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Abstract:

An important problem facing designers of parallel systems is how to simplify the writing of concurrent appli-
cations. Mentat is an object-oriented, parallel computation system designed to meet the challenge of providing easy
to use parallelism. We accomplish this goal by extending the encapsulation provided by objects to the encapsulation
of paralielism. We define two forms of parallelism encapsulation supported by Mentat: inter-object parallelism, and
intra-object parallelism. Users of Mentat objects are unaware of whether operations are carried out serially or in
parallel. This document describes the Mentat Programming Language (MPL) Version 1.0 and its use. Version 1.0
includes a prototype MPL compiler based on the ATT 1.2 C++ compiler [23]. A later version of this technical
report will describe the new MPL compiler currently under development. Completion is expected in September,
1990,

1. Introduction

One problem facing parallel systems designers is how to simplify the writing of parallel programs. Proposals
range from automatic program transformation systems that extract parallelism from sequential programs [1,2], to the
use of side-effect free languages [3.4), to the use of Ianguages and systems where the programmer must explicitly
manage all aspects of communication, synchronization, and parallelism [5,6]. The problem with fully automatic
schemes is that they are best suited for detecting smal grain parallelism. The problem with schemes in which the
programmer is completely responsible for managing the parallel environment is that complexity can overwhelm the

programmer.

Mentat [7,8] provides a compromise solution. There are two primary aspects of Mentat: the Mentat Program-
ming Language (MPL) and the Mentat run-time system. MPL is an object-oriented programming language based
on C++ [9] that masks the difficulty of the parallel environment from the programmer. The granule of computation
is the Mentat class instance, which consists of contained objects (local and member variables), their procedures, and
a thread of control. Programmers are responsible for identifying those object classes that are of sufficient computa-
tional complexity to allow efficient parallel execution. Instances of Mentat classes are used normally, freeing the
programmer to concentrate on the algorithm, not on managing the environment. The data and control dependencies

between Mentat class instances involved in invocation, communication, and synchronization are antomatically



detected and managed by the compiler and run-time system without further programmer intervention, By splitting
the responsibility between the compiler and the progfammer we exploit the strengths of each, and avoid their
weaknesses, Our underlying assumption is that the programmer can make better granularity and partitioning deci-
sions, while the compiler can correctly manage synchronization. This simplifies the task of writing parallel pro-

grams, making the power of those machines more accessible (0 non-computer scientist researchers.

This document describes the Mentat Programming Langunage, Section 2 is a brief introduction to Mentat and
the macro data flow model of computation. In Section 3 the MPL is described, This sections includes several
examples. In Section 4 we discuss the MPL compiler. Appendix 1 is the current compiler bug list. Appendix 2 is

the source listings for a set of implemented Mentat classes that perform matrix operations.

2. Mentat Overview

Mentat was designed to meet three goals. First, Mentat permits high degrees of parallelism (smaller grain
than Unix processes, but larger grain than individual instructions). Second, Mentat uses a simple decentralized con-
trol mechanism in order to avoid the bottleneck of a centralized scheme and the communications overhead of some
distributed schemes. Third, Mentat is easy to program, masking much of the complexity of the parallel environment
from the progrtammer. The first two of these goals are addressed by the model of cdmputation vsed by Mentat, and

the third by extending the object-oriented programming paradigm to include the abstracting of parallel activity.

The model of computation underlying Mentat is the macro data-flow mode! [10-11]. The macro data flow
model of computation is a medium-grain, data-driven model inspired by the data flow model {12-13]. A data flow
program is a directed graph in which nodes are computation primitives called actors. Tokens carrying data and con-
trol information flow along the arcs from one actor to another. When tokens are present on all incoming arcs, an
actor is enabled and may execute. Thus a high degree of parallelism can be achieved naturally. We were drawn 10
the traditional data-flow model of computation because of the intaitive ease with which it maps to distributed mes-
sage passing systems and because of the high degrees of parallelism which it affords. However, the traditional

data-flow model is inappropriate because of its small computation granularity [8,14] and lack of persistent data.

Macro data flow has three principle differences with traditional data flow. First, the granularity of the actors
is larger and under programmer control. This provides the flexibility to choose an appropriate degree of parallelism.

Second, some actors can maintain state information between executions. These actors are called persistent actors.



Persistent actors provide an effective way to model side effects and to reduce communication. Third, the structure
of macro data-flow program graphs is not fixed at compile time. Instead, program graphs grow at ran-time by ela-
borating actors into arbitrary subgraphs, These graph elaborations are completely local and do not affect any other
actor or arc in the graph. The locality has important implications for distributed control, In Mentat, actors

correspond to Mentat object member functions; each Mentat object implements a set of macro data flow actors.

The run-time system is that portion of Mentat that is responsible for the execution of Mentat programs [15].
The run-time system provides three basic services to Mentat applications. These are to instantiate Mentat objects, to
construct program graphs, and o schedule program graph execution. The run-time system is not a complete operat-
ing system. Instead, the Mentat run-time system runs on top of an existing host operating system. Currently the

Mentat run-time system runs on the Intel’s NX/2[16] and on a network of Suns using SunOS [17].

3. The Mentat Programming Language

The Mentat Programming Language has been implemented with four goals in mind. First and foremost, the
MPL is object-oriented [18-19]. We extended the usual notions of data and method encapsulation to include paral-
lelism encapsulation. Parallelism encapsulation takes two forms, intra-object encapsulation and inter-object encap-
sulation. In intra-object encapsulation of parallelism, callers of a Mentat object member function are unaware of
whether the implementation of the member function is sequential or parallel, i.e., whether its program graph is a sin-
gle node or a parallel graph. In inter-object encapsulation of parailelism, programmers of code fragments (eg. a
Mentat object member function) need not concern themselves with the parallel execution opportunities between the

different Mentat object member functions they invoke,

Second, the language constructs have a natural mapping to the macro data flow model. Furthermore, the
responsibility for performing the mapping is not the programmer’s. Instead, the responsibility is the compiler’s and
run-time system’s whenever possible. In particular, the programmer does not have to make scheduling decisions, or

manually construct and manage program graph execution,
Third, the concepts used as the basis of the extensions are applicable to a broad class of languages.

Fourth, the syntax and semantics of the extensions follow the pattern set by the base language, maintaining its

basic structure and philosophy whenever possible,



These goals were met in the MPL by extending the C++ language in five ways. The basic idea is to allow the
programmer 10 specify those C++ classes that are of sufficient computational complexity to warrani parallel execu-
tion. This is accomplished using the mentat keyword in the class definition. Instances of Mentat classes are called
Mentat objects. The programmer uses instances of Mentat ¢lasses much as ke would any other C++ class instance.
The compiler generates code to construct and execute macro data flow graphs (data dependency graphs) in which
the actors are Mentat object member function invocations, and the arcs are the data dependencies found in the pro-
gram. Thus we generate inter-object parallelism encapsulation in a manner largely transparent to the programmer.

All of the communication and synchronization is managed by the compiler.

Of course any one of the actors in a generated program graph may itself be transparently implemented in a
similar manner by a macro data flow subgraph. Thus we obtain intra-object parallelism encapsulation; the caller

only sees the member function invocation.

3.1. Extensions

There are five principle extensions to the language: Mentat classes, the member functions create() and des-
troy(}, the return-to-future ( r¢f{) ) mechanism, the member function main(} for each Mentat class, and guarded

statements. In this section, each of the extensions is described in detail.

3.1.1. Mentat Classes

Mentat classes are the mechanism for specifying Mentat actors. Each macro data flow actor is implemented
by an operation of a Mentat object, and each object in Mentat is composed of one or more actors. In C++ objects
are defined by their class. Each class has an interface section in which member variables and member functions are
defined. Not all class objects should be Mentat objects. In particular, objects that do not have a sufficiently high
communication ratio, i.e., the object operations are not computationally complex enough, should not be Mentat
objects. To provide the programmer a way (o control the degree of paratlelism, Mentat allows both standard C++
classes and Mentat classes to be defined. By default, a standard C++ class definition defines a standard C4+ object.
The programmer defines a Mentat class by using the keyword mentat in the clags definition. He may specify
whether the class is persistent or regular. The syntax for Mentat class definitions is given below. (Keywords are in

boldface.)



new_class_def B mentat_definition class_definition |
class_definition

mentat_definition o PERSISTENT Mentat |
REGULAR mentat |
mentat

class_definition u class class_name {class_interface};

Persistent and regular class definitions correspond to petsistent and regular objects’. Figure 1 illustrates a Mentat

class definition.

PERSISTENT Mentat class class_A {
/* Note that private variables are truly private®/
int x,y,2;
public:
int operation1(int argl);
create(int initial_x, int initial_y);
B
Figure 1.

Mentat classes are different from standard C++ classes in many ways. Each Mentat class is really two distinct
entities: a front-end and a server-end. Instances of the front-end are called Mentat variables. Mentat variables are
created when a user declares an instance of a Mentat class in his program, e.g. Al in Example 1 (Figure 6). A Men-
tat variable is really a name that may point to an actual instance of 2 Mentat object, Instances of the server-end of a
Mentat class are objects that actually implement the class. We call these instances Mentat objects. Mentat objects

are independent objects; they are address space disjoint.

Mentat variables are the mechanism through which programmers access and use Mentat objects. Mentat vari-
ables are C++ objects whose type is a Mentat front-end. Mentat variables contain a Mentat object name and inciden-
tal information and are typed according to the class of the Meniat object to which they point. Since Mentat vari-
ables are object names and not the actual representation of their corresponding Mentat object, attempts to access

private object data using the address of the Mentat variable will not succeed.

Mentat variables may be either bound to a specific instance of a Mentat object or unbound, Unbound Mentat
variables do not address any particular instance. When unbound names are used for regular Mentat classes the
underlying system is free to choose an instance or create a new instance for each invocation of a member function.

‘When an unbound name is used for a persistent Mentat class the system chooses an existing instance.

! Persistent objects maintain state information between method invocations, regular objects do not, i.¢., regular objects are stateless,



Each Mentat object (instance of a server-end) is disjoint from all other instances in the address space. The
server-ends are implemented by the code of the Mentfat class definition. Mentat objects may contain other non-
Mentat objects and variables. The private data of the class definition is global and persistent to each instance. Each
instance has an independent thread of conmtrol, which begins at the first statement of the member function main(). It
also has a system-wide unigue name. The name is a Mentat object name and is available in the predefined Mentat

variable SELF.

3.1.2. Mentat Class Instantiation

The issue of how to instantiate Mentat objects is an imporiant one, Following the flavor and semantics of C++
would make it difficult to define generic instances. The difficulty stems in part from the fact that instances of Men-
tat classes are represented by their names and not by their physical selves. Only the name of the object is stored by
the invoking object, not the instance itself. To illustrate this point, we consider an example in which there is 2 Men-
tat class class_A. There are three ways Mentat variables of class_A may be defined, static variables of class A, auto
variables of class A, and heap variables of class_A. Furthermore, class A could be a persistent or a regular class.
We want 10 consider the problem of instantiating instances of class A if we want io preserve the exact semantics of
C4+. In C++ static variables are instantiated at the stari of the program, auto variables when the containing block of
code is entered, and heap variables when they are newed or malloced. In Mentat these ways may not be appropriate
for two reasons. First, regular objects may not ever need to be instantiated. For example, suppose that class A is a
regular Mentat class. Let FRED be defined to be of type class_A. If FRED is used often in expressions it may be
better not 1o use the same instance each time. Instead we may want the underlying system to find or create instances
at run-time, using a different instance for each invocation in order to increase parallelism. Therefore, we generally
will want regufar objects to be unbound to a particular instance. But if we instantiate a new instance ag the usual

rules call for in C++, using different instances would be incorrect.

Second, instead of creating new instances of a persistent class as called for by C++, it is sometimes more
desirable to use the object as a name only, without instantiating a new version. For example, suppose there is a
predefined file system object file_system that returns a file_object Mentat variable as the result of an open call. In the
code fragment below we do not want the declaration of A to result in the instantiation of a new file object; we want

an unbound Mentat variable created.



A file_object;  // Do not want a new file created.
A =file_system.open("user-data™;

Our solution to this problem is to specify that when a new Mentat variable is declared a new instance of the object

class is not automatically instantiated, Instead, only an unbound object name of the appropriate type is instantiated.

The next issue to be considered is how the programmer creates new instances of Mentat objects, We have
added two new reserved member fonctions for all Mentat class objects: create() and destroy(). These functions are
inherited from the base class Mentat and can be overloaded by the programmer of the class. The create() function is
used to instantiate new instances of Mentat classes. It takes as parameters user-provided initialization information.
Create() also allows the user to specify where the new instance is to be instantiated, e.g., on a different processor, or

on the same processor as some other Mentat object. The syntax is:

create_member : create(argument_list) |
create(argument_list) (location_hints)
location_hints u CO_LOCATE obj_name |

DISJOINT ohj_name_list |
HIGH_COMPUTATION _RATIO

obj_name_list : obj_name, obj_name_list|
ohj_name
obj_name u identifier

The programmer can specify location_hints, providing the underlying system with information that will be used in
making instantiation decisions. The three values of location_hints are CO_LOCATE, DISJOINT, and
HIGH_COMPUTATION_RATIO. CO_LOCATE tells the system to locate the object being created close enough to
the object named by obj_name so that communication between the two is cheap. This usually means on the same
processor. DISJOINT tells the system that the object to be created should be instartiated far away from any object
in the obj_name_list because the object will usually be enabled in parallel with the objects named in the
obj_name_list. It may not be possible to instantiate disjointly, if, for instance, every processor on the system has at
least one object from obj name list on it. In that case the system does the best it can.
HIGH_COMPUTATION_RATIO tells the system that the object to be instantiated has a particularly high computa-
tion ratio. The system can use this information to ensure that it is placed on a lightly loaded or powerful processor,
even if the processor is very far away. The precise meaning of "close" and "far away” will vary depending on the

algorithm used to make location decisions,



3.1L.3. Return to Futore (rif))

The function #if() is the Mentat analog to the return() of C++. Its purpose is to allow Mentat member func-
tions (actors) to return a value to the successor nodes in the macro data-flow graph in which the member function

appears. The r¢ff) does not necessarily mark the end of the actor computation,

Rif() takes two types of arguments, focal variables or constants, and subgraphs. The local variables must
satisfy the same restrictions that apply to Mentat arguments: they must have a determinable length, and they must be
contiguous. The subgraphs are automatically generated, and their use is transparent to the programmer, Returning a
subgraph using r¢f{) is the mechanism for actor subgraph elaboration. Both cases are illustrated below. The object
operation opl occurs in the subgraph shown in Figure 2(a). The code fragment for op! appears in Figure 3. If
expression(input) is TRUE, then op! will generate a token containing the value 5 that will be forwarded to opl’s
successor. This is llustrated in Figure 2(b). If on the other hand, expression(input} is FALSE, then a subgraph will
be generated. The result of the new subgraph will be directed to the successor of opl. The subgraph of Figure 2(c)

is the actual graph executed.

3.1.4. Guarded Statements

Some form of guarded statements are provided in many modern programming languages. Examples include
the select/accept statements of ADA [20] and guarded statements in CSP [21]. Guarded statements permit the pro-
grammer to specify a set of entry points to a monitor-like construct. The guards are boolean expressions based on
local variables and constants. A guard is assigned to each possible entry point. If the guard evaluates to true, its
corresponding entry point is a candidate for execution. The rules for determining which of the candidates is chosen
to execuate vary. It is common to specify in the language that it is chosen at random. This can resulf in some entry

points never being chosen and is not fair,

A major shortcoming of this approach in languages such as ADA is that it is a non-symmetric mechanism: the
cailer can specify those modules with which it will interact, but the callee has no way to specify the modules from
whom it will accept calls. Further, the callee has no way to specify restrictions on the parameters before rendezvous

ocecurs,

We overcome these shortcomings in the Mentat programming language. We allow the programmer to specify

those member functions that are candidates for execution based upon a broad range of criteria, and we provide the
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Figure 2, Initial subgraph.

if expression(input) {
rtf(5);

else {
w=A.operation1(4,5);
x=A.operationl(w,2);
y=B.operation1{4,w);
z=C.operationl{y,w,x);
rif(z);

Figure 3. Code for opl.

programmer of objects with scheduling control to give different priorities to different candidates for execution. The

syntax for select/accept is shown below.

select_statement e select { guard list };

guard_list :: guard_statement;guard_list |
guard_statement;

guard_statement bo guard;guard_action;!

guard:[priority] guard_action;]
guard_action;|
[priority} guard_action:
guard_action " statement-list;break;!
accept fct-declarator; statement-list;break; |
test fci-declarator;statement-list;break;
guard Con Boolean expression based on variables, constants, and tokens.
Exact syntax discussed later.



The select statement has a similar semantics to the select statement of ADA. It consists of a list of guard-statements,
corresponding to the ADA accept statement. The availability of each goard-statement is controlled using a guard.
The guards are evaluated in the order of their priority. Within a given priority level each of the guards is evaluated
in some non-deterministic order. Each guard is evaluated in turn until one of the guards is true; the corresponding
statement-list for that guard is then executed. When the statement-list has been executed, control passes 10 the next
statement beyond the select. Note that the fct-declarator portion of the guard_action determines the operation. The

fet-declarator is not actually executed. It only provides information for the compiler.

There are three types of guard-actions: accepts, tests, and non-entries. Accept is similar to the accept of
ADA, Non-entries are guarded statements. They do not correspond o a member function of the class. Tests are
used to test whether a particular member function has any outstanding calls that satisfy the guard,. When a test
guard-action is selected no parameters are consumed. Note that there is no "else” clause as in ADA. However,
using the priority options, the user can simulate one by specifying that the clause is a non-entry statement and giving
the guard-statement a lower priority than all other guard-statements. Then, if none of the other guards evaluates to

true, it will be chosen.

Mentat guards are much more powerful than guards in traditional languages such as ADA, A guard in Mentat
is a boolean expression based on local variables, constants, formal parameters of the member function being
guarded, and message tag information such as the sender or computation tag. The ability to selectively receive mes-

sages based upon their contents is also available in PLITS [22]. The guard syntax is:

guard :: (NOMATCH && guardl) | guardl
guardl " (guard1) |

unary-operation guardl |

guard] binary-operation guard? |

value |
value :: constant | variable | accept-variable |
token-variable | expression
token-variable 4 arg-ident.arg-field
arg-ident I argllarg2 | ... largN | accept-variable
arg-field i c-tag | from | priority | length

Guards are similar to expressions in C++, except that assignment statements are disallowed in guards (to

prevent side effects), and accept-variables and ioken-variables are allowed in the expression.

Accept-variables are defined by the formal arguments of the member function of the accept or test which this

expression guards. As such, an accept-variable is an identifier whose scope is the entire guard-statement in which it

10



occurs. For example the accept-variables account and amount are active in the entire fragment in Figure 4,

{amount < 200} : accept withdrawal(int account, int amount);
if account_exists(account)
withdrawal{account, amount);
else
error{NO__SUCH_ACCOUNT, account);
break;
Figure 4.

Token-variables are fields of the arriving messages that are not part of the user data of the message, i.e., they
are extra control information used by the underlying system. The token-variables are accessible in a read-only
fashion by the applications programmer. There are four token-variables for each message, source, c-tag, priovity,
and length. The source field is the name of the Mentat object from which the token has come. The c-fag is the
computation tag of the token. Priority is the priority of the token, and length is the length of the data part of the
token, These fields are provided to the user so that finer control may be obtained. However, it is not expected that

they will be frequently used.

There is one set of token-variables for each accept-variable in the guard-statement. The token-variables have
the same scope as accept-variables. They can be named by either their corresponding accept-variable name with a

field name suffix, or by the argument number and a suffix, e.g., argl.c-tag.

By default, tokens must have matching c-tag fields to be candidates for matching. This is accomplished by
having an implicit

(argl.c-lag == arg2.c-iag == ... == argN.c-tag)
ANDed t0 each guard. However, there are circumstances under which it might be desirable to circumvent this con-

straint. To do so the programmer adds the keyword NOMATCH as the first clause in the guard, e.g.,

11



struct srecl {
int account,
// Some other stuff, application specific
};

stract srec? |
// Some stuff, application specific
in account;
|5
select {
{(NOMATCH && (recl.account == rec2.account))
:accept debit(s_rec_1 recl,s_rec_2 rec2)

Figure 5.

Figure 5 illustrates the capability to match on fields other than c-tag, Each possible matching pair of tokens is
examined to determine if it satisfies the guard. Note that it will likely involve much more overhead to check a guard

when c-tag matching is turned off.

Priority is an integer ranging from -MAXINT to MAXINT. The default value is zero. There are two types of
priority, that of the guard-statement, and that of the incoming tokens, The priority of the guard-statement deter-
mines the order of evaluation of the guards. It can be set either implicitly or explicitly. The token priority deter-
mines which call within a single guard-statement priority level will be accepted next. The token priority is the max-
imum of the priorities of the incoming tokens, Within a single token priority Jevel tokens are ordered by arrival

time.

When a member function call is accepted, the current priority of the object is set to the priority of the tokens

for the call. Any invoked subgraphs of the member function will have the same priority as the incoming tokens.

3.1.5. The Member Function Main()

The member function main() is a reserved function name for Mentat classes, It is the initial thread of control
for new instances of a Mentat class. There are two methods of constructing main functions. First, the programmer
may specify a member function main() for each persistent class in the class definition. The syntax is:

class-name::main() { function body |

12



The function body may be any sequence of extended C++ statements. Second, if the programmer elects not to create
a member function main() then the preprocessor will construct one for the class, It is of a very simple form, based

on either a persistent class template or a regular class template.

The persistent class template has two stages. In the first stage a select/accept is used to accept the create call
for the object, if such a create exists. Then, once the create function has been executed, a loop is entered in which
the sole statement is a select/accept. Within this select/accept statement there is an accept for each member function
in the class interface. In this manner each member function of the class is made equally available to external

objects.

The regular class template is much simpler.' It consists of a call to the local constructor followed by a single
select/accep! statement. Like the persistent class template, the select/accept statement contains an accept for each

member function in the class interface.

The member function main() is the initial entry point for all instances of Mentat objects. To instantiate a new
instance of a Mentat class at run-time, the underlying system first allocates storage for the object and then starts the
object running by starting the function main{). It may leave main() and enter another section of the object. The

thread of conirol is not required to ever return to main().

3.1.6. Restrictions

The address space independence between Mentat objects necessitates the imposition of five restrictions on
Mentat classes. These restrictions derive from the fact that instances of Mentat classes are independent objects. All
communication with and between Mentat objects is via tokens; there is no shared memory. First, the use of static
member variables for Mentat classes is not allowed. Since static members are global to all instances of a class, they
would require some form of shared memory between the instances of the object. The preprocessor detects all uses
of static vaﬁables and emits an error message. Second, Mentat classes cannot have any member variables in their
public definition. If data members were allowed in the public section, users of that object would need to be able to
access that data as if it were local. Any use of such variables is detected by the preprocessor. If the programmer
wants the effect of public member variables, appropriate member functions can be defined. Third, programmers
cannot assume that pointers to instances of Mentat classes point to the member data for the instance. The preproces-

sor will not catch this. Fourth, Mentat classes cannot have any friend classes or functions. This restriction is neces-

13



sary because of the independent address space of Mentat classes. If we permitted friend classes or functions of
Mentat classes, then those friends would need to be able to directly access the private variables of instances of the
Mentat class. Similarly, instances of a Mentat class cannot access each other’s private data. Fifth, it must be possi-
ble to determine the length of all acteal parameters of Mentat member functions, either at compile time or at run-
time. This restriction follows from the need to know how many bytes of the argument to send. Furthermore, each
actual parameter of a Mentat member function must occcupy a contigaous region of memory in order to facilitate the

marshaling of arguments. Variable size classes must provide the member function size_off).

3.2. Extended C++ Examples

This section contains three examples that illustrate the use of the Mentat language extensions. Comments on

the semantics of the Mentat statements have been included as comments on the code.

14



The first example (Figure 6) illustrates the definition and use of both persistent and regular Mentat
classes. Three Mentat classes are defined (A, m_B, C), and one non-Mentat class (B). Note that the Mentat
class m_B is derived from the non-Mentat class B,

PERSISTENT Mentat class A {
/* Note that private variables are truly private®/

nt x,y,z;
public:
int operation1{int arg1);
create(int initial_x, int initial_y);
b
class B {
intijk;
public:
int operation1(int arg1);
B(int initial_x, int initial_y);
b

PERSISTENT Mentat classm_B : B {

// Note that this is a derived Mentat class, it will inherit all of the

/f functions and interface of B. However, if this inheritance causes Mentat B to

/f violate the Mentat class restrictions, a compiler error will result,
public:

constructor-to-create // This macro constructs create from the base class constructors,
h

Mentat class C {

int x,v,2;
public:

int operation1(int arg1);
b

{ int result] result2;
A AL /! Instantiates a new Mentat variable of class A
// No new Mentat object is instantiated
resultl = Al.operationl(5);
// An existing instance of Mentat class A is chosen
// by the system to service the call.
B Bi(1,2); //Instantiates a contained object of class B

m_B B2; // Instantiates a new Mentat variable of class m_B
CC1; // Instantiates a new Mentat variable of class C

Al create(3,4); // Instantiates a new Mentat object of class A
B2.create(1,2); // Instantiates a new Mentat variable of class m_B

resnitl = Al.operation1(5);

// The Mentat object instantiated above is used to service the call,
result2 = Cl.operation 1(5);

// The system either creates a new instance to

/f service the call or uses an existing instance.

Figure 6

15



The second example (Figure 7) illustrates the use of select/accept statements that contain both local vari-
ables and message values in guards.

PERSISTENT Mentat class account {
int balance=0;
public:
BOOLEAN withdrawal(int w_amount);
BOOLEAN deposit(int amount);
|
void account::main() {
while (TRUE) {
select {
({balance - w_amount) > 0) : accept withdrawal(w_amount);
withdrawal(w_amount);
break;
(amount > 0} ; accept deposit(amount);
deposit{amount);
break;

Figure 7

1o



The third example (Figure 8) shows a solution to the Readers & Writers problem with priority given to
the writers. It illustrates the main() function, select, guards, and priority. The functions writer_get(),
writer_return(), reader_get(), and reader_return are not shown,

PERSISTENT Mentat class RW {

int writer, num_readers, done;
public:

void created);

void destroy();

int writer_get();

int reader_get();

int reader_return();

int writer_return();

|

void RW::create();
{ writer=0;
mun_readers=0;
done=0;
rif();
|5
void RW:main()
{ select {
accept create();
create();
break;

while (done) {
select {

(Ywriter):[1} accept writer_get();
while (num_readers > 0) {
select {
accept reader_return(};
reader_return();
break;

I}
writer_get();

break;

(twriter):[0] accept reader_get();
reader_get();

break;

:[1] accept writer_return();

writer_return(};

break;

:accept reader_return();

reader_return();

braak;

:accept destroy();

done = 1;

rti();

break;

1 }: };// end select, end while loop, end main()
Figure 8
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4, Using The MPL Compiler

In this section we briefly describe the current version of the MPL compiler, This version is based upon the
ATT 1.2 C++ compiler. The MPL compiler consists of two passes, sfront, and ¢front. Sfront scans input files and
generates C++ code that is passed to cfront, Sfront reads Mentat class definitions and generates server-end code, In
particular sfront is responsible for generating main() functions based upon the persistent and regular class templates.
Cfront is responsible for generating the code to do data flow detection, Cfront generates C code, as does the ATT
compiler. The version described is an early version, The current version is not as sophisticated as we would like,
and does not support the select/accept construct. We are working on a new compiler that is not based on the ATT

code.

4.1, Invoking the MPL Compiler

The MPL Compiler is invoked by executing the program MC (Mentat Compiler). For example, the MPL pro-
gram matrix.c can be compiled by the command:

MC matrix.c

MC accepts the same flags as the standard C++ compiler CC (see the man page for CC for details).

4.2. Structoring MPL Programs

There are two components to a Mentat class definition. The first component is a header file that must be
included by all programs that use the Mentat class. The other component is a file that will be compiled into the

server for the class. This is the implementation file.

The header file is just the C-++ class definition with three additions. First, in all Mentat class definitions the
keyword mentat must immediately proceed the C++ keyword class. This indicates to the compiler that this is a
Mentat class definition, not a standard C++ class definition. Second, all Mentat classes.mnst inherit the public
member functions from the class mentat_object. This allows the compiler to correctly generate Mentat member
function calls and also to handle create(), bind() and deswroy() correctly, Third, all Mentat classes must include an
inline constructor of the following form:

class-name() {set_object_name(&i_name,"class-name");)

whete class-name is the actual name of the Mentat class. The constructor must be the Iast member function defined.

This constructor identifies the Mentat class o the rest of the system.
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The implementation file is the same as a C++ implementation of the class with two differences. Once again
the keyword mentat must appear immediately before the C++ keyword class, Also, the return() statement is
replaced by the r4f{) statement in the member function definitions (for an explanation of the meaning and use of rf()

see section 3.1.3). As an example consider the following:

Mentat class fib_class ; public mentat_object

{
public:
int - fibonacci(int n);
fib_class() {set_object_name(&i_name,"fib_class");}
b

Figure 9. Header File.

#include "reg_class.h”
#include "fib_class.h"
Mentat class fib_class {
public:

nt fibonacci(int n);
|5

int fib_class::fibonacci(int n) {
reg_class adder;
fib_class A, B;

int resuit,
nl,
nZ;
if(n==0 ll n==1) {
result = n;

new_rif(result);

else {

nl = n-1;

n2 =n-2;

new_rtf(adder.operation 1{A fibonacci(n1),B.fibonacci(n2)));
]

Figuore 10, Implementation File,

For the meaning and use of persistent see section 3.1.1. In the current implementation there can only be one Mentat
class definition per file. The need for a different class declarations in the header and implementation files will be

eliminated in a future version of the compiler.
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4.3. MC Intermediate Files

MC has two main phases. In the first phase MC reads the source file and builds the MPL code for a Mentat

server for the specified class. In the second phase MC translates MPL code for the above server.

The resuit of the first phase is a file containing the server code. The named of this file is obtained by prepend-
ing _ms_ (for mentat server) to the source file name. The current implementation leaves these _ms_ files around for

debugging purposes.

The C code for the translation performed in phase two can also be useful for debugging. This code can be
obtained by invoking the MC compiler with the -Fc option (see the C++ man pagé for more details of the -Fc
option) and redirecting the output to a file. For example, the following command will compile the MPL program
mattix.c and leave a file called _ms_matrix.c in the current working directory:

MC matrix.c

The file _ms_matrix.c will contain the MPL code for the server matrix.c. The command;

MC -Fc matrix.c > matrix.translation

Will generate the _ms_matrix.c file as above but will also produce the file matrix.iranslation. This file contains the

C code transiation of _ms_matrix.c. The -Fc option does not create an executable or object file.
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Appendix 1 : Current Implementation Problems
The current implementation has several idiosyncrasies, these will be resolved in future versions,

- All member functions of Mentat classes must have at least one argument, except for the constructor dis-
cugsed in section 4.2. This means that if the user’s code contains member functions without arguments she must
add a dummy argument. For example, the member function declaration:

void opl();

would become:
void opl(int dummy_argument);.

- MC will not currently detect member variables as arguments to Mentat object invocations or as arguments to

rif. To get around this problem assign the member variable to a local then use the local in the invocation.

- MC sfront one problems. In the current implementation phase one does not actually parse the source code.
It is hardeoded to recognize the Mentat class definition constructs. Thus, stray or extra semi-colons can cause prob-

lems. This situation will be remedied soon by rewriting phase one to actually parse the input.
- The select/accept and guarded statement constructs are not currently supported.
- The member function main() is not currently supported.

- An instance x, of a user defined class that occurs on the LHS of a mentat expression is called a PRV (poten-
tial result variable), A problem occurs when a member (function or variable) of x is used in an expression that is not
on the RHS of an assignment. This situation will lead to incorrect data. For example:

x=A.opl{.); /xisaPRV.

x.foo(); /f Will yigld incorrect data,
x=A.0pl{..);

t=x.foo();  // Works correctly.
x=A0p1(..);

Z=X;

x.foo(); /f Also works correctly.

- MC will not detect PRV’s inside the expression part of if, while, repeat and for statements. The expression
part of these statements is where the test is done. For example:
if (expression parf) ...

while (expression part) ...
for (expression part) ...
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Appendix 2 ; Matrix Class Implementation

The following code is an example of real, working, Mentat code. There are two classes defined, the class
work _class, and matrix class. They implement a collection of matrix operations. The member functions
of matrix_class partition the operational work up into calls to instances of work_class. This code com-
piles and runs and was used as a member of a set of benchmark and validation programs. Performance figures are
available in [15]. A description of the complete set of system validation/performance programs programs can be
found in [24]. The work_class code is given first, followed by the matrix_class code.

/*work_class.c*/
#include "app misc.h”

#include "work class.h"

Mentat class work_class |

public:
loc_matrix* scal _add _work{(loc _matrix* mat, flcat scalar);
loc matrix scal_mult work{lec_matrix* mat, float scalar):
loe matrix* add_work{(loc _matrix* matl, loc matrix* mat2);

loc_matrix* mult_work (loc_matrix* matl, loc_matrix* mat?2);

}:

loc_matrix* work class::scal_add work{loc matrix* mat, f£loat scalar) {

int X, i
float *rrptr, *matptr;
loc matrix *ret res;

ret res = new loc matrix{mat->num col(}, mat->num row()):
for (x=0;x<mat->num row();x++) |

rrptr = ret res->get r ptrixz};
matptr = mat~>get r ptr(x);
for (3=0;3<mat->num col{);j++) {
*(rrptr + 3} = *{matptr + j} + scalar;
}

1
new_rtf{ret_res);
delete ret_ res;

}

loc_matrix* work_class::scal_mult_work{loc matrix* mat, float scalar) {

int X 37

float *rrptr, *matptr;
loc matrix *ret _res;
ret_res =

new lo¢ matrix{mat->num col(), mat->num row());
for (xz=0;x<mat->num _row{);x++) {

rrptr = ret res->get _r ptrix):
matptr = mat->get_r ptr(x);
for (3=0;j<mat->num col();3++) {
*{rrptr + j) = *(matptr + jJ) * scalar;
1
1

new_xrtf{ret_ res);
delete ret res;
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loc_matrix* work_class::add work(loc matrix* matl, loc_matrix* mat2) {

int X, 3:
float *rrptr, *matlptr, *matlptxr;
lec _matrix *ret_res;

if {(matl->pum col() != mat2->num col(} ||
matl-~>num row() != matZ->num_row()) {
printf ("ERROR: Can only add matricies of the same order.0):
exit (1);
i

ret_res = new loc~matrix(mat1w>num_coi(), matl->num row{});

for (x=0;x<matl->num row{);z++) {
rrptr = ret res->get r ptr(x);
matlptr = matl->get r ptr(x);
mat2ptr = mat2->get_r ptr(x);
for (J=0;i<mati->num_col () ;j++) {
*{rrptr + Jj) = *{(matlptr + 3) + *{(matl2pir + §);
i
1
new_xrtf (ret res);
delete ret res;

}

loc_matrix* work class::mult_work(loc matrix* matl, loc matrix* mat2) ({

int ® i, 3, dim;

float *fp, *rrptr, *matlptr;
loc_matrix *ret_res;

if (matl->num_col() != mat2->num row(}) {

Printf ("ERROR: Can only multiply matricies when the number();
printf{"of columns in [A] equal the number of rows in [B]0);
exit{1);

}

fp = matlZ->get r ptr{0):

dim = mat2->num row();

ret_res = new loc matrix(matl->num_col(), matl->num row());

for {x=0;x<matl->num_xrow();x++) {
rrptr = ret_res->get_r ptr(x);
matliptr = matl->get r ptr{x});
for (J=0;i<dim;3++) {
for {(i=0;i<dim;it++) |
*(rrptr + ) += *(matlptr + 1) * f£p[i*dimt+i);:
}
}
}
new_rtf{ret_ res);
delete ret_res;
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/*  matrix class.c*/
#include "app misc.h”
#finclude "work_class.h™
finclude "matrix_class.h”

#define MAX PIECES 33

Mentat class matrix class |

public:
loc_matrix¥ scal_add_mat (loc matrix* mat, flcat scalar, int pieces);
loc _matrix* scal_mult_mat (loc_matrix* mat, float scalar, int pieces);
log matrix* add_mat {loc_matrix* matl, loc_matrix* mat2, int pieces):;
loc matrix* muit_mat (loc_matrix* matl, loc_matrix* mat2, int pieces);

b

loc matrix* matrix class::scal_add mat (loc_matrix* mat, float scalar, int pieces) {

int dim, i, rows=0, no_rows=0, prev_rows={;
work class worker [MA¥ PIECES];
loc _matrix *ret res[MAX PIECES],

*pm[MAX PIECES],
*answer, *temp;
flocat *s_p, *d p;

for (i=0;i<pieces;i++) {
worker{i] .create () ;

}
dim = mat->num row{);

for (i=0;i<pieces;it++) {
rows=dim/pieces;
if (dim%pieces>i) rowst+;
pm{i] = new loc_matrix(mat->get_r ptr(no_rows), dim, rows);
ret _res[i] = worker{i].scal add work({pmii], scalar);
delete pm([i};
no_rows += LOowWs;

answer = mat;
for (i=0;i<pieces;it+) |
temp = ret res[i];
S_p = temp->get r ptr(0);
d p = answer->get r ptr(prev_rows);
no_rows = sizeof(float)*dim*temp->num_row();
beopy ((char*)s p, (char*)d p, no rows);
prev_rows += temp=->num_row()};
delete temp:
}

new_rtf (answer);
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loc_matrix* matriz_class::scal _mult _mat (loc_matrizx* mat, float scalar, int pleces) {

int dim, i, rows=0, no_rows=0, prev_rows=0;
work class worker [MAX PIECES]:
loc _matrix *ret res[MAX PIECES],

*pm{MAX PIECES],
*answer, *temp;
float *s p, *d_ps

for {i=0;i<pieces;i++) |
workerii] .create () ;

}
dim = mat->num row();

for (i=0;i<pleces;i+t+) {
rows=dim/pieces;
if (dim%pieces>l) rows++;
pmii] = new loc matrix(mat->get_r ptr(no_rows), dim, rows):;
ret_res[i] = worker[il.scal mult work(pm{i]l, scalar);
delete pm[i]l; ’
RO_LOwWs += rows;

}

answer = mat;
for (i=0;i<pieces;i++) {
temp = ret_res[i];
8_p = temp->get r ptr(0);
d p = answer->get r ptr{prev_rows):
no_rows = sizeof (float) *dim*temp->num xrow() ;
beopy ((char*)s_p, (char*)d_p, no_rows);
prev_rows += temp->num row();
delete temp;
}

new_rtf {answer);
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loc_matrizx* matriz class::add mat (loc matrix* matl, loc matrix* mat2, int pieces) {

int dim, i, rows=0, no rows=0, prev_rows={;
work class worker [MAX PIECES];
loc matrix *ret_res[MAX PIECES],

*pm{MAX PIECES],

*wm [MAX_PIECES],

*answer, *temp;
float *s p, *d ps

for (i=0;i<pieces;i++) {
worker{i].create();

}
dim = matl->num row();
for {(i=0;i<pieces;i++) {

rows=dim/pieces;
if (dim¥pieces>l) rows++;

pm{i] = new loc_matrix(matl->get_r ptr(no_rows), dim, rows);
wni{i] = new loc_matrix(mat2->get_r ptr(no_rows), dim, rows):
ret_res[i]l = worker([i].add work{pm[i], wm[il);

delete pmfi};
delete wmiil;
No_rows = rows;
}
answer = matl;
for (i=0;i<pieces;i++) |
temp = ret resli):
5_p = temp->get r ptr(0);
d_p = answer->get r ptr{prev _rows);
ne_rows = sizeof (float) *dim*temp->num row() ;
beopy ({char*)s p, {char*)d_p, no_rows);
prev_rows += temp->num_row() ;
delete temp;
}

new_rtf (answer) ;
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loc_matrix* matrixz class::mult_mat (loc_matrix* matl, loc_matrix* mat2, int pieces) {

int dim, i, rows=0, no_rows=0, prev_rows=0;
work class worker [MAX PIECES];
loc matrix *ret_res[MAX_PIECES],

*om[MAX PIECES],
*answer, *temp;
float *s_p, *d _p;

for (i=0;i<pieces;i++) |
worker[i].create (};

1
dim = matl->num_row{};

for (i=0;i<pieces;i++) |
rows=dim/pieces;
1f (dim%pieces>i) rows++:
pm[i] = new loc_matrix(matl->get r ptr(no_rows), dim, rows);
ret res{i] = worker{i] .mult_work(pm[i], mat2);
delete pmiil;
no_rows += rows;

}

1 (matl->num col () != mat2->num col() |I/*not square*/
matl->num_row() != matZ2->num_row(})
answer = new loc_matrix(dim, dim):
else

answeyr = mati;

for (i=Q;il<pieces;itt+) {
temp = ret res[il;
S_p = temp->get_r ptr(0);
d_p = answer->get_r ptr(prev rows);
no_rows = sizeof (float)*dim*temp->num_row() ;
beoopy {(char*)s_p, {(char*)d p, no _rows};
Prev_rows += temp->num row();
delete temp;
1

new_rtf {answer);
if (matl->num _col () t= mat2->num_col ()} ||/*not square*/

matl->num row() != mat2->num_row(})
delete answer;
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