
1

A Processor-Efficient Scheme for Supporting Fault-Tolerance in
Rate-Monotonic Scheduling

Yingfeng Oh and Sang H. Son

Department of Computer Science
University of Virginia

Charlottesville, VA 22903

Abstract

We address the issue of supporting fault-tolerance in a real-time system, where

the deadlines of periodic tasks are guaranteed by the Rate-Monotonic algorithm. The

problem is stated as one to minimize the total number of processors required to exe-

cute a set of periodic tasks, each of which, for fault-tolerance purposes, has multiple

versions. A simple but effective algorithm is proposed to solve the task allocation

problem. The algorithm is shown to have superior worst-case and average-case per-

formance.

2

I. Introduction

Rate-Monotonic (RM) scheduling [12, 16] is becoming a viable scheduling discipline for

real-time systems. Through the years, researchers have successfully developed a host of scheduling

techniques out of this discipline to solve many practical real-time problems, such as task synchro-

nization, bus scheduling, joint scheduling of periodic and aperiodic tasks, transient overload, and

parallel processing [14, 15]. The rate-monotonic scheduling discipline has been widely used in a

number of applications. For example, it has been specified for use with software on board the Space

Station as the means for scheduling multiple independent task execution; it will be built into the

on-board operating system [6]. Many Ada compilers also support the scheduling discipline [15].

Rate-monotonic algorithm is the optimal algorithm for scheduling periodic tasks to meet their

deadlines. It is optimal in the sense that if a set of periodic tasks can be feasibly scheduled by a

fixed-priority algorithm, it can be scheduled by the rate-monotonic algorithm. In many mission-

critical and life-critical applications, periodic tasks are often executed in a hard real-time environ-

ment, where missing a task deadline may result in catastrophic consequences. Rate-monotonic

scheduling, with its ease of implementation and its optimality, is a powerful vehicle in guarantee-

ing task deadlines in such hard real-time environments. However, it can only do so as long as the

processors never fail or the tasks never produce any erroneous results. Unfortunately, processors

do fail in reality, especially in a system that support long duration of operations; and tasks do pro-

duce erroneous results, especially in a large complex system. In order to support the dependability

or fault-tolerance of these real-time systems, we study the problem of guaranteeing task deadlines

even in the presence of processor failures and task errors. In particular, we will show how to meet

task deadlines even in the presence of processor failures or task errors in a periodic task system,

where task deadlines are guaranteed by the rate-monotonic algorithm. The problem is formulated

as an optimization problem and a simple algorithm is devised to solve it.

Much work has been done in addressing the fault-tolerance of real-time systems; but due to

space limit, we mention only a few. Note that these papers address the issues under different

assumptions and some of them are only remotely related to our work. Krishna and Shin proposed

a dynamic programming algorithm that ensures that backup or contingency schedules can be effi-

ciently embedded within the original “primary” schedule to ensure that deadlines continue to be

met even in the face of processor failures [9]. Unfortunately, their algorithm has the drawback that

it is premised on the solution to two NP-complete problems. Balaji et al presented an algorithm to

3

dynamically distribute the workload of a failed processor to other operable processors [1]. The tol-

erance of some processor failures is achieved under the condition that the task set is fixed, and

enough processing power is available to execute it. In other words, the guarantee of task deadlines

has been assumed beforehand. Bannister and Trivedi considered the allocation of a set of periodic

tasks to a number of processors so that a certain number of processor failures can be sustained [2].

All the tasks have the same number of clones (or copies), and for each task, all its clones have the

same computation time requirement. An approximation algorithm is proposed, and the ratio of the

performance of the algorithm to that of the optimal algorithm, with respect to the balance of pro-

cessor utilization, is obtained. However, their allocation algorithm does not consider the problem

of minimizing the number of processors used, and the problem of how to guarantee task deadlines

on each processor is not addressed. These are the important considerations that our work addresses.

We make the general assumption that for fault-tolerance purposes, a task has multiple ver-

sions, each of which must be executed on a different processor. The problem, dubbed the Fault-

Tolerant Rate-Monotonic Multiprocessor Scheduling (or FT-RMMS), is stated as one that the min-

imum number of processors is used to guarantee task deadlines and copies or versions of each task

are assigned to different processors for fault-tolerance purposes. While the need to guarantee task

deadlines is well known for a real-time system, the importance of minimizing the total number of

processors is often not fully understood. First, using more processors will increase the probability

of having more processor failures. Second, using more processors will affect the cost, weight, size,

and power consumption of the whole system, the increase of any of which may jeopardize the suc-

cess of an entire operation. For certain applications of real-time systems, such as aerospace and

submarine control, these factors could be very important.

Although the process to assign versions of a task to different processors could be straightfor-

ward, it is non-trivial to minimize the number of processors used to accommodate them. In fact,

the simplest version of the FT-RMMS problem, which is the Rate-Monotonic Multiprocessor

Scheduling (or RMMS) problem, has been proven to be NP-complete [10]. Hence, any practical

solution to the problem presents a trade-off between computational complexity and performance.

It has been shown that heuristic algorithms can deliver near-optimal solutions to NP-complete

problems with limited computational overhead [7, 14].

Although a number of heuristic algorithms have been proposed to solve the RMMS problem

[3, 4, 5, 14], there is only one solution to the FT-RMMS problem so far. A heuristic algorithm,

called FT-RM-FF, is developed in [13]; it applies a variant of the bin-packing heuristic, the First-

4

Fit, to assign tasks to processors. The algorithm is a dynamic or on-line one, and its worst-case per-

formance is shown to be upper bounded by 2.33, i.e., the maximum ratio between the number of

processors required to schedule a set of tasks and the minimum number of processors required to

schedule the same task set is 2.33 for FT-RM-FF.

Our approach for developing a heuristic algorithm for FT-RMMS is quite different from the

previous one. Rather than increasing the level of sophistication of the bin-packing heuristic, we

base our new scheme on two novel ideas: a divide-and-conquer strategy and a tighter schedulabil-

ity condition. The divide-and-conquer strategy allows us to separate the requirements of ensuring

versions of a task be assigned to different processors and guaranteeing the tasks assigned to a pro-

cessor meet their deadlines. The schedulability condition allows us to assign more tasks to each

processor by enabling re-ordering of the tasks for assignments. The combination of these two ideas

results in a scheme called FT-RM-NF, which is superior in the worst-case and average-case perfor-

mance, and fast in assigning tasks to processors. FT-RM-NF has a time complexity of

and a worst-case bound of 2 and for α < 1/2, whereα is the maximum allowable uti-

lization of any version among all tasks,n is the total number of tasks, and is the maximum num-

ber of versions a task can have. In most practical applications,α is usually small, i.e.,α < 1/2, thus

the worst-case performance bound is much better than 2. Simulation results show that FT-RM-NF

uses less than 10% extra processors whenα ≤ 0.2.

The rest of the paper is organized as follows: problem formulation and background informa-

tion are described in the next section, which includes the definition of the problem and the criteria

under which the performance of the heuristic algorithm is measured. In section III, we present the

FT-RM-NF algorithm and analyze its performance, followed by the empirical results on the per-

formance of FT-RM-NF in section IV. We conclude in section V with a discussion of the limita-

tions and contributions of this work.

II. Problem Formulation

We assume that processors are homogeneous, i.e., they have identical speed. For a set ofn

tasks, we assume:

(A) Each task has versions, where is a natural number. The versions of a task may

have different computation time requirements, and theversions may be merely cop-

ies of one implementation or truly versions of different implementations.

(B) All versions of a task must be executed on different processors for fault-tolerance pur-

O κn nlog()

1 1 α–()⁄

κ

κi κi κi

κi

5

poses.

(C) The requests of all tasks are periodic with constant intervals between requests. The

request of a task consists of the requests of all its versions, i.e., all versions of a task are

ready for execution when its request arrives.

(D) Each task must be completed before the next request for it arrives, i.e., all its versions

must be completed at the end of each request period.

(E) The tasks are independent in the sense that the requests of a task do not depend on the

initiation or the completion of requests for other tasks.

For a task with a period ofT, the request of task comprises the readiness of task for

execution and its CPU request. If the initial release time of task is R, then the task will arrive in

the system at timeR + kT, wherek is a positive integer, and we say that there is a request from task

 everyT time units for execution. According to assumption (D), a request from task at time

instance (R + kT) must be completed before the next request of the same task arrives, i.e., before

time instance [R + (k + 1)T], wherek is a positive integer. A task meets its deadline if all requests

of all its versions meet their deadlines.

Note that assumptions (C), (D), and (E) are the same as those in the task model for rate-mono-

tonic scheduling; they represent a simplified model for most practical real-time applications. As

we have noted above, much work has been done in successfully generalizing the original model

for rate-monotonic scheduling.

Assumptions (A) and (B) make a rather general statement about the redundancy schemes

used by each task. The term “version” has been used inN-version programming to denote multiple

implementations of a task. However, for the sake of convenience, it is used here to denote both true

versions of a task and mere copies of a single task version. In the case of using merely duplicated

copies, the errors produced by a task cannot be tolerated, since all the versions, or merely dupli-

cated copies, produce the same results. But processor failures can be tolerated by using mere copies

of a task and executing them on different processors. To tolerate task errors, different versions of

a task need not execute on different processors. If the employment of multiple versions for a task

is for the tolerance of task errors only, we can treat all its versions as independent tasks in this

model. Here we are not concerned with details about what faults are to be tolerated or how faults

are tolerated, rather we make the general statement that for fault-tolerance purposes, each task has

a number of versions that must be executed on different processors. Note that the number of ver-

sions used by each task can be different, depending on the applications; the smallest is one (ver-

τ τ τ

τ

τ τ

6

sion) and the largest is κ. In other words, may assume a different value, ranging from 1 to κ.

Since the computation time requirement of a request for each version may be different, we

use the worst-case estimate as the computation time requirement for each version in making sched-

uling decisions. The time to switch a processor from one task to another is assumed to be zero, but

in practice, the switching time can be included in the worst-case time estimate.

We say that a set of tasks is feasible if it can be scheduled by some algorithms such that all

task deadlines are met. If a set of periodic tasks can be feasibly scheduled on a single processor,

then the Rate-Monotonic (RM) [12] or Intelligent Fixed Priority algorithm [16] is optimal, in the

sense that if a set of periodic tasks is feasible with a fixed-priority algorithm, then it is feasible with

the RM algorithm. The RM algorithm assigns priorities to tasks according to their periods, where

the priority of a task is in inverse relationship to its period. In other words, a task with a shorter

period is assigned a higher priority. The execution of a low-priority task will be preempted if a

high-priority task arrives. Since each task has a potentially infinite number of requests, it would be

rather time-consuming to manually check that each request finishes before its corresponding dead-

line. Fortunately, Liu, Layland, and others have provided us with simple schedulability conditions

that we can use for that purpose. Because RM is the best fixed-priority algorithm in the same sense

as its optimality, and its ease of implementation due to the fixed-priority manner, we will use it in

guaranteeing task deadlines on each processor. The FT-RMMS problem can thus be formulated as

follows

Fault-Tolerant-Rate-Monotonic-Multiprocessor-Scheduling (FT-RMMS) Problem: A

set of n tasks Σ = is given with for i =

1, 2, …, n, where are the computation times of the versions of task . ,

, and are the release time, deadline, and period of task , respectively. The question is to

schedule the task set Σ using the least number of processors such that all task deadlines are met and

all versions of a task execute on different processors.

An optimal algorithm is the one that always uses the minimum number of processors to exe-

cute any given task set. According to assumption (D), the deadline of each task coincides with its

next arrival. For periodic task scheduling, it has been proven [12] that the release times of tasks do

not affect the schedulability of the tasks. Therefore, release time and deadline can be safely

omitted when we consider solutions to the problem. Let = / be the utilization (or load)

of the jth version of task and = be the utilization (or load) of task . Define

κi

τ1 τ2 … τn, , ,{ } τi Ci 1, Ci 2, … Ci κ, i
, , ,() Ri Di Ti, , ,()=

Ci 1, Ci 2, … Ci κ, i
, , , κi τi Ri

Di Ti τi

Ri Di

ui j, Ci j, Ti

τi ui Ci j, Ti⁄
j 1=

κi∑ τi

7

κ = andα = , i.e.,α is the maximum allowable utilization of any

version among all tasks.

The general solution to such a problem as FT-RMMS or RMMS involves two algorithms: one

to schedule tasks assigned on each individual processor, and the other to assign tasks to the proces-

sors. Typically, the task assignment schemes apply variants of well-known bin-packing heuristics

where the set of processors is regarded as a set of bins. The decision whether a processor is full is

determined by a schedulability condition. Unlike bin-packing, the schedulability conditions for

RM scheduling on a single processor are usually non-linear functions of task utilizations; therefore,

more complexity is involved in designing and analyzing heuristics for these problems.

The performance of a task assignment algorithm is often evaluated by providing worst-case

bounds, i.e., finding the maximum ratio across all task sets, where (or

just NA) and (or justN0) are the number of processors required by the heuristicA and the

optimal number of processors required to schedule a given task set, respectively. Worst-case

bounds are determined by

 = .

A slightly different measurement called the asymptotic performance bound, which is more of the-

oretical interest, can also be used:

 =

It is apparent that the smaller the ’s value is, the better the heuristic algorithmA performs in

terms of the worst-case scenario. In other words, the smaller the’s value is, the closer the heu-

ristic solution is to the optimal one. Hence, we want to minimize as much as possible when we

design a heuristic algorithm. For our particular problem of FT-RMMS, we derive a bound that is

stricter than ; it is the maximum ratio between the number of processors required by the heu-

ristic A to schedule a given task set and the total utilization (or load) of the task set. Since the

optimal number of processors required to execute a task set must be no smaller than its total utili-

zation, can be immediately obtained as well. Obtaining the bound with regard to the total uti-

lization of a task set provides us with more information, since the optimal number of processors

cannot be found in reality when the task set is reasonably large, while the total load of a task set

can always be calculated.

As it was previously noted, in order to tolerate processor failures or task errors, redundant

max1 i n≤ ≤ κi maxi j, Ci j, Ti⁄()

NA Σ() N0 Σ()⁄ NA Σ()

N0 Σ()

Σ

ℜA inf r 1≥ :
NA Σ()

N0
----------------- r≤ for all task sets Σ

 
 
 

ℜA
∞

inf r 1≥ : for some N Z
+∈ N0 N≥

NA Σ()
N0

----------------- r≤ for all task sets Σ, ,
 
 
 

ℜA

ℜA

ℜA

ℜA

Σ Σ

ℜA

8

processors need to be introduced. In general, using more processors will increase the fault-toler-

ance of a system. However, there is a limit to which adding more processors will decrease the over-

all fault-tolerance of the system, since using more processors increases the probability of having

more processor failures. An interesting question to which a system designer would want to know

the answer is the trade-off between the number of redundant processors used and the fault-toler-

ance (e.g., reliability and availability) of the system. Though we cannot answer this question com-

pletely in this work (since it requires application-specific information), we provide a partial answer

to it by proposing a heuristic algorithm to schedule the tasks such that we can put bounds on the

total number of processors used for a certain task set in terms of the maximum degree of task

redundance and the total utilization of the task set. The current bounds are the lowest (hence the

best) ones for this problem. Without such bounds, it would be impossible to calculate the fault-tol-

erance (e.g., reliability and availability) of the system.

III. The Design and Analysis of FT-Rate-Monotonic-Next-Fit

To solve the FT-RMMS problem, we need to address two issues: the scheduling on each pro-

cessor and the assignment of tasks to processors. In general, the performance of a heuristic algo-

rithm to solve this problem depends on the strategies taken to solve these two issues. One simple

solution to the problem will be to use one processor for the execution of each task version.

Although this solution guarantees that each request of each version of a task meets its deadline and

that versions of a tasks be assigned to different processors for fault-tolerance purposes, it is very

inefficient in processor usage. As we have argued before, our goal is to use as few processors as

possible to accommodate a given set of tasks. In the following, we will first present the schedula-

bility condition that will be used in FT-RM-NF and then the strategy to assign tasks to processors.

A set of tasks is given to be scheduled on a single pro-

cessor. Liu and Layland provides us with a schedulability condition that if ≤

, then all then tasks can be scheduled to meet their deadlines by the RM algorithm.

We would like to use this condition in determining the feasibility of a set of tasks, but the perfor-

mance of the heuristics using this condition in solving the RMMS problem is not as good, as shown

by the work done in [4, 5, 14]. This is because the condition is a worst-case one. There are some

task sets that are feasible with the RM algorithm, but cannot be determined to be feasible by the

condition.

A necessary and sufficient condition has been found for the RM algorithm [8, 11]. It is appar-

κ

Σ τi Ci Ti,()= i 1 2 … n, , ,={ }=

Ci Ti⁄
i 1=
n∑

n 2
1 n⁄

1– 
 

9

ent that the upper bounds of the performance of heuristic algorithms using the necessary and suf-

ficient condition are not higher than those of the algorithms using any sufficient condition.

However, the time complexity in using the necessary and sufficient condition for the RM algorithm

is data-dependent. Due to the stringent requirements of hard real-time systems, it is not practical

to employ the necessary and sufficient condition in general for these systems. Hence, heuristic

algorithms using simple sufficient conditions are often sought in the solution of such problems as

FT-RMMS.

In the following, we will be using a new sufficient schedulability condition for the scheduling

of tasks; it is given in Theorem 1, and in a simpler form, in Corollary 1 [3].

Theorem 1: Let be a set ofn tasks. Define

 = − for . (1)

Then sort the s in the order of increasing value and rename them to be for .

If ≤ + − n, then the task set can be feasibly scheduled by

the RM algorithm.

This condition is superior to Liu and Layland’s condition in performance, since it always

yields a processor utilization no lower than that by the Liu and Layland’s condition [12]. It is also

superior to the necessary and sufficient condition in time complexity, since the former runs only in

time linear to the number of tasks, while the time complexity of the latter is data-dependent and is

at least linear to the number of tasks. The higher processor utilization is achieved by this new con-

dition, since it uses more information from the task set. The new condition, which is referred to as

the Period-Oriented (or PO) condition, takes into account the relative values of task periods,

and it is derived under the worst-case situation in term of, while Liu and Layland’s condition

does not consider and specifically. Under the worst-case situation of, the new condition

degrades to the worst-case condition, i.e., ≤ . The proof of the theorem

can be found in [14].

It is obvious that for eachV value, . We can simplify the PO condition by defining

β = − , where is the largest and the smallest among all theV values (since they are

sorted). By this definition, we immediately obtain the following corollary.

Corollary 1: Let be a set of n tasks and be defined as in

(1). Defineβ = − . If ≤ (n − 1) () + −

1 ≤ , then the task set can be feasibly scheduled by the RM algorithm.

τi Ci Ti,()= i 1 2 … n, , ,={ }

Vi T2 ilog T2 ilog i 1 2 … n, , ,=

Vi Vi i 1 2 … n, , ,=

Ci Ti⁄
i 1=
n∑ 2

Vi 1+ Vi–

i 1=
n 1–∑ 2

1 V1 Vn–+

Ti

Ci

Ti Ci Ti

Ci Ti⁄
i 1=
n∑ n 2

1 n⁄
1– 

 

0 Vi 1<≤

Vn V1 Vn V1

τi Ci Ti,()= i 1 2 … n, , ,={ } Vi

max1 i n≤ ≤ Vi min1 i n≤ ≤ Vi Ci Ti⁄
i 1=
n∑ 2

β n 1–()⁄
1– 2

1 β–

max ln2 1 βln2–,{ }

10

In the above condition, it is apparent that the smaller the value of β is, the higher the processor

utilization is, since the function = increases as β decreases. In order

to achieve higher processor utilization, we shall try, in the design of a new scheme, to minimize β

as much as possible by assigning tasks with V values close to each other.

Now that we have a tighter schedulability condition, we need to find a better way to assign

tasks to processors. Since versions of a task must be assigned to different processors, we observe

that a simple way to separate the concerns of ensuring versions of a task being assigned on different

processors and using the least number of processors is to divide the processors into κ classes. To

simplify the matter of presentation, we assume without loss of generality that each version of a task

is numbered from 1 to κi ≤ κ. The processors are also divided into κ classes. The ith version of a

task will be assigned to a processor in the ith class. Since the utilization bound increases as β

decreases in the PO condition, a natural way to minimize the number of processors is to first sort

the tasks in the order of increasing or decreasing V values and then schedule them using the PO

condition. In such a way, we assign the tasks having close V values together, i.e., a small β value,

thus increasing the total utilization of a processor. The FT-RM-NF algorithm is described as fol-

lows:

Fault-Tolerant-Rate-Monotonic-Next-Fit (FT-RM-NF) (Input: task set Σ; Output: m)

(1) Sort the task set such that 0 ≤ ≤ … ≤ < 1.

(2) i := 1; := 1 for j = 1, …, κ;

(3) To schedule the κi versions of task , assign the jth (1 ≤ j ≤ κi) version of task to

processor in the jth processor class if this version together with the versions that

have been assigned to can be feasibly scheduled on it according to the PO condi-

tion, i.e.,

 + ≤ where .

If not, assign the version to and := + 1, := .

(4) If i < n, then i := i + 1 and go to (3); else stop.

The initial value of is given by the first version assigned to a processor in the jth pro-

cessor class. The number of versions assigned to each processor class may be different because

each task may have different number of versions. denotes the total utilization of the versions

that have been assigned to processor . The Next-Fit strategy is used to assign versions to pro-

cessors within a processor class. The sorting process takes and the assignment process

f β() max ln2 1 βln2–,{ }

V1 Vn

Nj

τi τi

Pj Nj,

Pj Nj,

Uj Nj, ui j, max 2ln 1 βj 2ln–,{ } βj Vi Sj Nj,–=

Pj Nj 1+, Nj Nj Sj Nj, Vi

Sj Nj,

Uj Nj,

Pj Nj,

O n nlog()

11

takes . Since , FT-RM-NF runs at and hence it is an effective algo-

rithm. The algorithm is apparently a static (or off-line) one.

Though this algorithm is quite simple, it can deliver very efficient worst-case performance,

as shown by the following theorem. It performs even better as α = decreases. It

may also be true that the worst-case performance of other algorithms increases as α decreases, but

the increase in the performance of FT-RM-NF is very rapid, as shown below.

Theorem 2: Let N be the number of processors required by FT-RM-NF to feasibly schedule

a given set of tasks with a total utilization of and α = . If α ≥ 1/2,

then . If α < 1/2, then N < .

Proof: In the completed FT-RM-NF schedule, let us first establish the relationship between

the processors used in the lth processor class and the total utilization of all the versions assigned

to these processors, i.e., between and = for l = 1, …, κ. Then we will com-

bine the relationships together to obtain the final result.

For the jth processor of the lth processor class, let be the ver-

sions (tasks) that are assigned to it and = for j = 1, …, , where denotes

the utilization of the kth version (task) assigned to processor . Furthermore, let be the V

value of task and = − . Then . According to FT- RM-NF,

we have

 + > ≥ (2)

for j = 1, …, . Since ≥ , we have

≥ (3)

from (2), where j = 1, …, . Summing up the inequalities in (3) yields

− − ≥ (− 1) − ln2 ≥ (− 1) − ln2

since . In other words, + + − ln2

≥ − 1− ln2.

Summing up all classes of processors yields

O κn nlog() κ 1≥ O κn nlog()

maxi j, Ci j, Ti⁄()

U ujj 1=
n∑= maxi j, Ci j, Ti⁄()

N 2U κ 1 2ln+()+≤ U 1 α–()⁄ κ 1 2ln 1 α–()⁄+[]+

Nl

Nl Nl Ul Ul j,j 1=

Nl∑

Pl j, τl j 1, , τl j 2, , … τl j sj, ,, , , sl j,

Ul j, ul j k, ,k 1=

sl j,∑ Nl ul j k, ,

Pl j, Vl j i, ,

τl j i, , βl j, Vl j 1+ 1, , Vl j 1, , βl j,j 1=

Nl∑ 1≤

ul j k, ,k 1=

sl j,∑ ul j 1+ 1, , max 2ln 1 βl j, 2ln–,{ } 1 βl j, 2ln–

Nl 1–() Ul j 1+, ul j 1+ 1, ,

Ul j, Ul j 1+,+ 1 βl j, 2ln–

Nl 1–() Nl 1–()

2 Ul j,j 1=

Nl∑ Ul 1, Ul Nl, Nl βl j,j 1=

Nl 1–∑ Nl

βl j,j 1=

Nl 1–∑ βl j,j 1=

Nl∑ 1≤ ≤ 2 Ul j,j 1=

Nl∑ Nl 1–()> Ul 1, Ul Nl,

Nl

κ

2 Ul j,j 1=

Nl∑l 1=
κ∑ Nll 1=

κ∑ κ 1 2ln+()–≥

12

Since N = and = = U, i.e., the total utilization of all the

processors is equal to the total utilization of the task set, we have

N ≤ 2U + κ(1 + ln2).

If α = , then α ≥ and

 > (4)

from (2), where j = 1, …, . Summing up the inequalities in (4) yields

 + α > > , since ≤

.

In other words, > . Then

Summing up all classes of processors yields

Since N = and = = U, we have

.

Hence, we have proven the theorem. ■

Since the optimal number of processors required to execute a task set is no smaller than the

total utilization of the task set, i.e, in term of the above notations, , we have the fol-

lowing corollary immediately.

Corollary 2: Let N and be the number of processors required by FT-RM-NF and the min-

imum number of processors required to feasibly schedule a given set of tasks, respectively. Define

α = . If α ≥ 1/2, then . If α < 1/2, then <

.

Having proven the upper bounds for the FT-RM-NF algorithm, we next show that the upper

bounds are tight, asymptotically speaking.

Theorem 3: = 2. = for α < 1/2.

Proof: Since N ≤ 2 + 1 + ln2 for κ = 1, ≤ 2 according to the definition. Since

Nll 1=
κ∑ Ul j,j 1=

Nl∑l 1=
κ∑ ujj 1=

n∑

maxi j, Ci j, Ti⁄() ul j 1+ 1, ,

Uj α+ 1 βj 2ln–

Nl 1–() Nl 1–()

Ul j,j 1=

Nl∑ Nl 1–() Nl 1–() 2ln– βl j,j 1=

Nl 1–∑ Nl 1–() 2ln– βl j,j 1=

Nl 1–∑
βl j,j 1=

Nl∑ 1≤

Ul j,j 1=

Nl∑ α– Nl 1 α–() 1– 2ln–

Nl
1

1 α–
------------ Ul j,j 1=

Nl∑ 1 2ln
1 α–
------------+ 

 +<

κ

Nll 1=
κ∑ 1

1 α–
------------ Ul j,j 1=

Nl∑l 1=
κ∑ κ 1 2ln

1 α–
------------+ 

 +<

Nll 1=
κ∑ Ul j,j 1=

Nl∑l 1=
κ∑ ujj 1=

n∑
N

U
1 α–
------------ κ 1 2ln

1 α–
------------+ 

 +<

N0 ujj 1=
n∑≥

N0

maxi j, Ci j, Ti⁄() N 2N0 κ 1 2ln+()+≤ N N0⁄

1 1 α–()⁄ 1 2ln 1 α–()⁄+[] κ N0⁄+

ℜFT-RM-NF
∞ ℜFT-RM-NF

∞ α() 1
1 α–

N0 ℜFT-RM-NF
∞

13

for κ = 1 and α < 1/2, we have ≤ . We need to

prove that when κ = 1, = 2 and = for α < 1/2. Then we can con-

clude that the bounds are tight.

To prove that the above bounds are tight, we need only to construct task sets that require the

upper-bounded numbers of processors when they are scheduled by RM-FF-NF.

Let n = 4k where k is a positive integer and ε be an arbitrarily small number such that 0 < ε

<< 1/n. Furthermore, define δ > 0 such that < 1 + ε.

Then for the first bound, the set of n tasks Σ = { } is constructed as follows:

 = = (1/2,) for i = 2j and j = 0, 1, …, 2k − 1;

 = = (ε,) for i = 2j + 1, j = 0, 1, …, 2k − 1.

Since − = δ, the tasks are in the order of increasing V values.

We first claim that 2k processors are required to schedule the task set by RM-FF-NF.

According to the schedulability condition used by RM-FF-NF,

 + + > + + > 1 > 1 − 2δln2 = 1 − βln2,

where β = 2δ and j = 0, 1, ……, 2k − 1.

Hence, tasks and are assigned to a processor, for j = 0, 1, …, 2k − 1, in the com-

pleted RM-FF-NF schedule. Then a total number of 2k processors is required by RM-FF-NF.

We next claim that k + 1 processors are needed to schedule the same task set in the optimal

schedule.

Since 1/2 + 1/2 = 1 ≤ for i = 2j and j = 0, 1, …, 2k − 1, any two of these 2k tasks can be

scheduled on a processor. Yet any three of these tasks cannot be scheduled on a processor since 1/

2 + 1/2 + 1/2 > 1 + 1/n > 1 + ε > . Therefore, exactly k processors are needed to schedule these

2k tasks. For the other 2k tasks with = = (ε,) for i = 2j + 1, j = 0, 1, …, 2k − 1, and

ε > 0, one processor is needed to schedule them since nε << 1 ≤ .

Let N and be the number of processors required by RM-FF-NF and the minimum number

of processors required to schedule this task set, respectively. Then N = 2k and = k + 1. Hence

 = 2.

For the second bound, task sets can be similarly constructed to prove that the upper-bounded

N
N0
------ 1

1 α–
------------ 1 2ln

1 α–
------------+ 

  1
N0
------+< ℜFT-RM-NF

∞ α() 1
1 α–

ℜFT-RM-NF
∞ ℜFT-RM-NF

∞ α() 1
1 α–

2
nδ

τ1 τ2 … τn, , ,

τi Ci Ti,() 2
iδ

τi Ci Ti,() 2
iδ

Vi 1+ Vi

1 2⁄

2
2jδ---------- ε

2
2j 1+() δ--------------------- 1 2⁄

2
2j 2+() δ--------------------- 1 2⁄

2
nδ---------- ε

2
nδ------- 1 2⁄

2
nδ----------

τ2j 1+ τ2j

2
iδ

2
nδ

τi Ci Ti,() 2
iδ

2
iδ

N0

N0

ℜFT-RM-NF
∞

14

number of processors is required by RM-FF-NF in each case. Hence we can conclude that

= . ■

IV. Empirical Study of FT-RM-NF

In the above section, the performance bound of the new algorithm was derived under worst-

case assumptions. While a worst-case analysis assures that the performance bounds are satisfied

for any task set, it does not provide the insight into the average-case behavior of the algorithm. In

order to answer such questions as whether the algorithm performs on the average close to its worst-

case performance, one can analyze the algorithm with probabilistic assumptions, or conduct sim-

ulation experiments. We resort to simulation.

The simulation is conducted by running the algorithm on a large number of computer gener-

ated sample task sets and averaging the results over a number of runs. The input data of all param-

eters for a task set are generated according to uniform distribution. The periods of tasks are

generated in the range of 1≤ Ti ≤ 500. The number of versions for each task is uniformly distributed

in the range of 1≤ κi ≤ 5. The computation time of each version is in the range of 1≤ Ci,j ≤ αTi,

whereα = .The output parameter for the algorithm is the percentage of extra pro-

cessors used to accommodate a set of tasks, with regard to the total utilization (or load) of the task

set. The total load of a task set is given byU = , which is a lower bound

on the number of processors needed to execute the task set. In other words, the optimal number of

processors needed to schedule a task set with a load ofU is at leastU. Suppose that is the

number of processors required by FT-RM-NF to schedule a task set with a load ofU, then the

percentage of extra processors is given by .

The simulation results are plotted in Figure 1 and Figure 2 with two values ofα. The number

of runs for each data point is chosen to be 20, since for our experiments, 20 runs is large enough to

counter the effect of “randomness”. In order to make comparisons, we also run the same data

through the on-line algorithm FT-RM-FF [13]. Whenα is small, FT-RM-NF consistently outper-

forms FT-RM-FF. On the average, FT-RM-NF uses less than 20% extra processors whenα ≤ 0.5,

and less than 10% extra processors whenα ≤ 0.2. The superiority of this algorithm is quite obvious.

ℜFT-RM-NF
∞ α() 1

1 α–

maxi j, Ci j, Ti⁄()

Ci j,j 1=

κi∑ 
  Ti⁄

i 1=
n∑

N Σ()

Σ

100
N Σ() U–

U
-------------------------×

15

V. Conclusions

In this paper, we have investigated the problem of providing fault-tolerance in a real-time

Figure 1: Performance of FT-RM-NF and FT-RM-FF (α = 0.5)

50 100 150 200 250 300 350 400 450 500

Number of Tasks

0

5

10

15

20

25

30

35

40
P

er
ce

nt
ag

e
of

 E
xt

ra
 P

ro
ce

ss
or

s
FT-RM-NF
FT-RM-FF

Figure 2: Performance of FT-RM-NF and FT-RM-FF (α = 0.2)

50 100 150 200 250 300 350 400 450 500

Number of Tasks

0

5

10

15

20

25

30

35

40

45

50

P
er

ce
nt

ag
e

of
 E

xt
ra

 P
ro

ce
ss

or
s

FT-RM-NF
FT-RM-FF

16

system where rate-monotonic scheduling is used to guarantee task deadlines. Although our

approach does not address specific fault-tolerant mechanisms or implementation issues, its merit

lies in providing a theoretical bound on how many processors are required to tolerate a certain num-

ber of processor failures or task errors. Although it is a static algorithm, the proposed algorithm

performs consistently better than a previous algorithm proposed for the same problem. The worst-

case analysis shows that the algorithm FT-RM-NF has a worst-case performance bound of no more

than 2. The performance of the algorithms can be significantly improved when the maximum

allowable utilization of a task is small. Simulation results also indicate that the algorithm performs

very well on the average. The superior performance of the algorithm is achieved through employ-

ing a new and more effective schedulability condition for the rate-monotonic scheduling and a

clever allocation scheme.

There are some limitations in this work. First, for some practical applications, certain tasks

must be associated with certain peripheral devices (or processors). This implies that we may not

have as much freedom in assigning tasks to processors as we have in our algorithm. Second, the

means of voting are not considered here, although they can be treated as a part of the operations

for each version. These seem to be practical issues and their solutions are more likely to be appli-

cation-specific. For future work, it would be interesting to do a case study based on this algorithm

to obtain the fault-tolerance parameters (such as reliability and availability) of a practical system,

and to extend this work to consider the situation where some tasks may share resources.

Due to the inevitable employment of multiprocessors in many real-time applications and the

widespread use of the rate-monotonic scheduling algorithm for guaranteeing task deadlines, the

problem of meeting task deadlines in such systems even in the presence of some processor failures

or task errors becomes an urgent one to address. Despite certain limitations, we believe that the

problem studied in this paper is an important one and the presented results are timely ones for the

research community and for practitioners at large.

Acknowledgments: This work was supported in part by ONR, CIT, and Loral Federal Systems.

References

[1] Balaji, S., L. Jenkins, L.M. Patnaik, and P.S. Goel. Workload Redistribution for Fault-tol-

erance in a Hard Real-time Distributed Computing System. FTCS-19, Chicago, Illinois,

366-373 (1989).

[2] Bannister, J.A. and K. S. Trivedi. Task Allocation in Fault-tolerant Distributed Systems,

17

Acta Informatica, 20:261-281, 1983.

[3] Burchard, A., J. Liebeherr, Y. Oh, and S.H. Son. Assigning Real-time Tasks to Homoge-

neous Multiprocessor Systems, IEEE Transactions on Computers, to appear.

[4] Davari, S. and S.K. Dhall. An On Line Algorithm for Real-time Tasks Allocation, IEEE

Real-Time Systems Symposium, 194-200 (1986).

[5] Dhall, S.K. and C.L. Liu. On A Real-time Scheduling Problem, Operations Research, 26:

127-140 (1978).

[6] Gafford, J.D. Rate-monotonic Scheduling, IEEE Micro, 34-39 (June 1991).

[7] Garey, M.R. and D.S. Johnson. Computers and Intractability: A guide to the theory of NP-

completeness. W.H. Freeman and Company, NY (1978).

[8] Joseph, M. and P. Pandya. Finding Response Times in a Real-Time System, The Com-

puter Journal, 29(5): 390-395 (1986).

[9] Krishna, C.M. and K.C. Shin. On Scheduling Tasks with A Quick Recovery from Failure,

IEEE Transactions on Computers, 35(5):448-454 (1986).

[10] Leung, J. Y. T. and J. Whitehead. On the Complexity of Fixed-Priority Scheduling of

Periodic, Real-Time Tasks, Performance Evaluation, 2: 237-250 (1982).

[11] Lehoczky, J., L. Sha, and Y. Ding. The Rate Monotonic Scheduling Algorithm: Exact

Characterization and Average Case Behavior, IEEE Real-Time Systems Symposium, 166-

171 (1989).

[12] Liu, C.L. and J. Layland. Scheduling Algorithms for Multiprogramming in A Hard Real-

time Environment, Journal of ACM, 10(1):46-61 (1973).

[13] Oh, Y. and S. H. Son. Enhancing Fault-tolerance in Rate-monotonic Scheduling, Journal

of Real-Time Systems, 7(3): 315-329 (1994).

[14] Oh, Y. The Design and Analysis of Scheduling Algorithms for Real-time and Fault-toler-

ant Computer Systems, Ph.D. Dissertation, Department of Computer Science, University

of Virginia (1994).

[15] Sha, L., and J.B. Goodenough. Real-time Scheduling Theory and Ada, Computer, 53-65

(April 1990).

[16] Serlin, O. Scheduling of Time Critical Processes, Proceedings of the Spring Joint Com-

puters Conference, 40:925-932 (1972).

