
Metrics for Evaluating Database Selection Techniques
�

James C. French Allison L. Powell
�

Department of Computer Science
University of Virginia

Charlottesville, VA�
french|alp4g � @cs.virginia.edu

Technical Report CS-99-19
June 18, 1999

Abstract

The increasing availability of online databases and other
information resources in digital libraries has created the
need for efficient and effective algorithms for selecting
databases to search. A number of techniques have been
proposed for query routing or database selection. We have
developed a methodology and metrics that can be used to
directly compare competing techniques. They can also be
used to isolate factors that influence the performance of
these techniques so that we can better understand perfor-
mance issues. In this paper we describe the methodology
we have used to examine the performance of database se-
lection algorithms such as gGlOSS and CORI. In addition
we develop the theory behind a “random” database selec-
tion algorithm and show how it can be used to help analyze
the behavior of realistic database selection algorithms.

1 Introduction

As information resources proliferate on internets and
intranets, algorithms for database selection, distributed
searching and results merging become increasingly impor-
tant. Several investigators have proposed solutions for the
problem of database selection, but in general it is not possi-
ble to compare the results of these inquiries in a meaningful
way. Nor is it the case that there is any reasonable expec-
tation of what good performance would be. In particular,
there has been no discussion of how these methods compare

�
A shorter version of this paper appeared in the International Work-

shop on Internet Data Management (IDM’99) at the 10th International
Conference and Workshop on Database and Expert Systems Applications
(DEXA’99)[2].�

This work supported in part by DARPA contract N66001-97-C-8542
and NASA GSRP NGT5-50062.

to an algorithm that selects databases at random. We inves-
tigate this issue in this paper. We characterize expected be-
havior for an algorithm that creates rankings randomly and
we make concrete what it means to perform better than such
an algorithm with respect to specific metrics.

Distributed searching can be decomposed into three fun-
damental activities: (1) choosing the specific database col-
lections to search; (2) searching the chosen databases; and
(3) merging the results into a cohesive response. Although
there is considerable interest in all these aspects, we focus
specifically on the first activity. Callan et al.[1] call this the
collection selection problem while Gravano et al.[7] refer to
it as the text database resource discovery problem. In prior
work [5, 4, 3] we referred to this as database selection and
we will retain that term here for consistency.

Both Callan et al.[1] and Gravano et al.[6] formulate the
problem similarly. They first assume that they have a collec-
tion of databases that are candidates for search.Then, given
a query, they rank the database collection, that is, they de-
cide in what order to search the databases in the collection.
There is some preferred order in which to search the collec-
tion, but the nature of that preferred order is cast differently
by different researchers. Gravano et al.[6] used so-called���
	��������

ranks as their standard while Callan et al.[1] used
so-called ����� ������

ranks. The specific nature of these stan-
dard baselines is unimportant here; we are interested only
in methodology for calibrating performance against some
prespecified baseline.

Finally, there is an evaluation phase of the work in which
the predicted ranks for queries are compared with the pre-
ferred orderings to decide how well the particular rank-
ing methodology worked. Unfortunately, the nature of this
comparison also differs from research group to research
group. This point will be developed more fully in the sec-
tion on evaluation below. The goal of the work reported here

1

is to provide a consistent framework for direct comparison
of competing methods of database selection.

2 Evaluation Methodology

2.1 The Problem

To state the problem formally, we have a set of databases������� ���
	���������
� � � ���������
that we wish to search to satisfy

some query � . We assume that each database
���

has some
merit, denoted

��	���� � � � ����� � , with respect to the query. We
would like to search the databases in order of decreasing
merit to the query.

Given
���

, � , and
��	���� � � � ����� � , there exists at least one

permutation of the
����� ���

, � ��������������� ���
� � � ���������! such that
��	���� � � � ������� " �!# ��	���� � � � ������� "%$�� � (1)

where & �(' ��)��
� � � �+*-, '
.

We will call a permutation satisfying property 1 a base-
line.

2.2 Issues in Comparison

Given some goal baseline
�

and an algorithm producing
an estimate, . , of that goal, we endeavor to determine the
quality of the estimate by means of some measure

� � . � � �
comparing the estimate to the goal.

Since
� � . � � �

is a comparison of . to
�

, we might like
to evaluate a particular algorithm from multiple viewpoints.
In that case . is constant but

�
or

� � . � � �
might change.

This gives rise to three situations that must be considered.

1. Multiple measures, single baseline:
�/	 � . � � �1032����4 � . � � �+�

This is probably the most common situation. Here we
are evaluating the estimate against the baseline using
multiple yardsticks. This is often useful to expose dif-
ferent aspects of the phenomena under study.

2. Single measure, multiple baselines:
� � . � � 	 �5032���� � . � � �+�

One example of this situation is when the baseline
is parameterized and varying the baseline parameters
while holding the measure constant is the technique
being used.

3. Multiple measures, multiple baselines:
�/	 � . � � 	 �5032����4 � . � � ��+�

This situation occurs when measuring against multiple
baselines and no single measure is appropriate for all
baselines.

There is no standardization in the approach taken here ei-
ther. Evaluations reported in the literature are quite idiosyn-
cratic, compounding the problem of comparing methods for
collection selection.

2.3 Properties of Measures

It is often useful in an evaluation to understand the prop-
erties of the measures being employed. At the very least we
want to know:

1. the value of the measure when the baseline is applied
to itself,

� � � � � �
;

2. the value of the measure when the worst configuration
of the baseline, say 6� , is applied to the baseline, i.e.,� � 6� � � �

; and

3. whether the measure is symmetric,
� �879�+: � �

� �;:<�=7 �
.

Other properties might be important as well. To be useful a
ranking measure should also have the following property:

� � 6� � � �!> � � . � � �?> � � � � � �+�
� � 6� � � �

is the operational lower bound on performance. If
a ranking measure

� �879�+: �@#BA
and satisfies this property

then it can be normalized to be in C A3� '�D .
2.4 Properties of Rankings

There are two situations under which we would say that
two rankings . 	 and . are equivalent. The two scenarios
are:

1. equivalence classes of databases, i.e., one or more
databases have identical merit; and

2. when two rankings have the same value under the mea-
sure, i.e.,

� � . 	�� � � � � � . E� � �
.

In principle these two situations might have different im-
plications. In practice, equivalence (1) above should imply
(2), but the converse need not hold.

2.5 Some Examples of Baselines for Comparison

There are many possible baselines that could be used for
performance evaluation. We discuss four here.

Count-Based Ranking (CBR): The baseline is constructed
by ordering the databases in decreasing order of the
number of records contained in the database that sat-
isfy a Boolean predicate.

2

� �
	��������
: In [6] Gravano et al. assume that (a) all

databases employ the same weighting strategies and
similarity algorithm; and (b) the only documents in a
database that are useful to a query � are those with a
similarity greater than some threshold

. With these

assumptions in mind they define

� � � ��� 	����
�� � � ����� � � ��
	�������
� ��� ��� ����� � ��� � � �����

where�
����� �� � � ����� � � � � � ����� � ��� � � �����! � �

The
� �
	��������

rank is then formed by sorting the
databases with respect to their goodness to � .

Relevance-Based Ranking (RBR): The baseline is con-
structed by ordering the databases in decreasing or-
der of the number of relevant records contained in the
database.

Size-based Ranking (SBR): Databases are ordered by the
total number of documents they contain. Note that this
ranking is constant for all queries.

There are many other possible rankings. Those listed above
are representative of rankings that have been reported in
the literature. For example, CBR was used by Gravano et
al.[7] for evaluating GlOSS;

� �
	��������
was used by Gravano

et al.[6] to report their performance evaluation of gGlOSS;
RBR was used by Callan et al.[1] for their evaluation of
CORI and by French et al.[5, 4, 3] in their investigations;
SBR was used by French et al.[4, 3] to isolate and study
a bias toward large collections that is exhibited by some
database selection algorithms.

Note that when evaluating a set of queries " , we will
generally have a separate baseline instance for each � � " .
SBR is one exception to this.

2.6 General Evaluation Strategy

Most evaluations are conducted over a query set " and
result in aggregate summary measures of the following
form. '� " � ���	�# � � . � � � � �
Note that

� � . � � � � � might itself already be an aggregate
measure.

2.7 Specific Metrics for Comparison

There is no general agreement on how this type of com-
parison should be done. The general problem is that we
are given a baseline ranking for some query and a ranking
produced by some collection selection algorithm. The goal

is to decide how well the candidate ranking approximates
the baseline ranking. We describe some of the approaches
given in the literature and discuss new measures here.

2.7.1 Mean Squared Error

Callan et al.[1] reported their comparisons using mean
squared error of the predicted ranks and the desired ranks.
So given a collection of

*
databases to rank for any candi-

date ranking we compute

$&% . � '
*

�� � ' 	 �%� �(� 	 � ����� ��������� , 	�� � � ����� �����������

where
� �(� 	 � ����� ���������

is the baseline or desired rank and	�� � � ����� ��������� is the predicted rank for
�����

.
This is a widely used measure of dispersion but does not

give us any real intuition about ranking quality. We might
benefit here from a comparison with worst case behavior.
For any baseline

�
, the worst case configuration, 6� , is

simply the reverse ranking. We can calculate the sum of
squared differences as follows.

�)�4, ' � +* �)�4,-,
� .* �)� ,0/ � !*21�1�11�1�13* �4, ,5� � * � ' ,5� �
� �� � ' 	 C �4, �%) �1, ' � D

� � �)� , ' �, (2)

We can use Eq. 2 to normalize the sum of squared differ-
ences and that might be more instructive.

2.7.2 Recall and Precision Analogs

In this section we discuss performance metrics that are
analogous to the well known IR metrics of

� 	�6 ���
and

� � 	�6 �7� � � � . We begin by introducing some terminology and
notation that tries to make this analysis neutral and general-
izes it to include a variety of baselines.

Recall that for each query we provide a baseline ranking,
say

�
, that represents a desired goal or query plan. Given

some algorithm that produces an estimated ranking, . , our
goal is to decide how well . approximates

�
.

To begin, we assume that each database
���

in the collec-
tion has some merit,

��	���� � � � ����� � , to the query � . We ex-
pect the baseline to be expressed in terms of this merit; we
expect the estimated ranking to be formulated by implicitly
or explicitly estimating merit.

Let
��� ��8 and

����9 8 denote the database in the
�
-th ranked

position of rankings
�

and . respectively. Let

� � � ��	���� � � � ����� ��8 �;:�<>= . � � ��	���� � � � ������9 8 �
3

denote the merit associated with the
�
-th ranked database in

the baseline and estimated rankings respectively. The total
merit,

$
, is given by

$ ��� �� ' 	 � �
We note that for viable baseline rankings it should al-

ways be the case that
� � # � � � 	�� � � ' � � � * , ' �

For the baselines discussed here this is always true because
we assume that the baseline ranking is determined by sort-
ing the databases in decreasing order of merit for some ap-
propriate definition of merit. However, it is not generally
the case that . � # . � � 	 . The performance evaluation prob-
lem discussed here is an attempt to quantify the degree to
which this is true for any estimated ranking.

This point needs a bit of explanation. Note that . � is
the actual merit associated with

���
�
. The estimators will

rank databases in decreasing order of estimated merit. The
degree to which . � # . � � 	 reflects the accuracy of the
algorithm’s estimates of . � .

Gravano et al.[6] defined � � as follows.

� � � . � � � � � �� ' 	 . �� �� ' 	 � � � (3)

� � � . � � �
is a measure of how much of the available merit

in the top
�

ranked databases of the baseline has been ac-
cumulated via the top

�
databases in the estimated ranking.

This is a variant of the normalized cumulative recall mea-
sure defined by Tomasic et al.[12] and later generalized by
Gravano et al.[8].

We propose an alternative definition of a recall-like mea-
sure that can be used to present performance results. First
we need one more definition. Let��� � � 2��	��
��
>:�� � ���� A :�<>= � � � 	 � A3�
Intuitively,

� �
is the ordinal position in the ranking of the

last database with non-zero merit; it is the breakpoint be-
tween the useful and useless databases. Clearly

� � > *
and, moreover, the total merit,

$
, of a baseline

�
is given

by
$ ��� ���� ' 	 � � . With this definition we define our alter-

native “recall” metric as follows.
�
� � � . � � � � � �� ' 	 . �� � �� ' 	 � � � (4)

The denominator is just the total merit contributed by all the
databases that are useful to the query. Thus,

�
� � � . � � �

is a
measure of how much of the total merit has been accumu-
lated via the top

�
databases in the estimated ranking. This

measure has also been proposed by Lu et al.[11] and was
used to report results by French et al.[5, 4, 3].

These two measures are clearly related. Since

� � � . � � � �� � ' 	 � � � �
� � � . � � � ���� � ' 	 � � � (5)

we have � � � . � � � # �
� � � . � � �

and � � � � . � � � �
�
� � � � . � � �

. (Note that in the remainder of the paper we
will simplify the notation as follows: � � � � . � � � � � �
and similarly for � � .)
Theorem 1

�
� � � . � � � � � � � . � � � 1 �� � � � � � �

Proof: Follows directly from Equation 5.
From the theorem we can see that another way to inter-

pret � � � . � � �
is to regard it as the rate at which the avail-

able baseline merit is being accumulated.
Gravano et al.[6] have also proposed a precision-related

measure, � � � . � � �
. It is defined as follows.

� � � . � � � � � � ��� ��� ��� � � . � � ��	���� � � � ����� � A�� �� � ��� � � . � � (6)

This gives the fraction of the top
�

databases in the esti-
mated ranking that have non-zero merit. (

� ��� � � . �
is just

the set of databases given in the first
�

ranks.)
Some additional properties follow.

1. � � � . � � �?> � � � � � � �
and � � � . � � �?> � � � � � � �

2. � � � � � � � �('
and � � � � � � � � '

3.
�
� � � � � � �?> '

In the remainder of the paper we simplify the notation by
dropping all arguments to the measures when it is clear that
we are referring to a specific algorithm’s estimates (.) and
measuring against a prespecified baseline (

�
).

3 Randomly Generated Rankings

Another approach to evaluating database selection algo-
rithms is to ask how they compare to randomly generated
rankings. Losee[10] has suggested evaluating IR system
performance analytically. This approach can be extended
to database selection algorithms and lets us derive the ex-
pected performance of an algorithm that generates rankings
randomly. We can then use this result to examine the behav-
ior of other algorithms specifically to see if they have better
performance than an algorithm that generates rankings ran-
domly. We develop these ideas further in this section.

Definition 1 Given a collection of databases,� ���
	
��������
� � � ������� �
, a random ranking algorithm is one in

which each of the
*��

permutations is equally likely.

Lemma 1 Given a random ranking of
*

databases, let
7 �

denote the number of databases in the first
�

ranks having
nonzero merit.

7 � is a hypergeometric random variable
with expected value given by .�C 7 � D � � 1 � ��� *

.

Proof: This follows from the theorem in the appendix
where

$ � *
, and � � � �

.

4

Theorem 2 The expected value of the precision, .�C � � D , of
the first n elements of a randomly generated ranking is given
by

.�C � � D � � �
* �

Proof: Given a random ranking, let
7 � denote the number

of databases in the first n ranks having nonzero merit. Then

� � � 7 �� 2�� ��
>:�� .�C � � D � .�C 7 � D� �

The result now follows directly from Lemma 1.
We would expect a good ranking algorithm to have sig-

nificantly greater precision.

Corollary 2.1 .�C � � D � ���� .

We have fully characterized � � for randomly generated
rankings. Now let’s take a look at � � and

�
� � for these

rankings.

Condition 1 The total merit
$

is spread evenly over all
� �

databases.

The net effect of this condition is to make all rankings
with � � �('

equivalent.

Theorem 3 Let
7 � denote the number of databases having

nonzero merit in the first n ranks of a randomly generated
ranking. If Condition 1 holds then

1. � � � � �
2. .�C � � D � � ��� *
3.

�
� � � 7 � � � �

4. .�C �� � D � � � *
Proof: Condition 1 implies that each database with nonzero
merit contributes

$ � � �
merit to the accumulated total.

Part 1:

� � � 7 � 1 � $ � � � �� 1 � $ � � � � � 7 �� � � � �
Part 2: Taking expectations from Part 1 we have .�C � � D<�
.�C � � D . The result now follows directly from Theorem 2.
Part 3: �

� � � 7 � 1 � $ � � � �$ � 7 �� � �
Part 4: From Part 3 and Lemma 1 we have

.�C �� � D � .�C 7 � D� � � �
* �

Corollary 3.1 If Condition 1 holds then for all rankings in
which � � �('

, we have � � �('
and

�
� � � � � � �

,
� > � �

.

Corollary 3.2 If Condition 1 holds then

�
� � � �� � � � � �� � � �

where
� > � �

.

Proof: From Theorem 3(3)and Theorem 3(1).

Theorem 4 .�C �� � D � ��
Proof:

.�C �� � D � ������� � � � =	� ��
� ��� � :���� ��
� �� � 1 ������� � � � =	� ��
� � ����
 = :�� :��>: 2 �$
� ����� ���$ � �

*
Note that this is a stronger result than Theorem 3(4) since

it does not require Condition 1. So Theorem 4 can be used
to determine the expected value of

�
� � for an arbitrary base-

line.

Corollary 4.1 .�C � � D � .�C �� � D � .�C � � D � ���� .

Proof: By definition � � � �
� � , so by Theorem 4 � � ��

� � � ���� . Together with Corollary 2.1 this completes the
proof.

Note that Corollary 4.1 explains why the
� � � � � � � scat-

ter plots tend to cluster around the line � ���
. (See, for

example, Figure 5 in French et al.[5].)

Theorem 5 .�C � � D � ����8 � ��� 8�.�C �� � D
Proof: From Theorem 1 we have

�
� � � . � � � � � � � . � � � 1 �� � � � � � �+�

Taking expectations yields

.�C �� � � . � � � D � �
� � � � � � � 1 .�C � � � . � � � D

since .�C 6�7 D � 6 .�C 7 D . The desired result follows from�
� � � � � � � � ���8 � ��� 8� .

The following corollary to Theorem 5 is immediate from
Theorem 4.

Corollary 5.1 .�C � � D � � �� � �8 � ��� 8
4 An Example

In this section we show the performance of several
database selection techniques, evaluated using the measures
described in this paper. The plots are taken from French et

5

al.[4], a recent performance study of database selection al-
gorithms. Figures 1, 2 and 3 contain data from Figures 4, 5
and 6 of [4], respectively.

Here, we include a new comparison of that data to the
randomly generated ranking approach introduced in this pa-
per.

0 50 100 150 200

n

0.0

0.2

0.4

0.6

0.8

1.0

P
(n

)

RBR
CORI
Ideal(0)
SBR
E[Pn]

Figure 1. Comparison of approaches using � � .

In Figures 1, 2 and 3, we show the performance of the
CORI and gGlOSS algorithms in relation to the best pos-
sible performance (labelled as RBR), the performance of
the SBR baseline and the expected performance of a ran-
domly generated ranking. The results shown are averaged
over 100 queries. On average, CORI, gGlOSS and the SBR
baseline all outperform the expected performance of a ran-
domly generated ranking by a large margin. However, it is
also illustrative to consider query-by-query performance.

Using the same data that was used to generate Figure 3,
we compared the algorithms to the expected value of

�
� �

given randomly generated rankings. For each
�

Table 1
records the number of queries for which each algorithm per-
formed worse than the expected value given randomly gen-
erated rankings. Since we evaluated 100 queries at each

�
,

the values in the table may be interpreted as the percentage
of queries for which the algorithm performed worse than the
random algorithm. In [3] we concluded that for low values
of
�

there was not much difference in the performance of
the competing algorithms. This conclusion was reached by
examining Figure 3 and Figure 2. The table tells a differ-
ent story and implies that CORI has fewer failures than the
other algorithms tested. This is an additional data point for
consideration when evaluating such algorithms.

0 50 100 150 200

n

0.0

0.2

0.4

0.6

0.8

1.0

R
(n

)

RBR
CORI
Ideal(0)
SBR
E[Rn]

Figure 2. Comparison of approaches using � � .

The table was truncated at
� � ,)

.
� �
	�����;A
�

had a small
number of failures through

� ��� ,
, while

% � �
continued

through
� ��� /

. No algorithm had a failure beyond
� ��� /

.

5 Conclusions

We have described metrics and a methodology for com-
paring database selection algorithms. This methodology has
been used in earlier studies [5, 4, 3]. The main contribution
of this paper was to introduce the notion of randomly gen-
erated rankings and to demonstrate how they can be used
to establish an operational lower bound on performance.
We derived the expected behavior of all our performance
measures and gave an explicit example using

�
� � to demon-

strate how a comparison could be done. Clearly an effective
database selection algorithm should outperform randomly
generated rankings in most cases particularly when useful
data is unevenly distributed across database sites. However,
there is at least one case when one could only hope to do
as well as a randomly generated ranking and that is when
all the useful data is uniformly distributed across all the
databases. In that case every ranking is as good as every
other, so no particular ranking would be preferred. By this
argument, our analysis also gives a tight lower bound for
expected behavior of database selection algorithms.

Appendix

The following is taken from Larson[9] but can be found
in any introductory probability textbook.

Definition 2 An urn contains
$

balls of which � are
white. Let

7
denote the number of white balls that occur

6

0 50 100 150 200

n

0.0

0.2

0.4

0.6

0.8

1.0

R
(n

)

RBR
CORI
Ideal(0)
SBR
E[R^n]

^

Figure 3. Comparison of approaches using
�
� � .

in a sample of
�

balls drawn at random from the urn with-
out replacement.

7
is called the hypergeometric random

variable.

Theorem 6 If
7

is the hypergeometric random variable,
then

��� ��� � �
� � ��� � $, ��4,0���� $ � �

��� � A3� ' �
� � � � � �

The mean, ��� , and variance, � � , of the hypergeometric
random variable

7
are given by

��� � � �$
and � � � � �$ 1 $, �$ 1 $,5�$, '
respectively.

Acknowledgement. We would like to thank Travis Em-
mitt for a careful reading of an early draft of this paper.

References

[1] J. P. Callan, Z. Lu, and W. B. Croft. Searching Distributed
Collections with Inference Networks. In Proceedings of the
18th International Conference on Research and Develop-
ment in Information Retrieval, pages 21–29, 1995.

[2] J. C. French and A. L. Powell. Metrics for Evaluating
Database Selection Techniques. In Proc. International Work-
shop on Internet Data Management (IDM’99) at the 10th In-
ternational Conference and Workshop on Database and Ex-
pert Systems Applications (DEXA’99), 1999.

n SBR 	�
����������� CORI RBR
1 38 19 13 0
2 33 16 8 0
3 31 15 8 0
4 25 14 5 0
5 22 12 3 0
6 19 11 3 0
7 20 9 4 0
8 17 8 4 0
9 14 5 3 0
10 16 6 3 0
11 13 5 2 0
12 13 5 1 0
13 14 4 1 0
14 11 4 0 0
15 10 4 0 0
16 11 4 0 0
17 12 4 0 0
18 11 4 0 0
19 11 4 0 0
20 11 4 0 0
21 10 4 0 0
22 11 4 0 0
23 10 3 0 0
24 5 3 0 0
25 6 3 0 0
26 6 3 0 0
27 6 3 0 0
28 8 3 0 0
29 8 3 0 0
30 7 3 0 0
31 6 3 0 0
32 7 3 0 0

Table 1. Number of times each algorithm achieved
a lower value of

�
� � than a random algorithm.

[3] J. C. French, A. L. Powell, and J. Callan. Effective and Ef-
ficient Automatic Database Selection. Technical Report CS-
99-08, Department of Computer Science, University of Vir-
ginia, February 1999.

[4] J. C. French, A. L. Powell, J. Callan, C. L. Viles, T. Em-
mitt, K. J. Prey, and Y. Mou. Comparing the Performance of
Database Selection Algorithms. In Proceedings of the 22nd
International Conference on Research and Development in
Information Retrieval, 1999. To appear.

[5] J. C. French, A. L. Powell, C. L. Viles, T. Emmitt, and K. J.
Prey. Evaluating Database Selection Techniques: A Testbed
and Experiment. In W. B. Croft, A. Moffat, and C. J. van
Rijsbergen, editors, Proceedings of the 21st Annual Inter-
national ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, pages 121–129, Melbourne,
Australia, 24-28 August 1998.

[6] L. Gravano and H. Garcia-Molina. Generalizing GlOSS to
Vector-Space Databases and Broker Hierarchies. In Pro-

7

ceedings of the 21st International Conference on Very Large
Databases (VLDB), Zurich, Switzerland, 1995.

[7] L. Gravano, H. Garcia-Molina, and A. Tomasic. The Ef-
fectiveness of GlOSS for the Text Database Discovery Prob-
lem. In SIGMOD94, pages 126–137, Minneapolis, MN, May
1994.

[8] L. Gravano, H. Garcia-Molina, and A. Tomasic. Precision
and Recall of GlOSS Estimators for Database Discovery. In
Proceedings of the 3rd International Conference on Paral-
lel and D istributed Information Systems, pages 103–106,
Austin, TX, September 1994.

[9] H. J. Larson. Introduction to Probability Theory and Sta-
tistical Inference, (2nd. edition). John Wileyi & Sons, Inc.,
1974.

[10] R. M. Losee. Determining Information Retrieval and Fil-
tering Performance without Experimentation. Information
Processing & Management, 31(4):555–572, 1995.

[11] Z. Lu, J. P. Callan, and W. B. Croft. Measures in collection
ranking evaluation. Technical Report TR-96-39, Computer
Science Department, University of Massachusetts, 1996.

[12] A. Tomasic, L. Gravano, C. Lue, P. Schwarz, and L. Haas.
Data Structures for Efficient Broker Implementation. ACM
Transactions on Information Systems, 15(3):223–253, July
1997.

8

