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1 Introduction
Timestamp-based authentication protocols rely on real-time synchronisation between the principals involved.

This synchronisation, which involves all concerned principals agreeing on the notion of their time, is often difficult to
achieve, and hence nonce-based protocols were developed. However, the principals in a timestamp-based
authentication protocol can be made to synchronise to logical time. Efficient logical time systems can guarantee that
processors (or principals in this case) agree on a logical time. Using this property, new protocols can be developed for
various communication paradigms. We show one such protocol for interactive communication between two parties
using a trusted authentication server.

2 Authentication Issues
In this section we present a brief background of traditional authentication issues. In particular, we wish to

highlight the evolutionary progress of protocols. We follow standard notation for displaying messages:
• A → B | … denotes a message from principalA to principalB
• {X} K denotes a message X encrypted under the key K
• NAB denotes a nonce generated by principalA and given to principalB
• KAB denotes a key shared by principalsA andB

In addition, we make the following assumptions for the sake of discussion:
• A andB are the principals in the scenario wishing to communicate, withA initiating.
• S is the trusted authentication server, which is the authoritative source of information regarding the keys that

are utilised by the principals on the network.
• I is the intruder capable of reading unencrypted messages, inserting, removing or replaying any and all

messages, but incapable of decrypting messages within a reasonable amount of time.

2.1 Needham-Schroeder protocols
Needham and Schroeder present security protocols

addressing three types of network communications:
interactive communication, one-way communication and
signed communication that can be authenticated by a third
party [Need78]. Figure1 shows the Needham-Schroeder
protocol for interactive communication betweenA and B
using secret keys* . The sequence of messages is as below:

A → S | NAS, A, B
S → A | {NAS, B, KAB, {A, K AB} KBS} KAS

A → B | {A, K AB} KBS

B → A | {NBA} KAB

A → B | { f(NBA)} KAB

Similar figures can be drawn for the other protocols proposed
by the authors. However, we will concentrate on this protocol
for the rest of this paper, unless otherwise mentioned.

* The order of the fields in the messages may have been changed for the sake of continuity in the discussion. It is
obvious that these changes in order do not affect the protocol.
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FIGURE 1: Needham-Schroeder protocol
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Needham and Schroeder avoid using timestamps in their
protocol because it presupposes a network-wide reliable
source of time. However, Denning and Sacco point out that
the Needham-Schroeder protocols are not secure when the
session keys are compromised [Denn81]. They propose a
solution with fewer messages based on timestamps that
would prevent replays of messages if a key is compromised.
T is the timestamp of the corresponding message in their
protocol (Figure2). The sequence of messages follows:

A → S | A, B
S → A | {T, B, KAB, {T, A, KAB} KBS} KAS

A → B | {T, A, KAB} KBS

Principals receiving messages are expected to check the
timestamp of the message with their own times, factor in
normal discrepancies between their clocks and the server’s clock (∆t1), and account for expected network delay times
(∆t2). The authors suggest thatA andB can verify that their messages are not replays by checking that|Clock − T| <
∆t1 + ∆t2

†. These measures are estimates and cannot be expected to always hold in a real system. Hence, if a message
arrives slightly later than expected,B cannot distinguish between an intruder attack and an abnormal delay.

Accordingly, Needham and Schroeder suggest a
modification to their original protocol, shown in Figure3,
that eliminates the timestamp [Need87]. The steps of the
protocol follow:

A → B | A
B → A | {NBA, A} KBS

A → S | NAS, A, B, {NBA, A} KBS

S → A | {NAS, B, KAB, {NBA, A, KAB} KBS} KAS

A → B | {NBA, A, KAB} KBS

It is noteworthy that the above protocols require double
encryption. Otway and Rees remove that requirement, thus
making their protocol efficient as well as symmetric
[Otway87]. The Otway-Rees protocol, shown in Figure4,
also reduces the number of messages to four. Assuming C to
be a conversation identifier betweenA andB, the steps in the
protocol are:

A → B | C, A, B, {NAS, C, A, B}KAS

B → S | C, A, B, {NAS, C, A, B}KAS, {NBS, C, A, B}KBS

S → B | C, {NAS, KAB} KAS, {NBS, KAB} KBS

B → A | C, {NAS, KAB} KAS

Notice that this protocol makes extensive use of the keys
shared between the principals andS. These keys, as opposed
to the session key KAB, are expected to be long-standing. It is
thus slightly inadvisable to encode too many messages with them as that gives an intruder more data to work on while
attempting to crack these keys.

† Incidentally, this equation itself is flawed in the case ofB. Notice that the third protocol message originates fromS,
but reachesB via A. Also,A has to extract this third message from the second message, a decryption operation that
requires some non-zero time. Therefore, for the third message,B’s freshness check would have to be|Clock − T| <
∆t1 + 2∆t2 + t3, where t3 representsB’s estimate ofA’s processing speed!
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FIGURE 2: Denning-Sacco modification
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3 Logical Time Systems
We now digress briefly from authentication protocols to present a background on logical time systems. Logical

time was first proposed by Lamport in [Lamp78]. Lamport suggested the use of the “happened-before” relationship,
which forms a partial ordering over events in a distributed system. Assume a system composed of a collection of
processes, each of which is a sequence of events. The “happens-before” relationship, denoted by “→”, is defined as:

• If a andb are events on the same process, anda occurs beforeb, thena → b
• If a is the send of a message andb is the corresponding receive, thena → b
• The transitive closure over the above two conditions

This partial order can be extended into a total order by defining an arbitrary total order for the processes that breaks
ties between events for which the “happens-before” relationship is undecidable. Virtual time, proposed by Jefferson
in [Jeff85], is another logical time system. In this, every event is labelled with a clock value from a totally ordered
virtual time scale in accordance with Lamport’s clock conditions ([Lamp78]). Virtual time is a global temporal
coordinate system imposed on a distributed computation. Jefferson visualised virtual time as a one-dimensional
quantity, but later researchers have proposed vector ([Matt89]) and matrix ([Sarin87]) times. A crucial difference
between Lamportian and virtual time systems is in the assignment of times to events. In the former, events are
assigned times as they occur, whereas in the latter, the times assigned to events are pre-determined and fixed.

3.1 Isotach Systems
Isotach time is an extension of Lamport’s logical time. An isotach network uses isotach time to reduce overhead

arising from the need for synchronisation among multiple processors in a parallel system ([Reyn89] [Will91]). With
isotach time, a processor can control the time at which the messages that it sends are executed by the receiving
processor. Isotach logical times are lexicographically ordered n-tuples of integers, commonly of the form (pulse, pid,
rank), wherepulse denotes the progression in the time perceived by the entire network, pid is the identifier of the
process that issued the message timestamped with isotach time, andrank is the issue rank of the message, i.e.,rank =
r if the message is therth message issued by thepidth process. Isotach networks maintain the isotach invariant: a
message is received exactly d pulses after it is sent, whered is the logical distance the message travels. Since a
processing element (PE) can control the logical time of receipt of any message it sends in an isotach system, the
isotach network gives the power to enforce properties like atomicity and sequential consistency.

3.1.1 Sequential Consistency
In a sequentially consistent execution, the overall order of execution of operations is consistent with the order of

execution implied by each individual process’ sequential program [Lamp79]. In conventional systems, sequential
consistency could be enforced by disallowing pipelining. Hence, a process would have to wait for information telling
it of the execution of its last outstanding operation before it can issue its next operation. An isotach network imposes
no such restrictions on pipelining. To enforce sequential consistency in isotach systems, a processor timestamps each
send operation to be received in a pulse greater than or equal to the pulse in which the preceding operation was sent.

3.1.2 Atomicity
Conventional systems enforce atomicity with locks. However, the penalties associated with locks are: lock

maintenance overhead, overly-restrictive access to shared objects, and the possibility of deadlock and livelock.
Isotach systems use atomic actions to enforce atomicity. An atomic action issued by a process is a group of operations
appearing to be executed indivisibly (without interleaving with other operations). Atomic actions can beflat or
structur ed. Flat atomic actions have no data dependences among shared variables, whereas structured atomic actions
have data dependences among the shared variables. A detailed discussion about atomic actions is inessential for our
purposes. Interested readers may refer to [Will93] for a more complete discussion. However, in the interests of
showing how processors can control the execute times of messages at their destination, we present an example using
flat atomic actions.
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A processor in an isotach system
executes flat atomic actions by sending all
operations in each atomic action to be
received at the destinations in the same
pulse. Consider the network in Figure5. A
and B are shared variables in memory
modules MMA and MMB respectively. PE1
and PE2 are processing elements. Switches
interconnect the elements. PE1 atomically
readsA andB, and PE2 atomically writes A
and B. PE1 and PE2 could execute their
atomic actions asynchronously as follows:
PE1 sends theread on A one time pulse
after it sends theread onB, so that both the
reads reach their destinations in the same
pulse. PE2 sends itswrite on B one pulse
after it sends thewrite onA, again to ensure
that both thewrites get to their destinations
in the same pulse. By virtue of the isotach
invariant, both operations in each atomic
action are received in the same pulse. If all
four operations happen to reach their
destinations in the same time pulse, the
executions will still be atomic because the operations in the same pulse will be executed in order ofpid of the sender.

3.2 Other Logical Time Systems
In the interest of brevity we defer discussion on the suitability of other logical time systems to our protocol.

4 Authentication based on Logical Time
Previously-considered authentication protocols, with the exception of the Denning-Sacco protocol, were nonce-

based because it was difficult to construct a system of processes that agreed on time. The Denning-Sacco protocol
attempted to address this by accounting for possible skews between the clocks of various principals and message
transmission delays. However, the problem of globally synchronised real-time clocks is hard. On the other hand, the
problem of loosely-synchronised logical-time clocks has been solved by isotach and other systems. Therefore, a
timestamp-based protocol employing logical time holds more promise than a similar protocol employing real-time.
There are two aspects to the marriage between logical time systems and authentication. One aspect is proposing a
new authentication protocol by exploiting the guarantees a logical time system offers. The other aspect is
demonstrating the ease with which authentication can be embedded in a logical time system.

4.1 Protocol
Our new protocol is succinctly summed up by Figure6.

We list the protocol steps below:
A → S | t, A, B
S → A | {t+1, A, B, KAB} KAS

S → B | {t+1, A, B, KAB} KBS

In words, at logical timet, A expresses toS an intent to
communicate withB. (In the context of an isotach-based
system,A ensures thatS executes this message at timet.) S
responds at timet+1‡ by sending out a valid session key for A
andB. The key is sent toA encoded under KAS, and toB
encoded under KBS. Since these keys are shared only
between the involved principals, an intruderI cannot draw
any meaning from the encrypted messages.

FIGURE 5: Flat Atomic Actions on an Isotach Network
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4.2 Resistance to Intruder Attacks
In isotach-based logical time systems, the logical time associated with a message is inserted by the system itself.+

However, we will assume the intruder capable of bypassing this feature and forging times. The intruderI could
modify unencrypted messages, and remove or insert any and all messages. Removing the first message causes a
denial of service, an attack that is not addressed well by most protocols, including ours.I could modify the
timestamp of the first message tot′, but this would causeA to become suspicious when it sees KAB arrive att′+1. Of
course, ift′<t, S would get a message from its past, causing it to become suspicious because in an isotach system a
process can get messages only in its present or immediate future.I could change any of the principals in the first
message, resulting in denial of service. With the messages timestampedt+1, the worstI could do is remove one or
both messages. Clearly, a replay attack will not work because bothA andB can detect the discrepancy this would
cause in the progression of logical time. Also,I could not forge any of these messages because it does not possess
KAS or KBS. If I removes the message sent toB, then whenA begins to communicate withB, presumably att+2, B
would not understand that message, not being in possession of KAB. Since the only reason such a scenario could have
occurred is due to an intruder attack,B could raise a warning. Lastly, if I removes the message sent toA, A could
progress its logical time and assumeS’s non-response to be a denial of service caused by an intruder attack.

4.3 Formal Analysis
We now formally analyse our protocol using BAN Logic. BAN is a simple doxastic logic that describes the

beliefs of trustworthy parties involved in communication and the evolution of these beliefs as a result of
communication. An involved description of BAN is in [Burr90]. The idealised protocol is as below:

A → S | t, A, B
S → A | {t+1, A  B}KAS

S → B | {t+1, A  B}KBS

To analyse our protocol, we first give the following hypotheses:
A believes A  S, B believes B  S,
S believes A  S, S believes B  S,
A believes (Scontrols A  B), B believes (Scontrols A  B),
A believes fresh(t+1), B believes fresh(t+1),
S believes A  B

The steps of the proof are:
A receives the message directed to it. By annotation, A sees {t+1, A  B}KAS

Since we have the hypothesis A believes A  S,
the message-meaning rule for shared keys applies and yields A believes Ssaid (t+1, A  B)
We also have the hypothesis A believes fresh(t+1)
The nonce-verification rule applies and yields A believes Sbelieves (t+1, A  B)
We break the conjunction to yield A believes Sbelieves A  B
Then, we instantiate K to KAB in the hypothesis A believes Scontrols A  B
to get the more concrete A believes Scontrols A  B
Finally, the jurisdiction rule applies and yields A believes A  B . . . . . . . . . . . . .(1)
Similar reasoning applied toB yields B believes A  B  . . . . . . . . . . . . .(2)

An isotach-based server is expected to ensure bothA andB receive KAB in the same logical time. Thus, whenA andB
receive their messages, it is perfectly reasonable for them to believe that the other party would also have received a
similar message fromS. Note that neitherA norB knows whether the other has received the key or not, but both of
thembelieve that the other does. Thus, one could proceed in the proof as follows:

B receives the message directed to it. By knowledge of server, B believes A sees {t+1, A  B}KAS

Applying the same transformations as in the first 8 steps, B believes A believes A  B  . . . .(3)
Performing the same reasoning on A’s behalf, A believes B believes A  B  . . . .(4)

‡ In general, the time at whichS responds could bet+p, wherep is known beforehand.p could be a measure of the
logical distance between the principals and the timeS is likely to take before producing KAB.

+ The isotach discussion of this requires a lengthy digression into the Switch Interface Unit (SIU), which we will
postpone for the moment. It suffices to say that the application may not know about the logical time at which its own
processor is. Since this does not detract from our proposal, we blur the distinction between the process (principal)
and its processor-switch pair.
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As noted in [Burr90], the four guarantees, labelled 1 through 4, make our protocol stronger than most others. The
caveats to BAN Logic are well-known ([Ness90] [Boyd93]), and it is recommended that other logics also be used to
test the protocol.

4.4 Benefits of Appl ying Logical Time to A uthentication
As we have seen in earlier sections, assuming a logical time system underlying the actions of principals enables

us to formulate a new protocol. The advantages of this protocol over some existing protocols are:
• Fewer messages: Our protocol employs only three messages, one of which is unencrypted. Fewer messages

implies easier analysis and also increased efficiency due to fewer encryption opportunities. In addition, our
messages are very short.

• No double encryption: The two encrypted messages in our protocol are encrypted just once. This is feasible
because there is no exchange between the principals desiring to communicate until actual data transmission.

• Low usage of shared keys: Our protocol utilises the keys shared between the server and principals just
once. Unlike session keys that are expected to be short-lived, shared keys are expected to be long-lasting.
However, using them often gives a potential intruder more data to work on in attempting to crack them.
Therefore, sparse usage of shared keys is a significant advantage.

• Mutating keys: PrincipalsA andB could change their session key KAB at pre-determined times. This could
be done by the server S handing out a list of keys with associated logical times instead of just the one key
during the authentication sequence.A andB (andS) will be loosely synchronised as long as they stay on the
logical time network. Therefore, assumingS hands out the same list of key-time pairs to bothA andB, all
concerned parties can be sure that the session keys will mutate predictably at the correct times.

• Symmetric: Our protocol is symmetric in its treatment of the principals.
• Optional continuance: A, B andS must adhere to the logical time system in order thatA andB achieve

mutual authentication. However, after receiving the session key and sending the first message at timet+2,
bothA andB need not adhere to the logical time system. In effect,A andB could “plug in” and “plug out” of
the logical time system whenever they wish to achieve mutual authentication. Thus, the overhead of logical
time remains only for authentication purposes.

• Scalable communication: Insufficient literature exists on how existing protocols scale in the face of
communication topologies that are different from the standard two-party case shown here. A communication
topology that involves three parties sharing a common key, thus indulging in some sort of conferencing, is
not far-fetched. Intuitively, our protocol scales better than existing protocols in terms of the number of
messages that need to be sent in order for the key to be distributed and mutual authentication achieved.

4.5 Benefits of Appl ying A uthentication to Logical Time Systems
We are aware of applications for logical time systems that could utilise authentication among principals. An

example system would be a transaction-based system involving financial institutions, wherein each institution must
authenticate itself to the other before initiating a transaction. Such applications also require atomicity and sequential
consistency — features provided by isotach-like systems. Pending implementation of isotach systems, we can only
speculate on the extent of applicability authentication will have for systems desirous of logical time.

5 Conc lusions
We proposed a new authentication protocol based on logical time. Loosely-synchronised processors are possible

under isotach systems. Using this property, principals in loose synchrony with an authentication server can achieve
mutual authentication using fewer messages and no double encryption. We analysed our protocol informally and
formally using BAN. We believe isotach-based applications can easily exploit authentication.

A more complete analysis of authentication protocols using logical time seems to be the direction of further
research. In particular, we expect to formulate new protocols for public key systems as also for the other
communication paradigms outlined in [Need78]. Another avenue of research would be in studying the suitability of
other logical time systems such as Isis and Horus towards authentication.
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