
TOWARDS DEPENDABLE GRIDS

Anh Nguyen-Tuong, Andrew S. Grimshaw, Glenn Wasson, Marty Humphrey, and John C. Knight
{nguyen, grimshaw, wasson, humphrey, knight}@virginia.edu

Technical Report CS-2004-11
Department of Computer Science, University of Virginia

ABSTRACT
To date, grids (a form of distributed system) have been used to aggregate resources for
performance-starved applications typically resulting from scientific enquiry. Grids should
not just be facilitating advances in science and engineering; rather they should also be
making an impact on our daily lives by enabling sophisticated applications such as new
consumer services and support for homeland defense. For example, grids providing finan-
cial services should be seamlessly interconnected with grids that support telecommunica-
tions, and grids providing health care services should be seamlessly interconnected with
both financial services and telecommunications. This is not possible today because the
poor grid dependability—which is tolerated by scientific users—would be unacceptable in
critical infrastructure applications. This project aims at correcting this problem by devel-
oping technology that will allow grids to be used to provide services upon which society
can depend. Grids must be engineered both to achieve high dependability and to permit
assurance that high dependability has been achieved.

1 BACKGROUND AND MOTIVATION
To date, grids have been designed to aggregate resources for performance-starved applications. The goals
are easy-to-use remote execution, easy-to-use access to large data sets, single sign on, etc. The prototypical
user needs to execute an MPI application, perhaps for particle physics, molecular dynamics, and weather
forecasting, and perhaps without caring where it executes. Or maybe the user needs to execute 1000 jobs
on idle desktops. These goals are the basis of emerging grids such as GEON, LEAD, iVDGL, NEES, Tera-
Grid, and others. The community is doing an excellent job of providing these capabilities via software such
as the NSF Middleware Initiative (NMI) software, VDT, and the NPACKage software packages.

Grids should not be facilitating just “Big Science”; rather they should be making an impact on our
daily lives by enabling sophisticated applications such as new consumer services and support for homeland
defense. This is simply not possible today because the goals and requirements are different. Current large-
scale scientific endeavors are able to depend on the grid because scientific users are largely tolerant of the
grid’s: (1) often idiosyncratic behaviors; (2) unexplained or obtuse failures; and (3) inability to provide a
highly available cyber infrastructure.

Current grid systems provide services that are important to society, but our dependence will grow con-
siderably over time reaching a point where they will become interwoven within the fabric of society. They
will then have become critical infrastructure. Grid systems are dependent upon one another and will
become more so. Grids providing financial services, for example, will depend on grids that support tele-
communications, and grids providing health care services will depend on both financial services and tele-
communications. The common need throughout all the various interdependent grid user communities is
high levels of dependability; users must be able to depend upon the service they receive. This dependabil-
ity will include reliability in some cases, availability in others, data integrity and confidentiality (security)
in essentially all services, and possibly safety in some circumstances.

There are many threats to dependable services, for example: (1) failure of a power system leading to
power loss; (2) physical damage to the grid computing fabric as a result of natural events (hurricanes) or
PAGE 1

terrorist acts; and (3) failure of system or application software, errors by system operators or malicious
cyber attacks leading to the loss of services. All of this is compounded by the interdependencies between
grid systems since the consequences of a specific failure might cascade throughout a set of grids.

To engineer a grid to meet the expected high dependability requirements is likely to be technically
infeasible or prohibitively expensive or both. Infeasibility derives from technical issues such as the reli-
ance on commodity operating systems that are known to be vulnerable to cyber attacks. The expense
derives from the very high cost of the replication of the basic components of the system, such as those pro-
viding communications, storage and computing, that will be required if continuous availability is
demanded.

The alternative approach proposed here recognizes explicitly this fundamental trade-off between
dependability and the resources and technology needed to provide it by making the next generation of grids
survivable. Informally, a survivable system is one that provides one or more alternate services (different,
less dependable, or degraded) in a given operating environment if the primary service cannot be provided
because of attacks or failures. The key approach behind a survivable system is that each of these alternate
services is designed to cope with potentially a different class of faults. By constructing or incorporating
elements of the system (such as those implementing the primary functionality) with less provision for cop-
ing with faults than normally might be preferred, a survivable approach may take the implementation of
such a system from a complexity and cost level that is infeasible to one that is feasible. The potential loss of
service that ensues is dealt with by providing alternate services when the primary implementation is
unavailable. Users receive a higher value from the system either in the form of reduced cost or increased
options for functionality.

A survivable approach has the added advantage that it maps naturally to a development environment in
which applications are built in part by incorporating existing grid elements from different administrative
domains, an inherent characteristic of the grid paradigm. The specification of the alternate services advo-
cated by a survivable approach provides an intellectual framework by which to analyze and incorporate
existing grid elements with the inevitably different characteristics in multiple dimensions, e.g., different
policies on the availability of the provided grid facilities, different expected average and peak load
demands, different security policies, and different service availability guarantees. In such an environment,
the dependability requirements for a specific application will be met in part by a process of resource dis-
covery combined with the composition of services with the requisite levels of dependability. Note that
oftentimes the straightforward composition of existing services will not be sufficient to meet the stated
dependability requirements. Thus, part of the proposed research will be to investigate techniques and trans-
formations to increase the dependability of a composite set of services.

1.1 APPROACH
The future of grid technology, the implementation of which has already begun, lies in the merging of cur-
rent grid services and current Web services. The result will be a powerful mechanism for the exploitation
of grid concepts to support novel user services, including those that are characterized as critical infrastruc-
ture applications. The focus of grid technology today is the Open Grid Services Architecture (OGSA)
being developed in the Global Grid Forum (GGF). OGSA is a Service Oriented Architecture (SOA), pred-
icated on the use of web service standards such as the Web Service Definition Language (WSDL), the Web
Service Resource Framework (WSRF), and many others [WSDL, Foster-WSRF, OASIS].

By a service-oriented architecture we mean: “a specific type of distributed system in which the discrete
software agents—that must work together to implement some intended functionality—are called ser-
vices...the description of a service in a SOA is essentially a description of the messages that are exchanged.
This architecture adds the constraint of stateless connections, that is where the all the data for a given
request must be in the request.” [Booth2003].

Our approach to the development of survivable grids is illustrated in Figure 1. At the bottom are the
techniques commonly used to construct dependable systems: fault avoidance, fault elimination, and fault-
PAGE 2

tolerance. These techniques need to be enhanced to deal with the service-oriented architecture world-view
that pervades anticipated grid systems and to implement the survivability concept.

Fault Avoidance Fault Elimination Fault Tolerance

Service Oriented Architecture
(Web/Grid Services)

Application
Requirements

Application
Requirements

Application
Requirements

Specification

Construction

A
ssessm

ent

Figure 1. Specification, construction and assessment of dependable applications in service-oriented
architectures

In the middle of the figure is the SOA. One of the hallmarks of SOA’s is that of service composition:
the construction of new services by composing, often dynamically, existing web services into new ser-
vices. Available grid facilities change over time as circumstances change within administrative domains.
Thus, for example, the hardware resources that can be provided by a specific administrative domain will
depend on demands within the domain, failures that have occurred, and so on. We propose to adapt the
implementation of service provided to a given user at the time that the requirements are stated. To do so,
we propose to require that grid elements specify their dependability characteristics accurately via meta-
data or attributes. These characteristics and the associated fault model will be represented in machine inter-
pretable documents in the Dependability Exchange and Specification Language (DESL).

At the top of Figure 1 are the applications. It is the applications that have dependability requirements.
Those requirements need to both be specified and tested against the dependability characteristics of the ser-
vices the applications use.

The unique characteristics of SOA’s - particularly SOA’s that span multiple organizational, administra-
tive, and trust domains will require new techniques. For example, it may not be possible to query and man-
age a service via its managing “container” due to security issues at the site where the service is running.

To test the efficacy of our approach, we propose to develop a prototype system that will provide an
opportunity to test the techniques we will develop both in a “live” environment as well as in a test harness
where anticipated faults can be injected into the system. We intend to construct a dependability architecture
and implementation, the Grid Dependability and Survivability Architecture (GDSA), based on a classic
data-driven control system model. In GDSA a series of instruments will continuously monitor application
and system behavior. Monitoring may be either direct polling, or subscribing to events of interest. The raw
monitoring data will be processed, collected and distributed to appropriate dependability services, ana-
lyzed, and as needed both appropriate corrective actions may be taken and availability characteristics of
components will be updated.

GDSA will build on our earlier work with Legion [Grimshaw1999,2003], Willow [Knight2002,
Rowanhill2004] and OGSI.net [WassonG2004], as well as the standards being developed in GGF. In par-
ticular, we will be constructing the prototype as a set of Web Services that are named with WS-References,
and that fit within the context of the OGSA architecture.

In summary, the proposed work will take place in the context of SOA’s, web services and OGSA, and
our approach to survivability will consist of five broad aspects:

• Dependability and Survivability
We will bring both the rigor and techniques developed in the dependable computing field to service
oriented architectures (SOA) and applications. This has three significant parts: i) identify the charac-
PAGE 3

teristic service styles, their dependability requirements, their acceptable survivability trade-offs, in
SOA’s and exploit known techniques from the dependability literature to address the requirements; ii)
develop a language for the specification of both dependability requirements and characteristics along
with dependability services that exploit and “understand” the language; and iii) develop an architecture
(within OGSA) for dependability and survivability.

• Key Service Identification
We will identify key services within OGSA and the application use-cases that need enhanced depend-
ability in order to meet their requirements that can use the techniques and language constructs identi-
fied in aspect one.

• System Architecture Development
We will develop an open implementation of the architecture (iii above).

• Evaluation
We will evaluate the resulting architecture and system in the context of real applications from the life
sciences and medical informatics domains. This evaluation will be both in a live environment and in a
test environment where we can control and inject faults. The application of our techniques to medical
informatics will be guided through our collaboration with Dr. William A. Knaus, M.D., of the Univer-
sity of Virginia Health System.

• Standards Bodies
We will continue to work closely with the standards communities (GGF, OASIS, W3C, DMTF) to
keep abreast of standards and to offer our results and requirements to the standards process.

These five aspects will not be performed sequentially; rather we will engage in an interactive process
in which we introduce the lessons learned into the research process.

1.2 MOTIVATING EXAMPLE
Consider an example from the life sciences. There is a wealth of data available, genomic data, protein data,
tissue data, and clinical data on outcomes and patient background data (demographics, lifestyle, family his-
tory). To do research on multi-factorial disease requires accessing and mining the data followed by inter-
preting the results. Further, researchers want to use tools that work when they want them to. Unfortunately,
even within a single institution the data is kept in many different departments, and much of the data is not
at the same institution but at hundreds of peer institutions that do not share a large degree of trust. And
making matters still worse, there are various institutional and national rules and laws that govern the use of
the data which must be enforced.

To provide the highly available, cross department, cross organizational information processing envi-
ronment the researchers want is a challenge. Data access must be automatic, applications powerful yet
intuitive, and the system must meet high availability, confidentiality, and data integrity requirements.

This sort of requirement is not unique to the life sciences. We see similar applications and challenges
as grids are deployed in industry, and in particular in homeland defense. Instead of searching for multi-fac-
torial disease using multiple data types, the user is looking for threats or patterns of activity that might indi-
cate or predict attack. Instead of data scattered across campus and other peer institutions, the data is
scattered across thousands of police departments, law enforcement agencies, hospitals, shipping compa-
nies, intelligence agencies, and public data bases around the world. As with the life sciences, these organi-
zations do not always trust one another, and they may have complex rules and laws that govern who can
see what data for what purpose and with what priority.

Continuing the example, we note that the life-sciences grid will be extremely important in the event of
a terrorist attack. Whereas a homeland-defense grid supports law enforcement, a terrorist attack might
demand that the life-sciences grid provide information such as medical records of the injured, the detailed
effects of pathogens, or the immediate availability of drugs to homeland defense. Since this would be tak-
PAGE 4

ing place in the face of an attack, both the life-sciences grid and the homeland-defense grid would have to
provide crucial services even when damaged or overloaded. This is precisely the type of capability that
survivability will ensure.

2 RELATED WORK

2.1 GRID PROJECTS
The two major grid software projects in academia are Legion [Grimshaw1999, 2003, 2004] and Globus
[Globus, Foster]. Both projects have their genesis in the early 1990’s. Legion has extensive mechanism
designed in and implemented to address fault-tolerance [NguyenTuong1996,1999] [NguyenTuong2000].
Mechanisms included automatic recovery of failed objects, object migration away from failing or over-
loaded hosts, stateless replication, fault-tolerant MPI libraries, and K-replication of stateful objects with
automatic failover. Further the system would automatically adapt to resource availability. Early versions of
Globus had a service called a “heart beat monitor” that would poll a service and notify a client if the ser-
vice being monitored failed. Later versions of Globus eliminated the service.

Both the Legion team and the Globus team are now behind the Open Grid Service Architecture
(OGSA) being developed in the Global Grid Forum [Foster2002]. OGSA was proposed by IBM and the
Globus PI's. OGSA is a community effort with input from both the public and private sectors.

In the industrial space there are a number of products that claim to be grid. These include products
from Avaki (data grid), Platform (compute grid), Sun (compute grid), United Devices (compute grid), Ver-
idian (compute grid), HP (adaptive infrastructure), and IBM (IBM resells and has compute grid products).
As a rule compute grid products provide at least rudimentary fault-tolerance by re-starting failed computa-
tions. The more sophisticated also provide management control over resource provisioning and allow the
establishment of SLA’s with guarantees of QoS for certain user classes. e.g., “fair share scheduling”.

2.2 INDUSTRY INITIATIVES
The “grid” has become a hot buzzword in IT. All of the major vendors, IBM, HP, Sun, Fujitsu, and NEC
have embraced and incorporated grid technology and concepts in their product lines. These vendors are
also actively participating in the various standard bodies (Global Grid Forum, OASIS, W3C, DMTF) that
are establishing grids standards such as OGSA and WSRF (Web Service Resource Framework). WSRF, a
recently released specification proposed by IBM, HP, Tibco, Akamai and the Globus Alliance represents
the convergence of concepts and compromises from the grid and web services communities.

This convergence is important to our goal of having impact on society. By basing our experimental
work on such standards, we dramatically increase the odds that the fruits of our research, i.e., methodolo-
gies, concepts, tools and software artifacts, will be incorporated into the next generation of vendor prod-
ucts. Synergistically, the adoption of common standards by major vendors accelerates the pace of our
research as it allows us to focus on the issue at hand, namely achieving dependability and survivability in
grids. In addition, we will continue to both track the output of the standard bodies as well as actively par-
ticipate in the shaping of grid standards.

2.3 QUALITY OF SERVICE IN GRIDS
A commonly accepted definition of a grid is a system that delivers service by coordinating distributed
resources using standard, open, general-purpose protocols and interfaces [Foster2002b]. Scientific grid
applications often require the coupling of processing, storage, and network capabilities for good perfor-
mance. Today these runs typically require manual reservation, configuration, and allocation of resources.
Quality-of-service research in the grid community is focused on providing mechanisms for supporting
these applications through resource provisioning and co-allocation. However, little attention in the grid
community is being paid to the relationship between dependability and quality of service, i.e., the expecta-
tion that the agreed-upon quality of service will be delivered.
PAGE 5

The DUROC [DUROC] broker provided a first step toward advanced quality of service (QoS) in Glo-
bus by implementing opportunistic co-allocation of distributed resources using the Globus Resource Allo-
cation Manager (GRAM) [GRAM]. MPICH-G2 [MPICH-G2] uses DUROC to synchronize MPI jobs
across GRAM resources. The General-purpose Architecture for Advance Reservation and Allocation
(GARA) [GARA] was later developed with support for QoS reservations for different resource types.
GARA has been demonstrated for network, CPU, and disk allocations but does not provide an agreement
protocol or co-allocation protocol. The proposed Service Negotiation and Acquisition Protocol (SNAP)
[SNAP] meets this need with support for SLA negotiation for tasks and resources.

2.4 DEPENDABILITY AND SURVIVABILITY
Many terms have been applied to grids in an informal or even misleading sense. Three of the most com-
mon are reliable, available and fault-tolerant. The intuitive notion is that one can rely on a system to do
what it is supposed to do, that a system is available to perform its work, and that a system somehow toler-
ates faults. Of these, fault tolerance is the term that is most often misused; it narrowly draws attention on
mechanisms instead of high-level requirements. For example, fault avoidance and fault elimination are
techniques that can also be used to support dependability requirements. In fact, in many cases, these are
preferable to fault tolerance techniques. In discussing requirements for grids (and any other systems), it is
essential to have a precise set of definitions of the terms being used.

Avizienis, Laprie, and Randell have created a taxonomy of facets of what they term dependability
[Avizienis2001]. Dependability in their sense, “the ability to deliver service that can justifiably be trusted,”
replaces informal notions of reliability and availability and include other facets that must be considered for
many systems if the systems’ users are to depend on them. This taxonomy has become a de facto standard
as well as a de jure standard in progress through IFIP Working Group 10.4. The facets Avizienis et al.
define are availability, reliability, safety, confidentiality, integrity, and maintainability.

The concept of survivability is a special case of dependability. Informally, a survivable system is one
that has facilities to provide one or more alternate services (different, less dependable, or degraded) in a
given operating environment despite the presence of attacks or failures. An alternate service would be
required to be in effect if an event (such as some form of damage) precludes or hinders provision of the
system’s normal service. Several definitions of survivability can be found in the literature [Ellison1997,
Knight2003]. We will use the definition of survivability as proposed by Knight et. al. [Knight2003] as it
provides a rigorous and precise engineering definition that explicitly focusses on engineering trade-offs.

2.5 SECURITY
The Grid Security Infrastructure (GSI) [Foster1998] focuses on an authentication infrastructure for the
Grid that is based on a Public-Key Infrastructure (PKI) [Butler2000]. GSI provides a standard program-
ming interface for authentication, message integrity, and message confidentiality (GSSAPI), a mutual-
authentication proposal based on SSL/TLS, and a delegation protocol by which a user can temporarily
empower a software service to act on his/her behalf. While GSI focuses on the human-to-machine mutual
authentication, the Community Authorization Service (CAS) [Pearlman2002] extends this so that a person
can obtain and exercise authorization rights based on the group to which they belong. MyProxy
[Novotny2001] is an on-line credential repository, which enables a user to upload a credential (such as a
PKI credential for use with GSI) to a secure service, retrieving the credential later as necessary. MyProxy
is particularly valuable in that it ameliorates some of the problems associated with a PKI, essentially mak-
ing a PKI easier to use and manage.

While the Grid community has been developing security mechanisms [Siebenlist2002], the commer-
cial sector has been working on a number of important security approaches based on Web Services. In
April, 2002, IBM and Microsoft jointly authored a roadmap [IBM-Microsoft 2002] that identified many of
the component security specifications that they believe will be the foundation of Web Services. The core
specification is WS-Security, which defines basic XML for confidentiality and integrity on SOAP mes-
PAGE 6

sages. Other specifications identified in this roadmap have either been published but have not been intro-
duced into a standards organization yet (e.g., WS-Policy, WS-Trust, WS-Federation, WS-
SecureConversation) or have not been released in public yet (e.g., WS-Privacy, WS-Authorization).

During the time that IBM and Microsoft have been working on this roadmap, the Liberty Alliance
Project was formed to create open, interoperable standards for federated network identity [Liberty2003].
The goal of the Liberty Alliance is to create the open protocols by which a user can easily “link” his/her
various network identities together, thereby establishing a “single sign on” (SSO). A cornerstone in the
Liberty Alliance is the Security Assertion Markup Language (SAML), which is being standardized in
OASIS [OASIS-SAML2003]. At this time it is not clear to what extent WS-Federation, as identified by the
joint IBM-Microsoft white paper mentioned above, will interoperate with the specifications of the Liberty
Alliance Project (the same can be said for WS-Authorization and the eXtensible Access Control Markup
Language (XACML) [OASIS-XACML2003], which is an OASIS standard that describes both a policy
language and an access control decision request/response language (both written in XML). The architec-
ture for security in OGSA has been the focus of the OGSA Security Working Group of the GGF
[Nagaratnam2003].

3 TECHNICAL APPROACH
Our goal is to enable the construction of survivable grid systems and applications via an architecture for
specifying, constructing, monitoring, analyzing, and controlling the behavior of grid services under a vari-
ety of fault conditions (including attacks). Below we briefly describe our approach. We begin with a pre-
sentation of the conceptual model and its realization in the Grid Dependability and Survivability
Architecture - GDSA. Once the conceptual model is clear we will dive into a description of DESL, the
Dependability Exchange and Specification Language. From there we will look at the programming model
presented to application developer and how we will both specify and realize survivable and dependable
grid services.

3.1 GRID DEPENDABILITY AND SURVIVABILITY ARCHITECTURE (GDSA)
GDSA is a data-driven control system architecture for dependability/survivability developed in the context
of existing and evolving grid and Web Services standards. Specifically the OGSA standards from the Glo-
bal Grid Forum (OGSA-Program-Execution, OGSA-Core, OGSA-Security, OGSA-logging, etc.), and
from the W3C and OASIS (WS-Security, WS-Context, WS-Notification, WS-Transaction, etc.).

To achieve dependability and survivability in a SOA given a dependability specification requires an
architecture for detecting faults and responding to them. The problem can be thought of as a classic control
system with sensors that monitor and provide status information to an analysis module that makes deci-
sions on how to respond using an underlying control mechanism. Think of it as dials, levers, and an agent
that reads the dials and pulls the levers.

The conceptual model is shown in Figure 2. Using various forms of monitors, the system detect errors,
faults, state changes, or anomalous conditions. For example, message transmission fails because the
receiver is not there, or a host fails, or an un-authorized user attempts access to critical data, or a monitor
detects that the load on a host is above or below some threshold. Then analyze the events in the context of
DESL specifications to see if the state with respect to the specification has changed. If conditions warrant,
take some form of action to recover from the situation or exploit the change in state.

The basic conceptual model by itself is insufficient. Let us dive deeper into the “analysis” loop.
PAGE 7

Respond

Monitor

Analyze

Monitor

Policy Decision
Point

Policy Enforcement
Point

DSEL Document

Yes

No

DSEL Document

(a) The conceptual model as a clas-
sic data driven control loop.

(b) More detail with the role of DESL as a
specification language.

Figure 2. The conceptual model for GDSA.

The PDP is a “policy decision point” [Yavatkar2000]. We utilize this common terminology shared by
many projects and approaches, for example XACML [OASIS-XACML]. The PDP evaluates the current
state based on information collected by the monitors or held in databases against policies and requirements
carried in DESL documents. The PDP makes a “yes/no” decision. If the decision is “yes”, no action is
taken and the process continues. If the decision is “no” then the current state does not meet the specified
requirements and action must be taken, i.e., a “policy enforcement point” (PEP) has been reached.

The PEP has as inputs the current state and a set of specifications, rules, trade-offs, and actions to take
specified in a DESL document. The objective is to take an action to bring the state back to some correct
state. We stress “some” because new correct state may not be what is was before, a degraded level of ser-
vice may have been selected, or perhaps even no level of service at all.

A few comments on the model before we continue. First, the PDP and PEP combination can be
thought of as a sort of application or service “manager” that is responsible for keeping an application or
service delivering its specified QOS. Indeed below we will often call the combination an application man-
ager. Keep in mind that the “application” may in fact be the enforcement of system level property, e.g., that
no priority 2 jobs run anywhere if priority 1 jobs are waiting.

Second, there will likely be many application managers running concurrently in any real system. The
application managers will have different, and often conflicting, objectives. Thus, like any large set of inter-
twined control loops some interference is to be expected, and unexpected behaviors may emerge. This is,
we believe, a fundamental property of large scale, multi-organizational, grids. Different organizations will
have different objectives. We will develop this technology from the existing prototype system that is in the
Willow architecture.

The monitoring aspects of GDSA are provided by the classic publish/subscribe mechanism of WS-
Notification and the OGSA-Grid-Monitoring-Architecture; polling techniques that acquire system meta-
data and check component “liveness”; and by the use of ExoEvents [NguyenTuong2000]. Pub/sub is a
widely used mechanism that needs no introduction. Similarly, polling for liveness is a time-honored tech-
nique. ExoEvents need some explanation.

ExoEvents are a mechanism for subscribing to a set of events that may occur in the call chain of a ser-
vice invocation. For example, notify monitor_A if there is a “no such service” fault. The advantage to Exo-
Events over classic publish/subscribe in a grid is that the set of services that may be used in executing a
particular service may not be known a priori, making setting up the required subscriptions difficult. Fur-
ther, the subscription is often needed only during the context of a particular call - not before and not after.
PAGE 8

The “levers” (control mechanism) in GDSA consist of the additional porttypes defined services to sup-
port dependability and survivability techniques as well as the standard services provided by OGSA. Exam-
ples of additional porttypes are save-state, transfer-state, migrate, replicate, begin-epoch, end-epoch, etc.
An example of a standard OGSA service call is a call on an OGSA-container to check the status of a ser-
vice or instantiate a new service instance.

3.2 DEPENDABILITY EXCHANGE AND SPECIFICATION LANGUAGE (DESL)
The essence of our approach is the specification and construction of a dependability framework in the con-
text of grid SOA’s. The first critical aspect is determining how dependability requirements and characteris-
tics will be represented, inspected, and transformed, i.e. defining a language and a set of transforms on
documents in that language. We define and XML-based language, DESL, that will be used for the specifi-
cation and exchange of dependability and survivability characteristics, requirements and actions. We refer
to services that process DESL documents as “DESL engines”.

Although the exact structure and use of DESL is part of our investigation, we imagine two use cases
for DESL documents. First, DESL may be used as a means to export a service or application’s dependabil-
ity and survivability characteristics. Clients may examine these documents to determine if they wish to
engage a service. Service composition engines may use these documents to determine which services to
connect in order to meet the overall dependability properties of an application. DESL may also be used to
express the dependability and survivability requirements that a service requires of its hosting environment
or its clients. For example, a DESL document may describe how its hosting environment should manage a
group of replicants or when to rejuvenate a service [Trivedi2000]. In addition, DESL can describe required
properties of a service’s client, e.g. clients must be in the same survivability mode as the service to invoke
methods on the service1.

We can further refine the DESL language as used to export properties of a service. Consider the DESL
document used to describe the grid service MyProxy (or a MyProxy-like service that might be available in
the near term) [Novotny2001]. The DESL document in Figure 3 describes the supported “survivability
modes” of the services as well as dependability properties of the service, both static (e.g. the software pro-
cess used to build this service) and dynamic (e.g. the availability of the service, perhaps measured by the
underlying container) in the <Supports> section. The <SurvivabilityModes> section of the doc-
ument contains tags to describe the operations/actions that take place when the service is in that mode, the
trigger event(s) that cause a service to get into that mode, and some description of the effects that users of
the service can expect when the service is in that mode, i.e. what is the “cost” of being in a given mode. In
the above example, when a national emergency is declared by the Department of Homeland Security, the
MyProxy service will issue limited credentials to non-essential personnel (the effect being to prioritize grid
operations from essential clients). The <Requires> section, shown for completeness, would contain any
information needed by the MyProxy service from the fabric on which it depends (e.g. other services, or its
underlying container) or from clients that access it.

Two important security concerns should be noted with respect to DESL documents. First documents or
sections of documents may need to be signed (possibly by multiple authorities) to prove their legitimacy.
Second, certain aspects services that may be expressed in DESL are subject to privacy concerns. Not all
sections of a DESL document would be made available for public consumption.

Documents in DESL will be exposed, collected, transformed, and analyzed by “dependability ser-
vices” such as the application managers above that are responsible both for making dependability asser-
tions (based on the compositions of services that are used), for reading and interpreting assertions made by
other services, and for making choices about trade-offs among multiple service implementation options.

1. In this use case, DESL can be seen as a more detailed version of WS-Policy [Box2003] (as WS-Secu-
rityPolicy [Della-Libera2002] is for the security domain).
PAGE 9

<DESL xmlns:desl=”http://gcg.cs.virginia.edu/DESL/02-21-04”>
<desl:Supports>

<desl:SurvivabilityModes>
<desl:Mode name=”Normal”>

<desl:Operations>... normal delegation of credentials ... </>
</desl:Mode>
<desl:Mode name=”NationalEmergency”>

<desl:Operations>
... limited delegation credentials supplied to non-essential personnel

</desl:Operations>
<desl:Triggers> ... order from Dept. Homeland Security </>
<desl:Effects>

... description of “cost” of this mode, e.g. reduced service for some
</desl:Effects>

</desl:Mode>
</desl:SurvivabilityModes>
<desl:DependabilityInformation>

<SoftwareProcess> ... </SoftwareProcess>
<Availability> ... </Availability>

</desl:DependabilityInformation>
 </desl:Supports>

<desl:Requires>
... requirements of the service in terms of sub-services, performance, etc.

</desl:Requires>
</DESL>

Figure 3. A sample DESL document for MyProxy illustrating the basic document structure and the sub-
components.

In Figure 4 we depict a situation where a number of applications each of which uses different subsets
of services in their implementation.1 Each application has a set of dependability requirements and depend-
ability assertions. These are represented as meta-data for the services in DESL documents.

The DESL documents are used by dependability services to asses whether requirements can be met, to
aid in service selection when different capabilities are available, and to interact with the overall control
architecture. These dependability services may be directly embedded in the client application as shown, or
may be completely separate services.

3.2.1 SUPPORT FOR GRID PROGRAMMERS
A key issue in the use of DESL documents is how they are generated. Automation can be used to assist
grid service programmers both in generating the DESL document that a service exports (the <Sup-
ports> section) and in responding to DESL-described requirements from, for example, clients or those
who deploy services (the <Requires> section).

Many of today’s web and grid service programming environments provide a container which “holds”
services and allows them to take advantage of base functionality that is outside the scope of the service
logic (e.g. handling transport protocols or message serialization) [Microsoft2004] [Tomcat2004]
[WassonG2004] [JBoss2004]. This functionality of the container can be extended to support dependability
and survivability requirements defined in DESL. In our work on OGSI.NET [WassonG2003,2004], we
provided grid service programmers with a mechanism to annotate their service logic with meta-data that
the container could use to determine how to expose that service logic to the grid. For example, service state
could be marked such that the container would automatically expose it using OGSI’s well-defined SDE
interface [Tuecke2003].

1. In general, rather than a two-tier architecture as shown here for simplicity, there will be n-tiers, where n will vary
between different applications - and sometimes vary at run-time.
PAGE 10

Dependability Service

Application

Expose dependability characteristics

Dependability Service

Application

Expose dependability characteristics

DESL documents

Service A Service B Service C Service D

Figure 4. DESL documents are used to specify requirements, characteristic, and action rules. Note that
each service may be accessed my many different applications, and export a different DESL document to
We propose to extend the meta-data annotation ideas from OGSI.NET to support the dependability and

survivability requirements expressed in a service’s DESL document. For example, programmers may pro-
vide meta-data “hints” to the container about how to conduct a software rejuvenation process on a particu-
lar service. The container may decide to being this process because of a DESL document that requires the
service to have a certain availability.

A service’s container can also help with the generation of a DESL document that describes a service.
The <DependabilityInformation> section may contain static properties of resources used by the
service that impact dependability (e.g. the OS of the service’s host), but which the service author will not
know. The container can easily determine these from the deployment environment. In general, the con-
tainer may be able to monitor the service to determine dynamic information, such as availability, and auto-
matically add this to a service’s DESL document as well.

Some portions of the DESL generation process may be amenable to static tooling. For example, anno-
tations in a service’s logic may allow tools to generate the <SurvivabilityModes> section of a
DESL document in much the same manner as today’s WSDL generation tools create a service’s WSDL
document from the service code. While we do not believe it will be possible to express the full richness of
the to-be-devised DESL language by static inspection of service code (even with embedded programmer
meta-data), tools may be useful in generating an outline of a DESL document that the service programmer
and/or deployer can flesh out.

3.3 ENGINEERING DEPENDABLE AND SURVIVABLE GRIDS
A critical obstacle to constructing dependable and survivable grids is that grid service developers are
experts in neither dependable systems nor the protocols and messaging standards that run today’s service-
oriented grids. A supporting cast of tools, libraries and other grid services with which developers can turn
their service logic into dependable and survivable grid services must be provided. To the extent possible,
developers should only need to implement their application logic. However, the introduction of survivabil-
ity concepts will require the mapping of survivability modes to grid services. In some cases, this mapping
can be automatically performed by the container on behalf of the service (cf. Section 3.2.1), e.g., to enforce
policies that limit external resource consumption or policies that can be enforced at the message level. In
other cases, the developer will need to program the service to understand the various modes supported. In
PAGE 11

yet other cases, the mapping can be implemented by placing a proxy in front of existing services; this
proxy would intercept a request to transition to mode X and map it to messages on the back end services.

Figure 5 illustrates a possible structure for a survivable grid application. The application logic is imple-
mented by a set of communicating grid services labelled S1 through S4. The shaded region surrounding the
services S1-S4 denotes that they are contained within a hosting environment, such as .net or J2EE. All
other services represent the supporting cast needed to create and execute the application.

Figure 5. Structure of a survivable grid application. Services S1-S4 represent the actual application logic.
The other services provide support essential to the execution of the underlying application.

Set
mode Y

Application Manager

Mode X

Scheduling
Service

S3

S2

S1

S4Mode Y

Mode Z

Monitor

AnalyzeRespond

Sensor Information
(service alive, busy, crash, overload, status,

fault notification, security violation, ...)

Actuation
(destroy, ping, notify, suspend,

reconfigure, restart, set mode, ...)

Storage
Service

Application Logic

Database
Service

The application manager plays a vital role in the management of the application. It implements a
DSEL engine and is responsible for: (a) receiving information from sensors, e.g., status information such
as network and host load, network bandwidth prediction, liveness notification for S1-S4, fault notifica-
tions, security violations; (b) analyzing the stream of sensor information and taking appropriate actions,
e.g., transitioning from one survivability mode to another; and then (c) issuing actuation commands, i.e.,
sending messages to either application services S1-S4 or other services. Note that transitions between sur-
vivability modes can be the result of external (and authorized) requests, themselves possibly issued as a
result of another control loop, or as the result of an administrative decision to transition all applications
within a grid domain to a given operating mode, e.g., “National Emergency“.

4 RESEARCH AGENDA
Building a real, working system provides perhaps the best way to find out what really works, and what cru-
cial details were overlooked. Our own experience with Legion, Willow and OSGI.net demonstrated the
difference between theoretical models and what can be achieved on live systems.

The amount of work to construct a new system from scratch is significant. We prefer to stand on the
shoulders of others rather than their toes. We will build our demonstration and evaluation system as a set of
OGSA grid services using public implementations of OGSA services and tooling such as Globus Toolkit 5
(GT5). We will further leverage our rather extensive grid and survivability experience gained from Legion,
OGSI.Net, GT3, Willow, and the PI’s commercial grid experience at Avaki.

Because we are working within OGSA we do not have to build a whole system. Instead we can focus
our efforts developing the fault model, developing DESL, developing specifications and requirements for
critical services, implementing dependability and survivability techniques, and developing application
managers that implement the DESL engines. The development process will be iterative, developing DESL
syntax and semantics, developing and testing implementations, and then back again for more complex
cases. Below we expand briefly on each.
PAGE 12

Develop and Evaluate Grid Fault Models. The first step is to extend fault models developed for traditional
distributed systems to service-oriented grid architectures. These will be extended to include new classes of
faults, such as service failure arising out of actions undertaken by local administrators, threats arising out
of an environment in which grid users both compete and collaborate, rogue services that implement man-
in-the-middle attacks, and security attacks that target grid services and coopt their behavior. We will evalu-
ate our models by using them to drive survivability specifications for a range of grid applications deployed
over a variety of grid fabrics, e.g., grids over the public Internet, grids over private networks, grids with
wireless components, to approach a degree of completeness. We will then use these fault models to drive
the development of survivability specifications for a selected set of grid services, e.g., MyProxy.

Develop and Evaluate DESL. DESL is not complete, nor are the mechanisms and negotiation protocols
well understood at this stage. To make DESL work we intend to address the following questions:
• What are the nouns, verbs, adjectives, properties, and semantics of DESL? How are DESL documents

structured? How are trade-offs represented?
• How do we automatically reason about DESL documents? For example, if multiple services are being

composed, how do we compose a joint document? How do we determine if a service meets the require-
ments of a client beyond a straight textual match?

• How are DESL documents generated? By hand? Automatically by tools? By observing historical
behavior?

• How do we measure and discover availability, reliability and other dependability facets?
• How do we ensure that policy and mechanism are clearly separated?
• How do these documents fit in the emerging WS-Agreement standards [Czajkowski2004]]?

The development of DESL and effective DESL-engines will be one of the most significant accom-
plishments of this work. The development will include syntactic development efforts, and more impor-
tantly, the semantic model for describing and handling dependability and survivability requirements.

Develop and Evaluate Application Managers. We will develop application managers, along with their
associated libraries and DESL documents, and evaluate the extent to which they can be made generic. Our
conjecture is that only a small set of application managers will be needed to manage grid applications. We
will test our conjecture against such key OGSA services as MyProxy and the OGSA data services.

Build dependable and survivable grid services. We will develop containers to support dependability and
survivability. In particular, we will provide support for: (a) the automatic generation of DSEL documents
from source code annotations, and (b) the enforcement of policies contained in DSEL documents. We also
envision building a set of common services, either from scratch or by extending existing services, to sup-
port dependability and survivability requirements. Examples of such services include DSEL support tools
such as analysis engines, failure detectors, intrusion detectors and resource discovery services.

We will initially incorporate techniques taken from the dependability literature and our earlier work in
Willow and Legion, and then investigate additional techniques as warranted by the dependability require-
ments:

Restart and Rebind. When a service instance fails (ceases processing messages) it is detected either by
a client or by an explicit monitoring service. The application manager for that service then starts a new ser-
vice instance and generates a new WS-address for the new instance to give to clients that can no longer use
the old WS-address. In the case of stateful services the new service is given a handle to the service state.

Availability and Degraded Service. A service is replicated to provide higher availability. Synchroniza-
tion is performed periodically between the primary and its replicas. On failure of the primary a degraded
service is made available to clients. The service is degraded in one or both of two ways, the data held by
the replicant may be slightly out of date, or, the service may transition to a “read-only” mode until the pri-
mary is once again available.
PAGE 13

Replication for Performance. In the case of stateless services there are no consistency issues. However,
the application manager can instantiate new instances of the service to handle performance specification
errors, i.e., the service is overloaded and not responding fast enough.

Security Enforcement (MayI [Chapin1999b]). Not all errors are caused by equipment or process death.
Security policy specification enforcement must also be monitored. MayI and associated security events can
be used as policy enforcement points for local access control as well as a mechanism for monitoring for
anomalous events or attacks against a set of services. For example, a set of services being monitored send
information on all access to a application manager that looks for anomalous patterns of access. The pat-
terns may include both unauthorized accesses, as well as abnormal patterns for authorized users that may
indicate a compromise.

4.1 TEST AND EVALUATION
Testing is crucial to ensure that our techniques deliver what is specified. We will construct a test lab

that spans UVA and NCSA to test the resulting service implementations to see how they respond to both
injected/simulated errors in the test lab and in the deployed infrastructure.

Testing requires a test plan to ensure good coverage and to ensure that the right things are tested. We
have divided our test plan into four types of tests. Of course as the project develops, the test plan will be
both more fully developed and modified as GDSA and DESL change. These are fault-recovery tests, sur-
vivability tests, and the construction of an automatic test generator.

Fault-recovery. We will test the fault-recovery capabilities by injecting faults (failed hosts, large syn-
thetic loads, certificate errors, and attacks on the security infrastructure, etc.) into applications and OGSA
system components in our testbed. The resulting behavior will be compared against the specified behavior.

Survivability testing. Similarly to fault-recovery testing we will inject faults into applications and com-
ponents that have defined survivability properties, e.g., degraded service, and compare the resulting behav-
ior against the specifications.

Auto test generation. An interesting approach to testing is presented by the use of DESL to specify
dependability and survivability characteristics under different circumstances. We will experiment with
using the DESL documents to automatically generate and run tests (faults to generate, expected behavior).

5 SUMMARY
As society increasingly becomes dependent on grid systems, it is imperative that grids be engineered both
to achieve high dependability and to permit assurance that high dependability has been achieved. We have
outlined a program and framework for realizing our goal of engineering dependable service-oriented grid
systems, based on the concept of survivability as a means to achieve dependability. The salient feature of a
survivable approach is that it recognizes and exploits the fundamental trade-off between dependability and
the resources and technology needed to provide it. We have proposed an architecture to implement surviv-
ability concepts—the Grid Dependability and Survivability Architecture (GDSA). GDSA is based on a
classic data-driven control system model in which the state of the grid is continuously monitored and
actions effected to achieve the requisite levels of dependability. In GDSA, dependability policies and
requirements are represented and manipulated in machine-interpretable documents, in a proposed novel
XML-based language, the Dependability Exchange and Specification Language (DESL).

6 REFERENCES
[Alliance2002] Alliance: National Computational Science Alliance. 2002. http://www2.ncsa.uiuc.edu/

About/Alliance/
[Avizienis2001] A. Avizienis, J. Laprie, and B. Randell, “Fundamental Concepts of Computer System

Dependability,” IARP/IEEE-RAS Workshop on Robot Dependability: Technological Challenge of
Dependable Robots in Human Environments, Seoul, Korea, May 2001.
PAGE 14

[Basney2003] J. Basney, W. Yurcik, R. Bonilla, and A. Slagell. The Credential Wallet: A Classifica-
tion of Credential Repositories Highlighting MyProxy. 31st Research Conference on Communication,
Information and Internet Policy (TPRC 2003), Arlington, Virginia, September 19-21, 2003.

[Booth2003] D. Booth et. al. Web Services Architecture. W3C Working Draft 8 August 2003. http://
www.w3.org/TR/ 2003/WD-ws-arch-20030808/

[Box2003a] D. Box et. al. Web Services Policy Attachment (WS-PolicyAttachment). Version of 28
May 2003. http:// www-106.ibm.com/developerworks/library/ws-polatt/

[Box2003b] D. Box, et. al. Web Services Policy Framework (WS-Policy). Version of 28 May 2003.
http://www-106.ibm.com/developerworks/library/ws-polfram/

[Butler2000] R. Butler, D. Engert, I. Foster, C. Kesselman, S. Tuecke, J. Volmer, V. Welch. A
National-Scale Authentication Infrastructure. IEEE Computer, 33(12):60-66, 2000.

[Chapin1999a] S.J. Chapin, D. Katramatos, J.F. Karpovich, and A.S. Grimshaw, "Resource Manage-
ment in Legion," Journal of Future Generation Computing Systems, vol. 15, pp. 583-594, 1999.

[Chapin1999b] S.J. Chapin, C. Wang, W.A. Wulf, F.C. Knabe, and A.S. Grimshaw, "A New Model of
Security for Metasystems," Journal of Future Generation Computing Systems, vol. 15, pp. 713-722, 1999.

[Clarke2002] B. Clarke and M. Humphrey. Beyond the "Device as Portal": Meeting the Requirements
of Wireless and Mobile Devices in the Legion Grid Computing System. In 2nd International Workshop on
Parallel and Distributed Computing Issues in Wireless Networks and Mobile Computing (associated with
IPDPS 2002), Ft. Lauderdale, April 19, 2002.

[Czajkowski2004] K. Czajkowski, A. Dan, J. Rofrano, S. Tuecke, and M. Xu. Agreement-based Ser-
vice Management (WS-Agreement). Global Grid Forum draft-ggf-graap-agreement-1. Version as of Feb 8,
2004.

[Della-Libera2002] G. Della-Libera et. al. Web Services Security Policy (WS-SecurityPolicy). Ver-
sion of 18 December 2002. http://www-106.ibm.com/developerworks/library/ws-secpol/

[DUROC] Karl Czajkowski, Ian Foster, and Carl Kesselman. Co-allocation services for computational
grids. In Proc. 8th IEEE Symp. on High Performance Distributed Computing. IEEE Computer Society
Press, 1999.

[Ellison1997] B. Ellison et. al., “Survivable Network Systems: An Emerging Discipline,” Technical
Report CMU/SEI-97-TR-013, Software Engineering Institute, Carnegie Mellon University, November
1997.

[Ferrari1999] A.J. Ferrari, F.C. Knabe, M. Humphrey, S.J. Chapin, and A.S. Grimshaw, "A Flexible
Security System for Metacomputing Environments," 7th International Conference on High-Performance
Computing and Networking Europe (HPCN'99), April 1999, Amsterdam: 370-380.

[Foster-WSRF] I. Foster, et. al. Modeling Stateful Resources with Web Services. http://www.glo-
bus.org/wsrf/ModelingState.pdf

[Foster1998] I. Foster, C. Kesselman, G. Tsudik, S. Tuecke. A Security Architecture for Computa-
tional Grids. Proc. 5th ACM Conference on Computer and Communications Security Conference, pg. 83-
92, 1998.

[Foster2002a] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The Physiology of the Grid: An Open
Grid Services Architecture for Distributed Systems Integration. Draft of 6/22/02. http://www.gridfo-
rum.org/ogsi-wg/drafts/ ogsa_draft2.9_2002-06-22.pdf

[Foster2002b] I. Foster. What is the Grid? A Three Point Checklist. GRIDToday, July 20, 2002.
[GARA] I. Foster, A. Roy, V. Sander. A Quality of Service Architecture that Combines Resource Res-

ervation and Application Adaptation. 8th International Workshop on Quality of Service, 2000.
[Globus] Globus Project. http://www.globus.org
[GRAM] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith, S. Tuecke. A

Resource Management Architecture for Metacomputing Systems. Proc. IPPS/SPDP '98 Workshop on Job
Scheduling Strategies for Parallel Processing, pg. 62-82, 1998.

[Grimshaw1999] A.S. Grimshaw, A.J. Ferrari, F.C. Knabe and M.A. Humphrey, "Wide-Area Com-
puting: Resource Sharing on a Large Scale," IEEE Computer, 32(5): 29-37, May 1999.
PAGE 15

[Grimshaw2000] A.S. Grimshaw, M.J. Lewis, A.J. Ferrari and J.F. Karpovich, "Architectural Support
for Extensibility and Autonomy in Wide-Area Distributed Object Systems", Proceedings of the 2000 Net-
work and Distributed Systems Security Conference (NDSS'00), San Diego, California, February 2000.

[Grimshaw2003] A.S. Grimshaw, A. Natrajan, M.A. Humphrey and M.J. Lewis, A. Nguyen-Tuong,
J.F. Karpovich, M.M. Morgan, A.J. Ferrari, "From Legion to Avaki: The Persistence of Vision", Grid Com-
puting: Making the Global Infrastructure a Reality, eds. Fran Berman, Geoffrey Fox and Tony Hey, 2003.

[Grimshaw2004] A.S. Grimshaw, M. A. Humphrey, and A. Natrajan. A philosophical and technical
comparison of Legion and Globus. IBM Journal of Research & Development, vol 48 no.2 March 2004.

[Humphrey2000] M. Humphrey, F. Knabe, A. Ferrari, and A. Grimshaw, "Accountability and Control
of Process Creation in Metasystems," in Proceedings of the 2000 Network and Distributed Systems Secu-
rity Conference (NDSS'00), pp. 209-220, San Diego, CA, February 2000.

[Humphrey2002] M. Humphrey and M. Thompson. Security Implications of Typical Grid Computing
Usage Scenarios. Cluster Computing, Vol. 5, pp 357-364, 2002.

[Humphrey2003] M. Humphrey. From Legion to Legion-G to OGSI.NET: Object-based Computing
for Grids. In Proceedings of the IPDPS NSF Next Generation Software Workshop Nice, France, April
2003.

[Humphrey2004] M. Humphrey. Web Services as the Foundation for Learning Complex Software
System Development. Proceedings of Technical Symposium on Computer Science Education (SIGCSE
2004), Norfolk, Virginia, March 3-7 2004.

[IBM-Microsoft2002] IBM and Microsoft. Security in a Web Services World: A Proposed Architec-
ture and Roadmap. April 7, 2002,version 1.0. http://www-106.ibm.com/developerworks/library/ws-sec-
map/

[JBoss2004] JBoss Group. http://www.jboss.org/
[Knight2000] J. C. Knight et. al., “Survivability Architectures: Issues and Approaches,” DARPA

Information Survivability Conference and Exposition (DISCEX 2000), January 2000.
[Knight2002] J. C. Knight et. al., “The Willow Architecture: Comprehensive Survivability for Large-

Scale Distributed Applications,” Intrusion Tolerance Workshop, DSN-2002 The International Conference
on Dependable Systems and Networks, June 2002.

[Knight2003] J. C. Knight et. al., “Towards a Rigorous Definition of Information System Survivabil-
ity,” DISCEX 2003, Washington DC, April 2003.

[Lewis2003] Michael J. Lewis, Adam J. Ferrari, Marty A. Humphrey, John F. Karpovich, Mark M.
Morgan, Anand Natrajan, Anh Nguyen-Tuong, Glenn S. Wasson and Andrew S. Grimshaw, "Support for
Extensibility and Site Autonomy in the Legion Grid System Object Model" Journal of Parallel and Distrib-
uted Computing, Volume 63, pp. 525-38, 2003.

[Liberty2003] Liberty Alliance Project. Introduction to the Liberty Alliance Identity Architecture.
Revision 1.0. March, 2003. http://www.projectliberty.org

[Lorch2004] M. Lorch, J. Basney, and D. Kafura, "A Hardware-secured Credential Repository for
Grid PKIs," 4th IEEE/ACM International Symposium on Cluster Computing and the Grid, April 2004.

[Microsoft2004] Microsoft ASP.NET. 2004. http://www.asp.net/
[MPICH-G2] N. Karonis, B. Toonen, and I. Foster. MPICH-G2: A Grid-Enabled Implementation of

the Message Passing Interface. Journal of Parallel and Distributed Computing, 2003.
[MyProxy] MyProxy Online Credential Repository. http://grid.ncsa.uiuc.edu/myproxy/
[Nagaratnam2003] N. Nagaratnam et. al. Security Architecture for Open Grid Services. Global Grid

Forum Working Draft. Revision as of 6/5/2003.
[Natrajan2001a] A. Natrajan, A. Nguyen-Tuong, M.A. Humphrey, M. Herrick, B.P. Clarke and A.S.

Grimshaw, "The Legion Grid Portal", Grid Computing Environments, Concurrency and Computation:
Practice and Experience, 2001.

[Natrajan2001b] A. Natrajan, A. Fox, M. Humphrey, A. Grimshaw, M. Crowley, N. Wilkins-Diere,
"Protein Folding on the Grid: Experiences using CHARMM under Legion on NPACI Resources," Interna-
PAGE 16

tional Symposium on High Performance Distributed Computing (HPDC), pp. 14-21, San Francisco, Cali-
fornia, August 7-9, 2001.

[Natrajan2001c] A. Natrajan, M.A. Humphrey and A.S. Grimshaw, "Grids: Harnessing Geographi-
cally-Separated Resources in a Multi-Organisational Context", High Performance Computing Systems,
June 2001.

[Natrajan2001d] A. Natrajan, M. Humphrey, and A. Grimshaw, "Capacity and Capability Computing
using Legion," Proceedings of the 2001 International Conference on Computational Science, pp. 273-283,
San Francisco, CA, May 2001.

[Natrajan2003a] Natrajan, A., Crowley, M., Wilkins-Diehr, N., Humphrey, M. A., Fox, A. D., Grim-
shaw, A. S., Brooks, C. L. III, "Studying Protein Folding on the Grid: Experiences using CHARMM on
NPACI Resources under Legion," to appear Grid Computing Environments 2003, Concurrency and Com-
putation: Practice and Experience.

[Natrajan2003b] A. Natrajan, M.A. Humphrey, and A.S. Grimshaw, "Grid Resource Management in
Legion", in Resource Management for Grid Computing, eds. Jennifer Schopf and Jaroslaw Nabrzyski,
2003.

[NguyenTuong1996] A. Nguyen-Tuong, A. S. Grimshaw and M. Hyett, “Exploiting Data-Flow for
Fault-Tolerance in a Wide-Area Parallel System”, 15th International Symposium on Reliable and Distrib-
uted Systems, pp. 1-11, October 1996.

[NguyenTuong1999] A. Nguyen-Tuong and A.S. Grimshaw, "Using Reflection for Incorporating
Fault-Tolerance Techniques into Distributed Applications," Parallel Processing Letters, vol. 9, No. 2
(1999), 291-301.

[NguyenTuong2000] A. Nguyen-Tuong, “Integrating Fault-Tolerance Techniques into Grid Applica-
tions,” Department of Computer Science, Doctoral Dissertation, University of Virginia, August 2000.

[Novotny2001] J. Novotny, S. Tuecke, and V. Welch. An Online Credential Repository for the Grid:
MyProxy. Proceedings of the Tenth International Symposium on High Performance Distributed Comput-
ing (HPDC-10), IEEE Press, August 2001.

[OpenSAML] OpenSAML - an Open Source Security Assertion markup Language implementation.
Internet2. http:// www.opensaml.org/

[OASIS] Organization for the Advancement of Structured Information Standards, http://www.oasis-
open.org/

[OASIS-SAML] Organization for the Advancement of Structured Information Standards (OASIS).
Assertions and Protocol for the OASIS Security Assertion Markup Language (SAML) V1.1. OASIS Stan-
dard, 2 September 2003.

[OASIS-XACML] Organization for the Advancement of Structured Information Standards (OASIS).
Extensible Access Control Markup Language (XACML) Version 1.0. OASIS Standard, 18 February 2003.
http://www.oasis-open.org/committees/xacml/

[OASIS-SOAPSec] Organization for the Advancement of Structured Information Standards (OASIS).
Web Services Security: SOAP Message Security. Working Draft 17, Wednesday, 27 August 2003.

[OASIS-PKI] Organization for the Advancement of Structured Information Standards (OASIS) Pub-
lic Key Infrastructure (PKI) Technical Committee (TC). PKI Action Plan. Ed: Steve Hanna, Sun Microsys-
tems. Nov 24, 2003. http://www.oasis-open.org/committees/pki/pkiactionplan.pdf

[Pearlman2002] L. Pearlman, V. Welch, I. Foster, C. Kesselman, S. Tuecke. A Community Authoriza-
tion Service for Group Collaboration. Proceedings of the IEEE 3rd International Workshop on Policies for
Distributed Systems and Networks, 2002.

[Rowanhill2004] J. C. Rowanhill, P. E. Varner, J. C. Knight. Efficient Hierarchic Management For
Reconfiguration of Networked Information Systems. To appear in proc. of Dependable Systems and Net-
work, June 2004.

[Siebenlist2002] F. Siebenlist et. al. OGSA Security Roadmap: Global Grid Forum Specification
Roadmap towards a Secure OGSA. Global Grid Forum Working Draft. July 2002.
PAGE 17

[SNAP] K. Czajkowski, I. Foster, C. Kesselman, V. Sander, and S. Tuecke. SNAP: A Protocol for
negotiating service level agreements and coordinating resource management in distributed systems. Lec-
ture Notes in Computer Science, 2537:153-183, 2002.

[Strassner2001] J. Strassner, Ellesson, E., Moore, B. and Westerinen, A. 2001. Policy Core Informa-
tion Model -- Version 1 Specification. RFC 3060.

[Sundaram2002] B. Sundaram, and B. Chapman. XML-Based Policy Engine Framework for Usage
Policy Management in Grids. Proceedings of the Third International Workshop on Grid Computing (Grid
2002). Baltimore, MD, November 2002.

[Tuecke2003] S. Tuecke et. al. Open Grid Services Infrastructure (OGSI) Version 1.0. Global Grid
Forum. GFD-R-P.15. Version as of June 27, 2003.

[Tomcat2004] Apache Tomcat. Apache Jakarta Project.http://jakarta.apache.org/tomcat/
index.html.2004.

[Trivedi2000] K. S. Trivedi, K. Vaidyanathan and K. Goseva-Popstojanova, “Modeling and Analysis
of Software Aging and Rejuvenation, “ IEEE Annual Simulation Symposium, April 2000.

[Verma2002] D. Verma, S. Sahu, S. Calo, M. Beigi, and I. Chang. A Policy Service for GRID Com-
puting. Proceedings of the Third International Workshop on Grid Computing (Grid 2002).

[WassonG2003a] G. Wasson and M. Humphrey. Attribute-based Programming for Grid Services.
Workshop on Designing and Building Grid Services. The Ninth Global Grid Forum. Chicago, IL. Oct 5-8,
2003.

[WassonG2003b] G. Wasson and M. Humphrey. Policy and Enforcement in Virtual Organizations. In
4th International Workshop on Grid Computing (Grid2003) (associated with Supercomputing 2003). Phoe-
nix, AZ. Nov 17, 2003.

[WassonG2004] G. Wasson, N. Beekwilder, M. Morgan, and M. Humphrey. OGSI.NET: OGSI-com-
pliance on the .NET Framework. In Proceedings of the 2004 IEEE International Symposium on Cluster
Computing and the Grid. April 19-22, 2004. Chicago, Illinois.

[WassonK2003] Wasson, Kimberly S., John C. Knight, Elisabeth A. Strunk, and Sean R. Travis, Tools
Supporting the Communication of Critical Application Domain Knowledge in High Consequence Systems
Development, SAFECOMP 2003, The 22nd International Conference on Computer Safety, Reliability and
Security, Edinburgh, Scotland (September 2003)

[White2000] B. White, A. Grimshaw, and A. Nguyen-Tuong, "Grid Based File Access: The Legion I/
O Model," to Proceedings of the Symposium on High Performance Distributed Computing (HPDC-9),
Aug 2000, Pittsburgh, PA.

[White2001] B. White, M. Walker, M. Humphrey, and A. Grimshaw "LegionFS: A Secure and Scal-
able File System Supporting Cross-Domain High-Performance Applications", Proceedings SC 01, Denver,
CO. www.sc2001.org/papers/pap.pap324.pdf

[WSI] Web Services Interoperability Organization (WS-I). http://www.ws-i.org/
[WSDL] Web Service Definition Language, W3C, http://www.w3.org/TR/wsdl
[WSRF] Web Service Resource Framework, http://www-fp.globus.org/wsrf/default.asp, January

2004.
[Welch2003] V. Welch, F. Siebenlist, I. Foster, J. Bresnahan, K. Czajkowski, J. Gawor, C. Kesselman,

S. Meder, L. Pearlman, S. Tuecke. Security for Grid Services. Twelfth International Symposium on High
Performance Distributed Computing (HPDC-12), June 2003.

[Yavatkar2000] Yavatkar, R., Pendarakis, D. and Guerin, R. 2000. A Framework for Policy-based
Admission Control. IETF RFC 2753. http://www.faqs.org/rfcs/rfc2753.html.
PAGE 18

	Towards Dependable Grids
	Anh Nguyen-Tuong, Andrew S. Grimshaw, Glenn Wasson, Marty Humphrey, and John C. Knight
	{nguyen, grimshaw, wasson, humphrey, knight}@virginia.edu
	Technical Report CS-2004-11
	Department of Computer Science, University of Virginia
	Abstract
	1 Background and Motivation
	1.1 Approach
	Figure 1. Specification, construction and assessment of dependable applications in service-oriented architectures
	. Dependability and Survivability
	. Key Service Identification
	. System Architecture Development
	. Evaluation
	. Standards Bodies

	1.2 Motivating Example

	2 Related Work
	2.1 Grid Projects
	2.2 Industry Initiatives
	2.3 Quality of Service in Grids
	2.4 Dependability and Survivability
	2.5 Security

	3 Technical Approach
	3.1 Grid Dependability and Survivability Architecture (GDSA)
	Figure 2. The conceptual model for GDSA.

	3.2 Dependability Exchange and Specification Language (DESL)
	Figure 3. A sample DESL document for MyProxy illustrating the basic document structure and the sub- components.
	Figure 4. DESL documents are used to specify requirements, characteristic, and action rules. Note that each service may be accessed my many different applications, and export a different DESL document to each.
	3.2.1 Support for Grid Programmers

	3.3 Engineering Dependable and Survivable Grids
	Figure 5. Structure of a survivable grid application. Services S1-S4 represent the actual application logic. The other services provide support essential to the execution of the underlying application.

	4 Research Agenda
	4.1 Test and Evaluation

	5 Summary
	6 References

