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Abstract

Real-time database systems have timing constraints associated with
transactions and the database. To ensure that such a system completes as
many transactions as possible without violating their timing constraints, its
scheduling strategy should use information about the timing constraints
associated with transactions and the database. Ideally, to enhance the
predictability of the system, such a scheduling strategy should be used in
all situations where there is resource contention. In this paper we describe
an intelligent scheduling strategy for scheduling transactions in real-time
database systems. - The scheduling strategy uses additional timing
information about transactions and the database to enhance the system's
ability to meet transaction deadlines.

In real-time database systems, if a data object is not updated for a
long time, transactions that access it may consider it to be out-of-date. We
introduce the concept of validity to quantify this notion of the age of a data
object. We also show how to incorporate validity information in the
scheduling strategy.

* This work was supported in part by ONR under contract N 0014-88-K-0245 and
by IBM FSD under University Agreement WG-249153.
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1. Inir lon

It has been recognized that database systems are becoming
increasingly important in real-time systems. The distinguishing feature of
real-time database systems is that transactions in such a system have
timing constraints. An important requirement of these systems is to
complete as many transactions as possible without violating their timing
constraints [Son88]. It is possible to statically guarantee real-time
constraints by pre-calculating all possible schedules of transactions off-line.
There are two reasons why this approach is infeasible [Stankovic88]. First,
the task of finding all possible schedules of transactions is NP hard.
Therefore, the task becomes computationally intractable when there are a
large number of simultancously active transactions. Second, the demands
on a real-time database system can change frequently. For example,
aperiodic transactions, by their very nature, can be activated at
unpredictable times. Therefore, a dynamic scheduling strategy is needed to
make the system more flexible and predictable. Also, to make "intelligent"
scheduling decisions, the scheduling strategy should use as much timing
information as possible about transactions and the data objects they access.

A scheduler in database systems accepts database operations from
transactions and schedules them appropriately for the data manager
[Bernstein87]. In a distributed system, each site has its own scheduler
which can receive database operations from transaction managers at
different sites. In conventional database systems, the scheduler is
entrusted with the task of enforcing the serializability constraints. In real-
time database systems, it is also necessary to take into account the timing
constraints associated with the transactions and the database while making
scheduling decisions.

However, to guarantee real-time constraints, it may be insufficient to
use the extra information about transactions only while scheduling
database operations. This is because transactions interact with the
operating system and the I/O subsystem in extremely unpredictable ways.
For example, we have no control over the way the scheduling decisions are



made for scarce resources at the operating system level. Therefore, to
improve the predictability of real-time database systems, i.e., to enhance
the guarantee of meeting real-time constraints, we should use the
additional information about transactions to make scheduling decisions at
all places where more than one transactions try to use (or access) a scarce
resource. This scarce resource could be the CPU, a data object, or the
communications subsystem.

Deadlines are timing constraints associated with transactions. There
exist another kind of timing constraints which are associated with
transactions and data objects in the database. In a database, there may be
some data objects which get old or out-of-date if they are not updated
within a certain period of time. To quantify this notion of age we associate
with each data object a degree of validity which decreases with time. The
validity curve associated with each data object is a plot of the degree of
validity of the data object with respect to the time elapsed after the object
was last modified. Fig. 1 shows an example validity curve for data objects.

>

Validity

100 %

time elapsed

Fig. 1. Validity curve

If w is the time of last modification of a data object and ¢ is the
current time, we can calculate the validity of the data object at time t from



its validity curve. Now, a transaction may require all the data objects it
reads to have a minimum degree of validity. This constraint could be either
hard or soft, like deadlines. Scheduling decisions could be made more
intelligent by incorporating this validity information about transactions and
data objects they read.

In this paper, we describe an intelligent scheduling strategy for
scheduling transactions in real-time database systems. The strategy uses
additional timing information about transactions and the database to
enhance the system’s ability to meet transaction deadlines. We also
introduce the concept of validity to quantify the notion of the age of a data
object. We show how to incorporate this walidity information in the
scheduling strategy. The remainder of this paper is organized as follows.
Section 2 describes the information about transactions and the database
which can be used to make intelligent scheduling decisions. Section 3
discusses the issues involved in designing scheduling strategies. Section 4
presents a dynamic scheduling strategy incorporating the extra information
discussed in Section 2. Section 5 shows how the scheduling strategy can be
extended to periodic transactions and multiversion databases. Section 6 is
the conclusion.

2. Information required for intelligent scheduling

Conventional scheduling algorithms rarely use any information about
transactions, except priority, while making scheduling decisions. It is
possible to use additional information about transactions and the data
objects to intelligently schedule transactions. In this section, we discuss the
nature of the information required by the scheduling strategy and how to
represent it

A transaction can be represented as a tuple (SP, RS, WS§, A, D, E, MV).
The elements of the tuple are described below.

SP System priority: This is the static component of the dynamic priority
associated with a transaction. It is a measure of the criticality to the



WS

MV

system of completing the ftransaction within its timing constraints.
For example, transactions dealing with emergency situations should
have a higher priority than routine transactions.

Read set: This is the set of data objects which the transaction reads
Write set:- This is the set of data objects which the transaction writes.

Arrival time: This is the time at which the transaction arrives in the
system.

Deadline: This is the time before which the transaction has to finish
its execution. The transaction specifies whether the deadline is hard
or soft.

Runtime estimate: This is the estimate of the processing time
required by a transaction. This includes the time required for CPU as
well as I/O operations.

Minimum Validity: This is the minimum degree of validity required
of all objects read by the transaction. The transaction specifies

whether this validity constraint is hard or soft.

The above information about the transaction is available to the

system before the transaction is started and remains constant throughout

the transaction execution. Since the scheduling strategy is dynamic, it needs

information about the transaction which varies with time. The information

which varies with time is described below.

RSV Read set validity: This is the degree of validity of data objects in the

transaction's read set. The degree of validity of a data object can be
calculated from its validity curve. The validity curve of a data object
defines a function of the degree of validity of the data object with
respect to the time elapsed after the data object was last modified.
Therefore, if we know the time the object was last modified, we can



calculate the degree of validity of the data object at the current time
from the validity curve.

P Processing time: This is the processing time already received by a
transaction. This includes the time required for CPU as well as I1/O
operations.

T Current time: This is the time at which the scheduling decision is
made.

h In

Before implementing any scheduling strategy, it is important to
consider the overhead it requires. Obviously, a complicated scheduling
strategy requires more time. This factor can be crucial in deciding whether
it is of any practical benefit to use the extra information about transactions
and the database in the scheduling strategy.

For instance, if the database is disk-resident and the transactions are
I/O intensive, the time required for I/O operations would be large
compared to the time required for doing CPU operations. In that case, it
would not make a big difference whether or not we use a complicated
scheduling policy at the CPU level. The bottleneck in this case would be the
 data objects and it would be imperative to schedule the database
operations in an intelligent way. But if the database is memory resident
and the transactions are CPU intensive then it would become necessary to
use the extra information about transactions in the scheduling decision at
the CPU level. Given below is a scenario which illustrates a situation where
an intelligent scheduling strategy at the CPU level would be helpful.

Assume that transactions execute CPU and I/O instructions
alternately. Let the time required for one session of CPU computation be 10
time units and the time required for one I/O operation be 2 time units (if
there is no blocking). Let the transactions to be scheduled (T1 and T2) have
the characteristics given below. This situation can arise if both T1 and T2



wait for some other transaction to release a data object. The transaction
releases the data object at time 5. Thus, the scheduling decision has to be

made at time 5.

Trans.. | Arrival Estimate Deadline | Operations
time (hard)

T1 0 12 30 read(l)

T2 5 12 20 read(l)

According to an elementary FCFS scheduling strategy, T1 is scheduled
first and it completes at time 12. T2 starts at time 10, but since it requires
12 time units to complete, it misses its deadline at time 20. (As shown in
Fig. 2)

T1(1/0O)

T1(CPU) T2(CPU)

5 15 17 20

T2 misses its
deadline

T1 completes

Fig. 2. FCFS Scheduling

If the system is intelligent enough to follow the elaborate scheduling
scheduled first.
(According to the least slack method of assigning priorities, T2 has a higher
priority than T1, because the slack of T2 is less than the slack of T1.} In

strategy to be discussed in Section 4, T2 would be

that case both transactions would meet their deadlines as shown in Fig. 3.



T2(1/0) T1(1/0)

T2(CPU) T1(CPU)
5 15 17 25 27
T2 completes T1 completes

Fig. 3. Intelligent Scheduling

An issue involved in designing a scheduling strategy is whether or
not to allow preemption. The scheduling decision at the CPU level normally
allows preemption. However, if we allow preemption at the data object
level, we may have to abort the preempted transaction for maintaining
consistency of the database. The general problem descriptions for the two
cases without having a particular resource type in mind, are as the
following:

Case 1. No preemption.

There are more than one transactions requesting a resource and we
have to decide the transaction which should be granted the resource. Once
a transaction gets the resource it runs till it finishes using the resource.

Case 2, Allow preemption.

There is a transaction currently holding a resource and there is a
transaction requesting the same resource. We have to decide whether or
not to preempt the transaction holding the resource and grant the resource
to the transaction requesting it.

When preemption is not allowed, the scheduling decision has to be
made whenever a transaction relinquishes a resource or when a transaction
requests a resource which is not being used. When preemption is allowed
the scheduling decision has to be made whenever a transaction either
requests or relinquishes a resource.



4. Real-time D h ler

The scheduling strategy for transactions in real-time database
systems can be decomposed into three sub-parts [Abbott88], [Abbott89]:
I. Determining eligibility
2. Assigning dynamic priorities
3. Making the final scheduling decision of granting the resource.
In this section we discuss each of these sub-parts in detail.

4.1 Determining eligibility

Before making a scheduling decision we have to decide whether the
transactions involved are eligible for scheduling i.e. whether it is of any use
to the system to start processing those transactions. If a transaction is
ineligible for scheduling we abort it immediately.

We assume that, if a transaction misses a hard deadline, it is
ineligible for scheduling and should be aborted. If a transaction misses a
soft deadline, it is still eligible for scheduling. We also check whether it is
possible for the transaction to finish before its deadline:

(deadline - current time ) = (Estimate - Processing time received)
ie. (D-T) zE-P)

If it is not possible, and the deadline in question is hard, we consider
the transaction ineligible for scheduling. However, if the deadline is soft,
the transaction remains eligible for scheduling.

The steps taken in incorporating validity constraints are similar to
those taken for deadlines. If a transaction misses a hard validity constraint
then it is ineligible for scheduling and should be aborted. If the validity
constraint missed is soft, then we continue executing the transaction at a
different priority. We also check, for each data item read by the
transaction, whether its degree of validity is greater than the minimum
validity level expected by the transaction:



For all data objects d read by the transaction, Vg(T } > Vpin
where, Vq(T) is the degree of validity of object 4 at time T

If that is not the case, and the validity constraint of the transaction is
hard, we consider the transaction ineligible for scheduling. However, if the
validity constraint is soft, the transaction remains eligible for scheduling.

4.2 Asslgning dynamic priorities

The dynamic priority of a transaction is a number calculated by the
scheduler while making the scheduling decision. It is a measure of the
importance, to the over-all goals of the system, of scheduling that
transaction before others at that point in time [Strayer89]. Since this
measure may change with time, it has to be calculated dynamically every
time two transactions are compared during the scheduling decision making
process.

Dynamic priority (DP) is a weighted sum of the following factors:

1. System priority (SP): It is the static component of dynamic priority.

2. Slack with respect to deadline (SDL): It is the amount of time the
transaction can be delayed and still meet its deadline. It is calculated
as follows:

Slack = Deadline - Current time - (Estimate - Processing time)
SDL=D-T-(E-P)

3. Slack with respect to minimum validity constraints (SV): It is the
amount of time the transaction can be delayed and still be completed
without violating its validity constraints.

SV = Min { t | For all data objects d read by the transaction, V(T + 1)

> Vimin }
where, V(T + t) is the degree of validity of object d at time (T + 1),

assuming no updates between time T and (T + t).

Dynamic Priority (DP) is calculated as follows:
DP := DP1 + DP2 + DP3

where,



DP1 := W1 * SP
DP2 := W2 * SDL
DP3 := W3 * §V

The factors involved in determining the dynamic priority of a
transaction have constraints closely related to the characteristics of real-
time transactions. First, W1 > 0, since if SP increases, DP should increase,
Also, if SDL > 0 then W2 < 0, since if SDL decreases then DP should increase.
If SDL < 0, then the transaction has already missed its deadline. Note that
since the transaction is still eligible for scheduling, the deadline missed
must have been soft. At this point, there are two options available to us.
We could reason as follows: Since the transaction has missed its deadline
(soft), it should be finished as soon as possible, and hence its priority must
be increased. In that case, W2 < 0. However, we might reason that since the
transaction has already missed its deadline, its priority should be reduced
so that it does not interfere with other transactions in the system which are
nearing their deadlines. In that case, W2 > 0. Similar discussion applies to
W3 and SV.

The relative values of W1, W2, W3 depend on the high level goals of
the system. For example, some systems may aim at minimizing the number
of transactions that miss their deadline, in which case W1 would not be
very high. Some systems might require that absolutely none of the higher
priority transactions be aborted, in which case W1 would very high.

Given below is a scenario which illustrates that a scheduling strategy
at the CPU level taking validity constraints into account does prevent
unnecessary aborts of ftransactions., Assume that transactions use the CPU
and do I/O operations alternately. Let the time required for one session of
CPU computation be 10 time units and the time required for one /O
operation be 2 time units (if there is no blocking). Let the transactions to be
scheduled (T1 and T2) have the characteristics given below.
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Trans.. | Arrival Estimate Deadline Min.Valid. | Operations
time (hard) (hard)

1 0 12 30 100% read(l)

2 0 12 25 50% read(1l)

Let the validity curve for object 1 be as shown in Fig. 4., and the time
it was last modified be 0. Let the weights W2 and W3 for calculating
dynamic priorities be -1. This implies that, in the formula for calculating
with respect to deadline and validity

dynamic priorities, the slacks

constraints have the same weight.

-

Validity

100%

50%

»-

10 20 30
time elapsed

Fig. 4. Validity Curve

If validity constraints are not considered.

In this case, DP := DP1 + DP2. The slack of T1 with respect to deadline
is 18. The slack of T2 with respect to deadline is 13. Therefore,

DP2(T1) = -18 and DP2(T2) = -13.
ie.  DP2(T2) > DP2(T1).

Assuming equal system priorities, DP(T2) > DP(T1), implying that T2
would be scheduled first The execution would proceed as shown in Fig. 5.
T2 would finish its execution at time 12. Then T1 would start. But, at time
20 the validity of object 1 would be 50%. This would violate the validity
constraint of T1, which would have to be aborted.

11



T2(1/0)

T2(CPU) - T1(CPU)

10 12 20

T2 completes T1 violates
validity constraint

Fig.5. Validity constraints ignored

If validity constraints are considered:

In this case, DP := DP1 + DP2 + DP3. The slack of Tl with respect to
validity constraints is 10. The slack of T2 with respect to validity
constraints is 20. Therefore,

DP3(T1) = -10 and DP3(T2) = -20.
ie.  DP2(T1) + DP3(T1) = -28 and DP2(T2) + DP3(T2) = -33
ie.  DP2(T1) + DP3(T1) > DP2(T2) + DP3(T2).

Assuming equal system priorities, DP(T2) > DP(T1), implying that T1
would be scheduled first. The execution would proceed as shown in Fig. 6.
At time 10 the validity of object 1 would be 100%, satisfying T1's validity
constraints. Thus T1 would finish its execution at time 12. Then T2 would
start. At time 20, the validity of object 1 would be 50%, satisfying T2's
validity constraints. Thus T2 would finish its execution at time 22.

12



T1(1/O) T2(1/0)

T1(CPU) T2(CPU)
10 12 20 22
T1 completes T2 completes

Fig. 6. Validity constraints considered

Thus, incorporating validity constraints in the scheduling strategy
does prevent transactions from being aborted unnecessarily.

4.3 Making the final scheduling decision

The way the final scheduling decision is made depends on whether
preemption is allowed or not. In the following discussion we assume that
the transactions considered have already passed the eligibility test. Let us
consider the scheduling algorithms for the two cases:

Case 1. No preemption,

There are more than one transactions requesting a resource and we
have to decide the transaction which should be granted the resource. In
this case we grant the resource to the transaction with the highest dynamic
priority.

Case 2. Allow preemption.

There is a transaction currently holding a resource and there is a
transaction requesting the same resource. We have to decide whether to
preempt the transaction holding the resource and grant the resource to the
transaction requesting it.

13



Iet Th and Ty be the two transactions requesting the resource. Let
P(Tp) and P(Ty) be dynamic priorities of the two transactions. Let P(T} if
preempted) be the priority of Th were it to be preempted by Ty. The

algorithm is as follows:

IF P(Tp) > MAX{( P(Tp) , P(Th if preempted) ) THEN
IF RemainingTime(Th) > Slack(Ty) THEN
Preempt Th;
END;
END;

where RemainingTime(Th) = Runtime estimate
- Processing time received by Th.

5. Periodic Transaclions and Multiversion Databases

There are many applications in real-time database systems which
have periodic transactions. For example, a pulse detection system used in
radar tracking needs to periodically read pulse data from antennas, process
them, and then display them on an operator console [Haleen89]. Periodic
transactions are restarted after an interval of time equal to their period. If
an execution of a periodic transaction does not complete before the end of
its period, it is aborted and a new instance of the same transaction is
restarted. From the scheduler's viewpoint, periodic transactions can be
modelled as transactions having hard deadlines equal to their periods.

If a data object is updated by a periodic transaction with period (7),
its validity curve can be similar to the one shown in Fig. 6. The form of the
validity curve implies that the validity of the data object remains 100%
during an interval T after the object has been updated. Henceforth, it
reduces by a fixed amount v every T time units. This makes the task of
calculating the degree of validity of a data object easy. If ¢ is the time
elapsed since the data object was last modified,

14



Degree of validity = 100 - (¢ /T) * v
where, "/" signifies integer division.

This behavior of the degree of validity of a data object is similar to
the concept of normalized age of data objects [Song89]. For periodic
transactions, the basic scheduling strategy for determining eligibility,
assigning priorities and making the final decision remains the same as for
aperiodic transactions.

>

Validity
100%

.....................

time elapsed

Fig 6. Example Validity curve

If the database supports multiversion concurrericy control, then each
write operation on a data object produces a new version of that data object.
For a read operation, the scheduler has to choose the correct version to be
read from the pool of currently existing versions. This reduces the conflict
rate between the operations issued by transactions. For example, instead of
rejecting a read operation which arrives too late, the scheduler can make it
read an older version. The particular version chosen depends on the
multiversion concurrency control algorithm being followed. Once a version
is chosen, the rest of the scheduling strategy remains the same. For
example, if there are more than one transactions waiting to access a version
of a data object, the scheduler has to go through the same process of
determining eligibility, assigning priorities and making the final decision as

15



described in Section 4. Overall, the multiversion scheduler at the database
level has to reject or delay fewer operations issued by transaction
managers than the single-version counterpart.

nelusion

Real-time database systems have timing and validity constraints
associated with transactions. To ensure that such a system completes as
many transactions as possible without violating their timing and validity
constraints, its scheduling strategy should wuse timing information
associated with transactions and the database. This makes the task of
scheduling transactions extremely complex. In this paper, we described a
scheduling strategy for transactions in real-time database systems. The
scheduling strategy uses timing information about transactions and the
data objects to calculate dynamic priorities of transactions. These priorities
are then used to make scheduling decisions at all places where transactions
contend for scarce resources. The extra information used by the scheduler
enables it to schedule transactions intelligently so that the system
completes as many critical transactions as possible. The scheduling strategy
can be extended to incorporate periodic transactions and multiversion
databases.
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