
Abstract
As the processor-memory performance gap continues to
grow, so does the need for effective tools and metrics to
guide the design of efficient memory hierarchies to bridge
that gap. Aggregate statistics of cache performance can be
useful for comparison, but they give us little insight into
how to improve the design of a particular component. We
propose a different approach to cache analysis — viewing
caches as filters — and present two new metrics for
analyzing cache behavior: instantaneous hit rate and
instantaneous locality. We demonstrate how these
measures can give us insight into the reference pattern of
an executing program, and show an application of these
measures in analyzing the effectiveness of the second level
cache of a particular memory hierarchy.

1. Intr oduction

The growing disparity between the speeds of
microprocessors and DRAM memory makes it imperative
to use effective caches or other structures between them.
The traditional measures of the quality of a caching
strategy have been the aggregatemiss rate, or fraction of
accesses that cannot be serviced by the cache, and the
execution time of a benchmark.

We argue that other metrics — specifically ones that
focus on characteristics of the reference string — provide
greater insight and guidance in the design of multi-level
cache systems. Our approach is motivated by a simple
observation: two caches with precisely the same miss rate
(or execution time) may achieve that performance in quite
different ways. For example, consider two caches of sizeN
— a direct-mapped cache and a fully-associative cache
with LRU replacement. Consider the (admittedly
contrived) reference string:

where a superscriptk denotes a specific number of
repetitions and*  denotes an indefinite number of
repetitions. For this string, the addresses 0 andN will
conflict in the direct-mapped cache, but 1 throughN-1 will
remain in the cache. For a fully-associative scheme,
whenever a new item is brought in, the least recently used
references will be 1 throughN-1, and so these will cycle
through the cache. After the caches are primed, there is a

miss once every (k+1) references in both cases, but the
sequences of memory requests coming out of the cache are
quite different. For the direct-mapped cache this sequence
is , but for the fully-associative cache it is

.
In the past, this difference was not especially important:

the primary goal was to minimize the number of cache
misses. In modern systems that employ multiple levels of
cache, however, the difference might be crucial.By
influencing the nature of the request string coming from
lower level caches, we may be able to influence the
effectiveness of higher level caches. In the example above,
a relatively small but fully-associative L2 cache (i.e., a
victim cache [1]) would be effective backing an L1 cache
with conflicts on only two locations, whereas it might take
a much larger cache to compensate for an L1 that
distributes its evictions over more memory locations.

2. Caches as filters

The goal of this research is to gain insight into the
design of multi-level cache systems. In a sense, designing
memory hierarchies is akin to designing a compound
optical lens: no single lens has all the desired properties,
but by cascading several lenses, optical designers can
achieve amazing acuity. Likewise, we can view a cache as
a filter that converts an input sequence of data references
into an output sequence representing a subset of its input.
By composing a series of such caches, we attempt to filter
as many references as possible from the request string
before it is presented to main memory. To get the best
overall performance, however, the goal of a particular level
of cache is not just to filter out the most references, but to
condition the reference string so that the next cache level
will be most effective.

In the following analysis, we describe reference strings
as sequences of addresses, . Note that
the subscript denotes theposition in the reference string,
and is only loosely related to wall-clock time: after several
levels of cache we expect the references to be spaced
unevenly in real time even though they appear adjacent in
the reference string.
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Making an analogy to signal analysis, the signal is the
reference string transformed by some measure (possibly
the identity function) computed on the reference string.
Comparing a cache’s input and output signals reveals what
kind of filtering effect the cache is having on that input.
The signal analysis analogy has appeal, but it only goes so
far: tools like Fourier and Laplace transforms don’t
immediately apply, because caches-as-filters are not linear.
(Being linear requires that an input equal to the sum of two
other inputs generates an output equal to the sum of the
corresponding two outputs. In terms of a cache, this would
require that earlier referencesnot affect the output of later
references, which would mean that the cache has no state.)
This leads us to the development of new measures specific
to our application domain to use as transforms instead.

3. New measures of effectiveness

Alternative measures to miss rate (which can also be
thought of as alternative transforms to Fourier or Laplace
transforms in signal analysis) that we are developing are
described below. We do not claim the precise definitions of
the measures we have created are the best possible
measures. Rather, we choose them for their simplicity and
correlation to intuition, to explain the concept of caches-
as-filters, and to explore the usefulness of non-aggregate
measures to memory hierarchy analysis.

To describe properties of reference strings, we define
two measures. The first is theinstantaneous hit rate, .
The usual definition of hit rate averages over all references
in a string; by contrast,  is a function measured ateach
point in the reference string, to emphasize recent behavior.
The definition we use is:

whereδi is 0 if theith reference is a miss and 1 if it is a hit,
and . This definition exhibits the desirable
property of decreasing the contribution of hits and misses
according to how far they occurred in the past.

Throughout the rest of the paper we chooseσ = 1/2,
because this measure may be useful at run-time to indicate
phases of reference behavior and dividing by two has a fast
implementation. Note that withσ = 1/2,hi has a maximum
value of 2. This happens because a series of cache hits
yields the sequence: 1, 3/2, 7/4, 15/8, ... Each element of
this sequence can be represented by the expression below,
which has a maximum value of 2.

Another particularly useful notion is that of locality in
the reference string. To give substance to the intuitive
notion, we define the instantaneous locality, li, of a
reference in a string  as:

The precise form of this definition is immaterial, but
this particular form attempts to follow our intuition:

- The first term in the product corresponds tospatial
locality; by forming the difference between two

references, the term is larger when the two addresses
are closer together.

- The second term loosely corresponds to a notion of
temporal locality; weighting the spatial components
by the difference in subscripts makes the term larger
for references that are closer together in the reference
string.

The product of these terms is largest for references that
are close both spatially and temporally. By summing over
all previous references, we get a measure that is large
when there are many prior references that are spatially and
temporally local. As a practical matter, since reference
strings can be exceedingly long, we generally do not sum
from , but rather sum from  for some
window size w. If w is sufficiently large, the terms for
smaller j are irrelevant to our results, and we can safely
ignore them:

This definition of instantaneous locality has at least two
immediate uses. First, it provides an alternative and
enlightening figure of merit for caches. The ideal
composite of cache filters is one that removes all the
locality in the input reference string and produces an
output reference string that has zero locality everywhere.
(Note that to truly have an output reference string with
zero locality everywhere, it would necessarily be the null
string or a single reference. Any reference string of two or
more references will have some locality.) We believe l i is
a more informative measure than an aggregate miss ratio.
This new figure of merit corresponds closely to our
intuition about the quality of a cache. Caches exploit
locality to intercept and remove references; thus any
locality left in the output string signals a failure of the
cache (or that the corresponding misses are compulsory),
although it is the existence of this locality that gives us
hope that another level of cache can be effective.
Alternatively, if there is no locality in the input to start
with, a high miss ratio is not a sign of cache failure.

The second immediate use of this locality measure is
also a use of the instantaneous hit rate. They give us insight
into the underlying patterns of the reference string and the
effect of a cache on that string. For example, they reveal
that locality is “bursty” — real reference streams tend to
have regions of high locality separated by regions of
relatively low locality. [2, 3,4] Even after a reference string
is filtered by a cache, we may still see regions of relatively
high locality.

These observations are demonstrated in the example
output of Figure 1. The top graph is of the locality of the
input reference string. The middle graph is of the
instantaneous hit rate as determined by an 8K, direct-
mapped, 1-byte line size cache, and the bottom graph is of
the instantaneous locality of the reference string output
from this same cache. The experiments described
throughout this paper have the following characteristics
unless noted otherwise:

1) both instructions and data references are included;
2) each dot and hash mark graphed represents one

reference in the original string;
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3) the window, w, of previous references inl i is 100; and
4) the value ofσ in hi is 0.5.
Notice how ‘bursty” all three graphs are. This

burstiness indicates that there are periods during which a
cache can be very effective in eliminating references, but
other periods in which it is not at all effective, resulting in
bursts of misses to main memory. The extent of the
burstiness is important because it affects how well
memory latencies can be tolerated. Specifically, the closer
together references to main memory are in real-time, the
harder it is to minimize the memory latency seen by the
processor.

The filtering effect of the cache is also visible in
Figure1. Notice how the spikes in the input locality graph,
(a), are filtered out in the output locality graph, (c). Finally,
these new measures allow us to identify and analyze
regions of higher locality to examine the fine structure of
their references. An example of this is included in Section
5.3.

As mentioned above, we do not claim that the precise
definitions we use forhi and l i are the best possible
measures and we have not run exhaustive experiments on
the effect of each parameter on each measure under
consideration. Experiments to date have focussed on the
qualitative aspects of these measures and their ability to
provide more insight into the nature of reference patterns.
Experiments to determine the precise effect of the
parameters and relating the measures to execution time are
one aspect of future work.

4. A tool for observing new measures

Unlike the traditional cache measures of hit or miss
rates, our new measures have values for each point in the

reference string. These measures are more difficult to
represent, thus it is important to have a toolset to both
compute the measures and to allow them to be viewed in a
way that contributes to our understanding of the reference
string and cache behavior. To this end we have designed
and prototyped the MACE (Memory ACess Evaluation)
system.

The structure of the system is shown in Figure2.
MACE takes as input trace files of memory references,
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Figure 1  Example Measure Output fr om MACE System
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puts the references in a common format, and enables the
user to analyze the traces by running them through cache
filters and observing the locality of the reference strings
before and after each cache. At this time, MACE is not
available for distribution. These results were generated
with an initial version that allowed us to develop features
of the interface quickly. The user interface is implemented
in TkInter/TCL and the tools, such as the cache filters, are
implemented in C. It all runs under the Solaris 2.5.1
operating system. This version is easy to modify, but slow
for interactive execution. A second version, implemented
in JAVA and C++, is under development. All indications
are that this version will be useful as an interactive tool.

Sample output of the two-dimensional graphing
function is shown in Figure1. Three graphs are included
as described in Section 3. The user can zoom in on regions
of interest to inspect the underlying form of the reference
pattern, or zoom out to see more global effects. (See
Section 5.4 for a “zoomed out” example.) In each graph,
the y-axis corresponds to the unitless instantaneous
locality value or hit rate as appropriate. The x-axis can be
configured to use the position in the original or top trace to
compare graphs from before and after a cache filter, or can
refer to the position within the reference string under
analysis to compare different, perhaps unrelated, reference
strings. In graphs that use the position in the original trace
as an x-axis, the references that hit in the cache are denoted
by small hash marks just above thex axis in the output
locality graph. Graphs, such as this one, that are
completely “zoomed in” display one locality value or hash
mark for each address in the reference string used as the x-
axis.

5. Preliminary r esults

5.1  A motivating example

Applying these new measures to the example in Section
1 yields the results in Figure3 and Figure4. Recall the
example input reference string:

In these experiments,k is 1 andN is 8192, and the cache
line size equals the size of each datum. Figure3(a) shows
the instantaneous locality after the above expression has
been run through once, and the caches are primed. The
output locality of the direct-mapped cache shown in
Figure 3(b) exhibits a steady-state instantaneous locality
close to 2, once the cache is primed. Figure 3(c) and 3(d)
display the instantaneous locality of a fully-associative
cache. Random replacement yields more hits and a very
different output pattern, shown in Figure3(c). The line
from the last locality point visible in Figure3(c) connects
it to the one for the next reference. Since the next miss
coming out of the cache happens far in the future, it does
not appear on this graph. This separation occurs because
references retain their positions from the original input
trace in this analysis mode. With LRU replacement, the
reference string from the primed fully-associative cache
would repeat , and the graph of its
instantaneous locality would resemble the picture in
Figure3(d), leveling off at a value close to 1, and dipping
slightly when the pattern begins again. (Note that Figure
3(d) is an example of what this locality graph would look

like, but not an actual simulation. This explains the x-axis
discrepancy.)

The fact that the direct-mapped cache produces higher
l i values indicates that there is more locality left in the
output string, and hence another level of cache would be
more effective here than it would be backing the fully-
associative cache. It also means that the direct-mapped
cache is not as effective at exploiting the locality in its
input string, and perhaps a stand-alone direct-mapped
organization is not the best design choice for this level of
the hierarchy with this reference string. A direct-mapped
cache backed by a small victim cache, however, might be
more effective than one or more levels of associative
cache.

Figure4 graphs the instantaneous hit rate after the
caches are primed, with the input from Figure3(a). Unlike
an aggregate measure, the instantaneous hit rate shows for
what part of the trace the cache is performing well, and for
what part it is not. Further attention can then be given to
the problem regions. For example, looking at the
instantaneous locality for a region of poor performance
can determine if the input string has any significant
amount of locality for the cache to use. Looking at the
trace itself in that region will identify the reference pattern
that exhibits the problem.
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Figure 3  Instantaneous Locality in Stead y-State
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.

5.2  Recognizing program constructs

To get a better feel for what the instantaneous locality
measures can tell us, we used a trace-description language
[5] to describe a simple loop accessing multiple data
streams (daxpy) and a loop nest accessing two-
dimensional arrays (matmul). Figure5 shows pseudocode
for these program fragments. We ran these constructs
through an interpreter to generate synthetic traces, which
we analyzed with MACE. Figure6 through Figure11
show the locality measures for our 8K example caches. In
the discussion that follows, three categories of program
constructs are identified. One is a stream, or vector-like
access. The other two are code loops; one single loop and
one doubly-nested loop.

Figure6 shows input and output locality from start-up
for the code portion of a 10,000-elementdaxpy
computation. Each loop iteration is easily discerned in the
input locality pattern in Figure6(a): each single loop
forms a hump in the locality graph. Once the loop is
loaded, all references hit in the instruction cache, thus all
of the locality from the input in Figure6(a) is filtered out
in the output in Figure6(b). This output was generated
with a direct-mapped cache, but because this loop fits in
cache, results for both replacement policies are nearly
identical (e.g., see the combined reference string output of
both caches in Figure8).

Figure7 shows the locality graphs at start-up for the
data portion of thedaxpy trace. It’s easy to see the pattern
in the input of Figure7(a): the first three references, toa,
x[1] , and y[1] , have relatively little locality, but the

instantaneous locality value shoots up at the second
reference toy[1] . The rising curve defined by every fourth
dot represents the repeated references to scalara. In the
direct-mapped cache output of Figure7(b), the locality
from the repeated references toa andy[i]  are filtered out
(the repeated sets of two ticks just above thex axis indicate
where these cache hits occurred). Since the data set does
not fit in an 8K cache, the patterns at the right end of the
locality graphs in Figure7 will repeat throughout the
computation for both the direct-mapped and associative
data caches. Notice how in both parts of Figure7 the
locality values representing sequential references to any
particular vector ramp up to a point and then become a
straight line. This ramping up to a straight line is the basic
pattern behind every stream. The actual value the line
approaches is dependent on the stride of the stream and the
separation between individual references to that stream.

Figure8 shows what happens withdaxpy for a
combined instruction and data cache, either direct-mapped
or 4-way set associative. The loop iterations are still
evident in the repeated patterns in the input of Figure8(a).
It is also possible to see the stream patterns from
Figure7(a). The output locality in Figure8(c) and
Figure8(d) resembles the output locality of Figure7(b)
spread out in time. In all these traces, each new reference
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to x andy misses the cache, but all other instruction and
data references hit. The instantaneous hit rate in
Figure8(b) demonstrates this graphically: the value ofhi
drops at precisely two points during each loop iteration.
The replacement policy never comes into play.

Figure9 through Figure11 illustrate results for matrix
multiply on 10x10 matrices. We chose the small problem
size to make patterns in the resulting graphs more readily
apparent. The code description for this computation was
modeled after the assembly language output of gcc on an
HP PA-RISC. There are 36 static instructions in thej-loop,
27 more in thek-loop, 5 more in the surroundingi-loop,
and 5 in the prologue. The nested loops give rise to a more
complex locality pattern than the simpledaxpy loop, as
evidenced by the graph in Figure9(a).

The prologue and the first iteration of each loop
generate roughly the first inch of the input locality graph
in Figure9(a); the instruction addresses for this segment
are sequential, so input locality rises steadily as for a
stream. The numerical value of any locality point is much
less important than the patterns the points create. The
larger dips signal the backward branch at the end of thej-
loop. The entire segment depicts 3+ iterations of the
innermost loop, or roughly 140 total instructions.

Figure9(b) shows the instantaneous hit rate, which is
the same for both the direct-mapped and the 4-way set

associative cache. Once the loops are loaded, the
computation runs entirely out of the cache. Since there are
no cache misses until all 10 iterations of thej-loop have
finished, there is no locality left in the output of
Figure9(c).

Figure9(d)-Figure9(f) show the locality and hit rate
graphs at the end of the first iteration of thek-loop. The dip
in input locality in Figure9(d) at the same place that the
instantaneous hit rate drops in Figure9(e) marks the
execution of the remaining instructions in the intermediate
loop (and the corresponding cache misses), then the
pattern for the inner loop picks up again in the right half of
Figure9(d). Notice the pattern of the doubly nested loop
apparent in the combination of Figure9(a) and (d).
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Smaller dips indicate the backward branch in the inner
loop and the less frequent large dip in (d) corresponds to
the backward branch of the outer loop. By this point, all
instructions for all three loops are resident in cache, and
there are no more instruction misses in the entire trace.
This can be seen in the lack of output locality in
Figure9(f) and in the absence of a line connecting the
locality point for the lastk-loop cache miss to another on
its right.

Figure10 illustrates data locality at the beginning of the
matmul trace. The peaks in the input locality graph
represent references to automatic or temporary variables
on the stack in between references to arraysy andz. We
can see one iteration of thek-loop ending where the

locality pattern in Figure10(a) dips slightly when we load
the next element ofx. The locality output in Figure10(c)
shows that stack references and repeated accesses toz are
filtered out by the cache. Recall that we modeled a cache
with very short lines; one with longer lines could take
more advantage of spatial locality among the array
references

Figure11 shows the combined code and data string as
the k-loop completes its first iteration. The hit rate in
Figure11(b) drops as the cache services the compulsory
instruction misses we saw in Figure9(e). The locality
output in Figure11(c) reflects the drop in hit rate during
this transition from inner loop to intermediate loop.

In this section, we have taken two program fragments,
and have decomposed the full reference traces coming
from the CPU, separating the strings into individual
“signals” representing code and data. In applying our
locality measures to the individual and merged strings, we
have observed that one can discern the contributions of
individual scalars or data strings in the locality graphs, as
for the scalar variablea in daxpy, the stack references in
matmul, or the vector accesses in both benchmark
fragments. In addition, loops are also clearly visible as
“hump” patterns. This suggests that other decompositions
of a reference string into its component signals will also
prove enlightening. Exploring these decompositions is
part of our plan for future work.

5.3  Introducing more realistic reference strings

The examples above illustrate some of the uses we
envision for these new measures. It is also interesting to
see how these measures apply to real program references.
For the first set of experiments, we chose to use the BACH
traces from Brigham Young University [6, 7, 8].

These traces exhibit minimal space and time dilation
effects, are available for more than one processor, and are
easy to obtain (see http://pel.cs.byu.edu/). The results
described below are preliminary, and have all been run on
the first 450,000 references of a trace generated with the
061.kenbus1 benchmark from the SPEC SDM suite (see
http://www.spec.org/osg/sdm91/). This workload consists
of UNIX shell scripts that exercise the operating system as
well as the CPU and I/O components of a system. It was
collected on a SPARC 1+ with 40 MB of memory running
SunOS, and because of the external MMU of the SPARC
chip set, all addresses are virtual. This particular trace
simulates 20 users, includes operating system references,
and tracing began 120 seconds into the benchmark. We
chose the first section of this trace because it was easily
available via ftp, and because the specifics of the trace did
not seem crucial for our initial explorations.

One of our first observations is that the locality of
realistic reference streams is “bursty” in nature.
Sometimes the locality is high, reflecting references that
are close in space and time, and then the locality will
suddenly drop and stay low for some period. This is
evident in the input locality shown in Figure12. In
addition, these bursts often occur in patterns that are
repeated in the trace. Our results from Section 5.2 and our
examinations of the addresses in the trace indicate that this

Figure 10  Results f or matmul Data Trace
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pattern recurrence results from repeated loops that
generate very similar reference streams.

Indeed, we believe loops to be responsible for most of
the high locality areas in the output. This makes intuitive
sense, and we have examined many portions of the trace to
test this hypothesis. For example, Figure13 shows the
reference addresses corresponding to the marked section
of the locality graph in Figure12(a).

The boxed references in Figure13 represent repeated
addresses that correspond to instructions in the loop.
Instructions are labeled according to their iteration number

within this window on the trace. The remaining items are
clustered data references: addresses near each other are
labeled with the same letter. The address sequence
continues like this for several more iterations.

5.4  A practical application

It is not yet clear how to use this approach to determine
what kind of cache to build at a particular level of the
memory hierarchy for a class of traces exhibiting given
qualities, although it is our hope that this work will
eventually lead to tools that will help us do just that. In the
meantime, we can use these tools to determine what kind
of cachewon’t work well in a given situation.

Consider a cache hierarchy similar to one of the Intel
Pentiumâ  Pro chip sets [9], with L1 instruction and data
caches that are both of size 8K with 32-byte lines. The L1
data cache is 2-way set associative, and the instruction
cache is 4-way set associative. The L2 cache is combined,
256K, 4-way set associative with 32-byte lines. We
compared this L2 with two other combined, 256K caches,
both direct-mapped, but the first has 32-byte lines, and the
second has 128-byte lines. Our experiments used random
replacement, which differs from the LRU and pseudo-
LRU policies of the Pentiumâ  Pro, but this difference in
policies does not materially affect our conclusions

When we analyzed the 061.kenbus1 trace for these
hierarchies, we found that the direct-mapped L2 with 128-
byte lines performs much better than the L2 caches with
32-byte lines, both of which performed very similarly.
Figure14 shows input and output localities for a section of
the trace. It is evident that the associative L2 cache with
32-byte lines fails to capture much of the available locality
in the reference string: the locality output graph in
Figure14(c) is almost identical to the locality input graph
in Figure14(a). In contrast, there is relatively little locality
left in Figure14(e) for the direct-mapped L2 with 128-
byte lines.

This example is intended to be illustrative, not
definitive. We recognize that such a small input sample
provides insufficient data on which to base architectural

Figure 12  Locality f or 061.kenb us1 Trace

a) input locality

b) output locality
from 8K
direct-mapped
cache

position in original trace

position in original trace

trace
position

instruction
address

iteration
label

data
address

data
label

222995 0x04d64 1222996 0x04d68
222997 0x193b7 A
222998 0x04d6c

1222999 0x04d70
223000 0x04d74
223001 0x1aa4d B
223002 0x04d78

1223003 0x04d7c
223004 0x04d80
223005 0x04d64 2223006 0x04d68
223007 0x193b8 A
223008 0x04d6c

2223009 0x04d70
223010 0x04d74
223011 0x1aa4a B
223012 0x04d78

2223013 0x04d7c
223014 0x04d80
223015 0x04d64 3223016 0x04d68
223017 0x193b9 A
223018 0x04d6c

3223019 0x04d70
223020 0x04d74
223021 0x1aa5d B
223022 0x04d78

3223023 0x04d7c
223024 0x04d80

Figure 13  Detail of 061.kenb us1 Input T race Section



design decisions. Furthermore, our input trace was
generated on a processor very different from the one
whose memory hierarchy we modeled, and we did not
model all details of that hierarchy exactly.

Based on our analyses, our intuition is that the cache at
level N+1 should be designed with a different organization
and/or replacement policy from the cache at level N,
otherwise both caches are likely to miss on the same kinds
of inputs. For instance, our results suggest that longer lines
are preferable in an L2 cache backing L1 caches similar to
the Pentiumâ  Pro’s. Comparing aggregate hit-rates should
indicate that other L2 configurations may perform better
than the implementation with 32-byte lines, but would not
be as useful in explaining why.

We cannot draw conclusions about the L2 replacement
policies, since 450,000 references is not enough to observe
performance differences between direct-mapped and set-
associative L2 caches of this size. Nonetheless, we expect
that making the L1 and L2 replacement algorithms
different will also yield better performance. Future work
will test this hypothesis for a range of replacement
policies.

6. On locality measures

Our initial locality measures have proved useful in
preliminary investigations, but there are several ways in
which they might be improved (or changed to illustrate
other properties of memory system behavior). We describe
some potential differences here, but presenting results for
these is beyond the scope of this paper.

To reduce the amount of computation time and state
required for each memory reference, we have developed a
simpler measure that has similar analytical characteristics
to the instantaneous locality measure described in Section
2. This measure introduces the concept of anhistorical
address that attempts to summarize information about all
previous addresses in the string. It does this by applying an
exponentially smoothed weighting factor, β, to each
address. Assuming a reference string

, this “quick” instantaneous locality
measure,qi, is defined as:

where ,

Where the historical address, , is:

where ,

This measure is sensitive to the values of weighting
factorsα andβ, so care must be taken in choosing them,
but preliminary investigations show that this formula
produces similar curves to those presented in Section 5.

Other formulas for the spatial locality component may
be more useful than the difference in bytes between two
addresses. We are investigating measures that use a step
function to incorporate the notion of cache line sizes or bus
fetch sizes, so that items that are equally “close” in terms
of the memory system organization will have the same
spatial locality value. Similarly, for memory components
that perform automatic prefetching, the spatial locality
component could reflect the prefetch distance, since items
that lie within the prefetch distance are “closer” than those
beyond this distance.

In the temporal component of a locality measure for
cache hierarchies, it may make more sense to use the
number of unique addresses between two references (the
LRU distance), instead of the total number of addresses.
Another potentially interesting variant entails
incorporating optimal replacement (the OPT distance, or
the number of unique addresses between the current
reference and the next reference to it in the future) into the
temporal locality component.
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Another measure we are considering in conjunction
with locality measures, is an entropy measure to determine
the predictability of a reference string.

7. Related work

The traditional measures of the quality of a caching
strategy have been aggregates such as the miss rate. Other
measures break down summary performance data spatially
or according to bandwidth requirements. For instance,
Tyson et al. perform a detailed characterization of cache
behavior for individual load instructions [10], and
Abraham et al. study the memory referencing behavior of
individual machine-level instructions [11]. Both studies
confirm that a very small number of load and store
instructions account for a majority of data cache misses.
Evidence that misses are bursty in both time and space are
available in Thiebaut’s work regarding the fractal
dimensions of computer programs and the work of
Voldman and Hoevel regarding software-cache
interactions. [12, 13] Johnson et al. measure spatial reuse
fractions for cache lines, finding that over half the time
data fetched in a cache with a uniform, large line size
wastes bus bandwidth and cache space [14]. Huang and
Shen measure the average bandwidth requirements of a
program as a function of available local memory [15], and
Burger et al. calculate traffic ratios, traffic inefficiencies,
and effective pin bandwidths for different levels of the
memory hierarchy, arguing that pin bandwidth will be a
severe performance bottleneck for future microprocessors
[16].

New approaches to characterizing program locality
make it possible to represent and discuss locality and
caching properties in concrete terms. Brehob and Enbody
propose a mathematical model of locality that uses the
distance between references in a trace to capture temporal
locality, and a correspondence to cache lines to capture
spatial locality [17]. Grimsrud et al. introduce a method of
quantifying the locality in a trace and visually representing
it as a three dimensional surface [18]. They explore some
of the properties of this formulation, and show the
correlation between graphical features and specific
reference patterns, demonstrating the utility of their
locality measure through two applications as a
visualization tool: characterizing and summarizing
workload locality, and evaluating the effectiveness of
benchmarks in exercising memory hierarchies.

Although these kinds of summary data provide some
insight into characteristics of the benchmark being
analyzed, they do not provide details about cache behavior
during specific phases of the program’s execution or how
cache behavior changes over time. McKinley and Temam
take a step towards more detailed analysis by quantifying
the locality characteristics of numerical loop nests [19];
their locality measurements reveal important differences
between loop nests and whole programs, and refute some
popular assertions, but like Brehob and Enbody’s, their
approach presents results as histograms of the locality
distributions for the parts of programs in question. In
contrast, our approach aims to provide much more than
summary information.

8. Conclusions

We have introduced the concept of viewing caches as
filters, and have presented the results of and observations
on some initial experiments with this new approach to
memory hierarchy performance analysis. Even though this
work is preliminary, we have demonstrated that the
instantaneous hit rate and the instantaneous locality
measures can give us more insight into memory
referencing behavior than the traditional aggregate hit rate,
and we have shown a practical application of these
measures in analyzing the effectiveness of a particular
memory hierarchy. Future work will expand these results
by:

- running more experiments on longer traces;
- developing new measures of locality and cache

efficiency;
- applying our measures to the design of multi-level

cache/memory hierarchies;
- using our measures to characterize workloads and to

evaluate their effectiveness with respect to exercising
memory hierarchies;

- defining the mathematical properties required in a
locality measure;

- integrating our analysis tools with the SimpleScalar
toolset from the University of Wisconsin [20], so that
we can work with execution-driven simulation and
reference streams generated by both in-order and out-
of-order processors; and

- evaluating the application of digital signal analysis
techniques to cache analysis in general.
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