
The ADAMS Preprocessor

Paul K. Baron

IPC-TR-89-009
December 4, 1989

Institute for Parallel Computation
School of Engineering and Applied Science

University of Virginia
Charlottesville, VA 22903

This research was supported in part by DOE Grant
#DE-F605-88ER25063 and JPL Contract #957721

Abstract:

ADAMS is a database language that has been developed
by the ADAMS group of the Institute for Parallel Com-
putation, of the University of Virginia. ADAMS deals
not only with a persistent database, but also a persistent
name space. The ADAMS language consists of state-
ments that can be embedded within traditional program-
ming languages, such as C, FORTRAN or Pascal. This
allows programmers to still use a language that they are
familiar with, avoiding many problems inherent in stand
alone database languages.

This document describes the implementation of a
preprocessor for embedding the ADAMS language
within C. The preprocessor accepts a C program with
embedded ADAMS statements, and translates it into a
pure C program which can then be compiled by the cc
compiler. The elements of the preprocessor are detailed,
along with the interaction that the preprocessor has with
other elements of the ADAMS system. Research issues
arising from the persistent name space of ADAMS are
also discussed.

1. Overview

This technical report describes the implementation and usage of the preprocessor for the

ADAMS (Advanced DAta Management System) database language developed by the ADAMS

group of the Institute for Parallel Computation, of the University of Virginia. The ADAMS

language is described in great detail in a separate document [PFG89b]. As such, only a brief

overview of the language will be presented in this report. Readers with questions on the details

of the language itself are urged to refer to that report.

ADAMS is a database language with two major research goals: 1) to gain insights into

developing database systems that can exploit the potential of parallel processing machines; 2) to

explore the concept of a persistent name space for elements in a database system.

ADAMS consists of database manipulation statements which can be embedded within a

traditional host programming language. In this version of the preprocessor the host language is

C. The run time system is implemented in C++ on a VAX 8600 running 4.3 BSD UNIX†. It is

intended that future preprocessors will be developed to embed ADAMS in other host languages

such as Pascal, FORTRAN, and Ada‡.

This document should give the reader an understanding of how the preprocessor works,

what it accomplishes, and how it was implemented. It should also serve as a good starting point

for those who will modify the current preprocessor or who will actually develop the versions for

other languages.

1.1. ADAMS language fundamentals

ADAMS is a database language that provides access to permanently stored, or persistent

data. The data elements may have names by which they can be referenced in much the same way

that variables can be named in a C program. A major feature of ADAMS is that the names for

���

† UNIX is a trademark of AT&T Bell Laboratories.

‡ Ada is a trademark of the Department of Defense.

2

these elements can also be persistent.

ADAMS code is embedded within a host language such as C, FORTRAN or Ada. This pro-

vides a common data interface for these host languages, enabling all users to write application

programs in their preferred language, while permitting all to access the same data.

The guiding philosophy of ADAMS is simplicity. Many database systems become clut-

tered by inflexible, complex constructs, arising from patches to provide for elements left out of

the basic system. FORTRAN and COBOL illustrate traditional programming languages that have

grown cluttered over the years. ADAMS, on the other hand, is composed of a handful of fairly

simple constructs, which can be used as building blocks to create more complex database

configurations.

To obtain a background knowledge in the ADAMS language that will be needed to under-

stand the development of the preprocessor, the following areas will be examined:

� The basic ADAMS constructs
� The concept of unique ids
� Naming of ADAMS elements
� Unnamed elements—ADAMS_vars
� Interaction between ADAMS names and the host language

The basic constructs of ADAMS are: class, codomain, attribute, map, and set. A brief

explanation of each follows:

Class: This is similar to a type definition in other programming languages. It describes the pro-

perties of instances of the type. Elements, also referred to as objects, are specific

instances of a class, similar to instantiations of a C structure definition, but do not take up

storage as the C structures do. A C structure takes up a number of bytes equal to the sum

of the size of the components and appropriate offsets for word boundaries. In ADAMS an

element is more conceptual; it exists only as a pointer to its components (attributes and

maps—two of the other constructs).

Codomain: This is a set of permissible data values. From the users’ viewpoint they are

3

character strings.

Attribute: This is much like a field of a record in a traditional record and file database model.

An element may have a set of attributes associated with it, each of which has a codomain

value for an image.

Map: This is similar to an attribute, but the image of a map is another ADAMS element instead

of a codomain value. It is used to define relationships between ADAMS elements.

Set: This is the basic ADAMS aggregate. It is a proper mathematical set; there is no ordering on

the elements of the set. The elements of a set must all be from the same class.

Every element created in ADAMS has a tag associated with it known as its unique id (also

referred to as a uid). As the name suggests, this tag is unique for all elements ever created. Even

when an element is deleted its unique id can never be used for a new element. The unique id is

the means by which ADAMS elements are retrieved. However, the ADAMS user never sees

these unique ids. He may use the name of an element or a dummy variable, such as an iterator in

a FOR_EACH loop. The values of the unique ids are obtained through the preprocessor or run

time system.

The name of an element in ADAMS can be persistently associated with that element even

after the program that created them has finished. There is a hierarchy to the name space, similar

to the hierarchy of file permissions in UNIX (user, group, world). ADAMS has 3 persistent lev-

els: system, task, user, and one non-persistent level: local.

This naming scheme differs from traditional databases where only elements of the

schema—attributes and relations—are named. A relational database has no names for its indivi-

dual tuples or records; the elements are accessed by a key, a part of the record itself. If the value

of the key changes the record must be accessed in a different manner, through the new key. In

ADAMS, if the attributes and maps of a named element change, the element can still be accessed

in the same manner as before. To an ADAMS user the elements are referenced by a name, but

4

the actual generated C code references them by their unique ids. This is an important matter, as

unnamed elements are also referenced by their unique ids. Elements can be placed into a set

without ever naming the individual elements; to retrieve the elements, only their unique ids must

be accessed.

While any element in ADAMS can be named, there is no requirement that an element be

named. Often it is desirable for an element to be instantiated, have maps/attributes assigned to it,

and be inserted into a set, without there ever being any need to ever refer to the element by name.

References to the element will be made via a loop through all the elements of that set. ADAMS

provides a construct known as an ADAMS_var for this purpose. These elements still have a

unique id, so the run time system views them the same as named elements.

There is also a mechanism for linking in names with host variables. VAR variables in

ADAMS are host variables of type "string", whose value will be interpreted as an ADAMS name.

1.1.1. ADAMS as an embedded language

Since ADAMS is an embedded language it must be possible to determine at all times

whether an embedded or host language statement is being scanned. ADAMS solves this by del-

imiting all ADAMS statements by "<<" and ">>". Only characters within these delimiters need

be tokenized and passed on to YACC; all others can be copied directly to the C output file.

An important issue is that of separation of the ADAMS code from the host language state-

ments. Since only characters within the ADAMS delimiters are scanned and passed to the parser,

the C statements in the host language are ignored by the preprocessor. Any information in the

surrounding C code, such as host variable names, and size of C buffers used to store attributes, is

lost.

5

1.2. Preprocessor fundamentals

The purpose of the preprocessor is to convert a source program containing both C and

ADAMS statements into a source program consisting of C statements alone. To obtain an over-

view of the preprocessor several issues will need to be addressed here:

� The basic elements of the ADAMS preprocessor.
� The implications for the preprocessor of ADAMS being an embedded language.
� Brief history of the ADAMS preprocessor.
� Interaction with other ADAMS modules.

1.2.1. The basic elements of the ADAMS preprocessor

The role of the preprocessor in the overall scheme of ADAMS is shown in Figure 1-1. The

user embeds ADAMS statements within a C program which is input to the preprocessor. The

preprocessor examines the source program and replaces ADAMS statements with C code to per-

form the desired function of the ADAMS code, while passing the original C code along intact.

The persistent dictionary is accessed at parse time to aid in code generation.

The preprocessor creates a C program which can then be compiled and linked in with other

ADAMS run-time code to produce an executable program. This is a simplification of the

ADAMS
embedded

in C

pre-
processor

New C
code

compiler/
linker

executable
code

run-time
librariespersistent

dictionary

Overview of the preprocessor
Figure 1-1.

6

compilation/link phase, as will be seen in the section on C/C++ interface problems.

The components of the preprocessor are the lexical analyzer, the parser, and the code gen-

erator. They are illustrated in Figure 1-2.

The lexical analyzer takes the input stream of C and embedded ADAMS, and emits tokens

to the parser. User written C code is sent unchanged to an output file. The UNIX tool LEX was

used to write the lexical analyzer.

The parser is the centerpiece of the preprocessor. Its purpose is to determine whether or not

the ADAMS portions of the input constitute legal ADAMS statements, and if so, to make

input stream:
<< ADAMS CODE >>

C code;

Lexical Analyzer

original
C code

output
stream

Parser

Code
generator

generated
C code

ADAMS
token

Elements of the preprocessor
Figure 1-2.

7

appropriate calls to the code generator, which will emit C code to perform the function of the

ADAMS code. The parser was written using the UNIX tool YACC, which creates a C program

that simulates a deterministic finite automaton that evaluates the stream of tokens received from

the lexical analyzer and eventually accepts the input as valid, or detects an error (with attempts to

recover and continue parsing).

Once the parser recognizes a valid ADAMS statement, the code generator is invoked.

There actually is no one code generator entity as there is one parser and one lexical analyzer, but

a set of functions, one for each ADAMS statement, that actually generate C code. This set of

functions, along with a number of specialized functions that they require, constitutes the abstract

entity known as the code generator.

The code generator emits C code in place of each ADAMS statement it processes into the

same stream that the lexical analyzer outputs the original C code. As it processes each ADAMS

statement, the code generator emits C code into and output stream. The lexical analyzer emits the

original C code into this same output stream. Since the code generator does not work on

ADAMS code at the same time that the lexical analyzer emits regular C code (see decision point

that the lexical analyzer reaches in Figure 1-2), there are no conflicts between them in the output

file. Eventually the users’ source program is exhausted and preprocessing ends with the new C

program as output.

1.2.2. Brief history of the ADAMS preprocessor

The current preprocessor is for the most recent version of ADAMS. A prototype was

developed for an earlier version of ADAMS [Klu88]. The earlier version was purposely designed

to be a prototype of a real preprocessor, with the goal being to rapidly bring a version up and run-

ning, in order to test out various constructs of the ADAMS language, and get a feel for what

would and would not be useful features of the language. From that viewpoint the prototype

worked out very well. There were substantive revisions made to the design of ADAMS as a

8

result of testing ADAMS programs with the prototype.

This preprocessor is more complex than that first prototype, and has taken more time to

develop, for several reasons:

(1) The prototype was based on only a subset of the ADAMS language. Until then ADAMS

was purely theoretical; there was no way to test out which elements would work. There was

little incentive to write ADAMS programs since there was no way to run them, thus little

critical analysis of the language itself was performed. There was a great need to get some-

thing working, and a subset of ADAMS sufficed.

(2) A rudimentary dictionary/data file system was established. The dictionary and data were

stored together in the same files. This clearly would not be practical for a real system, but

was no great problem since it was only a prototype. Much of our work has been concerned

with issues related to the dictionary, and the persistence of ADAMS elements.

(3) There is a problem associated with the delimiters used for ADAMS when it is embedded

within C. This was essentially ignored in the prototype, but had to be handled in this ver-

sion. This problem will be discussed later.

The lexical analyzer that is used in the current preprocessor is based upon the one used in

the prototype. However the existing code had to be greatly augmented to resolve recognition of

the full set of keywords, and to handle the problem with the delimiters.

The ADAMS language itself is quite different from that used by the prototype. Numerous

extensions and modifications have been made in the last year. Consequently there was little point

in trying to build upon the earlier version of the parser; an entirely new one was designed.

1.2.3. Interaction with the dictionary

The dictionary is an entity whose function is to keep track of names of elements, associated

unique ids, and definitions of classes. The dictionary module is the most important one that the

9

parser must interact with. The other modules (low-level storage manager, unique id manager)

have importance to the preprocessor, but they are called indirectly, as with the dictionary module

utilizing the unique id manager.

The interaction between the parser and the dictionary occurs when the preprocessor needs to

obtain from, or give to, the dictionary information about an element. Information that the prepro-

cessor may wish to obtain or give includes the unique id of a named element, the superclass(es)

of an element, whether an element exists already or not at parse time, and whether or not an ele-

ment is a subscripted variable, and if so, the number of dimensions it should have.

A more detailed examination of the dictionary levels is needed now. There are 3 persistent

levels to the dictionary: user, task, and system, and one non-persistent level, local. Much as with

UNIX permissions, user level allows a user to define his own classes and create names for his

own objects without affecting other users. Task level is above this. A task is a collection of users

engaged in some common work. Names at the task level can be seen by all users in this task,

much as with the group level in UNIX. A user can be a member of any number of tasks. Above

this is the system level, whose names are available to everyone. When names are placed into

these 3 levels they stay there until they are specifically deleted or rescoped. The termination of

the process in which they are created or manipulated does not remove either the names or the

entities they denote.

The local level is similar to the user level in that it is accessible only to one user. However

it does not have a persistent scope: when the program that created entities in this level ends, both

the names and associated entities are deleted. The purpose of having this level is to serve as a

"scratch pad" for creating temporary elements and classes on the fly, without having to worry

about the names conflicting with elements that already exist in the persistent name space.

10

1.2.4. Interaction with the index manager

The index manager keeps track of information for unique ids such as which are members of

which ADAMS sets, what are the reference counts for each unique id. The index manager pro-

vides a buffer between the views of elements as named entities and their representation in

storage. The index manager sees only unique ids, never ADAMS names, and makes calls to the

low-level storage manager.

An important function of the index manager is to keep a reference count on all named ele-

ments. A reference count in ADAMS is similar to the link count for UNIX files, where a file’s

link count is incremented every time a user creates a new link to it. This gives the user the per-

ception of having his own copy of the file, without using up space to copy the file; only one copy

actually exists, so all users with links to it are affected by changes to it. When somebody deletes

his copy of a linked file it doesn’t delete the actual file, but only his link to it; the file itself is

deleted only when the last user to have a link to it deletes it. ADAMS reference counts work

similarly, though they deal with ADAMS elements, not files. Every time a program is executed

and creates a persistent reference to an element (for instance puts element x into a persistent set)

the reference count for that element is incremented. As programs "delete" the element (for

instance some user removes x from his set and tries to delete it) all that occurs is that the refer-

ence count is decremented. It is not until the count is one and a program attempts to delete it that

the element is actually removed.

For the most part reference counts are used by the run time system to maintain database

consistency. In a later section we will examine parse time/compile time conflicts that may be

affected by the reference counts.

1.2.5. Interaction with the low-level storage manager

The responsibility of the low-level storage manager is to handle the details of actual storage

of ADAMS elements onto permanent storage, providing an interface that will allow for various

11

patterns of data migration without disturbing higher levels of the ADAMS system. In short, the

details of how data is stored are abstracted away from other areas of ADAMS.

The preprocessor has no direct communications with this manager—the preprocessor

merely issues calls to the index manager to store or retrieve information through the unique ids.

The details of how such storage/retrieval are implemented are of no concern to it.

There is one area in which there could be a connection, though it has not been implemented

yet—that of clustered attribute sets, in which the user could give a hint that certain pairings of

attributes or maps are generally going to be accessed in an all or none fashion, thus justifying the

storage of these elements together on the same device, much like a tuple is in a relational data-

base.

For more details about the ADAMS low-level storage manager, refer to [Jan89].

1.3. Sample ADAMS program

In the next sections, we will examine the operation of the preprocessor in greater detail by

thoroughly examing the lexical analyzer, parser, and code generator. The focus will be on under-

standing these components and their interactions with each other and with other components of

ADAMS. We will also see some problems that were encountered in development of the prepro-

cessor and changes that were needed to the ADAMS language due to lexical/parsing considera-

tions.

To help illustrate the fundamentals of the preprocessor, the following sample ADAMS/C

code will serve as a running example in the body of the report. A more extensive example, along

12

with its translation into C, will be provided in appendix 5.

/* sample ADAMS/C code */

#include <stdio.h>

main ()
{
int i;
char new_elem[30];
char name[30];

<< open_adams 3 >>
<< adams_var x >>

for (i = 0; i < 10; i++)
{
scanf ("%s", new_elem);
<< insert var new_elem into old_set >>
}

<< insert abc into old_set >>
<< delete ADAMS_element[3, 5] from old_set >>

<< FOR_EACH x in old_set do
<< fetch from x.attr_1 into name >>
printf ("name of next element = %s\n", name);

>>

<< close_adams 3 >>
}

The operations in the program are reasonably simple. The open_adams statement opens

some files and performs some initialization. The C for loop scans for character strings which the

insert statement takes as the names of ADAMS elements, which it then tries to insert into a

(presumably) previously existing set. After the C loop, a previously defined element abc is

inserted into the set, and a subscripted element, ADAMS_element [3, 5] is removed from the set.

Next all the elements of this set are retrieved, and one attribute (attr_1) is printed out for each

element. The close_adams statement then closes some files. The rationale behind this program

will become clearer when we examine the C code that is generated for this program.

13

2. The Lexical Analyzer

First we will look at the lexical analysis phase of the preprocessor, the first operation per-

formed upon the users’ input text by the preprocessor.

2.1. Fundamentals of LEX

It is important to understand the role of the lexical analyzer in the preprocessor, and the

relationship between LEX and YACC programs. Without this understanding, it will be difficult

to understand the problems that were involved in developing the preprocessor.

The purpose of a lexical analyzer is to take an input text stream, scan it and break it up into

more manageable pieces known as tokens. For example, for the following line from the sample

program:

<< insert abc into old_set >>

The lexical analyzer will send the following token stream:

STMT_BEGIN, INSERT, ACTUAL_NAME, INTO, ACTUAL_NAME, STMT_END.

The LEX program specifies a set of rules governing how the input stream gets broken down

into tokens. In the example above, in all cases except those corresponding to the

ACTUAL_NAME tokens ("abc" and "old_set"), there were LEX rules hard-coded for exact

matches. One rule specifies that the character sequence "<<" generates the STMT_BEGIN token,

the literal word "insert" (actually case-insensitive for each letter) generates the token "INSERT".

There is a more general rule for deciding what gets tokenized as ACTUAL_NAME. Any charac-

ter sequence that does not match a previous rule, which starts with a letter and consists solely of

letters and digits, will generate the ACTUAL_NAME token.

The parser (YACC program) calls for one token at a time and upon receiving each, makes a

decision regarding the validity of the input program. By default, any characters sent to the lexical

analyzer that do not get tokenized simply are sent to the C output file.

14

2.2. ADAMS influence on the lexical analyzer

Being an embedded language, ADAMS creates some difficulties for LEX, necessitating the

use of some of the more advanced features of LEX. The lexical analyzer has to be sensitive as to

whether it is scanning ADAMS or C code. The same character string may have different mean-

ings to LEX in the two environments. For example, the string "MAP" is a keyword if seen in

ADAMS, but if outside of ADAMS, it is merely a C construct, and is not even tokenized by the

lexical analyzer.

To handle the problem of having to know which environment LEX is in, it is necessary to

use LEX start conditions on rules. These essentially simulate a C switch statement. This concept

consists of LEX knowing a set of available states which it can be in at any time. The particular

state it is in is dependent upon its input. The lexical analyzer starts off in a default state. Once

the STMT_BEGIN is recognized, an <ADAMS> state is entered. All of the rules for ADAMS

keywords are dependent upon being in this ADAMS state, so as not to get tokenized erroneously

if they also happen to occur the in C code.

There are two exceptions to this. First, if legal C code fools the lexical analyzer into think-

ing that it’s handling ADAMS code, then ADAMS keywords appearing in the C code (such as

"map" in the example) will get tokenized. However, eventually the error handling productions

will be reached, and the original characters will be sent to the output stream.

The other exception concerns the STMT_END token. Normally, the lexical analyzer would

be in its ADAMS state, processing an embedded statement when it encounters the STMT_END

token. But this need not always be true. The lexical analyzer must correctly handle STMT_END

in either state. This is necessary to allow ADAMS statements to be intermingled with C state-

ments within the body of an ADAMS looping statement. The FOR_EACH statement allows any

mix of host and ADAMS statements in its body. Not requiring the lexical analyzer to be in the

<ADAMS> state to recognize STMT_END permits it to exit the <ADAMS> state after recogniz-

15

ing the STMT_END. The following example will illustrate this.

<< FOR_EACH x IN y DO
<< FETCH x.map1 INTO z >>
printf ("%s \n",z);

>>

The first line is recognized as a header of the FOR_EACH statement. ADAMS and C state-

ments follow this, and then a closing ">>" for the FOR_EACH statement. The lexical analyzer

must turn off the <ADAMS> state after seeing "do", so that the following C statements are not

tokenized. The fetch statement turns the <ADAMS> state on again, then back off at its end.

After the next line of C code the <ADAMS> state is still off. So it is necessary to be able to

recognize the STMT_END for the FOR_EACH statement while LEX is not in the <ADAMS>

state.

There is one other function that the lexical analyzer must handle for the ADAMS language.

The original characters (lexemes) that were used to form a token are still available after being

tokenized if desired. LEX has facilities to handle passing this information to YACC, but this

information is normally lost to LEX after it starts work on a new token. In the preprocessor’s lex-

ical analyzer, this information must be retained for the duration of an ADAMS statement for pos-

sible error handling by the parser.

16

3. The Parser

The parser is the single most important component of the preprocessor, so understanding its

operation is essential. Since it is a YACC program, a short explanation of YACC is in order. For

more a detailed explanation see [Joh78, KeP84] or any UNIX documentation.

A YACC program takes an input file, parses it, and determines whether or not the input fol-

lowed a set of rules specifying the legal input. YACC decides whether or not the input is a string

recognized by a specific grammar.

The main part of a YACC program consists of a set of productions in BNF. As expected in

BNF, there is one start symbol, from which all allowable strings are eventually derived. Each of

the right hand sides of the productions consist of tokens and/or other production names such as:

insert_stmt: INSERT element_desig INTO set_desig

where the names in capital letters are terminal symbols and the rest are production names. From

the viewpoint of the YACC user, the purpose of the program is to accept those strings (i.e., those

input programs) that follow the grammar, while rejecting any other input.

The YACC specifications are transformed into a C program which creates a pushdown auto-

maton that actually implements the parsing, but the details of that process are not necessary for

understanding the ADAMS preprocessor.

The goal for a YACC program is to take the stream of tokens it receives, recognize various

sequences of them as forming the right hand sides of productions, reduce those to production

states, then reduce the combination of production states and remaining tokens, eventually result-

ing in a specific production, the start symbol, being reduced.

This process is best illustrated by examining how a specific ADAMS statement is parsed.

To do so, we will have to examine the levels of productions that are higher than a statement level.

The top-level production in the parser is:

17

adams_code: /* empty string */
| adams_code adams_stmt
;

This means that the adams_code production is satisfied by either the empty string or itself

followed by an adams_stmt. Since there is left recursion here there can be any number of

adams_stmt strung together in forming adams_code. At the start, before YACC even gets a

token, the empty string reduces to the production adams_code. If the next ADAMS code that fol-

lows reduces to an adams_stmt (which it should, else it is an error; adams_stmt covers all legal

ADAMS statements) then the combination of existing adams_code and the adams_stmt reduces

to adams_code again. This process iterates as long as there is source code to parse.

The next level is the adams_stmt production, which has 35 choices on the right hand side,

corresponding to each of the possible ADAMS statements:

adams_stmt: STMT_BEGIN insert_stmt STMT_END
| STMT_BEGIN delete_stmt STMT_END
| /* and 33 other possible statements—listed in appendix 2 */
| /* and 3 possible error states */
;

We will now show how to parse the following line from the example program:

<< INSERT abc INTO new_set >>

The option of interest from the adams_stmt is the first line, using the insert_stmt. These addi-

tional productions will be needed to explain how to parse it.

insert_stmt: INSERT element_desig INTO set_desig
set_desig: element_desig
element_desig: element_name
element_name: actual_name
actual_name: CHAR_SEG | actual_name UNDER_CHARS

First we assume that the parser has just recognized an adams_code production. We have already

seen that the token stream for this will be:

STMT_BEGIN, INSERT, CHAR_SEG, INTO, CHAR_SEG, UNDER_CHARS, STMT_END.

Upon seeing the STMT_BEGIN, the first element of the adams_stmt is satisfied, though there are

35 possible right hand sides that could be satisfied with the input to be seen. The next token,

18

INSERT, narrows it down to one choice, that with the insert_stmt. The CHAR_SEG which

comes next is reduced to an actual_name, then to an element_name, and that in turn to an

element_desig. The INTO token satisfies the next desired element. The second CHAR_SEG and

the UNDER_CHARS also reduce to actual_name then to an element_desig also, but the

element_desig then reduces to set_desig. These steps fulfill the requirements for reducing the

insert_stmt.

The first two parts of the right hand side of adams_stmt are matched, and the final token

STMT_END matches the last element. At this point the token sequence shown has been reduced

to adams_stmt, which along with the existing adams_code, recursively become another instance

of adams_code.

The other important concept in YACC is that of semantic actions. This goes beyond simple

recognition of valid strings, and allows actions to be taken as a result of the input. These actions

are specified through C code, and are placed on the right hand side of the productions, between

tokens/production names, or more commonly at the end of a production. It is through these

semantic actions that the "real" work of the preprocessor is done. Without semantic actions the

only accomplishment would be the discovery of whether or not the input string was a legal pro-

gram. The semantic actions call functions that translate the ADAMS statements into C code

based upon what the parser has seen to date.

The semantic actions make calls to the persistent dictionary in order to determine whether

or not elements exist, to find out the types of elements, and to obtain the unique ids of elements.

Using this information the proper C calls can be generated. To understand these C calls that the

preprocessor generates, we need a more detailed description of the dictionary.

3.1. Language recognition problems

Once the syntax became reasonably stable, developing the preprocessor was quite straight

forward. However there were a few small problems whose description may be instructive.

19

The characters delimiting ADAMS statements are "<<" and ">>".

i = 3;
<< lock x >>
y = foo (i);

In most cases this allows for the easy recognition of ADAMS statements. Once LEX sees the

characters "<<" it returns a token STMT_BEGIN to the parser, signifying the start of an ADAMS

statement. YACC then expects the next tokens to be the body of an ADAMS statement, followed

by the token STMT_END, corresponding to input characters ">>".

However problems arise with valid C code such as:

i = 3;
x = y << z ;
y = foo (i);

The code fragment above is syntactically correct, but a simple-minded LEX/YACC combination

would find an error with it, as the "<<" would be interpreted as the start of ADAMS code instead

of the C operator.

A natural question is "Why use such delimiters if they cause so much trouble? Why not

choose something else?". This is a valid point: picking different delimiters, say "!^" and "^!" as

the start and end markers, would eliminate these problems.

Or would it? ADAMS is intended to be embeddable in any programming language. No

matter what delimiters are picked, if they are at all aesthetically bearable, there is likely to be

some programming language out there in which they are significant. A hideous combination of

characters such as "<$!#" would most likely not be lexically significant in any programming

language, but that is because everyone else had the sense to reject using them.

Another argument for using these delimiters is that they give just what was desired: the

sense of the start and finish of a statement, in the manner in which they physically enclose code.

It is difficult to find other combinations of characters that are even reasonably aesthetically pleas-

ing, much less so functional as well. We decided to find a way to use these delimiters within the

20

C language.

A solution was found through extra interaction of the YACC and LEX programs. Every

time that LEX finds the token "<<" (STMT_BEGIN) it starts keeping track of the actual character

strings that were tokenized; normally this information is lost to LEX once it emits a new token.

As tokens are sent to YACC, eventually either the parser recognizes a legal ADAMS statement,

or enters an error condition.

Originally there was only one error handling statement:

adams_stmt: error STMT_END
{ /* semantic actions */ }

("error" is a special name to YACC, meaning simply that the tokens sent to it led to an unrecog-

nizable string. Instead of simply aborting, an attempt to recover from the error can be made, just

as a normal compiler should continue after finding the first error in a program). Once YACC hits

an error state, it is permitted to consume tokens until it finds STMT_END (">>"), at which point

it prints an error message, exits the error state, and starts processing the rest of the string.

To handle the conflicts between the ADAMS and C usage of the delimiters, several more

error statements were introduced:

adams_stmt: error ’;’
adams_stmt: error ’)’

Every legal C statement that uses a left-shift must eventually contain a ’;’, ’)’, or ’>>’, and each

of these cases would be handled by one of the error statements. Instead of printing an error mes-

sage, those "errors" ending in ’;’ or ’)’ force the output of the list of strings that LEX had been

saving since it saw the STMT_BEGIN, and drop out of parsing an ADAMS statement, allowing

the rest of the line of C code to be passed to the output file untouched.

For example, in this line:

y = x << 3 + (z * MAP) ;

21

the "y = x" was passed to the output since (we assume) the parser was scanning C code, not an

ADAMS statement. LEX passes the "<<" (STMT_BEGIN token) to YACC, which attempts to

parse an ADAMS statement. Very quickly the parser will realize that "3 + (" is not part of the

body of any legal ADAMS statement. An error state is reached in which it remains until it see

the token ’)’. It then emits the strings that LEX had been saving since the STMT_BEGIN token

was seen. After this the parser stops looking for parts of an ADAMS statement, outputting the C

code as is, until another "<<" (STMT_BEGIN) is seen again. Until a new starting delimiter is

seen, LEX passes the code to the output file untouched. In the example above, "y = x " is passed

on as part of C, "<< 3 + (z * MAP)" is passed as part of the "error" state, and the ";" is passed on

as part of C again. So the whole legal C code is passed on as seen. The YACC program returns a

value to its calling program indicating acceptance or rejection of the input string. In this case no

action taken in these cases to indicate that there was an error in the program, since there actually

was none.

This dependence between the LEX and YACC programs for handling C code is undesirable,

as it requires changes to be made to the lexical analyzer for tokenizing ADAMS embedded in

other languages. However the changes needed are minimal, and not too high a price to pay for

using the desired delimiters. LEX and YACC purists would object to this error handling on the

basis that the lexical analyzer and parser should not have any intimate knowledge of the other,

that each has a function that is not dependent on the inner workings of the other. In practice this

is often violated.

One additional advantage of having set up the handling in this manner is that it makes it

very easy to set up an option to print out the original ADAMS statements inside of comments

right after the corresponding C code emitted for the statement in the C file. An option on the

command line for the preprocessor allows these comments to be added for debugging purposes.

All that was necessary to add this feature to the preprocessor was to have a conditional statement

at the highest level of the parser (recognizing a whole ADAMS statement) that would, if desired,

22

print out the list of strings stored by LEX at the end of each legal ADAMS statement (enclosing

them within comment symbols), as opposed to emitting them only when in an error condition.

3.2. C/C++ interface problems

The run time ADAMS system has been implemented in C++, an object-oriented program-

ming language that is a superset of C [Str87] The preprocessor assumes that C is the host

language and must accept and generate only legal C code. Although C and C++ are similar, they

are not the same language. As will be seen only pure C code can be generated, and it must inter-

face with the C++ run time system. The same situation will occur when we write preprocessors

for ADAMS statements embedded in Pascal, FORTRAN and other host languages.

The decision was made to implement the ADAMS system in C++ mostly due to its reputa-

tion for facilitating the rapid development of large software systems. The original approach was

to emit C++ code from the parser and intermingle it with the users’ C code. This appeared to be

sensible, as C++ is generally thought of as a superset of C, with the only compatibility problem

with C being that C++ uses new keywords. However we found numerous instances where C++

would not compile legal C programs.

One of the problems was that C++ expects a different style for function argument declara-

tions than C, and the two are incompatible. The +V option for CC (the C++ compiler) on 4.3

BSD UNIX gets around that problem, but the man page for CC states that that option is not

guaranteed to be supported in the future, making dependence upon it risky. Another problem is

that the manner in which argv is declared in the program determines whether or not argv can be

incremented. The declaration "char **argv" is acceptable, while "char *argv[]" is not. Users

who write legitimate C programs with the second declaration, and then attempt to increment argv

would get compile time errors from CC, such as "attempt to alter the value of a constant expres-

sion".

23

This led to the realization that if the preprocessor emitted C++ code, then the user would

have to use C++ as the host language for this system, else there would be no guarantee that his

host code would survive intact. It was felt that although C++ is becoming more popular, it still

has a small support group, in comparison to C. Therefore it would be better to use C as the host

language, and to emit only C code in place of the ADAMS statements. By using C as the host

language and C++ for the run time implementation, we are already working through many of the

problems that will occur when embedding ADAMS in FORTRAN.

This strategy created problems elsewhere though. Since the preprocessor generates a file

with only pure C code, the output file cannot access any structures or objects defined in C++ code

in other modules. Any direct references to C++ objects would force the code to be compiled by

CC.

Figure 3-1 illustrates the changes to the compile/link phases due to the addition of modules

written in C++. The two boxes in the leftmost column represent the C code from the preproces-

sor and the C++ code for the run-time system. The preprocessor C file is run through the normal

C compiler, resulting in a .o file, while the set of support routines are run through the C++ com-

piler, also resulting in a .o file. All of these .o files are then linked together, resulting in the final

executable code.

C

code from

preprocessor

run time

code
(C++)

C++
compiler

C
compiler

linker
executable

code

Effect of C++ addition on compile/link phases
Figure 3-1.

24

Unique ids are represented in the C++ programs by a C++ class which gets translated into a

C structure. Since there is only C code in the preprocessor output, obviously the C++ class can-

not be used there. One option was to use the C translation of the unique ids in the C program.

There were problems with this, as there would have to be C calls to the C++ constructors and des-

tructors and to the C++ member functions, and consistency would have to be maintained between

the C++ and C definitions in the various programs. To reduce the burden on the preprocessor, it

was decided that unique ids will be seen as strings. As strings they can be passed back and forth

between functions that require them. There are C++ routines that convert between the string

representation and the C++ class version of unique ids.

An alternative strategy that was considered was to decide what C++ calls the ADAMS

statements should map onto, but instead of actually using them, translate all the C++ calls

directly into their equivalent C statements. This differs from the strategy of using the translated

version of unique ids in that all the C++ code would be translated. This would amount to doing

the work of the C++ front end, and was seen as being overly ambitious for the first version of

ADAMS.

25

4. The Code Generator

In order to make the task of code generation for ADAMS statements manageable, and the

code generator maintainable, it was necessary to create a number of levels of abstraction in the

code generator.

The first occurs in the parser, where in almost every case (see the section on code genera-

tion for loops as the exception) code generation is abstracted into a single call to the code genera-

tor which occurs at the statement recognition level—that is, where the choices on the right hand

side of the production in the yacc program are the several dozen ADAMS statements. This serves

to fairly cleanly separate the functions of parsing and code generation.

The next level of abstraction occurs within the statement level, where one must find the uids

of named ADAMS elements. There are several checks that must be made on a named entity en

route to obtaining its uid from the dictionary: does the element have a scope attached to it ?; is it

a subscripted name ?; does it have a element designator (map/attribute) ?; is it an ADAMS_var ?;

and is it a var variable? The code that obtains the uids for an ADAMS element will be con-

sidered to be an abstract entity known as the element handler.

The general procedure in generating code for a single statement is that the checks for these

possibilities are made in other routines. When dealing with an element, the statement level func-

tion simply makes a call to an element handler, which will generate code to obtain the uid. The

statement level generator is concerned only with what to do with the uid it gets, not the details

involved in obtaining it.

In order to understand the translation from ADAMS code to C, we will look at three areas

of code generation: the initial code which must be generated for all ADAMS programs; that code

emitted by the statement level functions, once they have obtained the uids for their arguments;

that emitted by the element handler in finding the uids of ADAMS elements.

26

4.1. Initial code generation for all ADAMS programs

There is an amount of C code which is generated for all ADAMS programs. This includes

declarations for variables which other generated C statements will refer to, #include statements

for header files from the ADAMS managers (index, dictionary, low-level storage), and #defines

for constants. Currently these statements are generated in the C file created for each ADAMS

program; they should probably be replaced with a single #include for a file which would already

contain these statements.

All of the variables declared in statements emitted by the code generator start with the

sequence "_A_", so as to reduce conflicts with user-declared C variables. Most of them are

straightforward declarations needing no explanation. One that does need some explaining is

_A_args. _A_args is declared as:

char _A_args [_A_MAX_ARGS_PER_STMT] [_A_IDLEN + 1];

_A_args is used to store the uids of the arguments in a single ADAMS statement. The defined

constant _A_MAX_ARGS_PER_STMT sets a limit on the number of arguments in all state-

ments, most notably SET_INTERSECTION and SET_UNION, which may have a variable

number of arguments. The constant "_A_IDLEN + 1" is the size of a uid plus its null terminator.

4.2. Code generation for specific ADAMS statements

The rationale behind the code generation for all of the ADAMS statements will be

explained in this section. First we will discuss some issues of coding style, then examine the

transformations from specific ADAMS statements to C code.

Coding style

Some effort was put into trying to generate code in a reasonably readable manner, to aid in

debugging. Effort was made to keep track of the indentions necessary for nested FOR_EACH

loops for example. This effort was abandoned fairly quickly, as it was realized that the lack of

27

knowledge of the surrounding user C code crippled efforts to create generated C code that was

easily read..

Still some effort is still made to enhance readability. If-else constructs are generated in a

Pascal style indentation. All C code is generated as though the ADAMS code had started in

column 1. Any ADAMS code that had been indented, say being subject to a C conditional,

would not get that expected additional indentation. If the user wants nicely lined up code, he

would use a utility such as cb or indent in UNIX.

One feature that has been put in for readability/debugging is that of an option to insert the

original ADAMS statements into the generated C code, within comments. When this is used, the

comments appear after the generated C code. See appendix 1 for details on usage of this feature.

There are also comments that the preprocessor generates related to the C code that it generates,

such as listing the argument number being processed, mentioning if is a temporary unique id for a

map, and the parent class(es) of elements being instantiated. Intense debugging efforts of the

generated C code will give an indication of the utility of such comments, and where other such

generated comments could be of use.

Generated code

Since much of the code generated for some statements is similar to that of other statements,

they will be explained together under the following breakdowns:

Open/close
OPEN
CLOSE

Declarations
ATTRIBUTE DECLARATION
CLASS DECLARATION
CODOMAIN DECLARATION
MAP DECLARATION
SET DECLARATION
SUBSCRIPT_POOL DECLARATION

28

Instantiations
ATTRIBUTE INSTANTIATION
ELEMENT INSTANTIATION
MAP INSTANTIATION
SET INSTANTIATION

Codomains/Subscript_pools
ADD_CODOMAIN
EXTEND_SUBSCRIPT_POOL

ADAMS_vars
VAR_DECL
VAR_ASSIGN

Set Manipulation
COMPLEMENT
INSERT
INTERSECTION
MAKE_EMPTY
REMOVE
SET_ASSIGN
SET_COPY
UNION

Looping
FOR_EACH
EXIT LOOP

Assignments
FETCH
STORE
ATTRIBUTE_ASSIGN
MAP_ASSIGN

Dictionary Manipulation
DELETE
ERASE
RESCOPE

4.2.1. Open/Close Statements

Currently the open_adams and close_adams statements do not do as much as was originally

intended. They each have an associated job_id, but that is merely a dummy token, necessary for

statement recognition by the parser, but which is thereafter ignored, since the code generator does

29

nothing with it.

Open:

Several lines of initializations are generated for the OPEN_ADAMS statement. These

include initializations of _ADAMS_STATUS and several instances of entry_defs, and calls to the

C++ main () routine (in order to force C++ constructors to be called) and the _A_attach_dict ()

and _A_sym_tbl_open () routines.

The generated code is as follows:

_ADAMS_STATUS = 1;
_main();
_A_attach_dict (tid, uid, "open",

"/at0/pkb4h/yacc/adams/run_tests/adamsdict", 0);
_A_sym_tbl_open ("open_sym");
/*_A_c_check_symbol_table ();*/
_A_def.type = _A_NDEF;
_A_temp_def.type = _A_NDEF;
_A_set_def.type = _A_NDEF;

Note that in the generated code we have a call to _A_c_check_symbol_table which has be "com-

mented out". In this initialzation phase, one should perform a variety of run time checks after

openning the dictionary. This version does not. But the stub is included as a reminder for future

versions.

Close:

For the CLOSE_ADAMS statement, there are only 4 statements generated: initialization of

_ADAMS_STATUS, making a call to clear the entry definition, and calls to close the index

manager and release the dictionary: The generated code is as follows:

_ADAMS_STATUS = 1;
set_deftype (&_A_def, _A_NDEF);
_A_close_indexes ();
_A_release_dict ();

30

4.2.2. Declaration Statements

Most of the code generated for declaration statements consists of calls to dictionary routines

that set up an entry definition for the class.

An entry definition must be instantiated before any declaration statements are encountered,

and must be initialized to be of no type. The preprocessor declared the variable _A_def along with

it’s other declarations. The OPEN statement does this initialization.

For each type of definition, the following pattern is followed for code generation:

—Initialize the entry definition to the proper type (INSTDEF, CLASSDEF, CODEF, SUBSDEF).

—Fill in appropriate pieces of the definition.

—Add the entry definition to the dictionary.

There are a number of items that can be added to an entry definition:

superclass
image
attribute_set
map_set
validating method
element_class
instant_class

There are also other items that could be added for the codomains, but have not been implemented

yet. Refer to [PFG89a] for more detailed information on the dictionary.

First we will briefly describe each of these items, and then examine each type of declaration

to see which of these may be used for each. It will be useful to have several examples of declara-

tions on hand as the components are described:

<< ADAMS_class ISA CLASS1 and CLASS2, having attr = {attr1_inst}, scope is system >>
<< ADAMS_map ISA MAP with image elem1, scope is user >>
<< ADAMS_set ISA SET of ADAMS_class ELEMENTS, scope is task >>

Entry definition items:

31

—superclass

A superclass is a class from which an ADAMS class is derived. Superclasses may be the

ADAMS base classes CLASS, MAP, ATTRIBUTE and SET, or user-defined classes. In the

above example, ADAMS_class has superclasses CLASS1 and CLASS2. This means that any-

thing that is an ADAMS_class has properties of both CLASS1 and CLASS2 elements.

There is one call to _A_add_superclass () generated for each of the superclasses of a class.

—image

An image is a class that is the "target" of a map or attribute, that is, the ADAMS entity that

the map/attribute gives. A map or attribute must have one image, which leads to the code genera-

tor emitting one call to _A_add_image ().

—attribute_set and map_set

These are sets of attributes or maps that are associated with a class. They are declared

through a association_clause, which has the syntax:

association_clause := HAVING [set_name =] { list_of_attr/map_designators }

The preprocessor must interrogate the dictionary to ensure that the entities in the set in a given

association clause are either all attributes or all maps. This is because this set becomes a (possi-

bly named) ADAMS set, which may contain elements from only one class.

There can be any number of association clauses for a single ADAMS class. The preproces-

sor generates one call to _A_add_attrset () or _A_add_mapset () for each association clause.

—validating method

The ADAMS syntax ensures that a codomain has a clause that gives a validating method

defines the allowable strings in the codomain. A generated call to _A_add_validm () enters the

information for the validating method into the entry definition.

32

—element class

This is used for SET declarations, to name the class of elements that are allowed as

members in the set. One call to _A_add_elementclass () is generated for each SET declaration.

—instance class

This is used for instantiations, not declarations. It signifies the class(es) of which it is an

instance.

Attribute Declaration:

This must have an image defined, and may have any number of association clauses. The

example

<< ADAMS_attr isa ATTRIBUTE with image ADAMS_attr_image, having x = {attr1} >>

generates the following code:

_ADAMS_STATUS = 1;
_A_set_deftype (&_A_def, _A_CLASSDEF);
_A_add_superclass (&_A_def, "ATTRIBUTE", _A_USER);
_A_add_image (&_A_def, "ADAMS_attr_image", _A_USER);
strcpy (_A_uid_name, ",#");

/* run-time test */
if (!_A_add_entry ("ADAMS_attr", _A_uid_name, &_A_def, _A_CLASS, _A_USER))

{
printf ("error with adding attribute ADAMS_attr to dict\n");
_ADAMS_STATUS = 0;
}

Class Declaration:

This can have any number of superclasses from which it is derived, and any number of

association clauses. The example

<< ADAMS_class ISA CLASS1 and CLASS2, having attr = {attr1_inst}, scope is system >>

generates the following code:

_ADAMS_STATUS = 1;
/* declare class ADAMS_class of type CLASS1 */

_A_set_deftype (&_A_def, _A_CLASSDEF);
_A_add_superclass (&_A_def, "CLASS1", _A_SYSTEM);
_A_add_superclass (&_A_def, "CLASS2", _A_SYSTEM);

33

_A_c_const_uid (_A_class_uid, _A_ATTRSET);
strcpy (_A_set_uid, "-#"); /* copy uid obtained at parse time */
_A_uid_instant (_A_set_uid, _A_class_uid);

/* insert MAP elements into set */
_A_d_level = _A_USER;

/* run-time test */
if (!_A_c_check ("attr1_inst", _A_uid_name, _A_INST, &_A_d_level))

{
printf ("c_check failed for attr1_inst in class_decl:\n");
_ADAMS_STATUS = 0;
}

_A_set_insert (_A_uid_name, _A_set_uid);
/* add MAP set to definition */

_A_add_mapset (&_A_def, NULL, _A_set_uid, _A_USER, "attr");
strcpy (_A_uid_name, ".#");

/* add class definition to dict now: */
/* run-time test */

if (!_A_add_entry ("ADAMS_class", _A_uid_name, &_A_def, _A_CLASS, _A_SYSTEM))
{
printf ("_A_add_entry failed for class ADAMS_class of type\n");
_ADAMS_STATUS = 0;
}

Codomain Declaration:

Codomains still need some work in finalizing their semantics. The simplified version

implemented allows only a regular expression to be specified that defines the allowable strings.

The example << ADAMS_codomain ISA CODOMAIN CONSISTING OF #[a-zA-Z]+#,

scope is SYSTEM >> generates the following code:

_ADAMS_STATUS = 1;
_A_set_deftype (&_A_def, _A_CODEF);
_A_add_validm (&_A_def, "#[a-zA-Z]+#");
strcpy (_A_uid_name, "/#");

/* run-time test */
if (!_A_add_entry ("ADAMS_codomain", _A_uid_name, &_A_def, _A_CO, _A_SYSTEM))

{
printf ("error with adding codomain to dict\n");
_ADAMS_STATUS = 0;
}

Map Declaration:

This must have an image defined, and may have any number of association clauses. The

example << ADAMS_attr isa MAP with image ADAMS_map_image, having y = {map1} >>

generates the following code:

_ADAMS_STATUS = 1;

34

/* declare map ADAMS_attr of type ADAMS_map_image */
_A_set_deftype (&_A_def, _A_CLASSDEF);
_A_add_superclass (&_A_def, "MAP", _A_USER);
_A_c_const_uid (_A_class_uid, _A_MAPSET);
strcpy (_A_set_uid, "0#"); /* copy uid obtained at parse time */
_A_uid_instant (_A_set_uid, _A_class_uid);

/* insert MAP elements into set */
_A_d_level = _A_USER;

/* run-time test */
if (!_A_c_check ("map1", _A_uid_name, _A_INST, &_A_d_level))

{
printf ("c_check failed for map1 in class_decl:\n");
_ADAMS_STATUS = 0;
}

_A_set_insert (_A_uid_name, _A_set_uid);
/* add MAP set to definition */

_A_add_mapset (&_A_def, NULL, _A_set_uid, _A_USER, "y");
strcpy (_A_uid_name, "1#");
_A_add_image (&_A_def, "ADAMS_map_image", _A_USER);

/* add class definition to dict now: */
/* run-time test */

if (!_A_add_entry ("ADAMS_attr", _A_uid_name, &_A_def, _A_CLASS, _A_USER))
{
printf ("_A_add_entry failed for map ADAMS_attr of type ADAMS_map_image \n");
_ADAMS_STATUS = 0;
}

Set Declaration:

This statement expects one class_name of elements allowed in instances of the set type, and

any number of association clauses. The example

<< ADAMS_set ISA SET of ADAMS_class ELEMENTS, scope is task >>

generates the following code:

_ADAMS_STATUS = 1;
/* declare set ADAMS_set of ADAMS_class elements */

strcpy (_A_uid_name, "2#");
_A_set_deftype (&_A_def, _A_CLASSDEF);
_A_add_superclass (&_A_def, "SET", _A_TASK);
_A_add_elementclass (&_A_def, "ADAMS_class", _A_TASK);

/* run-time test */
if (!_A_add_entry ("ADAMS_set", _A_uid_name, &_A_def, _A_CLASS, _A_TASK))

{
printf ("_A_add_entry failed for set ADAMS_set of ADAMS_class elements\n");
_ADAMS_STATUS = 0;
}

Subscript_Pool Declaration:

35

This feature is not implemented yet.

4.2.3. Instantiation Statements

Instantiations have some similarity to declarations in the viewpoint of the code generator.

The main concern is in setting up and entering an entry definition in the dictionary for the

instance. Most of the items in the entry definition of concern to declarations are not used in

instantiations.

Attribute Instantiation:
Element Instantiation:
Map Instantiation:

These are all placed together because the parser does not distinguish among them. They are

allowed to have one or more parent classes, and any number of association clauses. As an exam-

ple, << ADAMS_instance INSTANTIATES_A ADAMS_class1 and ADAMS_class2, scope

is task >> generates the following code:

_ADAMS_STATUS = 1;
/* declare element ADAMS_instance of */
/* class ADAMS_class1 and ADAMS_class2 */

strcpy (_A_inst_uid, "3#");
_A_set_deftype (&_A_def, _A_INSTDEF);
_A_add_instclass (&_A_def, "ADAMS_class1", _A_USER);

/* handle argument # 1 */
/* name not found at parse time; find now */

strcpy (_A_uid_name, "");
_A_d_level = _A_USER;
if (_A_c_check ("ADAMS_class1", _A_uid_name, _A_CLASS,&_A_d_level) == 0)

{
printf ("_A_c_check failed: ADAMS_class1 not found\n");
_ADAMS_STATUS = 0;
}

else
{
strcpy (_A_args [1], _A_uid_name);
}

_A_add_instclass (&_A_def, "ADAMS_class2", _A_USER);
/* handle argument # 2 */
/* name not found at parse time; find now */

strcpy (_A_uid_name, "");
_A_d_level = _A_USER;
if (_A_c_check ("ADAMS_class2", _A_uid_name, _A_CLASS,&_A_d_level) == 0)

{
printf ("_A_c_check failed: ADAMS_class2 not found\n");
_ADAMS_STATUS = 0;

36

}
else

{
strcpy (_A_args [2], _A_uid_name);
}

/* run-time test */
if (!_A_add_entry ("ADAMS_instance", _A_inst_uid, &_A_def, _A_INST, _A_TASK))

{
printf ("_A_add_entry failed for ADAMS_instance s of class ADAMS_class1\n");
_ADAMS_STATUS = 0;
}

_A_uid_instant (_A_inst_uid, _A_args [1]);
_A_uid_instant (_A_inst_uid, _A_args [2]);

Set Instantiation:

This is very similar to the other three instantiations. The differences are: only one parent

class is allowed, as it would not make sense to have more than one—what class of element would

be allowed into such a set? ADAMS allows only one class of elements to be entered into any one

set; a initial_clause is allowed here, which specifies the initial contents of the set.

Codomains/Subscript_pools:

ADD_CODOMAIN
EXTEND_SUBSCRIPT_POOL

Both the ADD_CODOMAIN and EXTEND_SUBSCRIPT_POOL statements are unimple-

mented as of yet. There are still semantic issues to be resolved regarding them.

4.2.4. ADAMS Variables

ADAMS_vars can be used in most place that regular ADAMS names are used. However,

there are two statements that are directly concerned with ADAMS_vars: VAR_decl and

VAR_assign.

VAR_decl:

If ADAMS_var declarations occur, they must be the first ADAMS statements in their func-

tions, and must appear within or at the end of the C declarations in the function. The reason is

that they are translated into C variable declarations, and would generate C errors if they occurred

37

elsewhere. The translation is to declare a C variable of name _A_uid_<ADAMS_var name>, of

type _A_uid_string.

Example: << adams_var x, y, z >> is translated into:

_A_uid_string _A_uid_x;
_A_uid_string _A_uid_y;
_A_uid_string _A_uid_z;

VAR_assign::

Code is generated to obtain the uid of the target ADAMS element, placing it into _A_args

[0], then do a string copy from _A_args [0] into the adams_var name. This sounds like an obvi-

ous place for an optimization—after all, why place the uid into _A_args [0], then copy into

another string? The reason is that _A_args [0] obtains the uid through the general-purpose ele-

ment handling routines, which have no way of knowing what has called them. Trying to make

these element handling routines take care of all these special cases would make them totally

unreadable and virtually unchangeable.

Example: << x denotes ADAMS_element_inst >> is translated into:

strcpy (_A_args[0], <uid of ADAMS_element_inst>);
strcpy (_A_uid_x, _A_args [0]);

Notice that in this example of generated code we have used the expression <uid of

ADAMS_element_inst>. Finding the uid associated with a particular ADAMS element designator

is non-trivial. Often it requires several lines of C code. In this presentation, we have chosen to

first illustrate the general patterns of code generated by individual ADAMS statements. In sec-

tion 4.3, we will examine the issue of finding uid’s.

4.2.5. Set Manipulation Statements

The following is common to the generated code for most of the non-declarative ADAMS

statements:

38

/* initialize _ADAMS_STATUS */
_ADAMS_STATUS = 1;

/* establish argument uid’s */
strcpy (_A_args[0], <uid of 1st argument>);
strcpy (_A_args[1], <uid of 2nd argument>);
. . .
. . .

strcpy (_A_args[k], <uid of k+1st argument>);

Since it will be applicable to most of the statements, it will not be repeated for each one; there

will simply be a reference to which ADAMS element is which argument in the list, which will

usually be clear anyway.

Most of the statements in this section are quite straightforward. The major work in each is

in obtaining the uid for a set, perhaps also for an element, and then making the appropriate call to

an index manager glue routine. As will be seen, the most difficult statements to handle are the

union and intersection statements, mainly because they involve a variable number of arguments.

Make_empty:

Generate code to obtain the uid of the set, then call the Index Manager glue routine

_A_set_empty ().

Example: << make_empty ADAMS_set >> is translated into:

strcpy (_A_args[0], <uid of ADAMS_set>);
_A_set_empty (_A_args[0]);

Insert and Remove:

Generate code to obtain uids of the respective element and set, and to call either the glue

routine _A_set_insert () or _A_set_remove ().

Example: << insert ADAMS_element into ADAMS_set >> is translated into:

strcpy (_A_args[0], <uid of ADAMS_element>);
strcpy (_A_args[1], <uid of ADAMS_set>);
_A_set_insert (_A_args[0], _A_args[1]);

Element removal, using remove is similar, with a call to _A_set_remove instead of _A_set_insert.

39

Set_copy:

Generate code to obtain uids of source and target sets, then code to loop thru source set, find

each element there, and insert the element uids into the target set. The end result of this is two

sets consisting of identical lists of uids.

Example: << copy_to ADAMS_set1 from ADAMS_set2 >> is translated into:

strcpy (_A_args[0], <uid of ADAMS_set1>);
strcpy (_A_args[1], <uid of ADAMS_set2>);
_A_set_copy (_A_args[0], _A_args[1]);

Complement:

Generate code to obtain the uids of the three sets involved. << set1 is complement of set2

wrt set3 >> means that set1 will contain all of those elements from set3 which are not already in

set2. A call is then generated for the glue routine _A_set_complement ().

Example: << ADAMS_set is_complement_of ADAMS_set2 wrt ADAMS_set3 >>

is translated into:

strcpy (_A_args[0], <uid of ADAMS_set>);
strcpy (_A_args[1], <uid of ADAMS_set2>);
strcpy (_A_args[2], <uid of ADAMS_set3>);
_A_set_complement (_A_args[0], _A_args[1], _A_args[2]);

Intersection and Union:

The code generating functions for these two routines have passed to them a linked list of set

names, as opposed to the normal single string for a set name in the other set statements. An array

of uids is built up from this list, which along with uid of the target set, is passed onto either the

glue routine _A_set_intersect () or _A_set_union ().

Example: << ADAMS_set is_intersection_of ADAMS_set2, ADAMS_set3 >>

is translated into:

40

strcpy (_A_args[0], <uid of ADAMS_set>);
strcpy (_A_args[1], <uid of ADAMS_set2>);
strcpy (_A_args[2], <uid of ADAMS_set3>);

/* create null argument to end list */
strcpy (_A_args[3], "");
_A_var_ptr = &_A_args[1];
_A_set_intersect (_A_args[0], _A_var_ptr);

Union is virtually the same, merely substituting a call to _A_set_union in place of

_A_set_intersect.

4.2.6. Looping

Looping is accomplished in ADAMS through the FOR_EACH stmt, which gives an

ADAMS_var and a set name, for which each element has its uid placed in the ADAMS_var, one

per iteration of the loop. The arbitrary nesting of FOR_EACH loops allowed in ADAMS

presents some difficulties for the preprocessor in generating correct code. For every loop, a label

of form _L<loop_num> is generated which is used for the << EXIT LOOP >> statement to jump

to. The preprocessor must keep track of which loop is being ended when it encounters the end of

one, not only for the label, but in generating a do-while construct. While the ADAMS user sees

the syntax << FOR_EACH x in ADAMS_element DO ... >>, the preprocessor must generate

more involved C code as shown below.

_ADAMS_STATUS = 1;
strcpy (_A_args[1], <uid of ADAMS_element>);
{
_A_uid_string _A_loop_uid1;
strcpy (_A_loop_uid1, _A_args[1]);
if (_A_set_first_element (_A_uid_x, _A_loop_uid1))

do {
/* ADAMS/C code */

} while (_A_set_next_element (_A_uid_x, _A_loop_uid1);
_L1:;
}

The code generated starts off with an initialization of _ADAMS_STATUS, then finds the uid of

the set using the general element handling routines, placing it into _A_args [1]. _A_args [1] is

then string copied into _A_loop_uid%d, where %d is replaced by the current_loop number. This

number is unique for each for_each loop in the program. As the parser recognizes the start of a

41

new FOR_EACH loop, it makes a call to find a new loop number. As loops are nested, a linked

list of these numbers is created, so that as loops are exited, it is always possible to obtain the

correct number. Typical stack operations maintain this list. A new C block is created for each

loop, right after the code is generated to obtain the uid of the set name. The main purpose of this

block is to be to create the _A_loop_uid%d variables as needed, so as to avoid problems with

having a fixed number of them declared in the header, and creating an error when the programmer

creates one more loop than the preprocessor expected him to. The number of the loops is always

increasing, as the numbers can not be reused, since the labels generated at the base of the loops

must be unique. In a preprocessor for another host language that does not have the ability to

create new blocks at will as in C, a fixed number of variables can be created, but this is clearly

inferior to the current implementation. A conditional test is made on the value obtained from a

call to the index manager glue routine _A_first_set_element (), which obtains the uid of the "first"

element in the set, placing it into the variable for the ADAMS_var (_A_uid_x in this case). (By

"first" we mean that which the index manager sees as the first element, through its own algorithm

for looping through the elements of a set. The ADAMS user can not count upon any particular

ordering for the elements in a set, only that the loop will indeed give all of the elements, each one

only once.) A do-while loop is started off, with the do { part generated, followed by the

ADAMS/C code within the FOR_EACH loop body.

At the end of the loop the do-while construct is finished, with } while

(_A_set_next_element (...));, where _A_set_next_element () determines if there

are more elements in the set left, and if so, places the uid of the "next" element into the

adams_var variable. Finally, the unique label of the form _L%d is generated, followed by the

close of the new C block.

The C code for a more complex example may be instructive:

42

<< FOR_EACH x in ADAMS_element_set1 do
/* ADAMS (non-loop) / C code no. 1 */
<< FOR_EACH y in ADAMS_element_set2 do

/* ADAMS (non-loop) / C code no. 2 */
>>

>>

is translated into:

_ADAMS_STATUS = 1;
strcpy (_A_args[1], <uid of ADAMS_element_set1>);
{
_A_uid_string _A_loop_uid1;
strcpy (_A_loop_uid1, _A_args[1]);
if (_A_set_first_element (_A_uid_x, _A_loop_uid1))

do {
/* translation of ADAMS (non-loop)/C code no. 1 */

_ADAMS_STATUS = 1;
strcpy (_A_args[1], <uid of ADAMS_element_set2>);
{
_A_uid_string _A_loop_uid2;
strcpy (_A_loop_uid2, _A_args[1]);
if (_A_set_first_element (_A_uid_y, _A_loop_uid2))

do {
/* translation of ADAMS (non-loop)/C code no. 2 */

} while (_A_set_next_element (_A_uid_y, _A_loop_uid2);
_L2:;
}

} while (_A_set_next_element (_A_uid_x, _A_loop_uid1);
_L1:;
}

One note about the code for looping in ADAMS—generating this code differs from most of

the other statements in that the code generation is not totally abstracted into one call at the state-

ment recognition level in the parser. The code for obtaining the uid of the first element in the set

must be generated when the first part of the loop ("FOR_EACH x in ADAMS_element_set") is

recognized, while the code for the next_element function can not be generated until the base of

the FOR_EACH loop is recognized. Since other ADAMS statements can occur in the interim, a

single call to the code generation routines will not work in this case. This is the only case in

ADAMS where this occurs, since the FOR_EACH statement is the only one which allows other

ADAMS statements to be embedded within it.

43

4.2.7. Assignment Statements

There are two classes of assignment statements in ADAMS—1) those that make assign-

ments between host and ADAMS variables—the FETCH and STORE statements; 2) those that

make assignments between two ADAMS variables—the ATTRIBUTE_ASSIGN and

MAP_ASSIGN statements.

Fetch:

The FETCH statement gets a value from an attribute of an ADAMS element, and stores it

into a host variable.

The preprocessor calls the element handler to obtain the uids of the source element and

attribute and stores them into _A_temp_uid1 and _A_temp_uid0 respectively (see section on ele-

ment designators for details on why). A call is then made to _A_attr_get_val () using these uids,

the host variable name, and an internal buffer size.

As an example, << FETCH FROM x.attr1 INTO temp >> results in:

_A_attr_get_val (_A_temp_uid0, _A_temp_uid1, temp, _A_FETCH_BUFF_SZ);

Store:

The STORE statement is the complement of the FETCH statement, taking a string from a

host variable and storing it into an ADAMS attribute.

The uids are obtained as in the FETCH case. The function called is _A_attr_insert (). The

example << STORE FROM temp INTO x.attr1 >> results in:

_A_attr_insert (_A_temp_uid0, _A_temp_uid1, temp);

Neither the FETCH nor STORE statements currently handle ADAMS_vars in the place of the

ADAMS element. This means that the following:

<< y DENOTES x.attr1 >>
<< STORE FROM temp INTO y >>

will not work, though it should be equivalent to the STORE example from above.

44

Attribute_Assign and Map_Assign:

The ATTRIBUTE_ASSIGN and MAP_ASSIGN statements are used to assign attributes

and maps to ADAMS elements. The ADAMS elements may be either element designators or

ADAMS_vars, but the ADAMS elements must be either both maps or both attributes.

Both of the statements are handled the same by the parser, since there is no syntactical

method of distinguishing between them. Although the parser could have been modified to make

the necessary dictionary lookups to distinguish between them, it was decided to keep the parser

simpler by having the code generator make those calls.

There are a number of possible cases for the desination and source ADAMS elements:

(1) Both are ADAMS_vars—Handle just as for a VAR_ASSIGN statement. Strcpy the source

uid into the destination ADAMS_var.

(2) One is an attribute element designator, the other is a map element designator. This is an

error case.

(3) Both are attribute element designators. Obtain the uids of the objects and their attribute

functions, then make call _A_attribute_assign_value (). An example is: << x.attr1 =

y.attr2 >>, which results in:

_A_attr_insert (_A_args[0], _A_args[1], _A_temp_uid0, _A_temp_uid1);

(4) Both are map element designators. Obtain the uids of the objects and their map functions,

then make call _A_map_insert (). An example is: << x.map1 = y.map1 >>, which results

in:

_A_map_insert (_A_args[0], _A_args[1], _A_args[2]);

(5) The destination is an ADAMS_var, the source is a map or attribute element designator.

Obtain the uid of the element designator (If a map, evaluate to the target), and strcpy to the

destination.

45

(6) The destination is an attribute element designator, the source is an ADAMS_var. This is

similar to case 3, except that there is only 1 uid for the source, instead of two. We need a

funtction to handle this case—not implemented at this time.

(7) The destination is a map element designator, the source is an ADAMS_var. This is similar

to case 4, again with the exception that there is only one uid for the source, instead of two.

However, this case can be handled by _A_map_insert () as well, since that function already

expects the source element to be evaluated to its target, as opposed to remaining in a

object/map function pair of uids.

4.2.8. Dictionary Manipulation Statements

The translation for these 3 types of ADAMS statements (delete, erase, rescope) is fairly

simple, once the unique ids are obtained from the element handler. One item to note is that the

dictionary call generated for each has a name and a unique id parameter, just as in most diction-

ary calls. If the name is non-null, then the unique id obtained during the call is placed back in the

character buffer for the unique id parameter. If the name is null, then the dictionary utilizes the

unique id parameter. Since we will have the unique ids available from the element handler, it

was decided to make the name parameter a null, in order to ease problems with ensuring that the

scope or "VAR " were properly removed form the ADAMS name if they were present.

For erase and rescope it is necessary to specify the kind of element that is being used (class,

instance, codomain or subscript_pool). This allows the dictionary to expand the name space

available for ADAMS elements.

Delete::

For the example << delete ADAMS_element >> the following code is generated:

46

if(!_A_c_delete_entry ("", _A_args[0], _A_INST, &_A_d_level));
{
printf ("_A_c_delete_entry failed for ADAMS_element0);
_ADAMS_STATUS = 0;
}

Erase::

For the example << ERASE codomain ADAMS_codomain >> the following code is gen-

erated:

if(!_A_c_erase_entry ("", _A_args[0], _A_CO, &_A_d_level));
{
printf ("_A_c_erase_entry failed for ADAMS_element0);
_ADAMS_STATUS = 0;
}

Rescope::

For the example << RESCOPE CODOMAIN ADAMS_codomain AS TASK >> the fol-

lowing code is generated:

if (!_A_rescope ("x", _A_args[1], _A_CO, _A_LOCAL, _A_SYSTEM))
{
printf ("_A_c_rescope failed for ADAMS_element0);
_ADAMS_STATUS = 0;
}

There are limitations on the rescope command which the ADAMS user should be aware of,

regarding the direction of allowable rescoping, and of constituent element scope levels. Only

upward rescoping is allowed, that an entity can only have a greater scope after rescoping than

before. The purpose of this is to ensure that no entry that is dependent upon an element being of

system or task level fails due to that element being rescoped to a lower level that is out of scope

of the entry. One should be able to make tests for such dependencies, and then allow the rescope

only if it will be safe, but that is the manner in which the dictionary is currently implemented.

An upward rescoping is allowed for classes only if all the constituent elements (maps and

attributes) are of at least the new scope level. A class which has user scope and has maps and

attributes all of user level cannot be rescoped to either task or system until all of the maps and

47

attributes have been rescoped to that level.

4.3. General code generation for element handling

An important part of the code generated for almost every ADAMS statement is that code for

obtaining a unique id for an element. In the preceding examples, this has been subsumed by the

generic expression <uid for ADAMS_element>. Since there are numerous cases to be examined

for each ADAMS element, it is desirable to abstract all of this testing out of the statement level,

and consider it at the element handling level.

There are two methods of accessing this level, one for a fixed number of elements in a state-

ment, and another for a variable number. Two statements need the variable case—intersection

and union statements, since the syntax fixes no bound on the number source sets for these opera-

tions. For the rest of the statements, a call to function handle_element () generates the necessary

code for obtaining a unique id. The variable cases require a call to var_args (), which takes an

array of ADAMS elements and loops through them, calling handle_element () for each one. Fig-

ure 4-1 will help to illustrate this and other facets of obtaining uids.

We now examine the various cases for generating code to obtain the uid of an element.

Those cases are:

handle

element

handle_maps

no

maps
handle_1_arg

var_args

_A_var ()

var ()

subscripted ()

parse time ()

run time ()

Figure 4-1

48

� scoped names
� subscripted variables
� map/attribute in name
� ADAMS_vars
� var variables
� generic literal name

4.3.1. Scoped Names

All named ADAMS elements can be scoped directly through their names, by placing the

scope level and whitespace before the actual names, as in:

<< REMOVE system ADAMS_element from ADAMS_element_set >>.

The effect of this is that if there are several ADAMS elements in the dictionary in the available

name space of the user, but at different levels, then the particular one desired is accessed, as

opposed to going through the default path (ie, LOCAL, then USER, TASK, and SYSTEM). The

parser is able to recognize the combination of (scope_level actual_name) as an allowable name.

Instead of passing just the actual_name as a string to the code generator, it passes the concatena-

tion of the scope level (in capital letters), a space, and the actual_name. In the example above,

the parser would pass "SYSTEM ADAMS_element" as the parameter for the name.

Checking for the name being scoped is the first thing that it does with an ADAMS name. If

one is found, the elem_scope variable is set to reflect the scope found. If none is found, then it is

set to the default scope, which is dependent upon whether the element is being used in a declara-

tion statement or not. If it is in a declaration, the default scope will most likely be USER, as it

makes little sense to have components of a persistent declaration be of temporary scope. For ele-

ment references outside of declarations, it is perfectly fine to be of LOCAL scope, and therefore

the dictionary should start its search at the LOCAL level.

The handle_element () routine calls a function that checks for the scoped name, and if this

is successful, it then calls a routine to strip the scope level away from the rest of the name, since

the scope value has been captured in the scope variable.

49

4.3.2. Subscripted Names

Subscripted names are supported in ADAMS, with many of the traditional features of

arrays, but also with some important differences. An ADAMS array is a set of named ADAMS

elements with a common base name, and each of which has a unique set of subscripts, which is

used to access the particular element. This serves to extend the ADAMS name space in a con-

trollable manner.

The sets of subscripts consist of names from user-defined subscript pools, which are

enumerations of allowable elements in the domain for a subscript index. There is a predefined

subscript pool for the non-negative integers. These pools are extensible, there being a method for

adding elements to (though none for removing them from) a subscript pool.

The elements of a subscripted variable are not stored in the traditional array method, that is,

contiguously. There would be little point to storing all the elements of an ADAMS subscripted

variable together in one location, as this would likely defeat the benefits of having ADAMS run-

ning on parallel machines. There must be methods allowed for data migration on such machines;

forcing all the elements together would prevent this.

The lack of contiguous storage and of the dynamic nature of the subscript pools disallows

the usual method of calculating offsets into an allocated storage to find the location of a particular

array element. The standard formulas for calculating offsets won’t work with data that is broken

up or moved around. A method that solves this problem must still contend with the dynamic size

problem. For example, a mapping that is valid for an array with bounds of [10, 25, 30] must still

be valid when the dimensions are extended, to say [10, 30, 35].

The ADAMS method of handling arrays is as follows. The basename of the array must be

entered into the dictionary along with information on the number of subscripts and the subscript

pools they are obtained from. When an element is referenced, the set of subscripts for an element

are mapped onto an integer that is unique for all possible elements in the array (both the existing

50

elements and those that could be instantiated once the bounds are increased). The uniqueid

manager is given the uid of the basename and this unique integer, and performs its own mapping

to determine the uniqueid of the individual element. Once this is obtained, the array element is

treated just like a non-subscripted element.

The problem arises of how to calculate these unique integers. The method must guarantee

that no two elements in a particular array are mapped onto the same integer, while ensuring that

the unique integers obtained are within the representable bounds of the system. For example, an

easy method to calculate unique integers would be to use a product of prime numbers as follows:

For each of the n subscripts in identifier [i1 , i 2 , ... i n], raise the kth prime number by index k.

Multiplying all of these terms together gives a unique integer, 2i 1 3i 2 . . . primen
in assured by

the fundamental theorem of arithmetic. The numbers generated by this method would quite

quickly exceed the abilities of most machines to store them. Foo [32, 10, 10] would give a

unique number around 2.4767 x 1021 —Subscripts in the hundreds would never be handled by

most machines.

The method used in ADAMS lessens this problem of obtaining extremely large integers. A

geometric model is used to derive these integers. For simplicity we will examine a 3-dimensional

array that uses only the natural numbers for subscripts. It will be seen that this method is applica-

ble to any k-dimensional array, (k >= 0), and to any subscript pools. By "a tetrahedron of size n",

it is meant a tetrahedron bounded by the k axis, and the lines which intersect those axis at value

of n. Figure 4-1 shows 3-dimensional tetrahedrons of sizes 0, 1, and 2.

For a particular element of the array, sum the 3 subscripts, which we will refer to as

i total =
k =1
Σ
n

ik. Now imagine a 3-dimensional tetrahedron, which is bounded by the points

(i total, 0, 0), (0, i total, 0), and (0, 0, i total). The three tetrahedrons in Figure 4-1 are formed by

i total = 0, 1, and 2 respectively. Examining the figure it should be readily apparent that the 3-

dimensional tetrahedron of size i total can be broken down into a 3-dimensional tetrahedron of size

51

��
i total − 1

��
and a set of points that consist of the outermost points in the tetrahedron, which can

be projected onto a 2-dimensional surface of size i total . The tetrahedron of size 2 in Figure 4-2

can be broken down into one of size 1 and the plane of points that form the differential between a

tetrahedron of size 1 and 2. The points in this plane are delimited by circles, while those in the

tetrahedron of size 1 are delimited by squares. Figure 4-3 shows this projection of the outermost

slab onto the x-y axis.

This leads to an idea for numbering the points. Assume that there are N points in the

i total − 1 length tetrahedron , and M in the new slab, and that the N points are numbered from 0

to N − 1 , ignoring the details of how they got numbered for now. If one can assure a scheme

whereby those M points in the new slab get numbered (in some manner) from N to (N + M − 1),

and that all points in any new slabs added will be higher than (N + M - 1), then the problem is

reduced by one dimension.

In the example, let us try to number the points in the outermost slab. By inspection, we can

see that there are 4 points in the next smallest tetrahedron, and 6 points in the new slab. So the

first 4 points will be numbered from 0 to 3, and the points in the slab from 4 to 9. Now project

x y

z

0

1

2

1

2

1

2 0 1 2

1

2

x

y

Figure 4-2. Figure 4-3.

52

those 6 points onto the plane, as in Figure 4-3. The equivalent of the slabs from the 3-

dimensional case are now lines in 2-dimensions. Take a point in this plane, say (2, 0), and use

the same method as in the 3-dimensional case. One possible difference could be that the point

would not in the outermost slab anymore, in which case we would focus on the smaller

tetrahedron that it defines, which is the one in which the desired point is in the outermost slab.

That does not occur in this example though. The number of points in tetrahedrons smaller than

the outermost one is 3. We are left with the slab consisting of the points (0, 2), (1, 1) and (2, 0).

Now we can project those points onto the x-axis, which gives a unique number for each point,

eliminating the need for continuing with the algorithm. The number assigned to the point (2,0,0)

(which is the location of this point in the 3-dimensional tetrahedron) is equal to the sizes of the

smaller tetrahedrons (both the 3 and 2 dimensional ones) and the new offset from the x-axis, 0.

This comes to 4 + 3 + 2 = 9.

Therefore, the general formula for calculating the unique integer for an array element with

subscripts i 1, i 2,
. . . ,i k is: f (i 1, i 2, ..., i k) = sizeof (k, n − 1) + f (i 1, i 2, ..., i k−1) , n =

j =1
Σ
k

i j ,

f (i 1) = i 1 . The problem now becomes how to determine the number of elements in a

tetrahedron of arbitrary size and dimension. We will first show that the number of elements in a

2-dimensional tetrahedron of size n (range of values is from 0 to n) is :

f (n) =
2.

(n + 1) (n + 2)
��������������������������� and then extend the formula to k-dimensions.

Assume this is so for f (n −1). Now determine f (n). f (n) = f (n - 1) + points in new slab.

It can be seen that there are (n + 1) points in the new 2-dimensional slab, as they can be projected

onto the x-axis from 0 to n. So

f (n) = f (n − 1) + (n + 1) =
2

(n − 1 + 1)(n − 1 + 2)
����������������������������������� + n + 1 =

2.
(n + 1)(n + 2)
�����������������������

The formula works for n = 0, giving 1 as expected. Using the induction step, this assures

that the formula is indeed correct. The principle of induction assures that this formula is true for

53

all n ≥ 0. Therefore the sizeof () function f (2, n) =
2

(n + 1)(n + 2)����������������������� . This can also be expressed

as
��

2
n+2 �� .

We can break a k-dimensional tetrahedron of size n into n tetrahedrons of dimension (k - 1),

by recursively extending the prior argument about breaking down a k-dimensional tetrahedron of

size n into a k-dimensional tetrahedron of size (n -1) and a (k-1) dimensional tetrahedron of size

n. So to find the number of elements in a k-dimensional tetrahedron of size n, all one must do is

sum up the elements in (k - 1) dimensional tetrahedrons ranging from size 0 to n. In [GKP89] it

is shown that
k =0
Σ
n

��
k

r + k �� =
��

n
r + n + 1 �� . The formula for f (2, k) is already in the proper form

for this summation. Therefore the formula for f (3, n) =
��

3
n +3 �� , and the general formula is:

sizeof (k, n) =
��

k
n + k +1 �� .

The formula for calculating the unique integer for an array element with subscripts

i 1, i 2,
. . . ,i k is therefore:

f (i 1, i 2, ..., i k) = sizeof (k, n − 1) + f (i 1, i 2, ..., i k−1) ,

which reduces to:

f (i 1, i 2, ..., i k) =

����
k

k − 1 +
l =1
Σ
k

il � ��
� + f (i 1, i 2, ..., i k−1) ,

f (i 1) = i 1 .

Solving the recurrence gives a final solution of:

f (i 1, i 2, ..., i k) =
j =1
Σ
k

����
j

j − 1 +
l =1
Σ
j

il � ��
� .

54

Subscripted variables—Code generation

There are two separate times at which code is generated which involves subscripted names:

first at the time of instantiation of the array; second at the time an individual element is refer-

enced, which may include instantiating that individual element.

—Subscripted variable instantiation

A subscripted name instantiation from the example program is:

<< ADAMS_element [integer, integer] instantiates_a FOO_CLASS >>

This differs greatly from the typical array instantiation in traditional programming

languages. The norm would be to allocate a contiguous amount of memory of the size of the total

number of elements in the ranges of the subscripts, each of which is a fixed size at instantiation

time.

int ADAMS_element [10][20];

is a typical example, allocating 200 elements, with respective ranges of 10 and 20 in the two

dimensions. There is generally a simple formula for determining the offset of a particular ele-

ment into this chunk of memory.

In ADAMS, subscript pools can be used in place of the integer ranges. A subscript pool is a

set of allowable elements to be used for a subscript index. A pool can have elements added to it,

so the range is never fixed as it is in traditional programming languages. An instantiation of a

subscripted name in ADAMS simply enters the name of the array into the dictionary, along with

a unique id for the whole array, the number of subscripts needed to access individual elements,

and the subscript pools that each of the indices are to be obtained from (they need not all be from

the same subscript pool).

—Subscripted variable element references

55

The code that is necessary for referencing subscripted names is built upon that for referenc-

ing unsubscripted name, as the first step is to get the uid for the base name. A unique integer

index is obtained for this element, using the invertible function f that maps all uniquely sub-

scripted tuples onto a non-negative integer, and both of these are used to finally obtain the uid of

the specific element.

Looking at the following line from the sample program will help to illustrate this:

<< DELETE ADAMS_element [33, 5] from FOO_SET >>

The steps that the preprocessor goes through to obtain the uid of a subscripted element are as fol-

lows:

—Obtain the basename of the subscripted element.

—Use this name in a call to the dictionary to obtain its uid, just as though it were not a sub-

scripted name.

—From the rest of the element name, retrieve a list of the subscripts.

—Query the dictionary for the integer mapping for each of the subscripts. If the subscript is not

obtained from the INTEGER subpool, then the dictionary maintains a mapping from the elements

of the domain of a subscript pool onto the natural numbers. The dictionary is given the array

basename, and at the time the array was instantiated the dictionary knew how many subscripts the

array had, and the subscript pool from which its values are obtained. It is thus a simple matter for

the dictionary to map the set of subscripts onto a set of integers.

—Calculate a unique integer for the set of subscripts, using the algorithm in section yy.

—Call the index manager with the uid of the basename and the unique integer. If the element

already exists then the uid of the element is returned. If it doesn’t exist, a null uid is returned. In

this case, a call to _A_unique_getuid () is needed to obtain a new uid, followed by a call to the

index manager again, informing it of the basename uid, unique integer, and the uid of the element

56

to associate with the two.

Note that the general ADAMS philosophy is to instantiate a subscripted variable element

when it is first referenced. But at times this might not make much sense, as in the above delete

example. If ADAMS_element[33, 5] does not already exist at the time that ADAMS statement is

reached, then what is the point to instantiating that element, as there will immediately will be an

error anyway, since although the element is created, it cannot possibly be a member of

FOO_SET. The option exists to change this at the statement level, as the calls described here are

all lower-level than the ADAMS statement level, and the code generator could be readily

changed to reflect a differing philosophy if it is so desired.

4.3.3. General Element Designators

An element designator is the name of an element that is obtained by first finding a base ele-

ment, then following a (possibly null) list of maps, and ending with a final map or attribute. For

example, x.map1.map2.attr1 and y.attr2 are element designators.

Finding the uid of an element designator is more complicated than doing so for a regular

element. This is because a chain of map/attribute links must be traversed, obtaining a new uid at

each step. A regular element is denoted by a single uid. An element designator can be denoted

by the uid of the final target, or by an object/function uid pair. For example, by x.map1 it is

meant that there is an object x that has a map denoted by map1, which in turn has some image,

which we will call the target. When evaluating x.map1, one can obtain the uid of the target, or

simply refer to the uids of the object x and the map map1, which as a pair uniquely identify the

target. There are some calls to the index manager which require one format and some which

require the other. Some require both, for different elements. For example, in a MAP_ASSIGN

statement such as << x.map1 = y.map1 >>, the index manager routine _A_map_insert () needs

the separate uids of x and map1 for the destination, and the uid of the source y.map1.

57

To obtain the uid of the target, one starts with a list of the component names in the element

designator. The uid of the first named element is placed into temporary uid storage

_A_temp_uid1. The uid of the second is placed into _A_temp_uid0. If there is another link after

this, then the function _A_map_get_val () is called, and places the uid of the target into

_A_map_target. This is now the new element, which has the map function which follows in the

name. For example, in x.map_a.map_b we first view this ADAMS entity as an object x which

has a map map_a that starts a link which will lead to the eventual target. After obtaining the uids

for x and map_a, and using these to evaluate _A_map_get_val (), we have a new entity which has

a map_b which will lead to the target. The uid of this new entity is copied into _A_temp_uid1,

since this location retains the uid of the object. In this case, the chain ends after map_b, and the

value of the uid of map_b stays in _A_temp_uid0.

The function that desired the uid of the element designator passes a boolean parameter that

indicates whether or not to evaluate the final link to the target and obtain its uid, or to leave the

uids of the final object and map in _A_temp_uid1 and _A_temp_0.

4.3.4. ADAMS_vars

Unlike the other special cases in this section, an ADAMS_var has no particular distinguish-

ing syntactical feature when it is referenced. The only way to detect usage of an ADAMS_var is

to keep keep track of those which are declared in the << ADAMS_var [name_list] >> statement,

and check each name against that list. In some sense, this is performing the type of operation that

the dictionary does for regular named elements; however the dictionary cannot be utilized for this

function, because the ADAMS_var elements do no not have persistent names, merely persistent

uids. The ADAMS_var name has scope only for the duration of the ADAMS program, and as far

as the ADAMS run time system is concerned, it is a more indirect method of referring to an ele-

ment. Referring to an element by name is already an indirect method, since there must be a map-

ping from name onto the unique id. The name however, does refer to one particular unique ele-

58

ment; the unique id id to which it maps does not change, unless one deletes the named element

and then instantiates it again. With ADAMS_vars though, there is not the same sense of a rela-

tionship between the name and a unique id. For a period, the ADAMS_var will indeed refer to a

particular unique id. However, since one of the major reasons for having ADAMS_vars is to pro-

vide for mechanism for handling variables within the FOR_EACH loops, the same ADAMS_var

will generally refer to a number of different ADAMS elements over the duration of the ADAMS

program.

4.3.5. Var Variables

A var variable is easy to recognize, as the user must prepend the word "var " (any mix of

upper/lower letters) to the start of the name, as in << DELETE var ADAMS_element >>. The

parser recognizes that as a var variable, and sends "VAR ADAMS_element" to the code generator

as the element name. All that is necessary for the code generator to do to detect it being a var

variable is to pass the name to a function that checks the first four characters for a match with

"VAR ".

If no such match is found then nothing else is done in regards to var variables for that name.

If the match is made, then code is generated which is similar to that for regular ADAMS names,

except that the names are not quoted as they are for the literal ADAMS names. In addition, code

must be generated to make a check at run time on the name, to see if is scoped at that time. In

this version of ADAMS, var variables in programs are not allowed to be scoped (ie, it is illegal to

say "<< DELETE system var ADAMS_element >>", but the name at run time can be scoped—

it is legal to specify "<< DELETE var ADAMS_element >>", and then at run time have the

variable ADAMS_element take on the value "system xyz", so that it is the ADAMS element with

name xyz, at level SYSTEM that gets deleted.

59

4.3.6. Generic Literal Names

The only way to determine that a name falls into this category is to make all of the tests for

the special cases, and see that they fail. When this point is reached, a call to the dictionary rou-

tine _A_c_check () will obtain the unique id if the name has already been used. A discussion in

section 5 centers around whether or not it should be allowable to handle a name which has not

already been declared at parse time, under the assumption that it could be created by run time,

with provisions for error handling if it is not found then either.

Every time the element handler is called, an argument number is passed to it. This is used

in determining where the unique id is to be stored. For example, an argument number of 1 will

lead to the unique id being stored in _A_args [1].

60

5. ADAMS-related issues

5.1. Embedded language issues

The design of ADAMS as a "common interface language" which is embedded in multiple

host languages is a fundamental design decision. An alternative approach is to create a complete

new language—often by extending an existing one, as was done in EXODUS [CDV88] with its E

language, which is an extension of C++. There are advantages and disadvantages to the ADAMS

approach.

The overriding reason that this approach was taken was so that people who use different

programming languages could have a uniform way to create and maintain persistent databases,

while still using a language familiar to them. Programmers can still work in their favorite host

language, be it FORTRAN, C, Pascal or whatever. A major problem with traditional database

languages is that they are totally foreign to the intended users, leading to great resistance for

learning and actually using them. The ADAMS approach avoids this problem that other systems,

such as EXODUS, suffer from. Nobody needs to learn E, C++, or any totally unfamiliar

language to handle ADAMS.

The drawback to ADAMS’s embeddability is that a programmer is no longer using a

"clean" language; there are now aspects of two languages that he must be able to handle. There

must be two different modes of thinking: ADAMS and host language modes. There is also the

difficulty in ensuring that there is a proper interaction between the host language and ADAMS.

5.2. Parse time vs. run time checks

The persistent scope of names in ADAMS creates problems that are not present in normal

programming languages. In non-persistent languages actual variable names can be replaced by

appropriate offsets into memory by the time the compile/link phases are over. The actual vari-

able names are not needed at run time unless using a debugger, but in either case the names go

61

away when the program ends.

The situation is entirely different when it comes to the persistent name space of ADAMS.

Dealing with names in ADAMS is analogous to dealing with files in UNIX, where there is the

concern of whether or not a file you are writing to already exists, and where users with privileges

to write to group or system level files can remove or modify files that a number of users see, and

in fact may already be depending upon. With ADAMS there is the additional factor of a time lag

in between compile time and run time. The elements in the name space may have changed drasti-

cally during that period, with possible effects on any program that use the changed elements.

There are several ways in which entities may change. First, an element or class may exist at

parse time, but is subsequentially deleted before the program is executed. This obviously would

lead to errors, analogous to attempting to perform operations on a file that has been deleted. A

possible solution would lie in the reference counts that are kept on elements; increase reference

counts as elements are referenced at compile time. However, allowing reference counts to be

created as a result of programs that have only been compiled and not run yet could be disastrous.

Presumably reference counts would not be incremented at run time if they were already increased

at compile time. If the program is never run that potential user of the entity will never have the

opportunity to delete the element (i.e., remove his reference). This could lead to having many

ADAMS elements be unable to be deleted, if one of the programs that increased the reference

count were deleted before it was ever run. There is also the problem of what to do when a pro-

gram is recompiled before it is ever executed. Link counts would be increased drastically if they

were increased with every compilation. Deletion of persistent elements is a difficult enough

problem without artificially making it even worse.

A second change occurs when an element that did not exist at parse time is created before

the program is run. There are several options in this case. One could require compile time

existence of all entities and generate fatal compiler errors otherwise. This would require recompi-

62

lation of the program after the entity is created. This could be unduly restrictive, as a user could

create one program to define new classes and instantiate elements, and another to use these enti-

ties. Another option is to do as was done in the preprocessor, generate code that will perform

run-time checks on the desired entities.

A third possible change occurs if an entity is modified between parse time and compile

time. By modification we mean the class (or type) of the entity changes. In some regards this is

similar to the first case, as the entity at run time is not what the preprocessor saw and generated

code for. Some mechanism is needed to keep track of whether or not a class definition has been

modified (for example, by obtaining new maps and/or attributes.) The time of modification

would be very important, as simply knowing that a change has occurred is not sufficient; it must

be determined whether that modification occurred before or after compilation of the program,

since the modification is irrelevant if the modified version was the one seen at parse time.

It is not all clear what should be done in each of these cases; this is an open research area.

One can take the conservative position that all entities must be defined at parse time and cannot

change before run time without inducing an error. On the other hand, one can have more flexibil-

ity and allow entities to be created or modified between parse and run times, if there are appropri-

ate checks to ensure the integrity of the entities.

One problem that none of these address is that of the structure of ADAMS elements being

structurally modified or deleted by other users during execution of a program. With the above

schemes it is possible to determine if the elements referenced at parse time still exist at run time.

Nothing is done about the elements being modified (not deleted) prior to program execution.

Using some fields with each element to test for date of last modification would take care of that

problem, but would not help the run time modifications. If the test is done only at the start of the

program the program has no way of ensuring the integrity of the ADAMS elements it deals with.

It may well be necessary to do run time checks on the unique id (and possible associated fields)

63

for all element references. This will of course be expensive and as such is undesirable.

64

6. Conclusions

This report has presented the basics of understanding what was involved in developing the

preprocessor for ADAMS embedded within C. It should serve as a good starting point for some-

one trying to develop an ADAMS preprocessor for other host languages.

There are several areas of work for future ADAMS preprocessors:

� Embedding ADAMS within other host languages is very desirable—ADA, FORTRAN

and Pascal are logical languages to be handled next.

� Have ADAMS fulfill its original goal, that of a database implementation tool that runs on

and takes advantage of parallel processors—the current version is strictly serial. Since very little

in the current language is strictly geared for parallelism, the implementation must handle that

behind the scenes. It would of course be possible to make changes to the ADAMS language

itself, in order to explicitly incorporate parallel constructs.

� Looking into the possibility of making ADAMS an extensible language, like C++, elim-

inating the need for delimiters and enabling a parser to take advantage of information available

from the "host" language.

� Implementing features of the language that are not fully, or at all, implemented as of yet:

parameterized names, inverse retrieval operations, codomain methods, transactions. While the

parser recognizes these constructs, nothing is done in the code generation phase, mainly due to

debate over the exact semantics that should be involved.

Part of the problem in implementing features such as these is that the development of the

preprocessor reveals flaws in the planned semantics. Lexical and parsing limitations force

compromises in the language. Debugging efforts have revealed omissions in the language that

had been overlooked. The development of semantics of ADAMS and the implementation have

most definitely not been cleanly separated as a textbook model might suggest. Certainly one

should have a very good of the desired semantics before developing a system such as this, else

65

the final results will be series of kludges, precisely what ADAMS has tried to avoid. However

one must have the sense to realize that what seems sound on paper will need revisions, and be

willing to change the plan as one gains experience with the concepts involved.

66

7. References

[CDV88] M. J. Carey, D. J. DeWitt and S. L. Vandenberg, A Data Model and Query Language
for EXODUS, Proc. SIGMOD Conf., Chicago, IL, June 1988, 413-423.

[GKP89] R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-
Wesley, Reading, MA, 1989.

[Jan89] S. A. Janet Jr., The ADAMS Storage Management System, IPC TR-89-008, Institute
for Parallel Computation, Univ. of Virginia, Aug. 1989.

[Joh78] S. C. Johnson, A Portable Compiler: Theory and Practice, Proc. 5th ACM Symp. on
Prin. of Prog. Lang., Jan. 1978, 97-104.

[KeP84] B. Kernighan and R. Pike, The UNIX Programming Environment, Prentice Hall,
Englewood Cliffs, NJ, 1984.

[Klu88] C. Klumpp, Implementation of an ADAMS Prototype: the ADAMS Preprocessor,
IPC TR-88-005, Institute for Parallel Computation, Univ. of Virginia, Aug. 1988.

[PFG89a] J. L. Pfaltz, J. C. French, A. Grimshaw, S. H. Son, P. Baron, S. Janet, Y. Lin, L.
Loyd and R. McElrath, Implementation of the ADAMS Database System, IPC TR-
89-010, Institute for Parallel Computation, Univ. of Virginia, Dec. 1989.

[PFG89b] J. L. Pfaltz, J. C. French, A. Grimshaw, S. H. Son, P. Baron, S. Janet, A. Kim, C.
Klumpp, Y. Lin and L. Loyd, The ADAMS Database Language, IPC TR-89-002,
Institute for Parallel Computation, Univ. of Virginia, Feb. 1989.

[Str87] B. Stroustrup, The C++ Programming Language, Addison Wesley, Reading, MA,
1987.

67

Appendix 1: ADAMS Preprocessor Options.

The following are the options that the ADAMS preprocessor recognizes:

-u user_id
Specify user_id to be used for dictionary access. The default is that getuid () call is
made in the main program to determine the users UNIX id.

-t task_id

Specify the task_id to be used for dictionary access. The default is TASK_DEFAULT, a
constant defined in a header file.

-dpathname
Specify the pathname to be used to find the top-level of the dictionary. Can be specified
as an argument to the preprocessor through this option, or by setting the shell variable
DICTPATH to the desired path.

-p
Generates comments in the generated C file that enclose the original ADAMS code. The
comments are placed after the code that is generated for the ADAMS statements. This
option can be useful for debugging.

68

Appendix 2: BNF for ADAMS language

The following is the BNF for the ADAMS language used in this version of the
preprocessor.

<ADAMS_stmt> ::= <b_delimiter> <statement_body> <e_delimiter>

<b_delimiter> ::= <<

<e_delimiter> ::= >>

<statement_body> ::= <open_ADAMS_stmt>
<codomain_decl_stmt>
<subscript_pool__decl_stmt>
<extend_pool_stmt>
<add_codomain_method>
<attribute_decl_stmt>

<attribute_instance_stmt>
<map_decl_stmt>
<map_instance_stmt>
<class_decl_stmt>
<elem_instance_stmt>

<delete_element_stmt>
<variable_decl_stmt>
<set_decl_stmt>
<set_instance_stmt>
<view_stmt>

<fetch_stmt>
<store_stmt>
<looping_stmt>
<end_loop_stmt>
<set_copy_stmt>

<set_assign_stmt>
<make_empty_stmt>
<insert_stmt>
<remove_stmt>
<union_stmt>

<intersect_stmt>
<complement_stmt>
<var_assign_stmt>
<rescope_stmt>
<erase_entry_stmt>

<start_trans_stmt>
<abort_trans_stmt>
<end_trans_stmt>
<lock_stmt>
<unlock_stmt>
<close_ADAMS_stmt>

<open_ADAMS_stmt> ::= open_ADAMS <job_id>

69

<close_ADAMS_stmt> ::= close_ADAMS <job_id>

Codomain Syntax
<codomain_decl_stmt> ::= <codomain_name> isa CODOMAIN

<membership_clause>
[<access_method_clause >]
[<other_method>]
[<undefined_clause>]
[<unknown_clause>]
[<scope_clause>]

<codomain_name> ::= <actual_name>

<membership_clause> ::= consisting of #<regular_expression># |
validated by <codomain_method_def>

<access_method_clause> ::= fetch: <codomain_method_def>
store: <codomain_method_def>

<other_codomain_method> ::= <method_name>: <codomain_method_definition>

<method_name> ::= <actual_name>

<undefined_clause> ::= udf = <literal_value>

<unknown_clause> ::= ukn = <literal_value>

<literal_value> ::= ’ <codomain_value> ’

<codomain_method_def> ::= <extern_def_codomain_method> |
<locally_def_codomain_method>

<extern_def_codomain_method> ::= EXTERNAL <name>

<locally_def_codomain_method> ::= <host_language_proc>

<subscript_pool__decl_stmt> ::= <subscript_pool_name> instantiates_a SUBSCRIPT POOL
of <codomain_name> values
[<consisting_of_clause>]

<extend_pool_stmt> ::= add <subscript_value> to <subscript_pool_name> POOL

<subscript_pool_name> ::= <actual_name>

<add_codomain_method> ::= add method to <codomain_name> CODOMAIN
<method_name>: <codomain_method_def>

Attribute Syntax
<attribute_decl_stmt> ::= [var] <attr_class_entry> isa ATTRIBUTE

with image <codomain_name>
[<association_clause>]*
[<restriction_clause>]
[<scope_clause>]

<attr_class_entry> ::= <dict_class_entry>

70

<attribute_instance_stmt> ::= [var] <attr_entry> instantiates_a <attr_class>
[<scope_clause>]

�

<ADAMS_var> instantiates_a <attr_class>
[<scope_clause>]

<attr_entry> ::= <dict_instance_entry>

<fetch_stmt> ::= fetch into <host_variable> from <value_desig>

<store_stmt> ::= store from <host_expression> into <element_desig>.<attr_desig>

<attr_assign_stmt> ::= assign into <element_desig>.<attr_desig> from <value_desig>

<value_desig> ::= <element_desig>.<attr_desig>
�

<literal_value>

Map Syntax
<map_decl_stmt> ::= [var] <map_class_entry> isa MAP

with image <dict_class_entry>
[<association_clause>]*
[<restriction_clause>]
[<scope_clause>]

<map_class_entry> ::= <dict_class_entry>

<map_instance_stmt> ::= [var] <map_entry> instantiates_a <map_class>
[<scope_clause>]

�

<ADAMS_var> instantiates_a <map_class>
[<scope_clause>]

<map_entry> ::= <dict_inst_entry>

Class Syntax
Classes and Instances

<class_decl_stmt> ::= [var] <dict_class_entry> isa <super_class>
[<class_decl_body>]

<elem_instance_stmt> ::= [var] <dict_inst_entry> instantiates_a <class_name>
[AND <class_name>]*
[<scope_clause>]

�

<ADAMS_var> instantiates_a <class_name>
[AND <class_name>]*
[<scope_clause>]

<super_class> ::= <dict_class_entry> [AND <dict_class_entry>]*

<class_decl_body> ::= FORWARD |
[<association_clause>]*
[<restriction_clause>]
[<scope_clause>]

<association_clause> ::= having [<synonym> =] <association_set>

71

<synonym> ::= <actual_name>

<association_set> ::= <set_desig> | <clustered_attr_enum>

<clustered_attr_enum> ::= ’{’ ’(’ <attr_cluster> ’)’ [, <attr_cluster>]* ’}’

<attr_cluster> ::= (<attr_cluster>) �
<attr_cluster>, <attr_cluster> �
<enumeration_element>

<restriction_clause> ::= provided # <predicate> # | provided <boolean_method>

<delete_element_stmt> ::= delete <element_desig>

Class Syntax
Predicates

<predicate> ::= <disjunct> [or <disjunct>]*

<disjunct> ::= <conjunct> [and <conjunct>]*

<conjunct> ::= <term> | (<predicate>) |
<quantifier> ’[’ <predicate> ’]’

<term> ::= <equality_comparison> | <order_comparison>

<equality_comparison> ::= <element> <equality_test> <element> |
<data_value> <equality_test> <data_value>

<order_comparison> ::= <data_value> <order_test> <data_value>

<element> ::= <logical_var> | <element_desig>

<data_value> ::= <literal_value> | <element>.<attr_desig>

<equality_test> ::= = | !=

<order_test> ::= < | <= | > | >=

<logical_var> ::= <bound_var> | <free_var>

<quantifier> ::= (all <bound_var> in <set_desig>) �
(exists <bound_var> in <set_desig>)

<free_var> ::= $X | $x

Set Syntax
Denotation

<set_decl_stmt> ::= [var] <set_class_entry> isa SET
of <dict_class_entry> elements
[<association_clause>]*
[<restriction_clause>]
[<scope_clause>]

<set_class_entry> ::= <dict_class_entry>

72

<set_instance_stmt> ::= [var]<set_entry> instantiates_a <set_class>
[<initial_clause>]
[<scope_clause>] �

<ADAMS_var> instantiates_a <set_class>
[<initial_clause>]
[<scope_clause>]

<set_class> ::= <class_name>

<initial_clause> ::= consisting of <set_desig>

<view_stmt> ::= <set_desig> attributes_of <class_name> �
<set_desig> maps_of <class_name>

Set Syntax
Manipulation

<looping_stmt> ::= for_each <ADAMS_var> in <set_desig> do
[<host_language_statement>]*
[<ADAMS_statement>]*

<end_loop_stmt> ::= exit_loop

<set_assign_stmt> ::= assign_to <element_desig> from <set_desig>

<set_copy_stmt> ::= copy_to <element_desig> from <set_desig>

<make_empty_stmt> ::= make_empty <element_desig>

<insert_stmt> ::= insert <element_desig> into <set_desig>

<remove_stmt> ::= remove <element_desig> from <set_desig>

<union_stmt> ::= <element_desig> is_union_of <set_desig> [, <set_desig>]*

<intersect_stmt> ::= <element_desig> is_intersection_of <set_desig> [, <set_desig>]*

<complement_stmt> ::= <element_desig> is_complement_of <set_desig1> wrt <set_desig2>

Inverse Syntax
<retrieval_set> ::= ’{’ <bound_var> in <set_desig> ’|’ <predicate> ’}’

Syntax of Names and Designators
<char_seg> ::= <string of letters and/or digits>

<param_seg> ::= $<ordinal_number>

<pattern_seg> ::= <char_seg> � <param_seg>

<dict_class_entry> ::= <pattern_seg> [_<pattern_seg>]*

<actual_name> ::= <char_seg> [_<char_seg>]*

<dict_instance_entry> ::= <actual_name> |
<actual_name> ’[’ <subscript_decl> ’]’

<subscript_decl> ::= <subscript_pool_name> [, <subscript_pool_name>]*

73

<class_name> ::= [<scope>] <actual_name> |
CLASS | ATTRIBUTE | MAP | SET

<element_name> ::= <actual_name> | <subscripted_name>

<subscripted_name> ::= <actual_name> ’[’ <subscript> ’]’

<subscript> ::= <subscript_value> [,<subscript_value>]*

<ADAMS_var> ::= <actual_name>

<variable_list> ::= <ADAMS_var> [, <variable_list>]

<variable_decl_stmt> ::= ADAMS_var <variable_list>

<element_desig> ::= [<scope>] <element_name> � <variable_name> �
<element_desig>.<map_desig> � <ADAMS_var>

<variable_name> ::= var <host_language_variable>

<attr_desig> ::= <element_desig>

<map_desig> ::= <element_desig>

<set_desig> ::= <element_desig> | <enumerated_set> |
NULLSET | <retrieval_set> |
<element_desig>-><synonym>

<range> ::= <subscript_value> .. <subscript_value>

<range_subscript> ::= <range> [, <range>]*

<enumeration_elem> ::= <element_name> |
<actual_name>’[’<range_subscript>’]’

<enumerated_set> ::= ’{’ [<enumeration_elem> [, <enumeration_elem>]*]* ’}’

<var_assign_stmt> ::= <ADAMS_var> denotes [var] <element_desig>

Other Dictionary Syntax
<scope_clause> ::= scope is <scope>

<scope> ::= SYSTEM | TASK | USER | LOCAL

<rescope_stmt> ::= rescope <entry_type> <dict_entry> as <scope>

<erase_entry_stmt> ::= erase <entry_type> <dict_entry>

<entry_type> ::= CLASS | INSTANCE | CODOMAIN | SUBSCRIPT_POOL

<dict_entry> ::= <dict_class_entry> | <dict_inst_entry>

Transaction Syntax
<start_trans_stmt> ::= tr_start <trans_desig>

<end_trans_stmt> ::= tr_end <trans_desig>

<abort_stmt> ::= abort <trans_desig>

74

<lock_stmt> ::= lock <element_desig>

<unlock_stmt> ::= unlock <element_desig>

75

Appendix 3: YACC version of ADAMS Grammar
The following is the Grammar that was used by YACC to develop the parser for the

preprocessor. It recognizes the same language as the official ADAMS BNF grammar in appendix

1, but cannot use the same grammar, because of parsing difficulties.

There are a number of differences between the formal BNF and YACC grammars. It is

generally easier to follow the BNF grammar, so the major deviations in the YACC grammar will

be discussed here.

(1) FOR_EACH loop_body statement: The ADAMS BNF allows for any mixture of C code or
ADAMS statements within the loop_body. The YACC grammar allows only ADAMS
statements there. This is because the parser never sees any C code (in legal ADAMS
statements); the C code is allowable, but is just not reflected in the YACC grammar.

(2) error stmts in adams_stmt production. YACC has extra productions to handle error
conditions. These are not present in the BNF grammar, since that only deals with defining
allowable strings in the language. It is desirable to be able to handle error conditions
gracefully in YACC, and so the need for these productions.

(3) The optional clauses in the declarations have to be handled differently here to eliminate
ambiguity. The optional clauses before each clause cause problems—in order to prevent
trailing commas, or multiple commas in a row, all the clauses in a set have to grouped
together.

/***/
Main Body

/***/
adams_body: /* empty string */

| adams_body adams_stmt
;

/***/
ADAMS statements

/***/

adams_stmt: STMT_BEGIN abort_stmt STMT_END
| STMT_BEGIN add_codomain_method STMT_END
| STMT_BEGIN attr_assign_stmt STMT_END
| STMT_BEGIN attr_decl_stmt STMT_END
| STMT_BEGIN codomain_decl_stmt STMT_END
| STMT_BEGIN close_stmt STMT_END
| STMT_BEGIN complement_stmt STMT_END
| STMT_BEGIN delete_elem_stmt STMT_END
| STMT_BEGIN end_loop_stmt STMT_END
| STMT_BEGIN extend_pool_stmt STMT_END
| STMT_BEGIN end_trans_stmt STMT_END
| STMT_BEGIN erase_entry_stmt STMT_END
| STMT_BEGIN fetch_stmt STMT_END
| STMT_BEGIN insert_stmt STMT_END
| STMT_BEGIN intersect_stmt STMT_END
| STMT_BEGIN lock_stmt STMT_END
| STMT_BEGIN looping_stmt STMT_END

76

| STMT_BEGIN make_empty_stmt STMT_END
| STMT_BEGIN map_decl_stmt STMT_END
| STMT_BEGIN open_stmt STMT_END
| STMT_BEGIN remove_stmt STMT_END
| STMT_BEGIN rescope_stmt STMT_END
| STMT_BEGIN set_assign_stmt STMT_END
| STMT_BEGIN set_copy_stmt STMT_END
| STMT_BEGIN start_trans_stmt STMT_END
| STMT_BEGIN store_stmt STMT_END
| STMT_BEGIN subscript_pool_decl_stmt STMT_END
| STMT_BEGIN union_stmt STMT_END
| STMT_BEGIN unlock_stmt STMT_END
| STMT_BEGIN var_assign_stmt STMT_END
| STMT_BEGIN var_decl_stmt STMT_END
| STMT_BEGIN elem_inst_stmt STMT_END
| STMT_BEGIN set_inst_stmt STMT_END
| STMT_BEGIN class_decl_stmt STMT_END
| STMT_BEGIN set_decl_stmt STMT_END
| STMT_BEGIN error STMT_END
| STMT_BEGIN error R_PAREN
| STMT_BEGIN error SEMI
;

/***/
open/close statements

/***/

open_stmt: OPEN actual_name
;

close_stmt: CLOSE actual_name
;

/***/
Codomains

/***/

codomain_decl_stmt: dict_class_entry ISA CODOMAIN comma_opt membership_clause
cod_decl_stmt_options

;

codomain_name: actual_name
;

membership_clause: VALIDATED BY codomain_method_def
| CONSISTING OF CODOMAIN_VALUE
;

access_method_clause: FETCH COLON codomain_method_def STORE COLON codomain_method_def
;

other_method_clause: method_name COLON codomain_method_def
;

method_name: actual_name
;

undefined_clause: UDF EQUAL literal_value
;

unknown_clause: UKN EQUAL literal_value
;

77

literal_value: LITERAL_VALUE
;

codomain_method_def: extern_def_codomain_method
;

extern_def_codomain_method: EXTERNAL actual_name
;

cod_decl_stmt_options: cod_decl_stmt_opt_choices
| cod_decl_stmt_options cod_decl_stmt_opt_non_empt
;

cod_decl_stmt_opt_choices:
| cod_decl_stmt_opt_non_empt
;

cod_decl_stmt_opt_non_empt: COMMA access_method_clause
| COMMA other_method_clause
| COMMA undefined_clause
| COMMA unknown_clause
| COMMA scope_clause
| access_method_clause
| other_method_clause
| undefined_clause
| unknown_clause
| scope_clause
;

subscript_pool_decl_stmt: dict_inst_entry_no_sub INSTANTIATES_A SUBSCRIPT_POOL OF
codomain_name VALUES

;

extend_pool_stmt: ADD subscript_value TO actual_name POOL
;

add_codomain_method: ADD METHOD TO actual_name CODOMAIN method_name COLON
codomain_method_def

;

/***/
Attributes

/***/

attr_decl_stmt: VAR dict_class_entry ISA ATTRIBUTE comma_opt WITH IMAGE
codomain_image association_clause_opt_many decl_stmt_options

;

attr_decl_stmt: dict_class_entry ISA ATTRIBUTE comma_opt WITH IMAGE
codomain_image association_clause_opt_many decl_stmt_options

;

codomain_image: codomain_name
| param_seg
;

fetch_stmt: FETCH INTO host_var FROM value_desig
| FETCH FROM value_desig INTO host_var
;

store_stmt: STORE FROM host_expr INTO value_desig
| STORE INTO value_desig FROM host_expr
;

78

attr_assign_stmt: ASSIGN INTO element_desig PERIOD attr_desig FROM value_desig
;

host_var: actual_name
;

host_expr: actual_name
;

value_desig: element_desig PERIOD attr_desig
| literal_value
;

/***/
Maps

/***/

map_decl_stmt: map_decl_stmt_start MAP_TOKEN comma_opt WITH IMAGE class_name
association_clause_opt_many decl_stmt_options

;

map_decl_stmt_start: VAR dict_class_entry ISA
| dict_class_entry ISA
;

/***/
Classes

/***/

class_decl_stmt: VAR dict_class_entry ISA super_class class_decl_body
;

class_decl_stmt: dict_class_entry ISA super_class class_decl_body
;

class_decl_body: FORWARD
| association_clause_opt_many decl_stmt_options
;

elem_inst_stmt_short: elem_inst_stmt_short1 scope_clause
| elem_inst_stmt_short1 COMMA scope_clause
| elem_inst_stmt_short1
;

elem_inst_stmt_short1: VAR dict_inst_entry_sub INSTANTIATES_A class_name
| dict_inst_entry_sub INSTANTIATES_A class_name
| VAR dict_inst_entry_no_sub INSTANTIATES_A class_name
| dict_inst_entry_no_sub INSTANTIATES_A class_name
;

elem_inst_stmt_long:VAR dict_inst_entry_sub INSTANTIATES_A class_name
AND_class_many scope_clause_opt

| dict_inst_entry_sub INSTANTIATES_A class_name
AND_class_many scope_clause_opt

| VAR dict_inst_entry_no_sub INSTANTIATES_A class_name
AND_class_many scope_clause_opt

| dict_inst_entry_no_sub INSTANTIATES_A class_name
AND_class_many scope_clause_opt

;

elem_inst_stmt: elem_inst_stmt_short
| elem_inst_stmt_long
;

79

super_class: super_class1
| super_class2
;

super_class1: CLASS_TOKEN
;

super_class2: class_name
| super_class2 AND class_name
;

association_clause: HAVING synonym EQUAL association_set
| HAVING association_set
;

synonym: actual_name
;

association_set: set_desig
| clustered_attr_enum
;

clustered_attr_enum: L_CURL L_PAREN attr_cluster R_PAREN attr_cluster_opt R_CURL
;

attr_cluster_opt:
| attr_cluster_opt COMMA attr_cluster
;

attr_cluster: L_PAREN attr_cluster R_PAREN
| attr_cluster COMMA attr_cluster
| attr_desig
;

restrict_clause: PROVIDED POUND predicate POUND
;

delete_elem_stmt: DELETE element_desig
;

/***/
Predicates

/***/

predicate: disjunct
| predicate OR disjunct
;

disjunct: conjunct
| disjunct AND conjunct
;

conjunct: term
| L_PAREN predicate R_PAREN
| quantifier L_SQUARE predicate R_SQUARE
;

term: equality_comparison
| order_comparison
;

equality_comparison: element equality_test element
| data_value equality_test data_value

80

;

order_comparison: data_value order_test data_value
;

element: free_var
| element_desig
;

data_value: element PERIOD attr_desig
| LITERAL_VALUE
;

equality_test: EQUAL
| NOT_EQ
;

order_test: LESS_THAN
| LESS_EQ
| GREATER_THAN
| GREATER_EQ
;

quantifier: L_PAREN ALL bound_var IN set_desig R_PAREN
| L_PAREN EXISTS bound_var IN set_desig R_PAREN
;

free_var: FREE_VAR
;

logical_var: bound_var
| free_var
;

bound_var: ADAMS_var
;

/***/
Sets

/***/

set_decl_stmt: set_decl_stmt_start SET_TOKEN OF set_type ELEMENTS options
;

set_decl_stmt_start: dict_class_entry ISA
| VAR dict_class_entry ISA
;

set_type: class_name
| ATTRIBUTE
| MAP_TOKEN
| SET_TOKEN
| CLASS_TOKEN
;

set_inst_stmt: elem_inst_stmt_short comma_opt initial_clause comma_opt
scope_clause_opt

;

initial_clause: CONSISTING OF set_desig
;

looping_stmt: FOR_EACH ADAMS_var IN set_desig DO loop_body

81

;

loop_body:
| adams_stmt
| loop_body adams_stmt
;

end_loop_stmt: EXIT_LOOP
;

set_assign_stmt: ASSIGN_TO element_desig FROM set_desig
;

set_copy_stmt: COPY_TO element_desig FROM set_desig
;

make_empty_stmt: MAKE_EMPTY element_desig
;

insert_stmt: INSERT element_desig INTO set_desig
;

remove_stmt: REMOVE element_desig FROM set_desig
;

union_stmt: union_stmt_start
| union_stmt COMMA set_desig
;

union_stmt_start: element_desig IS_UNION_OF set_desig
;

intersect_stmt: intersect_stmt_start
| intersect_stmt COMMA set_desig
;

intersect_stmt_start: element_desig IS_INTERSECTION_OF set_desig
;

complement_stmt: element_desig IS_COMPLEMENT_OF set_desig WRT set_desig
;

/***/
Inverses

/***/

retrieval_set: L_CURL bound_var IN set_desig BAR predicate R_CURL
;

/***/
ADAMS Names and Designators

/***/

char_seg: CHARS
;

param_seg: PARAM
;

pattern_seg: param_seg
| pattern_seg UNDER param_seg
;

actual_name: char_seg

82

;

subscript_decl: subscript_pool_name
| subscript_decl COMMA subscript_pool_name
;

subscript_pool_name: actual_name
;

subscript: subscript_value
| subscript COMMA subscript_value
;

subscript_range: range
| subscript COMMA range
| subscript_range COMMA range
| subscript_range COMMA subscript_value
;

subscript_value: actual_name
;

subscripted_name: actual_name L_SQUARE subscript R_SQUARE
;

subscripted_range_name: actual_name L_SQUARE subscript_range R_SQUARE
;

class_name: dict_class_entry
| scope dict_class_entry
| param_seg
| scope param_seg
;

element_name: actual_name
| scope actual_name
| subscripted_name
| scope subscripted_name
;

ADAMS_var: actual_name
;

var_list: ADAMS_var
| var_list COMMA ADAMS_var
;

var_decl_stmt: ADAMS_VAR var_list
;

element_desig: element_name
| variable_name
| element_desig PERIOD map_desig
;

variable_name: VAR actual_name
;

attr_desig: element_desig
;

map_desig: element_desig
;

83

set_desig: element_desig
| enumerated_set
| retrieval_set
| element_name SET_ASSOC_OP synonym
| NULLSET
;

range: subscript_value RANGE subscript_value
;

enumerated_set: L_CURL enumerated_name_many R_CURL
| L_CURL R_CURL
;

enumerated_name_many: element_name
| subscripted_range_name
| enumerated_name_many COMMA element_name
| enumerated_name_many COMMA subscripted_range_name
;

var_assign_stmt: ADAMS_var DENOTES element_desig
;

scope_clause: SCOPE IS scope
;

scope: SYSTEM_TOKEN
| TASK_TOKEN
| USER_TOKEN
| LOCAL_TOKEN
;

rescope_stmt: RESCOPE entry_type element_name AS scope
;

erase_entry_stmt: ERASE entry_type dict_entry
;

entry_type: CLASS_TOKEN
| INSTANCE
| CODOMAIN
| SUBSCRIPT_POOL
;

/***/
Dictionary

/***/

dict_entry: dict_class_entry_param
| dict_inst_entry_sub
| actual_name
| scope actual_name
;

dict_class_entry: dict_class_entry_actual
| dict_class_entry_param
;

dict_class_entry_actual: actual_name
;

dict_class_entry_param: pattern_seg UNDER_CHARS
| pattern_seg UNDER_CHARS_UNDER pattern_seg

84

| dict_class_entry_param UNDER_CHARS_UNDER pattern_seg
| dict_class_entry_param UNDER_CHARS
| dict_class_entry_param UNDER pattern_seg
;

dict_inst_entry: dict_inst_entry_no_sub
| dict_inst_entry_sub
;

dict_inst_entry_no_sub: actual_name
| dict_inst_entry_semis
;

dict_inst_entry_sub: subscripted_name
;

dict_inst_entry_semis: SEMI_CHARS
| actual_name SEMI_CHARS
| dict_inst_entry_semis CHARS_UNDER
| dict_inst_entry_semis SEMI_CHARS
;

/***/
Transactions

/***/

start_trans_stmt: TR_START CHARS
;

end_trans_stmt: TR_END CHARS
;

abort_stmt: ABORT CHARS
;

lock_stmt: LOCK element_desig
;

unlock_stmt: UNLOCK element_desig
;

/***/
Declaration statement options

/***/

options: association_clause_opt_many decl_stmt_options
;

decl_stmt_options: /* empty string */
| decl_stmt_opt_non_empt
| COMMA decl_stmt_opt_non_empt
| decl_stmt_options comma_opt decl_stmt_opt_non_empt
;

decl_stmt_opt_non_empt: scope_clause
| restrict_clause
;

/***/
Optional clauses

/***/
scope_clause_opt: /* empty string */

| scope_clause

85

| COMMA scope_clause
;

association_clause_opt_many: /* empty string */
| association_clause
| association_clause_opt_many association_clause
| association_clause_opt_many COMMA association_clause
;

AND_class_many: AND class_name
| AND_class_many AND class_name
;

comma_opt: /* empty string */
| COMMA
;

86

Appendix 4: LEX Tokens
The following is a list of tokens that are used in the LEX program; they are included here

since they are used in appendix 2, in the YACC grammar.

This first list of tokens are those that are formed from the literal characters in the name of

the token, with either upper or lower case allowed in each position (ie, ALL could be formed by

"ALL", "ALl", "AlL", "All", "aLL", "aLl", "alL", all"). Several (CLASS_TOKEN for example)

are of this pattern, but not for the exact token name ("_TOKEN" had to be added to avoid

conflicts with other names in the preprocessor). The words in the ADAMS language that

tokenizes into them is listed in parenthesis following these few exceptions.

ABORT, ACCESS_NAME, ADAMS_VAR, ADD, ALL, AND, AS, ASSIGN, ASSIGN_TO,
ATTRIBUTE, BAR, BELONGS, BY, CLASS_TOKEN (CLASS), CLOSE, CODOMAIN,
CODOMAIN_VALUE, CONSISTING, COPY_TO, DELETE, DENOTES, DENOTES_A, DO,
ELEMENTS, EQUAL, ERASE, EXIT_LOOP, EXISTS, EXTERNAL, FETCH, FOR_EACH,
FORWARD, FREE_VAR, FROM, HAVING, IMAGE, INSERT, INSTANCE,
INSTANTIATES_A, IN, INTO, IS, ISA, IS_COMPLEMENT_OF, IS_INTERSECTION_OF,
IS_UNION_OF, LOCK, LOCAL_TOKEN (LOCAL), MAP_TOKEN (MAP), MAKE_EMPTY,
METHOD, NAME_VAR, NOT_EQ, NULLSET, OF, OR, OPEN, PLUS, POOL, PROVIDED,
REMOVE, RESCOPE, SCOPE, SET_TOKEN (SET), SET_ASSOC_OP, STORE, STR_CONST,
SUBSCRIPT_POOL, SYSTEM_TOKEN (SYSTEM), TASK_TOKEN (TASK), TO, TR_START,
TR_END, UDF, UKN, UNDEFINED, UNLOCK, USE, USER_TOKEN (USER), USING,
VALIDATED, VALUE, VALUES, VAR, VIEW, WITH, WHICH, WRT.

The standard UNIX notation for regular expressions is used to describe the strings that don’t

match the default pattern for this list.

CHARS [a-zA-Z]+
CHARS_UNDER [a-zA-Z]+"_"
COLON ":"
COMMA ","
GREATER_EQ ">="
GREATER_THAN ">"
L_CURL "{"
LESS_EQ "<="
LESS_THAN "<"
L_PAREN "("
L_SQUARE "["
PARAM "$"[1-9][0-9]*
PERIOD "."
POUND "#"
QUOTE """

87

R_CURL "}"
R_PAREN ")"
R_SQUARE "]"
RANGE ".."
SEMI ":"
SEMI_CHARS ":"[a-zA-Z]+
SING_QUOTE "’"
STMT_BEGIN "<<"
STMT_END ">>"
UNDER "_"
UNDER_CHARS "_"[a-zA-Z]+
UNDER_CHARS_UNDER "_"[a-zA-Z]+

88

Appendix 5: Sample ADAMS program and C translation.
In this appendix, we present a more extensive ADAMS program, along with the C program

that is generated when this source file is input to the preprocessor. First the ADAMS/C source

file:

/* sample ADAMS/C code */

#include <stdio.h>

main ()
{
int i;
char xx [30]; /* defs for adams_vars */
char f_name [30], l_name [30], addr [50], phone [10];

<< adams_var x, y >>
<< open_adams 3 >>

printf ("about to declare c class\n");
<< c isa CLASS, having c_attr =

{c_f_name, c_l_name, c_addr, c_phone}, SCOPE is USER >>
printf ("about to instantiate c_inst \n");
<< c_inst instantiates_a c >>

printf ("about to decl c_set \n");
<< c_set isa SET of c ELEMENTS >>
printf ("about to instantiate c_set_inst \n");
<< c_set_inst1 instantiates_a c_set >>
<< c_set_inst2 instantiates_a c_set >>
<< c_set_inter instantiates_a c_set >>
<< c_set_union instantiates_a c_set >>

for (i = 0; i < 4; i++)
{
printf ("about to scanf for var name\n");
scanf ("%s", xx);
<< var xx instantiates_a c >>
<< insert var xx into c_set_inst1 >>
scanf ("%s", f_name);
scanf ("%s", l_name);
scanf ("%s", addr);
scanf ("%s", phone);
<< store from f_name into var xx.c_f_name >>
<< store from l_name into var xx.c_l_name >>
<< store from phone into var xx.c_phone >>
<< store from addr into varxx.c_addr >>

89

<< insert var xx into c_set_inst2 >>
if (strcmp ("John", f_name))

<< insert var xx into c_set_inst1 >>
}

printf ("\nelements of set 1 are:\n");
<< FOR_EACH y in c_set_inst1 DO

<< fetch into f_name from y.c_f_name >>
<< fetch into l_name from y.c_l_name >>
<< fetch into addr from y.c_addr >>
<< fetch into phone from y.c_phone >>

>>

printf ("\nelements of set 2 are:\n");
<< FOR_EACH y in c_set_inst2 DO

<< fetch into f_name from y.c_f_name >>
<< fetch into l_name from y.c_l_name >>
<< fetch into addr from y.c_addr >>
<< fetch into phone from y.c_phone >>

>>

<< c_set_inter is_intersection_of c_set_inst1, c_set_inst2 >>
printf ("\nelements of intersection set are:\n");
<< FOR_EACH y in c_set_inter DO

<< fetch into f_name from y.c_f_name >>
<< fetch into l_name from y.c_l_name >>
<< fetch into addr from y.c_addr >>
<< fetch into phone from y.c_phone >>

>>

<< c_set_union is_union_of c_set_inst1, c_set_inst2 >>
printf ("\nelements of union set are:\n");
<< FOR_EACH y in c_set_union DO

<< fetch into f_name from y.c_f_name >>
<< fetch into l_name from y.c_l_name >>
<< fetch into addr from y.c_addr >>
<< fetch into phone from y.c_phone >>

>>

<< close_adams 3 >>
}

Next we have the C translation of the ADAMS/C source code:

#define _A_MAX_ARGS_PER_STMT 20
#define _A_FETCH_BUFF_SZ 50
#define _A_MAX_NUM_SUBS 20
#include "uid_cc.h"
#define _A_IDLEN 8
#include "dict_cc.h"

90

extern void _A_read_symbol_table (), _A_read_num_entries ();
extern void _A_attach_dict (), _A_release_dict ();
extern int _A_check_symbol_table ();
extern void _A_inter_LOCK (), _A_inter_UNLOCK ();
extern int _A_check ();
extern int _A_run_time_lock (), _A_run_time_unlock ();
extern char *malloc (), *strcpy ();
int _ADAMS_STATUS;
int _A_c_const_uid ();
#include "symbol.h"
#include "indexglue.h"
#include "indexman.h"
_A_uid_string _A_uid_name, _A_set_uid, _A_fn_uid, _A_class_uid;
_A_uid_string _A_inst_uid;
_A_uid_string _A_var_name, _A_map_elem, _A_map_fn, _A_map_target;
_A_uid_string _A_temp_uid0, _A_temp_uid1, _A_temp_uid2, _A_temp_uid3;
_A_uid_string _A_subs_uid, _A_subs_temp;
_A_D_LEVEL _A_d_level = (_A_D_LEVEL) 0;
char _A_args [_A_MAX_ARGS_PER_STMT] [_A_IDLEN + 1];
int uid = 853, tid = 123;
int _A_int_index;
double _A_unique_double;
int _A_num_subs, _A_subs_int [_A_MAX_NUM_SUBS];
_A_ENTRYDEF _A_def, _A_temp_def, _A_set_def;
_A_ENTRYTYPE _A_entry_type;
char **_A_var_ptr;
char _A_foo [100];
char _A_foo2 [100];

/* sample ADAMS/C code */

#include <stdio.h>

main ()
{
int i;
char xx [30]; /* defs for adams_vars */
char f_name [30], l_name [30], addr [50], phone [10];

_A_uid_string _A_uid_x;
_A_uid_string _A_uid_y;

/* << adams_var x , y >> */
/*--*/
_ADAMS_STATUS = 1;
_main();
_A_attach_dict (tid, uid, "new_ex",

"/at0/pkb4h/yacc/adams/run_tests/adamsdict", 0);
_A_sym_tbl_open ("new_ex_sym");
/*_A_c_check_symbol_table ();*/

91

_A_def.type = _A_NDEF;
_A_temp_def.type = _A_NDEF;
_A_set_def.type = _A_NDEF;

/* << open_adams 3 >> */
/*--*/

printf ("about to declare c class\n");
_ADAMS_STATUS = 1;

/* declare class c of type CLASS */
_A_set_deftype (&_A_def, _A_CLASSDEF);
_A_add_superclass (&_A_def, "CLASS", _A_USER);
_A_c_const_uid (_A_class_uid, _A_MAPSET);
strcpy (_A_set_uid, "0");
_A_uid_instant (_A_set_uid, _A_class_uid);

/* insert MAP elements into set */
_A_d_level = _A_USER;
if (!_A_c_check ("c_f_name", _A_uid_name, _A_INST, &_A_d_level))

{
printf ("c_check failed for c_f_name in class_decl:\n");
_ADAMS_STATUS = 0;
}

_A_set_insert (_A_uid_name, _A_set_uid);
/* insert ATTR elements into set */

_A_d_level = _A_USER;
if (!_A_c_check ("c_l_name", _A_uid_name, _A_INST, &_A_d_level))

{
printf ("c_check failed for c_l_name in class_decl:\n");
_ADAMS_STATUS = 0;
}

_A_set_insert (_A_uid_name, _A_set_uid);
/* insert ATTR elements into set */

_A_d_level = _A_USER;
if (!_A_c_check ("c_addr", _A_uid_name, _A_INST, &_A_d_level))

{
printf ("c_check failed for c_addr in class_decl:\n");
_ADAMS_STATUS = 0;
}

_A_set_insert (_A_uid_name, _A_set_uid);
/* insert ATTR elements into set */

_A_d_level = _A_USER;
if (!_A_c_check ("c_phone", _A_uid_name, _A_INST, &_A_d_level))

{
printf ("c_check failed for c_phone in class_decl:\n");
_ADAMS_STATUS = 0;
}

_A_set_insert (_A_uid_name, _A_set_uid);
/* add ATTR set to definition */

_A_add_attrset (&_A_def, NULL, _A_set_uid, _A_USER, "c_attr");
strcpy (_A_uid_name, "1");

/* add class definition to dict now: */

92

if (!_A_add_entry ("c", _A_uid_name, &_A_def, _A_CLASS, _A_USER))
{
printf ("_A_add_entry failed for class c of type \n");

_ADAMS_STATUS = 0;
}

/* << c isa CLASS , having c_attr =
{ c_f_name , c_l_name , c_addr , c_phone } , SCOPE is USER >> */

/*--*/
printf ("about to instantiate c_inst \n");
_ADAMS_STATUS = 1;

/* declare element c_inst of class c*/
strcpy (_A_inst_uid, "2");
_A_set_deftype (&_A_def, _A_INSTDEF);
_A_add_instclass (&_A_def, "c", _A_USER);

/*handle argument # 1 */
/* name was found at parse time */

strcpy (_A_args [1], _A_sym_tbl_ref (0));
if (!_A_add_entry ("c_inst", _A_inst_uid, &_A_def, _A_INST, _A_USER))

{
printf ("_A_add_entry failed for c_inst of class c\n");
_ADAMS_STATUS = 0;
}

_A_uid_instant (_A_inst_uid, _A_args [1]);

/* << c_inst instantiates_a c >> */
/*--*/

printf ("about to decl c_set \n");
_ADAMS_STATUS = 1;

/* declare set c_set of c elements */
strcpy (_A_uid_name, "3");
_A_set_deftype (&_A_def, _A_CLASSDEF);
_A_add_superclass (&_A_def, "SET", _A_USER);
_A_add_elementclass (&_A_def, "c", _A_USER);
if (!_A_add_entry ("c_set", _A_uid_name, &_A_def, _A_CLASS, _A_USER))

{
printf ("_A_add_entry failed for set c_set of c elements\n");
_ADAMS_STATUS = 0;
}

/* << c_set isa SET of c ELEMENTS >> */
/*--*/
printf ("about to instantiate c_set_inst \n");
_ADAMS_STATUS = 1;

/* declare element c_set_inst1 of class c_set*/
strcpy (_A_inst_uid, "4");
_A_set_deftype (&_A_def, _A_INSTDEF);
_A_add_instclass (&_A_def, "c_set", _A_USER);

/*handle argument # 1 */
/* name was found at parse time */

93

strcpy (_A_args [1], _A_sym_tbl_ref (1));
if (!_A_add_entry ("c_set_inst1", _A_inst_uid, &_A_def, _A_INST, _A_USER))

{
printf ("_A_add_entry failed for c_set_inst1 of class c_set\n");
_ADAMS_STATUS = 0;
}

_A_uid_instant (_A_inst_uid, _A_args [1]);

/* << c_set_inst1 instantiates_a c_set >> */
/*--*/
_ADAMS_STATUS = 1;

/* declare element c_set_inst2 of class c_set*/
strcpy (_A_inst_uid, "5");
_A_set_deftype (&_A_def, _A_INSTDEF);
_A_add_instclass (&_A_def, "c_set", _A_USER);

/*handle argument # 1 */
/* name was found at parse time */

strcpy (_A_args [1], _A_sym_tbl_ref (1));
if (!_A_add_entry ("c_set_inst2", _A_inst_uid, &_A_def, _A_INST, _A_USER))

{
printf ("_A_add_entry failed for c_set_inst2 of class c_set\n");
_ADAMS_STATUS = 0;
}

_A_uid_instant (_A_inst_uid, _A_args [1]);

/* << c_set_inst2 instantiates_a c_set >> */
/*--*/
_ADAMS_STATUS = 1;

/* declare element c_set_inter of class c_set*/
strcpy (_A_inst_uid, "6");
_A_set_deftype (&_A_def, _A_INSTDEF);
_A_add_instclass (&_A_def, "c_set", _A_USER);

/*handle argument # 1 */
/* name was found at parse time */

strcpy (_A_args [1], _A_sym_tbl_ref (1));
if (!_A_add_entry ("c_set_inter", _A_inst_uid, &_A_def, _A_INST, _A_USER))

{
printf ("_A_add_entry failed for c_set_inter of class c_set\n");
_ADAMS_STATUS = 0;
}

_A_uid_instant (_A_inst_uid, _A_args [1]);

/* << c_set_inter instantiates_a c_set >> */
/*--*/
_ADAMS_STATUS = 1;

/* declare element c_set_union of class c_set*/
strcpy (_A_inst_uid, "7");
_A_set_deftype (&_A_def, _A_INSTDEF);
_A_add_instclass (&_A_def, "c_set", _A_USER);

/*handle argument # 1 */
/* name was found at parse time */

94

strcpy (_A_args [1], _A_sym_tbl_ref (1));
if (!_A_add_entry ("c_set_union", _A_inst_uid, &_A_def, _A_INST, _A_USER))

{
printf ("_A_add_entry failed for c_set_union of class c_set\n");
_ADAMS_STATUS = 0;
}

_A_uid_instant (_A_inst_uid, _A_args [1]);

/* << c_set_union instantiates_a c_set >> */
/*--*/

for (i = 0; i < 4; i++)
{
printf ("about to scanf for var name\n");
scanf ("%s", xx);
_ADAMS_STATUS = 1;

/* declare element VAR xx of class c*/
_A_uid_getuid (_A_inst_uid);
_A_set_deftype (&_A_def, _A_INSTDEF);
_A_add_instclass (&_A_def, "c", _A_USER);

/*handle argument # 1 */
/* name was found at parse time */

strcpy (_A_args [1], _A_sym_tbl_ref (0));
strcpy (_A_var_name, _A_var_name_handle (xx, &_A_d_level));
if (!_A_add_entry (_A_var_name, _A_inst_uid, &_A_def, _A_INST, _A_d_level))

{
printf ("_A_add_entry failed for adams_var %s of class c\n", xx);
_ADAMS_STATUS = 0;
}

_A_uid_instant (_A_inst_uid, _A_args [1]);

/* << var xx instantiates_a c >> */
/*--*/

_ADAMS_STATUS = 1;
/*handle argument # 0 */
/* name is a var variable; */

strcpy (_A_uid_name, "");
_A_d_level = _A_LOCAL;
strcpy (_A_var_name, _A_var_name_handle (xx, &_A_d_level));
if (_A_c_check (_A_var_name, _A_uid_name, _A_INST,&_A_d_level) == 0)

{
printf ("_A_c_check failed: %s not found\n", xx);
_ADAMS_STATUS = 0;
}

else
strcpy (_A_args [0], _A_uid_name);

/*handle argument # 1 */
/* name was found at parse time */

strcpy (_A_args [1], _A_sym_tbl_ref (2));
_A_set_insert (_A_args [0], _A_args [1]);

/* << insert var xx into c_set_inst1 >> */

95

/*--*/
scanf ("%s", f_name);
scanf ("%s", l_name);
scanf ("%s", addr);
scanf ("%s", phone);
_ADAMS_STATUS = 1;

strcpy (_A_uid_name, "");
strcpy (_A_fn_uid, "");
strcpy (_A_map_elem , "");
strcpy (_A_map_fn , "");
strcpy (_A_map_target , "");

/*handle temp arg 1*/
/* name is a var variable; */

strcpy (_A_uid_name, "");
_A_d_level = _A_LOCAL;
strcpy (_A_var_name, _A_var_name_handle (xx, &_A_d_level));
if (_A_c_check (_A_var_name, _A_uid_name, _A_INST,&_A_d_level) == 0)

{
printf ("_A_c_check failed: %s not found\n", xx);
_ADAMS_STATUS = 0;
}

else
strcpy (_A_temp_uid1, _A_uid_name);

/*handle temp arg 0*/
/* name was found at parse time */

strcpy (_A_temp_uid0, _A_sym_tbl_ref (3));
_A_attr_insert (_A_temp_uid0, _A_temp_uid1, f_name);

/* << store from f_name into var xx . c_f_name >> */
/*--*/

_ADAMS_STATUS = 1;
strcpy (_A_uid_name, "");
strcpy (_A_fn_uid, "");
strcpy (_A_map_elem , "");
strcpy (_A_map_fn , "");
strcpy (_A_map_target , "");

/*handle temp arg 1*/
/* name is a var variable; */

strcpy (_A_uid_name, "");
_A_d_level = _A_LOCAL;
strcpy (_A_var_name, _A_var_name_handle (xx, &_A_d_level));
if (_A_c_check (_A_var_name, _A_uid_name, _A_INST,&_A_d_level) == 0)

{
printf ("_A_c_check failed: %s not found\n", xx);
_ADAMS_STATUS = 0;
}

else
strcpy (_A_temp_uid1, _A_uid_name);

/*handle temp arg 0*/
/* name was found at parse time */

strcpy (_A_temp_uid0, _A_sym_tbl_ref (4));

96

_A_attr_insert (_A_temp_uid0, _A_temp_uid1, l_name);

/* << store from l_name into var xx . c_l_name >> */
/*--*/

_ADAMS_STATUS = 1;
strcpy (_A_uid_name, "");
strcpy (_A_fn_uid, "");
strcpy (_A_map_elem , "");
strcpy (_A_map_fn , "");
strcpy (_A_map_target , "");

/*handle temp arg 1*/
/* name is a var variable; */

strcpy (_A_uid_name, "");
_A_d_level = _A_LOCAL;
strcpy (_A_var_name, _A_var_name_handle (xx, &_A_d_level));
if (_A_c_check (_A_var_name, _A_uid_name, _A_INST,&_A_d_level) == 0)

{
printf ("_A_c_check failed: %s not found\n", xx);
_ADAMS_STATUS = 0;
}

else
strcpy (_A_temp_uid1, _A_uid_name);

/*handle temp arg 0*/
/* name was found at parse time */

strcpy (_A_temp_uid0, _A_sym_tbl_ref (5));
_A_attr_insert (_A_temp_uid0, _A_temp_uid1, phone);

/* << store from phone into var xx . c_phone >> */
/*--*/

_ADAMS_STATUS = 1;
strcpy (_A_uid_name, "");
strcpy (_A_fn_uid, "");
strcpy (_A_map_elem , "");
strcpy (_A_map_fn , "");
strcpy (_A_map_target , "");

/*handle temp arg 1*/
/* name is a var variable; */

strcpy (_A_uid_name, "");
_A_d_level = _A_LOCAL;
strcpy (_A_var_name, _A_var_name_handle (xx, &_A_d_level));
if (_A_c_check (_A_var_name, _A_uid_name, _A_INST,&_A_d_level) == 0)

{
printf ("_A_c_check failed: %s not found\n", xx);
_ADAMS_STATUS = 0;
}

else
strcpy (_A_temp_uid1, _A_uid_name);

/*handle temp arg 0*/
/* name was found at parse time */

strcpy (_A_temp_uid0, _A_sym_tbl_ref (6));
_A_attr_insert (_A_temp_uid0, _A_temp_uid1, addr);

97

/* << store from addr into var xx . c_addr >> */
/*--*/

_ADAMS_STATUS = 1;
/*handle argument # 0 */
/* name is a var variable; */

strcpy (_A_uid_name, "");
_A_d_level = _A_LOCAL;
strcpy (_A_var_name, _A_var_name_handle (xx, &_A_d_level));
if (_A_c_check (_A_var_name, _A_uid_name, _A_INST,&_A_d_level) == 0)

{
printf ("_A_c_check failed: %s not found\n", xx);
_ADAMS_STATUS = 0;
}

else
strcpy (_A_args [0], _A_uid_name);

/*handle argument # 1 */
/* name was found at parse time */

strcpy (_A_args [1], _A_sym_tbl_ref (7));
_A_set_insert (_A_args [0], _A_args [1]);

/* << insert var xx into c_set_inst2 >> */
/*--*/

if (strcmp ("John", f_name))
_ADAMS_STATUS = 1;

/*handle argument # 0 */
/* name is a var variable; */

strcpy (_A_uid_name, "");
_A_d_level = _A_LOCAL;
strcpy (_A_var_name, _A_var_name_handle (xx, &_A_d_level));
if (_A_c_check (_A_var_name, _A_uid_name, _A_INST,&_A_d_level) == 0)

{
printf ("_A_c_check failed: %s not found\n", xx);
_ADAMS_STATUS = 0;
}

else
strcpy (_A_args [0], _A_uid_name);

/*handle argument # 1 */
/* name was found at parse time */

strcpy (_A_args [1], _A_sym_tbl_ref (2));
_A_set_insert (_A_args [0], _A_args [1]);

/* << insert var xx into c_set_inst1 >> */
/*--*/

}

printf ("\nelements of set 1 are:\n");
_ADAMS_STATUS = 1;

/* get uid for c_set_inst1, the set of elements being looped over */
/*handle argument # 1 */
/* name was found at parse time */

strcpy (_A_args [1], _A_sym_tbl_ref (2));
{
_A_uid_string _A_loop_uid1;

98

strcpy (_A_loop_uid1, _A_args [1]);
if (_A_set_first_element (_A_uid_y, _A_loop_uid1))

/* FOR_loop 1 */
do {
_ADAMS_STATUS = 1;

strcpy (_A_uid_name, "");
strcpy (_A_fn_uid, "");
strcpy (_A_map_elem , "");
strcpy (_A_map_fn , "");
strcpy (_A_map_target , "");

/*handle temp arg 1*/
/*handle ADAMS_var */

strcpy (_A_temp_uid1, _A_uid_y);
/*handle temp arg 0*/

/* name was found at parse time */
strcpy (_A_temp_uid0, _A_sym_tbl_ref (3));
_A_attr_get_val (_A_temp_uid0, _A_temp_uid1, f_name, _A_FETCH_BUFF_SZ);

_ADAMS_STATUS = 1;
strcpy (_A_uid_name, "");
strcpy (_A_fn_uid, "");
strcpy (_A_map_elem , "");
strcpy (_A_map_fn , "");
strcpy (_A_map_target , "");

/*handle temp arg 1*/
/*handle ADAMS_var */

strcpy (_A_temp_uid1, _A_uid_y);
/*handle temp arg 0*/

/* name was found at parse time */
strcpy (_A_temp_uid0, _A_sym_tbl_ref (4));
_A_attr_get_val (_A_temp_uid0, _A_temp_uid1, l_name, _A_FETCH_BUFF_SZ);

_ADAMS_STATUS = 1;
strcpy (_A_uid_name, "");
strcpy (_A_fn_uid, "");
strcpy (_A_map_elem , "");
strcpy (_A_map_fn , "");
strcpy (_A_map_target , "");

/*handle temp arg 1*/
/*handle ADAMS_var */

strcpy (_A_temp_uid1, _A_uid_y);
/*handle temp arg 0*/

/* name was found at parse time */
strcpy (_A_temp_uid0, _A_sym_tbl_ref (6));
_A_attr_get_val (_A_temp_uid0, _A_temp_uid1, addr, _A_FETCH_BUFF_SZ);

_ADAMS_STATUS = 1;
strcpy (_A_uid_name, "");
strcpy (_A_fn_uid, "");
strcpy (_A_map_elem , "");
strcpy (_A_map_fn , "");

99

strcpy (_A_map_target , "");
/*handle temp arg 1*/

/*handle ADAMS_var */
strcpy (_A_temp_uid1, _A_uid_y);

/*handle temp arg 0*/
/* name was found at parse time */

strcpy (_A_temp_uid0, _A_sym_tbl_ref (5));
_A_attr_get_val (_A_temp_uid0, _A_temp_uid1, phone, _A_FETCH_BUFF_SZ);

} while (_A_set_next_element (_A_uid_y, _A_loop_uid1));
/* fOR_EACH loop 1 */

_l1:;
}

/* << FOR_EACH y in c_set_inst1 DO
<< fetch into f_name from y . c_f_name >>
<< fetch into l_name from y . c_l_name >>
<< fetch into addr from y . c_addr >>
<< fetch into phone from y . c_phone >> >> */

/*--*/

printf ("\nelements of set 2 are:\n");
_ADAMS_STATUS = 1;

/* get uid for c_set_inst2, the set of elements being looped over */
/*handle argument # 1 */
/* name was found at parse time */

strcpy (_A_args [1], _A_sym_tbl_ref (7));
{
_A_uid_string _A_loop_uid2;
strcpy (_A_loop_uid2, _A_args [1]);
if (_A_set_first_element (_A_uid_y, _A_loop_uid2))

/* FOR_loop 2 */
do {
_ADAMS_STATUS = 1;

strcpy (_A_uid_name, "");
strcpy (_A_fn_uid, "");
strcpy (_A_map_elem , "");
strcpy (_A_map_fn , "");
strcpy (_A_map_target , "");

/*handle temp arg 1*/
/*handle ADAMS_var */

strcpy (_A_temp_uid1, _A_uid_y);
/*handle temp arg 0*/

/* name was found at parse time */
strcpy (_A_temp_uid0, _A_sym_tbl_ref (3));
_A_attr_get_val (_A_temp_uid0, _A_temp_uid1, f_name, _A_FETCH_BUFF_SZ);

_ADAMS_STATUS = 1;
strcpy (_A_uid_name, "");
strcpy (_A_fn_uid, "");

100

strcpy (_A_map_elem , "");
strcpy (_A_map_fn , "");
strcpy (_A_map_target , "");

/*handle temp arg 1*/
/*handle ADAMS_var */

strcpy (_A_temp_uid1, _A_uid_y);
/*handle temp arg 0*/

/* name was found at parse time */
strcpy (_A_temp_uid0, _A_sym_tbl_ref (4));
_A_attr_get_val (_A_temp_uid0, _A_temp_uid1, l_name, _A_FETCH_BUFF_SZ);

_ADAMS_STATUS = 1;
strcpy (_A_uid_name, "");
strcpy (_A_fn_uid, "");
strcpy (_A_map_elem , "");
strcpy (_A_map_fn , "");
strcpy (_A_map_target , "");

/*handle temp arg 1*/
/*handle ADAMS_var */

strcpy (_A_temp_uid1, _A_uid_y);
/*handle temp arg 0*/

/* name was found at parse time */
strcpy (_A_temp_uid0, _A_sym_tbl_ref (6));
_A_attr_get_val (_A_temp_uid0, _A_temp_uid1, addr, _A_FETCH_BUFF_SZ);

_ADAMS_STATUS = 1;
strcpy (_A_uid_name, "");
strcpy (_A_fn_uid, "");
strcpy (_A_map_elem , "");
strcpy (_A_map_fn , "");
strcpy (_A_map_target , "");

/*handle temp arg 1*/
/*handle ADAMS_var */

strcpy (_A_temp_uid1, _A_uid_y);
/*handle temp arg 0*/

/* name was found at parse time */
strcpy (_A_temp_uid0, _A_sym_tbl_ref (5));
_A_attr_get_val (_A_temp_uid0, _A_temp_uid1, phone, _A_FETCH_BUFF_SZ);

} while (_A_set_next_element (_A_uid_y, _A_loop_uid2));
/* fOR_EACH loop 2 */

_l2:;
}

/* << FOR_EACH y in c_set_inst2 DO
<< fetch into f_name from y . c_f_name >>
<< fetch into l_name from y . c_l_name >>
<< fetch into addr from y . c_addr >>
<< fetch into phone from y . c_phone >> >> */

/*--*/

101

_ADAMS_STATUS = 1;
/*handle argument # 0 */
/* name was found at parse time */

strcpy (_A_args [0], _A_sym_tbl_ref (8));
/*handle argument # 1 */
/* name was found at parse time */

strcpy (_A_args [1], _A_sym_tbl_ref (2));
/*handle argument # 2 */
/* name was found at parse time */

strcpy (_A_args [2], _A_sym_tbl_ref (7));
/* variable # of args--null element ends list */

strcpy (_A_args [3], "");
_A_var_ptr = &_A_args [1];
_A_set_intersect (_A_args [0], _A_var_ptr);

/* << c_set_inter is_intersection_of c_set_inst1 , c_set_inst2 >> */
/*--*/
printf ("\nelements of intersection set are:\n");
_ADAMS_STATUS = 1;

/* get uid for c_set_inter, the set of elements being looped over */
/*handle argument # 1 */
/* name was found at parse time */

strcpy (_A_args [1], _A_sym_tbl_ref (8));
{
_A_uid_string _A_loop_uid3;
strcpy (_A_loop_uid3, _A_args [1]);
if (_A_set_first_element (_A_uid_y, _A_loop_uid3))

/* FOR_loop 3 */
do {
_ADAMS_STATUS = 1;

strcpy (_A_uid_name, "");
strcpy (_A_fn_uid, "");
strcpy (_A_map_elem , "");
strcpy (_A_map_fn , "");
strcpy (_A_map_target , "");

/*handle temp arg 1*/
/*handle ADAMS_var */

strcpy (_A_temp_uid1, _A_uid_y);
/*handle temp arg 0*/

/* name was found at parse time */
strcpy (_A_temp_uid0, _A_sym_tbl_ref (3));
_A_attr_get_val (_A_temp_uid0, _A_temp_uid1, f_name, _A_FETCH_BUFF_SZ);

_ADAMS_STATUS = 1;
strcpy (_A_uid_name, "");
strcpy (_A_fn_uid, "");
strcpy (_A_map_elem , "");
strcpy (_A_map_fn , "");
strcpy (_A_map_target , "");

/*handle temp arg 1*/
/*handle ADAMS_var */

102

strcpy (_A_temp_uid1, _A_uid_y);
/*handle temp arg 0*/

/* name was found at parse time */
strcpy (_A_temp_uid0, _A_sym_tbl_ref (4));
_A_attr_get_val (_A_temp_uid0, _A_temp_uid1, l_name, _A_FETCH_BUFF_SZ);

_ADAMS_STATUS = 1;
strcpy (_A_uid_name, "");
strcpy (_A_fn_uid, "");
strcpy (_A_map_elem , "");
strcpy (_A_map_fn , "");
strcpy (_A_map_target , "");

/*handle temp arg 1*/
/*handle ADAMS_var */

strcpy (_A_temp_uid1, _A_uid_y);
/*handle temp arg 0*/

/* name was found at parse time */
strcpy (_A_temp_uid0, _A_sym_tbl_ref (6));
_A_attr_get_val (_A_temp_uid0, _A_temp_uid1, addr, _A_FETCH_BUFF_SZ);

_ADAMS_STATUS = 1;
strcpy (_A_uid_name, "");
strcpy (_A_fn_uid, "");
strcpy (_A_map_elem , "");
strcpy (_A_map_fn , "");
strcpy (_A_map_target , "");

/*handle temp arg 1*/
/*handle ADAMS_var */

strcpy (_A_temp_uid1, _A_uid_y);
/*handle temp arg 0*/

/* name was found at parse time */
strcpy (_A_temp_uid0, _A_sym_tbl_ref (5));
_A_attr_get_val (_A_temp_uid0, _A_temp_uid1, phone, _A_FETCH_BUFF_SZ);

} while (_A_set_next_element (_A_uid_y, _A_loop_uid3));
/* fOR_EACH loop 3 */

_l3:;
}

/* << FOR_EACH y in c_set_inter DO
<< fetch into f_name from y . c_f_name >>
<< fetch into l_name from y . c_l_name >>
<< fetch into addr from y . c_addr >>
<< fetch into phone from y . c_phone >> >> */

/*--*/

_ADAMS_STATUS = 1;
/*handle argument # 0 */
/* name was found at parse time */

strcpy (_A_args [0], _A_sym_tbl_ref (9));

103

/*handle argument # 1 */
/* name was found at parse time */

strcpy (_A_args [1], _A_sym_tbl_ref (2));
/*handle argument # 2 */
/* name was found at parse time */

strcpy (_A_args [2], _A_sym_tbl_ref (7));
/* variable # of args--null element ends list */

strcpy (_A_args [3], "");
_A_var_ptr = &_A_args [1];
_A_set_union (_A_args [0], _A_var_ptr);

/* << c_set_union is_union_of c_set_inst1 , c_set_inst2 >> */
/*--*/
printf ("\nelements of union set are:\n");
_ADAMS_STATUS = 1;

/* get uid for c_set_union, the set of elements being looped over */
/*handle argument # 1 */
/* name was found at parse time */

strcpy (_A_args [1], _A_sym_tbl_ref (9));
{
_A_uid_string _A_loop_uid4;
strcpy (_A_loop_uid4, _A_args [1]);
if (_A_set_first_element (_A_uid_y, _A_loop_uid4))

/* FOR_loop 4 */
do {
_ADAMS_STATUS = 1;

strcpy (_A_uid_name, "");
strcpy (_A_fn_uid, "");
strcpy (_A_map_elem , "");
strcpy (_A_map_fn , "");
strcpy (_A_map_target , "");

/*handle temp arg 1*/
/*handle ADAMS_var */

strcpy (_A_temp_uid1, _A_uid_y);
/*handle temp arg 0*/

/* name was found at parse time */
strcpy (_A_temp_uid0, _A_sym_tbl_ref (3));
_A_attr_get_val (_A_temp_uid0, _A_temp_uid1, f_name, _A_FETCH_BUFF_SZ);

_ADAMS_STATUS = 1;
strcpy (_A_uid_name, "");
strcpy (_A_fn_uid, "");
strcpy (_A_map_elem , "");
strcpy (_A_map_fn , "");
strcpy (_A_map_target , "");

/*handle temp arg 1*/
/*handle ADAMS_var */

strcpy (_A_temp_uid1, _A_uid_y);
/*handle temp arg 0*/

/* name was found at parse time */
strcpy (_A_temp_uid0, _A_sym_tbl_ref (4));

104

_A_attr_get_val (_A_temp_uid0, _A_temp_uid1, l_name, _A_FETCH_BUFF_SZ);

_ADAMS_STATUS = 1;
strcpy (_A_uid_name, "");
strcpy (_A_fn_uid, "");
strcpy (_A_map_elem , "");
strcpy (_A_map_fn , "");
strcpy (_A_map_target , "");

/*handle temp arg 1*/
/*handle ADAMS_var */

strcpy (_A_temp_uid1, _A_uid_y);
/*handle temp arg 0*/

/* name was found at parse time */
strcpy (_A_temp_uid0, _A_sym_tbl_ref (6));
_A_attr_get_val (_A_temp_uid0, _A_temp_uid1, addr, _A_FETCH_BUFF_SZ);

_ADAMS_STATUS = 1;
strcpy (_A_uid_name, "");
strcpy (_A_fn_uid, "");
strcpy (_A_map_elem , "");
strcpy (_A_map_fn , "");
strcpy (_A_map_target , "");

/*handle temp arg 1*/
/*handle ADAMS_var */

strcpy (_A_temp_uid1, _A_uid_y);
/*handle temp arg 0*/

/* name was found at parse time */
strcpy (_A_temp_uid0, _A_sym_tbl_ref (5));
_A_attr_get_val (_A_temp_uid0, _A_temp_uid1, phone, _A_FETCH_BUFF_SZ);

} while (_A_set_next_element (_A_uid_y, _A_loop_uid4));
/* fOR_EACH loop 4 */

_l4:;
}

/* << FOR_EACH y in c_set_union DO
<< fetch into f_name from y . c_f_name >>
<< fetch into l_name from y . c_l_name >>
<< fetch into addr from y . c_addr >>
<< fetch into phone from y . c_phone >> >> */

/*--*/

_ADAMS_STATUS = 1;
_A_set_deftype (&_A_def, _A_NDEF);
_A_close_indexes ();
_A_release_dict ();

/* << close_adams 3 >> */
/*--*/
}

105

Table of Contents

1. Overview ... 2
1.1. ADAMS language fundamentals .. 2

1.1.1. ADAMS as an embedded language .. 5
1.2. Preprocessor fundamentals ... 6

1.2.1. The basic elements of the ADAMS preprocessor 6
1.2.2. Brief history of the ADAMS preprocessor 8
1.2.3. Interaction with the dictionary .. 9
1.2.4. Interaction with the index manager .. 11
1.2.5. Interaction with the low-level storage manager 11

1.3. Sample ADAMS program .. 12
2. The Lexical Analyzer .. 14

2.1. Fundamentals of LEX ... 14
2.2. ADAMS influence on the lexical analyzer ... 15

3. The Parser ... 17
3.1. Language recognition problems ... 19
3.2. C/C++ interface problems .. 23

4. The Code Generator .. 26
4.1. Initial code generation for all ADAMS programs .. 27
4.2. Code generation for specific ADAMS statements .. 27

4.2.1. Open/Close Statements ... 29
4.2.2. Declaration Statements ... 31
4.2.3. Instantiation Statements .. 36
4.2.4. ADAMS Variables .. 37
4.2.5. Set Manipulation Statements .. 38
4.2.6. Looping ... 41
4.2.7. Assignment Statements ... 44
4.2.8. Dictionary Manipulation Statements .. 46

4.3. General code generation for element handling ... 48
4.3.1. Scoped Names .. 49
4.3.2. Subscripted Names ... 50
4.3.3. General Element Designators ... 57
4.3.4. ADAMS_vars ... 58
4.3.5. Var Variables .. 59
4.3.6. Generic Literal Names .. 60

5. ADAMS-related issues ... 61
5.1. Embedded language issues ... 61
5.2. Parse time vs. run time checks .. 61

6. Conclusions ... 65
7. References ... 67

106

Appendix 1: ADAMS Preprocessor Options. .. 68
Appendix 2: BNF for ADAMS language ... 69
Appendix 3: YACC version of ADAMS Grammar .. 76
Appendix 4: LEX Tokens ... 87
Appendix 5: Sample ADAMS program and C translation. ... 89

