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Abstract

We discuss a new minimum density objective for spanning and Steiner tree constructions in
the plane. This formulation is motivated particularly by the need for balanced usage of routing re-
sources to achieve minimum-area VLSI layouts. We present two efficient heuristics for constructing
low-density spanning trees, and prove that their outputs are within small constants of optimal with
respect to both tree weight and density. Our proof techniques suggest a non-uniform lower bound
schema, which may be used to establish the quality of the heuristic solution for any given instance.
More interesting is the fact that the minimum density objective can be transparently combined
with a number of previous interconnection objectives, without affecting the solution quality with
respect to these previous metrics. As examples, we show how sets of competing measures (e.g.,
cost, density, radius; or cost, density, skew) can be simultaneously optimized. Extensive simulation
results suggest that applications to VLSI global routing are promising.

1 Introduction

In this paper, we address a new problem formulation for spanning and Steiner tree constructions in the
Manhattan plane. Our objective is to minimize the density of such interconnection trees, where density
reflects a concept that is closely related to the stabbing number studied in computational geometry [§].
The motivation for our work lies in the area minimization requirement that is implicit in the global
routing phase of VLST layout; global routing entails building (spanning or Steiner) interconnection
trees over given signal nets which correspond to point sets in the Manhattan plane. Traditionally,
minimization of total edgelength in the tree is used to approximately capture the goal of minimizing
the total area of the chip, since wires have a fixed width and must be routed at a fixed separation from

each other. However, the structure of integrated circuit routing resources allows us to more precisely
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determine the impact of a given interconnection topology on the chip area. For a detailed treatment

of integrated circuit routing methodologies, the reader is referred to [14].

1.1 Problem Formulation

Consider the example of Figure 1, which depicts four terminals of a signal net. The interconnection tree
in Figure 1(a) forces at least three wires to cross the dashed line, meaning that the vertical dimension of
the chip must be large enough accomodate at least this many so-called routing tracks [14]. In contrast,
the routing of Figure 1(b) only forces the vertical chip dimension to grow by one routing track (although
the horizontal dimension grows by one track, as shown by the horizontal dashed line). In general, the
most effective use of chip area will be attained if the chip dimensions are roughly equal; this suggests
a balancing of the horizontal and vertical routing requirements induced by the interconnection tree.
With the example of Figure 1 in mind, we develop the Minimum Density Interconnection Tree problem

as follows.

(a) (b)

Figure 1: A four-point example for which the tree on the left has density 3, but the
tree on the right has density 2.

We say that a signal net N is a set of n points, or terminals, p1,ps,...,pn € N in the Manhattan
plane. If necessary, we may distinguish p; as a source terminal, with the remaining members of N
being sink terminals. An interconnection tree of a net N, denoted T'(N), is a tree which spans N. The
cost of a routing tree T is the sum of the costs of its edges, where the cost of an edge 1s the Manhattan
distance between its endpoints. Without loss of generality, we assume that the terminal coordinates

are scaled so that the entire signal net lies within the unit square.

Definition: The density of an interconnection tree is the maximum number of tree edges properly



intersected by any horizontal or vertical line in the plane (Figure 2).!

Definition: For a given net N, the minimum density of N is the minimum density achievable by an

interconnection tree T(N), and a minimum densily interconnection tree is any T(N) that achieves this

density.
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Figure 2: (a) Example of a signal net, along with (b) an interconnection tree with
density 3, and (¢) a minimum density tree with density 2.

In our work, we will address the following:

Minimum Density Interconnection Tree (MDIT) Problem: Given a net N, find a minimum

density interconnection tree T'(N) that has minimum cost.

1.2 Related Formulations

Tt is interesting to note that a number of objectives for interconnection trees have been examined in the
VLSI CAD routing literature. Three in particular are in some sense motivated by the issue of system
performance, 1.e., improving the maximum speed at which a digital system may be clocked. To be
specific, these objectives include (i) minimizing the total cost of an interconnection tree (this reflects
the RC delay of the wiring in addition to chip area), (ii) minimizing the maximum pathlength in the
tree from the identified source to any sink terminal, i.e., the tree radius (this reflects the maximum
signal delay, particularly for newer interconnect technologies such as those for multi-chip module design
[9]), and (iii) minimizing the maximum difference, or skew, between source-sink pathlengths within a
given interconnection tree (this reflects the clock skew minimization problem, which also arises due to

system performance considerations).

Each of these issues has engendered an extensive literature, and all three are currently under active

1A line properly intersects an edge if and only if it intersects the edge at exactly one point (i.e., a line whose intersection
with an edge is a (non-degenerate) segment, does not constitute a proper intersection).



investigation throughout the research community. The first corresponds to the well-known minimum
rectilinear Steiner tree problem; recent surveys may be found in [13] [15] [19]. The second issue has been
treated in the “bounded-radius, bounded-cost” interconnection tree algorithms of [4] [5] [6]; see also the
discussion of [2], which surveys previous work on the “timing-driven interconnection” problem. Finally,
the minimum clock skew problem has been extensively treated in such recent works as [11] [12] [18] [3].
We make note of these existing formulations because our proposed algorithms for minimum-density
interconnection trees afford unique multiple optimizations — indeed, “triple optimizations” — wherein
more than one competing objective may be optimized simultaneously. Section 4 below describes how,
for example, tree cost, radius, and density can be simultaneously optimized; we also show how tree

cost, skew and density can also be simultaneously addressed.

The remainder of this paper is organized as follows. In Section 2, we give two efficient heuristic
constructions, along with several simple variants. Section 3 then establishes a number of performance
bounds: we show that these methods have good performance in the sense that they on average produce
interconnection trees with both cost and density bounded by constants times optimal. Section 4
integrates the minimum density objective with current performance-driven objectives via our “triple
optimizations”. Finally, Section 5 gives experimental results and notes several directions for future

research.

2 Heuristics for Minimum Density Interconnection Trees

In the following, we assume that the # and y coordinates of the net terminals are all distinct, so that
all intersections between routing tree edges and horizontal (or vertical) lines will be proper.? We also

assume that the net contains exactly n = k? terminals, for some positive integer k.

2.1 Spanning and Steiner Trees Via the COMB Construction

Our first basic algorithm partitions the terminals of net N into y/n vertical strips, each containing \/n
terminals (Figure 3a). We then connect all the terminals in each strip in a chain in order of decreasing
y coordinate (Figure 3b). At this point we have \/n chains; we form a routing tree by joining the

bottom terminals of all the chains (i.e., those with lowest y coordinates in each strip) from left to

2If the input contains non-distinct z and y coordinates, some coordinates can be perturbed slightly to achieve
uniqueness.



right (Figure 3c). This process is described in Figure 4.3 The complexity of this algorithm, which we
call COMB, is clearly dominated by the sorting/partitioning step (line number 1 in Figure 4), and is

therefore O(nlogn).
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Figure 3: Execution of the COMB algorithm on a net of size n = 16.

Algorithm: COMB

Input: Net N containing n = k” terminals

Output: a heuristic minimum-density interconnection tree T(N)

1: Partition N into \/n vertical strips each containing /n terminals

2: Connect as a chain the terminals within each strip, sorted by their y-coordinates

3: Connect as a chain the bottom terminals of all strips, sorted by their z-coordinates

4:  Output resulting spanning tree

Figure 4: Algorithm COMB: heuristic minimum density tree construction.

If we are allowed to introduce Steiner points in constructing the interconnection tree, we can reduce
the worst-case density as well as the worst-case cost of our construction via the following method: (1)
partition the net N into % vertical strips, each containing /2 -1/n terminals (Figure 5a); (ii) connect
all the terminals in each strip to a central spine* within the strip (Figure 5b); then (iii) join these spines
using a single horizontal edge (Figure 5¢). This variant, which we call COMB_ST, is described in Figure

6 and also has complexity O(nlogn), again reflecting the complexity of the sorting/partitioning step

at Line 1.
2.2 A Chain Peeling Method

A different approach to density minimization entails iterative superposition of chains over the net,

where a chain is defined to be a set of terminals through which a staircase routing exists (i.e., a

3Tt is interesting to note that a similar strip-partitioning technique has been used in [17] for the performance analysis
of traveling salesman and minimum matching heuristics.

4Formally, the spine is the vertical line which passes through the median terminal of the strip when the terminals are
considered sorted by z-coordinate.
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Figure 5: Execution of the COMB_ST algorithm on a net of size n = 16.

Algorithm: COMB_ST
Input: Net N containing n = k? terminals
Output: a heuristic minimum-density Steiner interconnection tree T(N')

1: Partition N into % vertical strips each containing \/2 - \/n terminals
2: Connect the terminals within each strip to a middle spine

3: Connect the bottoms of all spines, sorted by their z-coordinates

4:  Output resulting Steiner tree

Figure 6: Algorithm COMB_ST: heuristic minimum density (Steiner) tree construc-
tion.

sequence of terminals whose coordinates are monotone in both z and y). Each chain contributes at
most 1 to the overall density, and once a maximal chain is detected, 1t is “removed” from the net and
the process 1s iterated over the remaining terminals, until the net is covered. According to Dilworth’s
theorem from lattice theory [7], every partially ordered set of size n must contain a chain (or an anti-
chain) of size at least \/n, and such maximal chains can be computed efficiently in O(nlogn) time.
We call this algorithm PEEL (Figure 7). As we shall see in Section 3.1, the time complexity of this

method is O(n? loglogn).

3 Performance Bounds

We can show that both the density and the total tree cost of our constructions are on average only

small constant factors away from optimal.

3.1 Density Bounds

A lower bound of Q(/n) can easily be established for the density of any spanning tree T'(N):



Algorithm: PEEL

Input: a net N, containing |[N| = n = k? terminals
Output: a low-density low-cost tree spanning N

1: S=N

2 T=40

3: While S # () Do

4: C' = maximum chain (or antichain) of S

5

6

7

T=TuC
S=5-C

Join all the chains of T" and output the resulting tree

Figure 7: Algorithm PEEL produces a low-density tree by iteratively finding long
chains or antichains.

Lemma 3.1 A net N consisting of n terminals regularly arranged in a \/n x \/n lattice cannot be
N

connected by an interconnection tree T(N) of density less than Y5~ —

Proof: Consider the set of all horizontal and vertical lines between the rows and columns of terminals,
as shown in Figure 8. Tn any spanning tree T(N), each terminal must have an incident edge of the
tree (to ensure connectedness), and this edge will cross some horizontal or vertical line. Since there are

2(y/n — 1) horizontal and vertical lines, and there are n — 1 crossings of these lines, by the pigeonhole

principle at least one of the lines is crossed —2= > Y2 | times. 0

2(v/n-1) = 2

(@ (b)

Figure 8: A lower bound for worst-case value of the minimum density.

Theorem 3.2 For a net of n terminals whose locations are chosen randomly from the uniform dis-

tribution in the unit square, the minimum density interconnection tree has expected density O(/n).

Proof: Partition the unit square into n identical square cells, each of size ﬁ by ﬁ (Figure 9a).

Each non-empty cell of the partition contains at least one terminal N; which has an adjacent minimum
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Figure 9: Expected minimum routing density of a net: (a) the unit square is parti-
tioned into n congruent cells; (b) each non-empty cell contributes at least one edge
that crosses a cell boundary.

density tree edge E; that crosses one of the four sides of that cell (otherwise the terminals in this cell
will not be spanned by the minimum density tree). Thus, the edge E; increases the density count of
the line containing the cell side crossed by E; (Figure 9b). Note that the fraction of cells that are
non-empty is 1 — % on average,® and that each of these will force an edge in T(N) to cross at least
one of the 2y/n — 2 vertical and horizontal lines which define our partition of the unit square into
cells (the four outermost lines which define the boundary of the unit square are not crossed by any
edges of the interconnection tree). By the pigeonhole principle, at least one of these lines will intersect
at least (1 —21)-n/(2yn—2) > (1-1)- \/TE of the routing tree edges, implying a lower bound of
(1- %) . 4 = Q(y/n) for the expected density of the minimum density tree. Since our algorithms always
yield interconnection trees with density O(y/n) (see the following sequence of results), the expected

minimum routing density for a net of n terminals uniformly distributed in the unit square is ©(y/n).
O

The density bounds for our heuristics are established as follows.

Theorem 3.3 Algorithm COMB constructs a spanning interconnection tree with density < 2 -/n.

5Consider the expected fraction of non-empty boxes (i.e., cells) after n indistinguishable balls (i.e., terminals) have

been placed independently and uniformly into n indistinguishable boxes. The probability of a given ball hitting a given
1

box B; is %, and so the probability of the ball missing box B; is 1 — —-. By the independence of the trials the the

probability of all n balls missing box B; is (1 — 1;)" Therefore, as n grows, symmetry implies that the probability of

any box remaining empty is lim (1 — —)” = —. It follows by independence and linearity of expectation that for large
n—00 n €

n, a constant fraction % 2 0.368 of the boxes is expected to remain empty, and hence (1 — %) - n boxes on average will

be non-empty.



Proof: Since each strip contains no more than /n terminals, a vertical line passing through any strip
cannot intersect more than \/n tree edges. Any given horizontal line cannot intersect more than two

edges within each strip. From this latter fact, we see that the density of the COMB output is at most

v O

Theorem 3.4 Algorithm COMB_ST constructs a Steiner interconnection tree with density < % + 1.

NG

Proof: Since each strip in the construction of Figure 5 contains no more than Vel terminals on each
side of its spine, no vertical line passing through any strip will intersect more than % tree edges.
Similarly, no horizontal line will intersect any of the % vertical spines more than once. Thus, the

density of T(N) is at most % + 1 when we consider the added horizontal line which joins the spines

together. n

A density bound for the chain-peeling algorithm PEEL follows from the following two results,
namely, (i) that at most O(sqrtn) chains or antichains will be “peeled” during the construction, and
(i1) that these chains/antichains can be connected to form a single component which has density of at

most the number of chains/antichains.

Lemma 3.5 Algorithm PEEL computes at most 2-+/n chains and / or antichains before terminating.

Proof: Let a; denote the number of points left in the point after we have peeled of the i-th chain/antichain.
Assume that the algorithm stops when we have peeled off k chains and/or antichains, i.e., a = 0.
We want to show that k¥ < 2-/n. According to Dilworth’s Theorem [7], the size of the (i + 1)-

th chain/antichain is at least \/a;. Thus, a;31 < a; — \/a;. Moreover, it is easy to verify that

V& —/x < \/x— L. Therefore,

1 1 k
Var <afag_1 —Jap_1 < \Jar_1 — 3 < (Var—z — 5) —3 << Wao - 5
This implies that k < 2 - (\/ao — /ax) = 2 - /(n). O

Lemma 3.6 If algorithm PEFEL outputs a total of j chains and k antichains, these can be joined into

an interconnection tree that has density no greater than j+ k.



Proof: Consider the j chains output by the algorithm. Even if we extend each chain to the top-right
corner of the unit square, the total density of the resulting set of (extended) chains will not exceed j
(see Figure 10). Similarly, the k& antichains may be connected together by extending them all to the
top-left corner of the umt square. A simple case analysis shows that the set of chains can then be

connected to the set of antichains with no further increase in density, thus yielding a bound of j+ .

Figure 10: Combining chains into a low-density tree.

The maximum chain or antichain of a pointawt in the can be computed in time O(nloglogn) [10].
Since by Lemma 3.5 the total number of iterations of PEEL is O(y/n), the time complexity of PEEL

is O(n? loglogn).
3.2 Cost Bounds

We now use probabilistic arguments to show that on average, all of our heuristic algorithms will also

enjoy good performance with respect to the cost of the interconnection tree.

Theorem 3.7 Given a net of n terminals with locations chosen randomly from a uniform distribution

in the unit square, the expected cost of the minimum spanning tree is O(y/n).

Proof: While this result is well-known from the theory subadditive functionals in the L, plane [1] [16],
we present the following simple proof. As in the proof of Theorem 3.2, we partition the unit square

into an array of n identical square cells, each of size \/Lﬁ by \/Lﬁ In any interconnection tree T(N),

10



each terminal will have at least one incident tree edge, and this edge must cross the boundary of the
cell. Tt is easy to show that the expected distance from a terminal to the side of its containing cell is
lower-bounded by some constant times the length of the side of this cell (in the Manhattan norm, this
constant is 1/6). Recall that the expected number of cells that will contain at least one terminal is
(1—1)-n. We therefore have an Q(/n) bound on the expected total cost of the interconnection tree.
Since our algorithms always yield routing trees with cost O(y/n) (see the following sequence of results),

the minimum spanning tree cost for a set of n terminals uniformly distributed in the unit square is

©(y/n) on average.® 0

Theorem 3.8 Given a net of n terminals with locations randomly chosen in the unit square, algorithm

COMB constructs a spanning interconnection tree with cost < 2-/n.

Proof: In the COMB construction, the sum of the vertical components of the edges within each strip
is bounded by one (the height of each strip is one). Thus, the sum of the vertical components of all
edges in the routing tree is bounded by /n. Consider the tree edges in each strip to be sorted by
y-coordinate of the lower endpoint. Then, for the /n first edges in these strips, the sum of horizontal
components is bounded by one; similarly, the sum of the horizontal components of all the second edges
in the strips is at most one, etc. Since the horizontal components of all of the edges therefore contribute

at most \/n to the tree cost, the total tree cost is at most 2 - \/n. n

Theorem 3.9 Given a net of n terminals with locations randomly chosen in the unit square, algorithm
COMB_ST constructs a Steiner interconnection tree with cost < /2 -\/n.

Proof: In the COMB_ST construction, the vertical spines contribute a total of % to the tree cost.
Sorting edges within each half-strip as in the proof of Theorem 3.8, we see that the horizontal compo-
nents of the first edges in all half-strips 1s bounded by one, as is the sum of horizontal components of
all second edges, etc. Therefore, the horizontal components of all edges contribute at most 5\% to the

tree cost, and the desired bound follows. 0

From these results, we have:

Corollary 3.10 Given a set of n terminals whose locations are chosen randomly from a uniform

distribution in the unit square, the algorithms COMB, COMB_ST and PEFEL all return interconnection

SNote that this result is also known from the theory of subadditive functionals in the Manhattan plane [1] [16].

11



trees which on average have both density and cost bounded by constants times optimal.

4 Triple Optimization

Often in VLSI design, we seek to simultaneously optimize more than one parameter; unfortunately,
even optimizing each parameter of a design in isolation is usually intractable, and hence treating a
composition of such optimizations would be even more complex. It is therefore quite unusual to be able
to successfully optimize even two competing measures (a good example where this has been achieved
is [6], where both total wirelength and radius are simultaneously minimized to within constants times

their optimal values in the worst case, respectively).

In this section we show how to effectively combine density minimization with other, “performance-
driven” objectives, as to simultaneously optimize up to three separate and competing measures of a

routing tree.
4.1 Minimizing Skew, Density, and Total Wirelength

Minimizing clock skew is important in the design of high performance VLSI systems. Recall from the
discussion of Section 1 that this may be viewed as construction of an interconnection tree with minimum
difference among the various source-sink pathlengths. The work of [12] gives a general interconnection
scheme that achieves extremely small clock skews, while keeping the total wirelength on average within
a constant factor of optimal, and always bounded by O(y/n). The clock routing construction of [12]
egins with a forest of n isolated terminals, each of which is considered to be a tree with clock entry
point (CEP) equal to the location of the terminal itself. The optimal geometric matching on these n
CEPs yields 7 segments, each of which defines a subtree with two nodes. The optimal CEP for each
subtree of two nodes 1s the midpoint of the corresponding segment. In general, the matching operation
will pair up the CEPs (roots) of all trees in the current forest. At each level, the root of each new
merged tree is chosen to be the balance point which minimizes pathlength skew to the leaves of its two

subtrees. Thus, at each level of this construction, we only match half as many points as in the previous

level, and thus after [logn] matching iterations, we obtain the complete tree topology.

In order to construct clock routing trees with low density, our minimum density tree construction

of Section 2 may be modified to yield a geometric matching with low density, as follows: partition

12



the net into /n strips of y/n terminals each and connect the terminals of each strip in a long chain,
as before (Figure 11a). However, instead of connecting the bottoms of all the chains, alternatingly
connect the two bottoms of one adjacent pair of chains, and the two tops of the next adjacent chain
pair, etc. (Figure 11b). Tt is easy to see (using arguments identical to those used in Theorems 3.8 and
3.3) that this procedure (which we call SERPENTINE) will connect all of the terminals in a single
long chain having both total cost and overall density simultaneously bounded by O(/n) in the worst

case.

el 55\,1
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Figure 11: (a) Partitioning a net into strips/chain; (b) a tour with good average
cost and low density; and (¢) an embedded geometric matching with good average
cost and low density.

Taking only every other edge of the resulting long chain will constitute a geometric matching
(Figure 11¢) having both total cost and overall density simultaneously bounded by O(y/n). Next, we
use such matchings within the minimum-skew routing method of [12], to yield clock routing trees that
simultaneously minimize three (mutually competing) measures: pathlength skew, total wirelength, and
density, with the latter two quantities being bounded on average by constants times the optimal values,

respectively.

4.2 Minimizing Radius, Density, and Total Wirelength

Another example of a triple optimization is obtained if we combine our present bounded density
formulation with the radius/cost tradeoff formulation of [6], where a method was proposed to uniformly
trade off total routing tree cost with radius, achieving a simultaneous optimization of both cost and
radius to within constants times the optimal respective values in the worst case. The bounded-radius
tree construction of [6] starts with a low-cost tour of the net terminals, which is then augmented by

adding shortest paths to the root from certain regularly spaced locations along the initial tour. The

13



final output routing tree is the shortest paths tree over the resulting augmented graph.

We can combine our present bounded radius method of Section 2 with the radius/cost tradeoff
method of [6], by starting the basic algorithm of [6] with a tour having total cost and density both
bounded by 2./n, as described in Section 4.1, and then proceed normally with the rest of the construc-
tion of [6]. For an arbitrary given real parameter ¢, the resulting routing tree will have radius bounded
by (14 €)- R, cost bounded by (1+ %) - 2¢/n, and density bounded by (1 + ﬁ) -2¢/n, where R is the
distance from some distinguished source pin to the farthest sink (R = ©(1) for a uniform distribution
in the unit square). Note that for any fixed value of ¢, all three of the above measures (i.e., radius,
cost, and density) are on average constants times the respective optimal values (with the radius bound

being constant times optimal in the worst case as well).

5 Experimental Results

We have implemented the COMB, COMB_ST and PEEL algorithms using ANSI C for both the Mac-
intosh and Sun Sparc environments. Results are presented in Tables 1-2. For each pointset cardinality,
each algorithm was executed on 100 point sets randomly chosen from a uniform distribution in the unit
square. We computed the minimum, average, and maximum densities of the resulting interconnection

trees. Statistics with respect to the routing tree density and given in Table 1.

The data indicates that the average density of the tree produced by the COMB algorithm is on
par (indeed, up to XXX percent better) than the density of the minimum spanning tree. Tt should
be noted that the density of the minimum spanning tree has considerably higher variance, and can
be as great as (n). On the other hand, the average density of the trees produced by the COMB_ST
algorithm 1s considerably better than the average density of the corresponding minimum spanning
trees. For example, for nets of size 10, COMB_ST yields trees with average density 2.89, while the

average minimum spanning tree density is 3.65.

6 Future Work

Tt 1s still an open question whether there exists a polynomial-time algorithm that constructs a routing
tree with both cost and density bounded by constants times the optimal values in the worst case. 1t is

also unknown whether the MDIT problem i1s NP-complete. The chain-peeling method, PEEL, offers

14



MST SERPENTINE
net density lower bound density lower bound
size | min ave max | min ave max | min ave max | min ave max
3 1 1.69 2 1.00 1.69 2.00 1 1.69 2 1.00 1.69 2.00
5 2 2.57 4 1.00 1.35 3.00 2 2.70 3 1.00 1.41 3.00
7 2 2.97 5 1.00 1.52 3.00 2 3.64 4 1.00 1.88 3.00
10 2 3.82 6 1.00 1.85 3.00 3 3.71 4 1.00 1.80 2.00
15 3 4.35 6 1.33  2.08 3.00 3 4.95 5 1.50 2.38 2.50
20 4 4.98 8 1.33  2.15 4.00 4 4.98 5 1.67 2.14 2.50
30 4 5.99 8 1.67 2.05 3.50 6 6.00 6 3.00 2.00 2.11
;50 5 7.11 10 3.33  1.50 2.28 7 7.79 8 2.67 2.00 2.50
;100 7 9.48 12 1.75  2.37  3.00 10 10.01 11 2.50 2,50 2.75
;300 12 14.59 17 1.86 2.31 2.83 18 18.00 18 2.57 2.85 3.00
;500 15 17.79 22 1.88 2.23 2.75 23 23.00 23 2.88 2.88  3.29
CHAIN COMB.ST
net density lower bound density lower bound
size | min ave max | min ave max | min ave max | min ave max
3 1 1.69 2 1.00 1.00 1.00 1 1.00 1 1.00 1.00 1.00
5 2 2.00 2 0.50 0.94 2.00 2 2.00 2 1.00 1.05 2.00
7 2 2.66 3 0.50 1.03 2.00 3 3.00 3 1.00 1.46 1.50
10 2 3.08 4 1.00 1.85 3.00 3 3.00 3 1.00 1.46 1.50
15 3 3.93 5 1.00 1.58 2.00 3 3.00 3 1.00 1.44 1.50
20 4 4.76 6 1.00 1.74 2.50 4 4.00 4 1.33  1.72 2.00
30 5 5.88 7 1.33  1.81 3.00 5 5.00 5 1.67 1.76  2.50
50 7 7.85 9 1.50 2.27  2.67 6 6.00 6 1.50 1.92 2.00
;100 10 11.48 13 2.25  2.66  3.00 8 8.00 8 2.00 2.00 2.00
;300 19 20.69 22 2,57 3.12  3.50 13 13.00 13 1.86 2.06 2.17
;500 7 77.77 7 3.00 3.26 3.86 17 17.00 17 2,12 2.13  2.43

Table 1: Minimum density routing tree statistics.

some promise in the sense that there exist examples where this method outperforms the algorithms
COMB and COMB_ST by a factor of ©(y/n) (see Figure 12); we believe that PEEL can be shown to
yield worst-case density that is within a constant factor of optimal. Indeed, we offer two closely related
conjectures: (i) that the minimum density of a spanning tree over net N is at least the minimum of
the number of chains or the number of antichains needed to cover N; and (ii) the PEEL algorithm will

use at most two times the minimum possible number of chains/antichains that cover N.

In conclusion, we have proposed a new spanning and Steiner tree formulation, based on a minimum
density criterion. We have also presented several efficient heuristics for constructing low-density span-
ning and Steiner trees. We prove that on average the performance of our algorithm is bounded by small
constants away from optimal, in terms of both tree cost and density. We also show how our techniques

can be used to unify the new density criterion with previous “performance-driven” interconnection
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(b)

net MST SERPENTINE

size min ave max min ave max
3 417 1103.66 2227 466 1210.13 2561
5 804 1658.39 2554 1010 2154.82 4233
7 1322 2039.34 2983 1520 2851.53 4427
10 1781 2662.36 3462 2635 3857.65 5334
15 2296 3224.41 4045 3253 4960.36 6231
20 2766 3789.89 4558 4351 5639.92 6845
30 4107 4651.00 5403 6273 7122.61 8469
50 5190 5945.47 6668 8003 9415.73 10478

;100 7481 8384.32 8887 12237  13079.22 14027

;300 | 13850 14318.99 14865 | 22488  23319.39 24164

;500 | 17840  18438.74 19079 | 29272 30065.21 31029
net CHAIN COMB.ST

size min ave max min ave max
3 86 736.72 1577 366 1164.96 1882
5 758 1495.57 2481 1063 2260.09 3229
7 770 1852.91 3209 1992 3009.31 4141
10 1595 2776.06 4080 2307 3224.01 3974
15 2562 3721.27 5071 3143 4216.83 4941
20 2871 4720.69 6350 3692 4823.63 5649
30 4873 6318.27 8085 5594 6570.46 7740
50 7447 9298.73 11629 7070 8029.99 8945
;100 | 12552 14717.75 16579 | 10390 11083.93 11911
;300 | 26123 28960.44 31549 | 17963 18681.10 19614
;500 | 35249 39176.52 42265 | 24233 24930.63 25690

Table 2: Tree cost for different algorithms.
[ ] [ ] ¢
i [ ]
[ ]
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° ® e
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Figure 12: An example (a) on which PEEL (b) performs an unbounded factor better
than either COMB or COMB.ST (¢).

objectives in order to achieve simultaneous optimization of up to three separate interconnection tree
measures. Extensive simulations indicate that this approach is effective in practice, and holds promise
for applications to balanced-resource routing in VLSI layout. The main open questions remaining are

whether there exists a polynomial-time algorithm that constructs a routing tree with both cost and

16



density bounded by constants times the optimal values in the worst case, and whether the MDIT

problem is NP-complete.
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