
DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF VIRGINIA
THORNTON HALL
CHARLOTTESVILLE, VIRGINIA 22903-2442
(804) 982-2200 FAX: (804) 982-2214

A Parallel Object-Oriented Framework for Stencil
Algorithms

John F. Karpovich
Matthew Judd

W. Timothy Strayer
Andrew S. Grimshaw

January 27, 1993

Appeared in Proceedings of the Second International Sympo-
sium on High Performance Distributed Computing, pp. 34-41,
July 1993.
Also available as University of Virginia, Department of Com-
puter Science Technical Report CS-93-13 via the web @ ftp:/
/ftp.cs.virginia.edu/pub/techreports/README.html.

Work partially sponsored by NSF and DOE.

Abstract
We present an object-oriented framework for constructing
parallel implementations of stencil algorithms. This
framework simplifies the development process by
encapsulating the common aspects of stencil algorithms in
a base stencil class so that application-specific derived
classes can be easily defined via inheritance and
overloading. In addition, the stencil base class contains
mechanisms for parallel execution. The result is a high-
performance, parallel, application-specific stencil class.
We present the design rationale for the base class and
illustrate the derivation process by defining two sub-
classes, an image convolution class and a PDE solver. The
classes have been implemented in Mentat, an object-
oriented parallel programming system that is available on
a variety of platforms. Performance results are given for a
network of Sun SPARCstation IPCs1.

1. Introduction

There is a class of applications whose implementation is
realized usingstencil algorithms. In a stencil algorithm, the
value of a multi-dimensional array element is a function of
the values of other elements within a neighborhood of that
element. Exactly which neighboring elements are used is
defined by astencil. For example, the four connected
neighbors are used to find the next value of an element in an
iterative partial differential equation (PDE) solver.

Stencil algorithms are generally computationally
expensive and, as a consequence, they are good candidates
for parallel execution. Indeed, parallel implementations of
stencil algorithms abound. Furthermore, stencil algorithms
are structurally very similar.

Stencil algorithms have been ported widely to parallel
architectures. Each port represents a considerable
investment of time and energy, much of which is spent
implementing the same code structures that have already
been done by others. This wasted effort is particularly

1. This work is partially supported by NSF grants ASC-
9201822 and CDA-8922545-01, and DOE grant DE-F605-
88ER25063.

galling when one considers the basic, underlying similarity
of these algorithms.

The object-oriented programming paradigm offers an
elegant solution to this problem: design a base class that
encapsulates the essence of stencil algorithm behavior,
implement that class for parallel execution, then derive
application-specific stencil classes that implement the
details that distinguish the application. This approach
allows the programmer to concentrate on the specifics of the
problem at hand, and to leverage off the work of others.
Ideally, this should result in both reduced implementation
time and better performing parallel code (because parallel
programming experts can implement the base class).
Additionally, if the underlying base class is portable to a
wide variety of architectures, then the derived classes
should be as well.

This paper reports on our work on a stencil base class
with the properties described above. We have implemented
a base class,Stenciler, and two application-specific
derived classes in the Mentat Programming Language
(MPL). Mentat [1-3] is an object-oriented parallel
programming system that has been implemented on a
variety of platforms including networks of workstations.
The implementation of the stencil base class has been a
success: the stencil class provides the basis for application-
specific stencil algorithms, and the parallel implementation
of the base class member functions afford the application
good performance.

We present the stencil problem in more detail,
concentrating on the data decomposition and data
communication implications. We then provide a high-level
overview of the implementation of the base class. We next
present the implementations of two different derived
classes, an image convolution class and a PDE solver,
followed by the performance of both implementations on a
network of Sun IPC workstations. We conclude with a
discussion of our future plans.

2. Stencil Algorithms

Stencil algorithms are used in a wide range of scientific
applications, such as image convolution, solving partial

A Parallel Object-Oriented Framework for Stencil Algorithms

John F. Karpovich, Matthew Judd, W. Timothy Strayer, and Andrew S. Grimshaw

Department of Computer Science, University of Virginia

{jfk3w | mrj2p | wts4x | grimshaw} @virginia.edu

differential equations (PDE’s), and correlation algorithms.
Stencil algorithms are a class of algorithms that have
several features in common: (1) the input data set is an array
of arbitrary dimension and size, (2) there is astencil that
defines a local neighborhood around a data point, (3) some
function is applied to the neighborhood of points that are
“covered” when the stencil is centered on a particular point,
and (4) this function is applied to all points in the data set to
obtain a new data set.

Figure 1a shows a two dimensional 3× 3 stencil that
indicates that each output value will dependonly on the
“north,” “east,” “west,” and “south” (called NEWS)
neighboring points of the corresponding point in the input
array. The associated function is an example of a stencil
function that uses NEWS neighbors. Figure 1c shows the
representation of a NEWS stencil in our implementation.

Figure 1b shows the stencil pattern needed for a 2D
image convolution. In two dimensional image convolution,
a small matrix, called amask, is applied to the input array of
image data. One such mask is shown in Figure 1d. Each
point in the result is calculated by multiplying the value of
each point in the mask by the appropriate neighbor of the
corresponding point in the input image and summing. The
equation in Figure 1b shows how to calculate the value of
the filtered image at point (i, j) when using a 3× 3 mask.

2.1. Parallel Solution

The fact that the same function is applied to all points in
the input data set in any order and the calculation of each
output point uses a regular pattern of neighborhood points
around the corresponding input point makes parallelizing
stencil algorithms a straight-forward process. Since all
calculations logically occur in any order, there is no data-
dependence between the output data points, so the problem

Figure 1 - Typical 2 dimensional stencils.

(a) 2D 3× 3 NEWS stencil and sample function

F - final matrix, I - input matrix, M - convolution mask
(b) 2D 3× 3 eight-connected stencil and sample function

1 2 1
2 4 2
1 2 1

(d) 2D 3× 3 Gaussian filter

0 1 0
1 0 1
0 1 0

(c) 2D NEWS Stencil

Fi j,

Ii 1– j,
Ii 1+ j,

Ii j 1–,
Ii j 1+,

+ + +

4
---=

Fi j,
Ii k 1–+ j l 1–+, Mk l,×()

l 0=

2

∑
k 0=

2

∑=

may be decomposed into several smaller pieces, each
computed in parallel. The stencil defines the region of the
input data set needed to calculate a piece of the output data
set and, as a consequence, also defines the pattern of
communication between the decomposed pieces. As shown
in Figure 2, if the 2D image convolution problem is
decomposed into a 4× 4 matrix of rectangular “blocks,”
each of the 16 processors needs its block of input data points
as well as data points from the boundary regions of
processors above, below, and to the sides of the block. Each
piece must therefore exchange data with its eight connected
neighbors. In a parallel implementation this implies
communication between worker objects.

Dif ferent stencils require different communications
patterns. Stencil algorithms that don’t require data from a
neighbor eliminate the need to communicate with that
neighbor. The problem decomposition pattern also effects
the communication pattern needed. In a 2D problem there
are 3 common decompositions: groups of rows, groups of
columns, or rectangular blocks. For a given number of
pieces, decomposing into rows or columns requires fewer
communications, but also requires more overall data
volume to be exchanged than a rectangular decomposition.
This is a classic trade-off and determining which
decomposition is best depends on the specific
communications costs of each parallel system.

2.2. Parallel Object-Oriented Solution

The objective of all object-oriented solutions is to
provide a framework that exploits the commonality among
stencil algorithms and provides an environment for
developing efficient parallel code to take advantage of the
inherent data parallelism. The object-oriented
programming paradigm, through object inheritance,
supports exploiting the common attributes of objects while
allowing the user to redefine or augment specific details.
Our solution is the creation of a 2D parallel stencil class
using the object-oriented parallel programming system
Mentat.

Figure 2 - A 4x4 rectangular decomposition

corner
boundary

bottom/top
boundary

Block0 Block1 Block2 Block3

Block15Block12 Block13 Block14

side
boundary

We have defined a base stencil class that is designed to
manage those areas that are common to all stencil
algorithms while providing a framework for the user to
create derived classes that can be tailored to specific
applications (Figure 3). The base class contains built-in
member functions to perform common tasks, such as
managing data communication between pieces. The base
class also contains well-commented stubs for member
functions that the user must define, such as the stencil
function. This approach minimizes the effort needed to
create new stencil applications through reuse of common
code while supporting flexibility in creating parallel stencil
applications.

Our approach is not unique. In fact, there has recently
been a movement towards using the object-oriented
paradigm in traditionally FORTRAN-dominated scientific
computation and numeric analysis applications. An annual
conference has been organized for this growing community
and the first one was held in April 1993 [4]. This approach
has also been used in developing parallel gas combustion
code [5].

3. Implementation Sketch

Our implementation consists of two class hierarchies, a
C++ DD_array class hierarchy and a MentatStenciler
hierarchy (Figure 4). Mentat classes are very similar to C++
classes [6] except that member functions of instances of
Mentat classes may be executed in parallel. The Mentat
system manages the communication and synchronization of
Mentat object member function invocations, exploiting
both data and functional parallelism.

DD_array Class Hierarchy
Stencil definitions and input and output data sets of 2D

stencil applications are simply 2D arrays. In order to
facilitate using arrays in the Mentat environment, a
hierarchy of two dimensional array classes has been
developed (the 2D array classes should really be a
polymorphic class, but we do not currently have a compiler
that supports C++ templates). The base class,DD_array,
defines commonly used functions including creating arrays,
extracting or overlaying sub-arrays, row and point access,
etc. This base class has been extended through the creation
of derived sub-classes for most of the primitive C data

Figure 3 - Object-Oriented Stenciler Framework

user
provided

parallel stencil framework provided
by base stencil class

types, includingchar, int, float, anddouble. Two
features of theDD_array class hierarchy are important:
(1) memory space for the matrix is contiguous, and (2) the
hierarchy can easily be extended to include a richer set of
base data types, including classes and structures, such as a
DD_complexarray class. The contiguous allocation of
memory allows Mentat to passDD_array data between
process objects easily.

Stenciler Class Hierarchy
The Stenciler class provides the framework for

creating 2D stencil applications. The user creates a new
class derived fromStenciler. This derived class inherits
all of the member functions of the base class, so instances
of this new class have all of the built-in common functions
provided with theStenciler class. The user then
supplies the application-specific code by overloading
certain virtual member functions.

An instance of aStenciler or derived class is
designed to handle one piece of the total array. Each
Stenciler instance can create additional workers to split
the work-load into smaller pieces. These pieces, in turn,
may be further divided, creating a general tree structure of
pieces as shown in Figure 5. Each new level of the tree has
a “contained-in” relationship to the previous higher level.
The pieces at leaves of this tree structure are the workers
who perform the stencil function. The interior instances are
managers for the workers below them; the managers
distribute and synchronize the work of their sub-piece and
collect the results. This hierarchical tree structure of
processes is a powerful and flexible tool for decomposing a
stencil problem, especially when running on different
hardware platforms.

DD_array

my_StencilerDD_intarraymy_DD_array Convolver

Stenciler

Figure 4 - Class Hierarchies

C++ Classes Mentat Classes

......

Figure 5 - Sample tree of Stenciler instances

level 0 (root)

level 1

level 2

3.1. User-Defined Functions

The Stenciler class contains two kinds of member
functions: built-in functions to handle common tasks, and
user-defined functions for application-specific code (Figure
6 shows the Stenciler class interface). Stencil
applications are tailored by overloading several provided
function stubs with user-defined functions. The
doStencilPiece(), getNextStencil() and
checkConvergencePiece() functions are the heart
of the stencil application, defining the work to be done for
each data point and controlling which stencil to apply and
when processing is complete. In addition to these functions,
three user-defined functions, getMatrixPiece(),
putMatrixPiece() and prepareDest(), are
needed to handle application-specific file I/O operations.

Stencil Function
The doStencilPiece() function (Figure 7) defines

the stencil function. This is where the actual work of
calculating each worker’s piece of the result is
accomplished. For example, in image convolution this
function is a 4-nested loop for performing the multiply and
sum necessary to calculate each output value. The stub
provided for this function contains information for how a
typical stencil function may be coded. Often, the user only
needs to copy the stub and provide a small amount of
additional code to implement the stencil function.

persistent mentat class Stenciler {
public:
// ********* BUILT-IN FUNCTIONS *********

int addStencil(stencil *sten)
int doStencil();
int getNumRows();
int getNumCols();
MATRIX_TYPE *getRegion(int ulr, int ulc, int lrr, int lrc);
void init();
int putRegion(int ulr, int ulc, MATRIX_TYPE *matrix);
int setDest(string *dNm); // set destination file name
int setGoal(float convGoal); // set convergence test goal
int setIterations(int numIterations);// set number of iterations
int setPieces(int xPieces); // set number of worker pieces
int setRowsAndCols(int rows, int cols); // set size of data set
int setRowPieces(int rowPieces); // set number of vertical pieces
int setSource(string *sNm); // set source file name
int setWindow(int w_ulrow, int w_ulCol,

int w_lrRow, int w_lrCol);
float checkConvergence();
int checkConvergence();

// ********* USER DEFINED FUNCTIONS*********
float checkConvergencePiece();
int doStencilPiece(stencil *sten);
int getMatrixPiece();
stencil *getNextStencil();
int prepareDest();
int putMatrixPiece(); };

Figure 6 - Stenciler class interface

Control Functions
Stencil applications are often iterative or, in the case of

image convolution, several stencils may be applied in
succession. To control the application of the stencil
function, the user-defined getNextStencil() function
(Figure 8) is called before each iteration to determine which
stencil to apply next. In the case of successive image
convolutions, this function simply returns the next stencil in
the stencil list. For the PDE problem,
getNextStencil() determines whether the
computation has converged and, if not, continues applying
a NEWS stencil.

Iterative stencil algorithms often require a calculation to
determine when the convergence criteria has been met. The
overloaded checkConvergencePiece() function
(Figure 9) is defined when necessary to calculate some
convergence data for each worker’s piece. This data is
collected by the built-in checkConvergence()
function and can be used to determine the next stencil to
apply and when the algorithm is completed.

File I/O Functions
Since file formats differ from application to application,

the user must define how to read and write the data sets. The
getMatrixPiece() and putMatrixPiece()
functions must be defined to read in/write out the data of a
worker piece. These functions are called respectively at the
beginning and end of the doStencil() function
(discussed below) for each leaf worker in the Stenciler

int Convolver::doStencilPiece(stencil* sten) {
// variable declarations (omitted)

// The following functionality is IN THE STUB (omitted here)
// - calc rows and cols in current stencil (stenRows, stenCols)
// - calc coords of this piece’s working window (ulr, ulc, lrr, lrc)

// calculate divisor - USER PROVIDED
stensum = 0;
for(i=0; i < stenRows; i++)

for (j=0; stenCols; j++)
if ((*sten)[i][j] < 0) stenSum -= (*sten)[i][j]);
else stenSum += (*sten)[i][j]);

if (stenSum != 0) divisor = stenSum;
else divisor = 1;

// outer two loops PROVIDED IN STUB
for (i=ulr; i <= lrr; i++)

for (j=ulc; j <= lrc; j++) {
// begin USER-DEFINED code
(*destArray)[i][j] = 0;
for (k=0; k < stenRows; k++)

for (l=0; l < stenCols; l++)
(*destArray)[i][j] += (*sten)[k][l] *

(*srcArray)[i + k - stenRows/2][j + l - stenCols/2];
(*destArray)[i][j] /= divisor;
// end USER-DEFINED code

}
}

Figure 7 - Convolver stencil function

worker tree. The user may also redefine the
prepareDest() function to set up the destination file by,
for example, copying the header of the input file to the
output file.

3.2. Built-in Stenciler Member Functions

The built-in functions are designed to perform certain
tasks without the user writing any new code. Most of these
functions allow the user to tailor a Stenciler object by
defining such attributes as the number of sub-pieces, the
shape of the decomposition, the names of the source and
destination files, if applicable, the stencil(s) to be used, etc.
Other built-in functions perform common tasks, for
example, retrieving or overlaying a region of the array.
These functions can be called from the user-defined code.
Once the user-defined code has been provided and the
Stenciler object has been initialized, the
doStencil() function is called to perform the stencil
operation.

Set-up Functions
The functions with the set prefix allow the user to

provide information about the current application to a
Stenciler object, and the functions with the get prefix
allow the user to retrieve current values. The Stenciler
implementation contains the notion of a working window
within the data set where the stencil function is applied.
Values outside of this window will not be changed, but will
be used as input to the calculation of neighboring values
that are within the working window. The window is set up
by specifying the upper left and lower right corners in the
setWindow() function.

To establish the communication pattern for the
application, the stencil(s) must be defined. In our
implementation, stencils are represented by small

Figure 8 - PDE_Solver getNextStencil()

stencil *PDE_Solver::getNextStencil() {
// currentStencil points to the next stencil in the stencil list.
// convVal is the value set by the setGoal() function.
// currIter is the current iteration number - declared and set to 0

// local variable declarations - PROVIDED IN STUB
stencil* next;

// local variable declarations - USER-DEFINED
float testVal; // convergence value

// begin USER-PROVIDED code
testVal = checkConvergence();
if (currIter == 0) next = currentStencil->st;
else

if (testVal <= convVal) next = NULL; // we’re done
else next = currentStencil->st; // keep plugging away

currIter++;
// end USER-PROVIDED code
return(next); }

DD_arrays. The non-zero values in the array indicate that
a particular neighbor is needed in the calculation. The
location of non-zero points and the size of the stencil
determine the communication pattern and volume of data
communicated. Stencils are kept in a list so that a series of
stencils can be applied in succession. New stencils are
added to this list via the addStencil() function.

DoStencil Function
Once a Stenciler object is created and initialized, the

doStencil() function is called to execute the stencil.
This function does the following:

(1) creates and initializes all additional worker objects
needed;

(2) calls each worker to read its portion of the input array
(via getMatrixPiece());

(3) while there is more work to be done (via getNextS-
tencil()), loops performing the following tasks:

(a) exchanges necessary boundary data;

(b) executes the stencil function (via doStencil-
Piece());

(4) prepares the destination file and calls each worker to
write its piece (via prepareDest() and putMa-
trixPiece());

It is important to note that the user need only create the
root-level Stenciler object and doStencil() does
the rest. Also, the user does not need to modify this
function, the user need only provide several user-defined
functions described above in Section 3.1.

Other Functions
The checkConvergence() function is provided to

control calling each leaf worker’s user-defined

float PDE_Solver::checkConvergencePiece() {
// local variable declarations - USER-DEFINED

float total; // convergence value to be returned
float temp;
int i,j;

// USER-PROVIDED code
total = 0.0;
if (prevArray == NULL) // i.e. if first iteration

prevArray = new MATRIX_TYPE(myRows+2,myCols+2);
else {

// calc working window (ulr, ulc, lrr, lrc) - omitted
// calc convergence test value for my piece
for (i=ulr; i <= lrr; i++)

for(j=ulc; j <= lrc; j++) {
temp = (*srcArray)[i][j] - (*prevArray)[i][j];
total += temp * temp;

}
}
// set prevArray to current solution
prevArray->overlay(ulr,ulc,srcArray->extract(ulr,ulc,lrr,lrc));
return(total); }

Figure 9 - PDE_Solver checkConvergencePiece()

checkConvergencePiece() function and collecting
the results. When called, this function determines whether
the worker is a leaf node or an interior node. If it is an
interior node, it calls checkConvergence() for each of
its immediate subordinates, aggregates the partial test
values, and sends the result to the next higher level in the
worker tree. If the worker is a leaf, then
checkConvergencePiece() is called to calculate the
piece’s partial result. The goal of this function is to abstract
out the details of the worker hierarchy whenever possible.

The final two built-in functions, getRegion() and
putRegion(), are provided to retrieve or overlay a
region of the overall array. These functions are useful, for
example, in checking convergence criteria.

4. Sample Stencil Implementations

To illustrate the use of the stencil framework we describe
our experience with two sample implementations: an image
convolver and a PDE solver using Jacobi iteration.

Image Convolution
Image convolution is a common application in digital

image processing and computer vision [7]. In two
dimensional image convolution, a small 2D stencil, also
called a filter or mask, defines a region surrounding each
picture element (pixel) whose values will be used in
calculating the corresponding point in the convolved image.
Each element of the filter is multiplied by the corresponding
neighbor of the current pixel, and the results are summed
and normalized. Figure 1b shows the stencil function for a
3 × 3 mask and 1d shows a common smoothing filter.

To implement the convolution application, the following
steps were necessary:

(1) define the type of the input and output data sets to be
DD_chararray;

(2) create a Convolver class derived from Sten-
ciler;

(3) overload doStencilPiece() to define the stencil
function;

(4) overload the control function getNextStencil();

(5) redefine the file I/O functions to input and output the
matrix and prepare the destination file;

(6) create a main program to create, initialize and execute
an instance of the Convolver class.

Creating the Convolver class was straight-forward; in
fact, there were no additional variables or functions needed.
The stencil function for convolution fits the framework
provided in the stub for doStencilPiece(). The stub
provides code to calculate the bounds of the working
window and to loop through each point in the worker’s
piece. The only new code needed was the inner doubly
nested loop to multiply and accumulate the value of a point

and the code to normalize the result. An abbreviated version
of the overloaded doStencilPiece() function is
shown in Figure 7. Note that the code shown is used to
clearly illustrate the use of the function and that standard C
optimization techniques were used in the final code. The
getNextStencil() function simply chains through the
list of stencils supplied during initialization, returning each
in turn. Therefore, a single Convolver instance can apply
a series of filters to an image in succession. The
getMatrixPiece() function was redefined to read
from the input file the block of data “owned” by each leaf
worker instance. Similarly, the putMatrixPiece()
function was redefined to write to file the result of each leaf
worker instance. Finally, the prepareDest() function
was overloaded to prepare the header of the output file.

The main program has the following structure: (1)
declare, create and initialize an instance of the Mentat class
Convolver, (2) tailor the instance by setting the source
and destination file names, the number of worker pieces, the
number of rows and columns in the data set, the number of
row pieces (optional), and the list of convolution stencils
(filters) to apply, (3) call doStencil() to execute the
stencil algorithm, and (4) destroy the Mentat object.

PDE Solver Using Jacobi Iteration
Another common and important class of stencil

algorithms are iterative methods. Jacobi iteration is a
method for solving certain systems of equations of the form

, where A is a matrix of coefficients, is a vector
of variables, and is a vector of constants. The general
procedure for using Jacobi iteration is to first guess the
solution for all variables, and then to iteratively refine the
solution until the difference between successive answers is
below some pre-determined threshold [8].

The specific application of Jacobi iteration implemented
and discussed here is the “heated plate” problem. The
heated plate problem consists of a plate or sheet of material
that has constant temperatures applied around the
boundaries, and the goal is to determine the steady-state
temperatures in the interior of the plate (Figure 10). The

20°

Figure 10 - Grid approximation for heated plate

0°

10°

100°

Ax b= x
b

temperature in the interior region is approximated by
dividing the plate into a regular 2D grid pattern and solving
for each of the grid points. The values at each point are
approximated by the average of the values in the NEWS
neighboring points. This transforms the problem into a
system of linear equations which can be solved using Jacobi
iteration. The form of the stencil function needed for Jacobi
iteration is shown in Figure 1a.

To implement the PDE solver application, the following
steps were necessary:

(1) define the type of the input and output data sets to be
DD_floatarray;

(2) create a PDE_Solver class derived from Sten-
ciler;

(3) overload doStencilPiece() to define the stencil
function;

(4) overload checkConvergencePiece() to calcu-
late the value of the convergence test for each leaf
worker’s piece;

(5) overload the control function getNextStencil();

(6) redefine the file I/O functions to input and output the
matrix and prepare the destination file;

(7) create a main program to create, initialize and execute
an instance of the PDE_Solver class.

Creating the PDE_Solver class was slightly different
from the Convolver example. The difference is that a
new variable, prevArray, was added to store the source
array of the previous iteration. This value is used in
checkConvergencePiece() to determine whether
the solution has converged. The stencil function for this
problem is very simple and uses the framework provided in
the doStencilPiece() stub with few modifications.
The only user-defined code in doStencilPiece() is to
calculate the average of the 4-connected neighbors for each
matrix point.

The control structure of the PDE_Solver requires both an
overloaded getNextStencil() function and an
overloaded checkConvergencePiece() function.
The getNextStencil() function simply calls the
provided checkConvergence() function using the
result to test if the iteration should continue (Figure 8). As
discussed in Section 3.1, the checkConvergence()
function handles calling checkConvergencePiece()
for each leaf worker and collects and aggregates the results.
The checkConvergencePiece() function was
overloaded to calculate the convergence value of each
matrix piece (Figure 9). The test value needed for the PDE
solver problem is the sum of the squares of the difference
between each point in the current and previous solutions.

The file I/O functions, getMatrixPiece(),
putMatrixPiece(), and prepareDest(), were
redefined exactly as in the Convolver example and the

main program follows the same general outline with a few
additions. Since the PDE problem defines constant
temperature values around the matrix borders, the working
window had to be set to include all of the matrix except the
border region. This prevented the border from being
changed during the stencil calculations. The convergence
goal was set to an appropriate value to stop the iteration
when the solution was within acceptable limits.

5. Performance

Our goal was to create a framework for stencil
algorithms where the user can easily produce parallel code.
The reason for wanting parallel code is, of course, speed. In
order for our approach to be successful, the framework must
provide a user with a program that is fast and exploits the
inherent data parallelism of stencil applications. To test our
performance we created two versions of each class, a
sequential version written strictly in C++, and a parallel
version written in C++/MPL. We executed the sequential
versions on a Sun SPARCstation IPC and recorded the best
of the wall-clock execution times. Similarly, we ran the
parallel versions on a network of 16 IPCs connected via
ethernet. The parallel versions were executed decomposing
the problem into from two to fourteen row pieces. Each
decomposition was run several times and the best time for
each decomposition was recorded.

For the Convolver tests, both the sequential and
parallel versions were executed using identical problems: a
2000 × 2000 8-bit grey scale image convolved with three
successive 9 × 9 filters. The PDE_Solver problem used a
1024 × 1024 grid of floating point numbers to estimate the
interior temperatures of the heated plate problem. Table 1
shows the raw best execution times and Figure 11 shows the
speedup curve for the problems.

These results show good performance for the parallel
implementation. Both speedup curves follow a classic
pattern with nearly linear speedup at low numbers of

#
Pieces

Convolver PDE_Solver

Best
Execution

Time
(min:secs)

Speedup

Best
Execution

Time
(min:secs)

Speedup

1 49:33 N/A 43:39 N/A

2 24:33 2.0 23:01 1.9

4 12:37 4.0 11:37 3.8

6 8:47 5.6 7:53 5.5

8 7:07 7.0 7:08 6.1

10 5:53 8.4 6:47 6.4

12 5:08 9.7 6:23 6.8

14 4:57 10.0 6:10 7.1

Table 1: Performance Results

processors and then declining marginal return from the
addition of more processors. This phenomenon is caused by
two factors. First, computation granularity decreases as the
problem is broken into smaller and smaller pieces, causing
synchronization and communication to become a larger
percentage of execution time. Second, time spent executing
code that is inherently sequential, such as file I/O, increases
as a percentage of total run time. We would expect that this
decline in performance would be less pronounced with
larger problem sizes or a more computationally expensive
stencil function. Overall, the convolution example
performed better because its computation granularity is
significantly greater than for the PDE solver.

6. Summary and Future Work

When we began developing our framework for stencil
algorithms, we had several goals in mind: (1) the
environment should be easy to use for the application
developer, facilitating rapid development of new stencil
applications, (2) the framework should provide as much
built-in functionality as possible to exploit the similarities
among stencil algorithms and to reduce the effort needed by
the programmer, (3) the framework should encourage code
re-use wherever possible, (4) the programs generated must
exploit the parallelism inherent in stencil algorithms and
perform adequately, and (5) the code developed should be
portable. The Stenciler class hierarchy meets these
goals. The object-oriented framework and especially the
built-in functions provided in the base class support the
goals of ease of use, built-in code for common tasks, and
code re-use. The parallel environment of the Mentat system
provides the basis for exploiting the data parallelism natural
to stencil algorithms. Performance results show that the
programs produced using the Stenciler framework are
capable of high performance. Finally, the Mentat
environment provides an environment for easily porting
user code from one environment to another.

The results are encouraging, but there are a number of
areas where our approach can be improved and extended.
The class interface and hierarchy still needs some

Figure 11 - Stenciler Speedup Curve

clarification and revision. These improvements will become
apparent as our experience with using this approach
increases. We plan to port the Stenciler class and
sample implementation code to a broader range of hardware
platforms. We also would like to extend the domain of
problems that can be supported using our general approach
by creating higher dimensional stencil class hierarchies and
applying the same technique to other classes of algorithms.
Finally, we would like to extend the model of our base
classes to include encapsulation of scheduling and problem
decomposition decision information to facilitate better
performance while keeping the details away from the user.

Availability
Mentat is available via anonymous FTP for Sun 3, Sun

4, SGI, iPSC/2, and iPSC/860. Paragon, CM-5 and RS6000
versions are expected in Summer 1993. The Stenciler
code and related documentation will also be available by
the time of the conference (July 1993). For further
information, send email to mentat@Virginia.edu.

Acknowledgments
We would like to thank Mike DeLong for his help with

the mathematics behind the Jacobi iteration PDE solver.

7. References

[1] A. S. Grimshaw, “Easy to Use Object-Oriented Parallel
Programming with Mentat,” IEEE Computer, pp. 39-51,
May, 1993.

[2] A. S. Grimshaw, E. Loyot Jr., and J. Weissman, “Mentat
Programming Language (MPL) Reference Manual,” Uni-
versity of Virginia, Computer Science TR 91-32, 1991.

[3] A. S. Grimshaw, W. Timothy Strayer, and Padmini
Narayan, “Dynamic, Object-Oriented Parallel Processing,”
to appear in IEEE Parallel and Distributed Technology:
Systems and Applications, May 1993.

[4] Proceedings of the First Annual Object-Oriented Numerics
Conference, April 1993.

[5] J.F. Macfarlane, et al, “Application of Parallel Object-Ori-
ented Environment and Toolkit (POET) to Combustion
Problems,” Sandia report, September 1992.

[6] B. Stroustrup, The C++ Programming Language, 2nd ed.
Addison-Wesley, Reading, Mass., 1991.

[7] Rafael C. Gonzales and Paul Wintz, Digital Image Pro-
cessing, 2nd ed. Addison-Wesley, Reading, Mass., 1987.

[8] M. J. Quinn, Designing Efficient Algorithms For Parallel
Computers, McGraw-Hill Book Company, New York,
1987.

