDED
stensum = 0;
for(i=0; i < stenRows; i++)
for (j=0; stenCals; j++)

if ((*sten)[i][j] < 0) stenSum -= (*sten)[i][j]);
else stenSum += (*sten)[i][j]);

if (stenSum !=0) divisor = stenSum;

elsedivisor = 1;

// outer two loops PROVIDED IN STUB
for (i=ulr; i <=lrr; i++)
for (j=ulc; j <=Irc; j++) {
/I begin USER-DEFINED code
(*destArray)[i][j] = O;
for (k=0; k < stenRows; k++)
for (I=0; | < stenCals; |++)
(*destArray)[i][j] += (*sten)[K][I] *
(*srcArray)[i + k - stenRows/2][j + | - stenCols/2];
(*destArray)[i][j] /= divisor;
/I end USER-DEFINED code
}
}

Figure 7 - Convolver stencil function

Control Functions

Stencil applications are often iterative or, in the case of
image convolution, several stencils may be applied in
succession. To control the application of the stencil
function, the user-defined get Next St enci | () function
(Figure 8) iscalled before each iteration to determine which
stencil to apply next. In the case of successive image
convolutions, thisfunction simply returnsthe next stencil in
the sencil lis. For the PDE problem,
get Next St enci | () determines whether the
computation has converged and, if not, continues applying
aNEWS stencil.

Iterative stencil algorithms often require a calculation to
determine when the convergence criteria has been met. The
overloaded checkConver gencePi ece() function
(Figure 9) is defined when necessary to calculate some
convergence data for each worker’s piece. This data is
collected by the built-in checkConver gence()
function and can be used to determine the next stencil to
apply and when the algorithm is compl eted.

File I/O Functions

Since file formats differ from application to application,
the user must define how to read and write the data sets. The
get Matri xPiece() and putMatrixPiece()
functions must be defined to read in/write out the data of a
worker piece. These functions are called respectively at the
beginning and end of the doStencil () function
(discussed below) for each leaf worker inthe St enci | er

stencil *PDE_Solver::getNextStencil() {

/I currentStencil points to the next stencil in the stencil list.

I/ convVal isthe value set by the setGoal () function.

/I currlter isthe current iteration number - declared and set to O

/I local variable declarations - PROVIDED IN STUB
stencil* next;

/I local variable declarations - USER-DEFINED
float testVal; // convergence value

1/ begin USER-PROVIDED code

testVal = checkConvergence();

if (currlter == Q) next = currentStencil-><t;

else
if (testVal <= convVal) next = NULL; // we're done
€else next = currentStencil->st; // keep plugging away

currlter++;

/l end USER-PROVIDED code

return(next); }

Figure 8 - PDE_Solver getNextStencil()

worker tree. The user may also redefine the
pr epar eDest () functionto set up the destinationfile by,
for example, copying the header of the input file to the
output file.

3.2. Built-in Stenciler Member Functions

The built-in functions are designed to perform certain
tasks without the user writing any new code. Most of these
functions allow the user to tailor a St enci | er object by
defining such attributes as the number of sub-pieces, the
shape of the decomposition, the names of the source and
destination files, if applicable, the stencil(s) to be used, etc.
Other built-in functions perform common tasks, for
example, retrieving or overlaying a region of the array.
These functions can be called from the user-defined code.
Once the user-defined code has been provided and the
Stenciler object has been initidized, the
doSt enci | () function is called to perform the stencil
operation.

Set-up Functions

The functions with the set prefix alow the user to
provide information about the current application to a
St enci | er object, and the functions with the get prefix
alow the user to retrieve current values. The St enci | er
implementation contains the notion of a working window
within the data set where the stencil function is applied.
Values outside of this window will not be changed, but will
be used as input to the calculation of neighboring values
that are within the working window. The window is set up
by specifying the upper left and lower right corners in the
set W ndow() function.

To establish the communication pattern for the
application, the stencil(s) must be defined. In our
implementation, stencils are represented by small

float PDE_Solver::checkConvergencePiece() {
/I local variable declarations - USER-DEFINED
float total; // convergence value to be returned
float temp;
inti,};

/l USER-PROVIDED code
total = 0.0;
if (prevArray == NULL) // i.e. if firstiteration
prevArray = new MATRIX_TY PE(myRows+2,myCols+2);
dse{
/I calc working window (ulr, ulc, Irr, Irc) - omitted
/I calc convergence test value for my piece
for (i=ulr; i <=Irr; i++)
for(j=ulc; j <=Irc; j++) { .
temp = (*srcArray)[i][j] - (*prevArray)[i][j];
total +=temp * temp;

/I set prevArray to current solution
prevArray->overlay(ulr,ulc,srcArray->extract(ulr,ulc,Irr,Irc));
return(total); }

Figure 9 - PDE_Solver checkConvergencePiece()

DD_ar r ays. The non-zero valuesin the array indicate that
a particular neighbor is needed in the calculation. The
location of non-zero points and the size of the stencil
determine the communication pattern and volume of data
communicated. Stencils are kept in alist so that a series of
stencils can be applied in succession. New stencils are
added to thislist viatheaddSt enci | () function.

DoSencil Function

OnceaSt enci | er objectiscreated andinitialized, the
doSt enci | () function is called to execute the stencil.
This function does the following:

(1) creates and initializes al additional worker objects
needed;

(2) callseach worker to read its portion of the input array
(via get Mat ri xPi ece());

(3) whilethereis more work to be done (viaget Next S-
tencil ()), loops performing the following tasks:

(a) exchanges necessary boundary data;
(b) executes the stencil function (via doSt enci | -
Pi ece());

(4) prepares the destination file and calls each worker to
write its piece (via pr epar eDest () and put Ma-
trixPiece());

It isimportant to note that the user need only create the
root-level St enci | er object and doSt enci | () does
the rest. Also, the user does not need to modify this
function, the user need only provide severa user-defined
functions described above in Section 3.1.

Other Functions

The checkConver gence() function is provided to
control caling each leaf worker’'s user-defined

checkConver gencePi ece() function and collecting
the results. When called, this function determines whether
the worker is a leaf node or an interior node. If it is an
interior node, it callscheckConver gence() for each of
its immediate subordinates, aggregates the partial test
values, and sends the result to the next higher level in the
worker tree. If the worker is a leaf, then
checkConver gencePi ece() iscalledto calculate the
piece’s partial result. The goal of this function isto abstract
out the details of the worker hierarchy whenever possible.

The final two built-in functions, get Regi on() and
put Regi on(), are provided to retrieve or overlay a
region of the overall array. These functions are useful, for
example, in checking convergence criteria.

4. Sample Stencil Implementations

To illustrate the use of the stencil framework we describe
our experience with two sample implementations; an image
convolver and a PDE solver using Jacobi iteration.

Image Convolution

Image convolution is a common application in digital
image processing and computer vision [7]. In two
dimensional image convolution, a small 2D stencil, also
called a filter or mask, defines a region surrounding each
picture element (pixel) whose values will be used in
calculating the corresponding point in the convolved image.
Each element of thefilter ismultiplied by the corresponding
neighbor of the current pixel, and the results are summed
and normalized. Figure 1b shows the stencil function for a
3 x 3 mask and 1d shows a common smoothing filter.

To implement the convolution application, the following
steps were necessary:

(1) define the type of the input and output data sets to be
DD chararray;

(2) create a Convol ver class derived from St en-
ciler;

(3) overload doSt enci | Pi ece() to define the stencil
function;

(4) overload the control functionget Next St enci | () ;

(5) redefine the file 1/O functions to input and output the
matrix and prepare the destination fileg;

(6) create amain program to create, initialize and execute
an instance of the Convol ver class.

Creating the Convol ver classwasstraight-forward; in
fact, there were no additional variables or functions needed.
The stencil function for convolution fits the framework
provided in the stub for doSt enci | Pi ece() . The stub
provides code to caculate the bounds of the working
window and to loop through each point in the worker’s
piece. The only new code needed was the inner doubly
nested loop to multiply and accumulate the value of a point

20°
aebeaey
1000 — L LYY Y 0
BESSCRSSS
AR AR S R
10°

Figure 10 - Grid approximation for heated plate

and the code to normalize theresult. An abbreviated version
of the overloaded doStencil Pi ece() function is
shown in Figure 7. Note that the code shown is used to
clearly illustrate the use of the function and that standard C
optimization techniques were used in the final code. The
get Next St enci | () function simply chainsthrough the
list of stencils supplied during initialization, returning each
inturn. Therefore, asingle Convol ver instance can apply
a series of filters to an image in succession. The
get Mat ri xPi ece() function was redefined to read
from the input file the block of data “owned” by each leaf
worker instance. Similarly, the put Mat ri xPi ece()
function was redefined to write to file the result of each leaf
worker instance. Finally, the pr epar eDest () function
was overloaded to prepare the header of the output file.

The main program has the following structure: (1)
declare, create and initialize an instance of the Mentat class
Convol ver, (2) tailor the instance by setting the source
and destination file names, the number of worker pieces, the
number of rows and columns in the data set, the number of
row pieces (optional), and the list of convolution stencils
(filters) to apply, (3) call doSt enci | () to execute the
stencil algorithm, and (4) destroy the Mentat object.

PDE Solver Using Jacobi Iteration

Another common and important class of stencil
algorithms are iterative methods. Jacobi iteration is a
method for solving certain systems of equations of the form
Ax = b, where A isamatrix of coefficients, X isa vector
of variables, and b is a vector of constants. The general
procedure for using Jacobi iteration is to first guess the
solution for al variables, and then to iteratively refine the
solution until the difference between successive answersis
below some pre-determined threshold [8].

The specific application of Jacobi iteration implemented
and discussed here is the “heated plate” problem. The
heated plate problem consists of aplate or sheet of material
that has constant temperatures applied around the
boundaries, and the goad is to determine the steady-state
temperatures in the interior of the plate (Figure 10). The

temperature in the interior region is approximated by
dividing the plate into aregular 2D grid pattern and solving
for each of the grid points. The values at each point are
approximated by the average of the values in the NEWS
neighboring points. This transforms the problem into a
system of linear equations which can be solved using Jacobi
iteration. The form of the stencil function needed for Jacobi
iteration is shown in Figure la.

To implement the PDE solver application, the following
steps were necessary:

(1) define the type of the input and output data sets to be
DD fl oat array;

(2) create a PDE_Sol ver class derived from St en-
ciler;

(3) overload doSt enci | Pi ece() to define the stencil
function;

(4) overload checkConver gencePi ece() to calcu-
late the value of the convergence test for each leaf
worker’s piece;

(5) overload the control function get Next St enci | () ;

(6) redefine the file 1/O functions to input and output the
matrix and prepare the destination file;

(7) create amain program to create, initialize and execute
an instance of the PDE_Sol ver class.

Creating the PDE_Sol ver class was dightly different
from the Convol ver example. The difference is that a
new variable, pr evAr r ay, was added to store the source
array of the previous iteration. This vaue is used in
checkConver gencePi ece() to determine whether
the solution has converged. The stencil function for this
problem isvery simple and uses the framework provided in
the doSt enci | Pi ece() stub with few modifications.
The only user-defined codeindoSt enci | Pi ece() isto
calculate the average of the 4-connected neighbors for each
matrix point.

Thecontrol structure of the PDE_Solver requiresboth an
overloaded get Next Stencil () function and an
overloaded checkConver gencePi ece() function.
The get Next Stencil () function smply cals the
provided checkConver gence() function using the
result to test if the iteration should continue (Figure 8). As
discussed in Section 3.1, the checkConver gence()
function handles calling checkConver gencePi ece()
for each leaf worker and collects and aggregates the results.
The checkConvergencePi ece() function was
overloaded to calculate the convergence value of each
matrix piece (Figure 9). The test value needed for the PDE
solver problem is the sum of the squares of the difference
between each point in the current and previous solutions.

The file 1/0 functions, get Matri xPi ece(),
put Mat ri xPi ece(), and prepareDest (), were
redefined exactly as in the Convol ver example and the

Convolver PDE_Solver
Best Best
Pieces| Execution Execution
Time Speedup Time Speedup

(min:secs) (min:secs)
1 49:33 N/A 43:39 N/A
2 24:33 2.0 23:01 1.9
4 12:37 4.0 11:37 3.8
6 8:47 5.6 7:53 55
8 7:07 7.0 7:08 6.1
10 5:53 8.4 6:47 6.4
12 5:08 9.7 6:23 6.8
14 4:57 10.0 6:10 7.1

Table 1: Performance Results

main program follows the same general outline with a few
additions. Since the PDE problem defines constant
temperature values around the matrix borders, the working
window had to be set to include al of the matrix except the
border region. This prevented the border from being
changed during the stencil calculations. The convergence
goal was set to an appropriate value to stop the iteration
when the solution was within acceptable limits.

5. Performance

Our goal was to create a framework for stencil
algorithms where the user can easily produce parallel code.
The reason for wanting parallel codeis, of course, speed. In
order for our approach to be successful, the framework must
provide a user with a program that is fast and exploits the
inherent data parallelism of stencil applications. To test our
performance we created two versions of each class, a
sequential version written strictly in C++, and a parallel
version written in C++/MPL. We executed the sequential
versions on a Sun SPARCstation |PC and recorded the best
of the wall-clock execution times. Similarly, we ran the
paralel versions on a network of 16 IPCs connected via
ethernet. The parallel versions were executed decomposing
the problem into from two to fourteen row pieces. Each
decomposition was run several times and the best time for
each decomposition was recorded.

For the Convol ver tests, both the sequential and
parallel versions were executed using identical problems:. a
2000 x 2000 8-hit grey scale image convolved with three
successive 9 x 9 filters. The PDE_Sol ver problem used a
1024 x 1024 grid of floating point numbers to estimate the
interior temperatures of the heated plate problem. Table 1
showsthe raw best execution times and Figure 11 showsthe
speedup curve for the problems.

These results show good performance for the parallel
implementation. Both speedup curves follow a classic
pattern with nearly linear speedup at low numbers of

Speedup Curve for Convolver and PDE Solver

[=)

Speedup (Time Sequentil/Time Porall

O

o} 2 12 14

4 5 8 0
Number of Pieces (Processors)

Figure 11 - Stenciler Speedup Curve

processors and then declining margina return from the
addition of more processors. This phenomenon is caused by
two factors. First, computation granularity decreases as the
problem is broken into smaller and smaller pieces, causing
synchronization and communication to become a larger
percentage of execution time. Second, time spent executing
code that isinherently sequential, such asfile l/O, increases
as a percentage of total run time. We would expect that this
decline in performance would be less pronounced with
larger problem sizes or a more computationally expensive
stencil function. Overall, the convolution example
performed better because its computation granularity is
significantly greater than for the PDE solver.

6. Summary and Future Work

When we began developing our framework for stencil
algorithms, we had several goas in mind: (1) the
environment should be easy to use for the application
developer, facilitating rapid development of new stencil
applications, (2) the framework should provide as much
built-in functionality as possible to exploit the similarities
among stencil algorithms and to reduce the effort needed by
the programmer, (3) the framework should encourage code
re-use wherever possible, (4) the programs generated must
exploit the parallelism inherent in stencil algorithms and
perform adequately, and (5) the code developed should be
portable. The St enci | er class hierarchy meets these
goals. The object-oriented framework and especialy the
built-in functions provided in the base class support the
goals of ease of use, built-in code for common tasks, and
codere-use. The parallel environment of the Mentat system
providesthe basisfor exploiting the data parallelism natural
to stencil algorithms. Performance results show that the
programs produced using the St enci | er framework are
capable of high performance. Finally, the Mentat
environment provides an environment for easily porting
user code from one environment to another.

The results are encouraging, but there are a number of
areas where our approach can be improved and extended.
The class interfface and hierarchy still needs some

clarification and revision. Theseimprovementswill become
apparent as our experience with using this approach
increases. We plan to port the St enci | er class and
sampleimplementation code to a broader range of hardware
platforms. We also would like to extend the domain of
problems that can be supported using our general approach
by creating higher dimensional stencil class hierarchiesand
applying the same technique to other classes of algorithms.
Finally, we would like to extend the model of our base
classes to include encapsulation of scheduling and problem
decomposition decision information to facilitate better
performance while keeping the detail s away from the user.
Availability

Mentat is available via anonymous FTP for Sun 3, Sun
4, SGI, iPSC/2, and iPSC/860. Paragon, CM-5 and RS6000
versions are expected in Summer 1993. The St enci | er
code and related documentation will also be available by
the time of the conference (July 1993). For further
information, send email to mentat@Virginia.edu.

Acknowl edgments

We would like to thank Mike DeLong for his help with
the mathematics behind the Jacobi iteration PDE solver.

7. References

[1] A. S. Grimshaw, “Easy to Use Object-Oriented Parallel
Programming with Mentat,” |EEE Computer, pp. 39-51,
May, 1993.

[2] A. S Grimshaw, E. Loyot Jr., and J. Weissman, “Mentat
Programming Language (MPL) Reference Manua,” Uni-
versity of Virginia, Computer Science TR 91-32, 1991.

[3] A. S Grimshaw, W. Timothy Strayer, and Padmini
Narayan, “Dynamic, Object-Oriented Parallel Processing,”
to appear in |IEEE Parallel and Distributed Technology:
Systems and Applications, May 1993.

[4] Proceedings of the First Annual Object-Oriented Numerics
Conference, April 1993.

[5] JF Macfarlane, et a, “Application of Parallel Object-Ori-
ented Environment and Toolkit (POET) to Combustion
Problems,” Sandia report, September 1992.

[6] B. Stroustrup, The C++ Programming Language, 2nd ed.
Addison-Wedley, Reading, Mass., 1991.

[71 Rafeel C. Gonzales and Paul Wintz, Digital Image Pro-
cessing, 2nd ed. Addison-Wesley, Reading, Mass., 1987.

[8] M. J Quinn, Designing Efficient Algorithms For Parallel
Computers, McGraw-Hill Book Company, New York,
1987.

