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Reply for Publish and Subscribe allows receivers of a
publication to reply to the publisher. We demonstrate that
Reply is a natural, efficient, and useful component of Pub-
lish/Subscribe. It is natural because it maintains the weak-
est possible coupling between senders and receivers. It is
efficient because it stores computations discarded in publi-
cation forwarding, later applying them to channel replies.
Most importantly, it is useful because it increases the
domain of applications for which Publish/Subscribe is
suited. This paper includes discussion of Reply’s utility,
introduction of two algorithms with differing state storage
and capabilities, their analysis for worst-case conditions,
modeling of required resources, and presentation of a mod-
ular implementation of Reply for distributed Publish/Sub-
scribe systems.

1. Introduction

Distributed Publish/Subscribe offers powerful and flexi-
ble message-delivery to distributed systems. It is particu-
larly useful for very large distributed systems where “one-
to-many” messaging is beneficial and the “book-keeping”
of point-to-point component interconnections is cumber-
some.

Publish/Subscribe obtains its power and flexibility by
supporting independence of messages senders and receiv-
ers. A Publish/Subscribe service registers receivers by the
types of messages they will receive. (Either by category,
formal type, or constraints over content.) When a publisher
pushes a message into the system, all relevant subscribers
receive the message. This allows publishers and subscrib-
ers to operate independently, supporting asynchronous
event-level architectures that scale well with system size.
As the scale of application systems continues to increase,
their inclusion of Publish/Subscribe-like functionality is
likely to increase.

Many application systems require Request/Response
messaging. Request/Response messaging couples mes-
sages in message/response pairs. A message is sent to a
receiver and a response is awaited. The receiver responds
by sending a reply to the sender. Request/Response is typi-
cally used in client/server architectures. A client generates

a request and sends it to a server. Then a server acts on the
request and responds to the client. This component interac-
tion is intuitive and fits well with commonly used program-
ming paradigms. Despite its origins in point-to-point
communications, Request/Response will continue to play
an important role in large distributed systems.

A significant class of distributed systems would benefit
from Publish/Subscribe, but requires features of Request/
Response. Applications in this category include command-
and-control infrastructures [7] [8], gnutella-like distributed
information retrieval systems [2], and content dissemina-
tion services. In general, these systems are ‘data-push’-ori-
ented, but require client/server interactions. They represent
a ‘new’ kind of distributed architecture that is both
Request/Response-like and Publish/Subscribe-like. More
generally, as systems that once relied on point-to-point
Request/Response attempt to achieve increasingly distrib-
uted and scalable architectures, they will benefit from
Request/Response-like capabilities in a Publish/Subscribe-
like framework.

Publish/Subscribe can support Request/Response
semantics if it supports a reply capability. A reply capabil-
ity allows each receiver of a message to respond to the
message’s publisher. A reply might consist of an acknowl-
edgment of receipt, a return of requested data value, or the
results of a computation. Traditionally, Publish/Subscribe
has avoided internal support for a reply feature because of
concerns about its effects on the paradigm. Researchers
recognize Publish/Subscribe as a decoupling of message
senders from message receivers in both space and time [6].
A reply feature might alter this decoupling at the expense
of the paradigm’s flexibility. It is also argued that Publish/
Subscribe is an information ‘pushing’ technology with fil-
tering at receivers. A reply capability might complicate a
user’s understanding of the correct application of the para-
digm. Furthermore, Publish/Subscribe is efficient for large
distributed networks as it does not store information about
forwarded publications. Worst-case scenarios for a reply
algorithm, one that must maintain such state, might limit
efficiency or application of Publish/Subscribe.

We argue that a reply feature can be a useful, efficient,
and natural element of Publish/Subscribe. We refer to the
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augmented paradigm as Publish and Subscribe with Reply.
Our arguments are based on the definition and analysis of
two reply algorithms, as well as the implementation and
application of one of them.

Section 2 introduces Reply, a reply function for Publish/
Subscribe. It considers the mention of reply functions in
existing Publish/Subscribe architectures. Section 3 intro-
duces our algorithms for Reply. Section 4 is an analysis of
the worst-case performance and resource requirements for
our Reply algorithms. Section 5 discusses the effectiveness
and utility of Siena Harvest-an implementation of Reply in
the Siena Publish/Subscribe architecture.

2. Publish and Subscribe with Reply

An effective Reply mechanism must not impede the
power and flexibility of Publish/Subscribe. This is compli-
cated by its decoupling [6] and ‘data-push’ properties. We
introduce these properties of Publish/Subscribe and con-
sider their implications for Reply as follows:
• Spatial Decoupling: A publisher may be unaware of a

network’s receivers. Therefore, it may not have
explicit control over how many receivers obtain its
message. This means that a publisher cannot assume
the size of a receiver set for a given message. To be a
natural and effective component, Reply must handle
messaging with similar temporal efficiency to Publish/
Subscribe so that publishers are not required to con-
sider the time-cost of Reply independent of the time-
cost of publication. That is, in the event that all receiv-
ers reply to a message simultaneously, the time to
return the replies to the publisher should be similar to
the time to send the publication to all receivers.

• Temporal Decoupling: Receivers are not obligated to
process a message at any time. Hence, a publisher can-
not assume a receiver will process a message and send
a reply. Reply must handle temporally decoupled reply
events while providing useful information to the pub-
lisher and reasonable behavior of services at publish-
ers and repliers.

• Information ‘Pushing’ Technology: Publishers push
information and subscribers filter it by content. Hence,
Publish/Subscribe is an information ‘push’ technology
[10]. A Reply feature must not alter the efficiency of
Publish/Subscribe with respect to information push-
ing.

It is easy to construct a reply system that would violate
these constraints. Consider the action of a naive, point-to-
point reply mechanism when a publication from a single
source is sent to millions of receivers: A response from
each receiver would result in millions of individual reply
messages sent towards the publisher. Many of these replies

would traverse the network simultaneously. This would
generate a massive sequence of message events at the pub-
lisher over a short interval of time. The effect would be an
overloading of the publisher with message events. Second,
some replies would proceed to the publisher at dispersed
times in the future, perhaps well after the scope of their
effective consideration has been abandoned by the pub-
lisher. The publisher application would still be required to
accept these untimely replies. Finally, the effective routing
of millions of replies to a single point would require reac-
tive network-level resource management to avoid affecting
performance of additional publications.

2.1  Existing Reply Functions and Related Work

The utility of a reply feature has resulted in its appear-
ance in varied form in at least two Publish/Subscribe archi-
tectures. JEDI, a distributed Publish/Subscribe
architecture, introduces a reply function to support func-
tionality required by a wide-area distributed workflow sys-
tem [4]. Reply was introduced after they investigated the
value of Publication/Response synchronization and the
undesirable overhead of an application-level point-to-point
response mechanism. They note the ability of an integrated
reply function to maintain the anonymity of publishers and
subscribers. They also discuss the role of a reply service in
presenting a publisher with a single reply event as opposed
to independent replies from each receiver.

Java Messaging Service [9] introduces a reply function
in two contexts: it supports a built in message acknowledg-
ment feature, and otherwise suggests ad hoc application-
level reply. The algorithm of the acknowledgment feature
is not discussed. Ad hoc application-level reply exposes
location information to receivers, or otherwise requires re-
binding of receivers to publishers.

To the best of our knowledge, the algorithms and scal-
ability of existing reply mechanisms have not been dis-
cussed in the literature. For example, a reply mechanism’s
worst-case scenarios and their respective costs have not
been demonstrated.

Directed diffusion [12] [13] is the reduction of data
messages through data fusion of messages on route. Its
application is to sensor networks where queries are met by
distributed filtering of sensor events. Its application is to
effectively reduce the event cost of messaging [12] and
provide intelligent, content-based data fusion [13] within
the network service. This saves power and reduces applica-
tion complexity. Our goal is to reduce message traffic so
that reply to a publication will scale with the efficiency of
distributed Publish/Subscribe. We apply data fusion at the
forwarding level provided by Publish/Subscribe, rather
than the routing level, in order to achieve this scalability.
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2.2  A Reply Function

Publish and Subscribe with Reply is an extension of the
existing Publish and Subscribe model. An example of its
event cycle is depicted in Figure 1. The steps of Publish
and Subscribe with Reply shown in the figure are as fol-
lows:

1. Subscribers are elements that subscribe to messages 
based on message type or content. They will be receiv-
ers of any messages matching their subscriptions.

2. A sender publishes a message known as a publication.
In addition to its message content, the publication spec-
ifies that it will accept a reply. It specifies the reply data
type defining legal reply values. In step 2 of Figure 1, a
“Publisher” has published “Publication 1.”

3. After a message is published, it arrives at all receivers
subscribed to the message’s content (type.)

4. The receivers observe that the message requests a
response, and if they choose, they may respond. They
respond to the Publish/Subscribe system by issuing an
instance of the specified reply data type along with the
publication’s unique identifier. A receiver may only
reply to a given publication once. In Figure 1, the top-
most subscriber responds with “Reply A” and the bot-
tom subscriber responds with “Reply B.”

5. The publisher of a message observes replies to the pub-
lication through a reply view. A reply view is repre-
sented by a token given to the publisher to observe
reply data. A publisher uses a reply view token to
observe reply data that has returned to the publisher.

6. The publisher may request currently accumulated
replies, or request replies after blocking for a specified
time interval. It makes such requests to the reply view
token for a given publication.

7. Replies to a publication are viewed by the publisher as
a histogram sent to the publisher. A histogram indexes
over distinct replies from the range of the reply data
type specified in the initial publication (see step 2). The
count of each index is the number of receivers replying
with the associated reply data value.

8. A reply view terminates when a publisher returns the
view token to the system.

9. Replies sent after the reply view duration of a publica-
tion are discarded by the system.

We refer to the set of replies returned to the publisher as a
reply harvest. We call the process of gathering replies reply
harvesting.

There are three key elements of Publish/Subscribe with
Reply that distinguish it from Publish/Subscribe. First,
Reply tells a publisher how many subscribers have replied
with each instance value of the reply data type. Second,
Reply creates an intrinsic temporal ordering between a
publication and its replies. Third, Reply allows information
to flow from receivers of a message to the message’s pub-
lisher.

Publish/Subscribe with Reply maintains decoupled
space and time. Publishers and receivers are never implic-
itly made aware of each other’s locations, nor is a publica-
tion or its replies addressed by location. Likewise, there is
no temporal coupling between a publisher and a subscriber.
A publisher listens for replies for a time interval indepen-
dent of subscribers. A replying subscriber may reply at any
time (or not at all), before or after the interval during which
a publisher is listening.

3. Reply Algorithms

Space and time decoupling imply that a publisher can-
not assume the size of a reply harvest or the response time
of replies. In Section 2 we discussed the requirements cre-
ated by space and time decoupling. Of remaining concern
are the efficiency requirements for an algorithm imple-
menting the stated Reply function. To re-iterate, a reply
algorithm must be of similar efficiency to Publish/Sub-
scribe, and it must not significantly alter the efficiency of
existing distributed Publish/Subscribe algorithms.

3.1  Observations

Much of the computation required for an efficient Reply
algorithm is provided by the forwarding algorithms of dis-

FIGURE 1. The Publish and Subscribe with Reply 
event structure with an example publication.

Publication 1
<message, 

replyRange{A,B}>

Publication 1

Reply A

Publication 1

P
ub

lis
he

r

Su
bs

cr
ib

er
Su

bs
cr

ib
er

Reply B

P
ub

lis
h 

an
d 

Su
bs

cr
ib

e 
w

it
h 

R
ep

ly

6,8

5

3

3

4

4

2
1

1

Histogram

Reply A

Reply B P
ub

lic
at

io
n 

1 
R

ep
ly

 V
ie

w

7



(c) 2002 Jonathan C. Hill, John C. Knight, Aaron M. Crickenberger, Richard Honhart

tributed Publish/Subscribe. Forwarding computations-
though discarded by Publish/Subscribe-have intrinsic value
that we now elucidate. A key observation is this:
• A publisher is independent of receivers, but during the

forwarding of a message, the dynamic association of a
publisher with all subscribing receivers is computed.

This observation suggests that the core computation of
Publish/Subscribe is a temporary association of a set of
receivers with a publisher.

Consider what happens in a distributed, subnet-based
Publish/Subscribe system. An example of the forwarding
of a message in such a system is depicted in Figure 2. The
diagonally-hatched circle represents the publisher of a
message. Darkly shaded circles represent receivers that
obtain the message. The message is passed from dispatcher
to dispatcher in a process called forwarding. We represent
forwarding steps as the edges in the graph. At each dis-
patcher, the message is forwarded to zero or more receivers
subscribed to the message, and to zero or more other dis-
patchers.

In subnet-based forwarding the path of a message’s dis-
semination forms a tree. This tree is a data structure associ-
ating receivers with a publisher for a given message. It has
the following properties for a message:

1. The root of the tree is a dispatcher local to the mes-
sage’s publisher.

2. The intermediate nodes of the tree are dispatchers for-
warding the publication.

3. The leaf nodes of the tree are the receivers of the mes-
sage.

A tree is created for each message published, and its struc-
ture depends only on the forwarding of the message. In
turn, the message’s forwarding depends only on the sub-
scriptions of potential receivers and the connection topol-
ogy of the Publish/Subscribe network.

A forwarding tree presents two important levels of
information. First, as we have earlier stated, it associates a
publisher with a set of receivers. The root of the tree repre-
sents the publisher and the leaves of the tree represent the
receivers. More important is the form of this association in
the tree. Each receiver is associated with the publisher by a
path of nodes and edges from the receiver’s leaf node to the
root of the tree. One or more receivers might share any
given intermediate node of the tree as a common node on
their paths to the root. Additionally, a common node shared
between two paths to root indicates that both paths share a
common path postfix to the root node.

The tree data structure formed during message forward-
ing provides the basis for efficient Reply algorithms. The
distribution of replies over the paths of the forwarding tree
distributes the cost of reply message traffic over the links
of the tree. Meanwhile, all reply paths eventually coincide,
and this combination of paths is also distributed in the tree.
A function to merge replies can be applied wherever reply
paths merge. A merging function potentially reduces the
overall message traffic sent back to the root of the tree.

3.2  Algorithms

Our algorithms re-use the forwarding tree of a publica-
tion. The algorithms send replies from the leaves of their
publication’s forwarding trees to their roots. As stated in
Section 3.1, re-using the paths of a publication’s forward-
ing tree distributes the return-paths of reply messages and
supports merging of replies. Resource distribution in mes-
sage passing and data merging is a primary element of the
scalability of reply algorithms. In very large networks,
where individual dispatchers have limited computational
and bandwidth resources, distribution allows arbitrary pub-
lications to distribute the cost of reply collection just as
Publish/Subscribe distributes the cost of publication dis-
semination.

Publish/Subscribe does not require the storage of for-
warding tree information. Therefore, its use in Reply
requires that we store the information as a cost of Reply.
How this information is stored effects Reply’s costs and
capabilities. We introduce two Reply algorithms represent-
ing distinct options for the storage of forwarding tree infor-
mation.

Dispatcher-Stateful-Reply is a Reply algorithm that
stores forwarding tree state in the dispatchers of the for-
warding tree. Its disadvantage is that it requires dispatchers
store state regarding publications. Its advantages include
reduced message traffic and bounding of the quantity of
reply messages received by any dispatcher. Additionally,
the reply view can calculate a lower bound on the number
of outstanding replies without requiring additional message
traffic.

FIGURE 2. An example of a forwarding tree 
generated by forwarding of a publication.
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Message-Stateful-Reply is a Reply algorithm that stores
forwarding tree state in publications and their replies rather
than in dispatchers. Its advantage is that dispatchers remain
stateless for publications. Its primary disadvantages are
that it cannot calculate the number of outstanding replies
without additional messaging, and cannot merge replies to
reduce reply traffic. Additionally, the length of a publica-
tion message increases with each forwarding in the dis-
patcher network.

In general, these algorithms work as follows:

1. A receiver generates a reply as an instance of the reply 
data type specified by the causing publication.

2. Receivers send their replies as ordered pairs, (publica-
tion identifier, reply data instance), to the Reply ser-
vice. The service is contacted at the dispatcher from
which the receiver obtained the publication.

3. The Reply service sends replies back along a path in the
causing publication’s forwarding tree. The path is from
a leaf of the tree to its root.

4. At each intermediate node of the forwarding tree, Dis-
patcher-Stateful-Reply performs a merging function
with other replies for the publication. Message-State-
ful-Reply does not.

5. The reply results are merged into a histogram at the root
of the tree and presented in histogram form to the pub-
lisher.

We now discuss each algorithm in more detail.

3.2.1  Dispatcher-Stateful-Reply
Dispatcher-Stateful-Reply stores publication and reply

information at all dispatchers within a publication’s for-
warding tree. For a given publication, each dispatcher that
is part of the publication’s forwarding tree stores (1) the
local edges of the tree (an edge to the dispatcher from
which this dispatcher received a publication, and edges to
the dispatchers to which it forwarded the publication) and
(2) the reply values it receives over the edges to which it
forwarded the publication.

Dispatcher-Stateful-Reply functions as a distributed
algorithm over all dispatchers in a Publish/Subscribe with
Reply system. The algorithm is initially active at each dis-
patcher within a publication’s forwarding tree when that
dispatcher receives the publication. The algorithm operates
in response to events as follows:

1. On receipt of a new publication requesting replies, a 
dispatcher creates an empty histogram of reply results 
for that publication. It records the dispatcher from 
which it received the publication.

2. When the dispatcher forwards the publication to dis-
patchers and receivers, the addresses of those elements

are stored in a local table. Hence, a dispatcher stores the
address of each of its child-nodes in the publication’s
forwarding tree. These are the elements from which the
dispatcher might observe replies.

3. When a reply is received by a dispatcher, the dispatcher
records that the child node in question has replied. Then
the reply is stored in the local histogram created in step
1. This is done by merging the reply into the histogram.
Any reply received by the dispatcher will already be a
histogram. (In the case of a reply sent from a receiver
this histogram contains only a single entry and a count
of one on that entry.) Hence, the reply merging opera-
tion is always between the locally stored accumulated
histogram and a received reply histogram.

4. When a dispatcher has received a reply from each node
to which it forwarded the publication (the last outstand-
ing child node sends a reply as handled by step 3), the
dispatcher sends the resulting merged reply histogram
to its parent in the forwarding tree. It indicates to the
parent that this is its final report of reply data. It then
deletes is local state regarding the publication and its
associated replies. Alternatively, it performs these
actions if it receives a terminate message from its par-
ent in the forwarding tree. It does so after sending the
terminate message further along the tree and waiting a
specified duration for final reply results from child
nodes in the forwarding tree.

5. A dispatcher may receive a request for its collected his-
togram before it has received replies from all dispatch-
ers that are child nodes from which it awaits replies. In
this case it forwards the request to its children, waits
some time duration specified in the request, and then
forwards its current accumulated histogram state to its
parent node. Additionally each responding child node
sends the dispatcher a lower bound on the number of
receivers from its sub-tree that have not yet replied to
the publication. The dispatcher adds to this number the
number of its own child nodes that did not respond to
the request for reply information. It forwards this infor-
mation to its parent node along with the merged reply
histogram. The dispatcher does not delete its local state.

6. The publisher may query reply harvest results. This
results in the propagation of query messages as dis-
cussed in step 5. This precipitates reporting of interme-
diate results to the publisher’s histogram view.

7. The publisher may terminate a reply view. This results
in the propagation of terminate messages and the result-
ing final merging of reply results as discussed in step 4. 

In the above algorithm there are three methods by which
a publisher’s reply view is updated. If a dispatcher receives
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all possible reply information from its children dispatchers
in a forwarding tree, then it automatically sends final reply
information to its parent in the forwarding tree. A dis-
patcher can also be asked to accumulate current or final
reply results. Therefore if all receivers reply to a publica-
tion, and all reply messages are received, then reply storage
reduces to storage at the dispatcher local to the publisher. It
is unlikely that this will occur in a large network, regard-
less of application policy. The current and final view
request capabilities accommodate this general case.

Dispatcher-Stateful-Reply stores information at dis-
patchers throughout forwarding trees. It obtains potential
optimizations in message traffic in return for this storage
overhead. Additionally, it can calculate a lower bound on
outstanding replies at no extra message cost. We will con-
sider the costs of this algorithm in Section 4.

3.2.2  Message-Stateful-Reply
Message-Stateful-Reply operates without storing publi-

cation and reply information at all dispatchers in a forward-
ing tree. Instead, it only stores state in the dispatchers at the
root and leaves of a forwarding tree. All other state is
stored in publication and reply messages. Message-State-
ful-Reply works as follows:

1. When a publisher emits a publication, the publisher’s 
local dispatcher creates and stores an empty histogram 
of replies.

2. When a dispatcher forwards a publication to other dis-
patchers, its appends its address to a forwarding path
stored in the internal representation of the message.

3. When a leaf node (receiver) obtains a publication, the
receiver’s local dispatcher (the receiver’s parent in the
forwarding tree) stores the reply path in a local table
indexed by publication identifier.

4. When a reply is issued by a receiver application, it must
be issued to the dispatcher from which it received the
publication. The reply is issued in association with the
publication’s identifier. This identifier is used by the
dispatcher to look up the reply path in its local state
table. The path is attached to the reply message. The
address of the parent forwarding node is removed from
the path and the reply is forwarded to that dispatcher.

5. When a dispatcher at an intermediate position in a for-
warding tree (as indicated by remaining path elements
in the message) receives a reply message, it finds the
parent node in the path data of the reply, removes it
from the reply data, and returns the reply to that node.

6. When a reply is received by the root of a forwarding
tree (indicated by a null remaining path element), it has
been received by the dispatcher local to the publisher

(the root of the forwarding tree.) The reply message is
merged into the publication’s histogram. If no such his-
togram exists, the message is discarded.

7. The publisher may request an updated view of the col-
lected histogram at any time. The publisher may also
terminate the reply view at any time.

Message-Stateful-Reply applies path-storage in publica-
tions and replies to reduce the state storage required in dis-
patchers (as compared to Dispatcher-Stateful-Reply.) A
dispatcher uses a message’s stored path information to
reverse-forward replies along a path in a forwarding tree.
Thus it maintains the distribution of replies over the paths
of the publication’s forwarding tree. Note that it cannot
apply merging algorithms at intermediate nodes because
the coordination of reply events at common intermediate
points on the return path is not determined or enforced. We
will consider the costs of this algorithm in the next section.

3.2.3  Immediately Implied Algorithm Variations
Message-Stateful-Reply and Dispatcher-Stateful-Reply

are two points in the potential algorithm design space rep-
resenting variations in state-storage. It is possible to pro-
duce a Reply algorithm with combinations of properties
from these two algorithms. A third algorithm could be pro-
duced with intermediate storage and reply capabilities by
altering dispatcher and message storage as well as by intro-
ducing additional messaging. Additionally, other tech-
niques for reply harvesting can be employed such as
periodic reply-view updates.

Furthermore, the heterogeneous application of Mes-
sage-Stateful-Reply and Dispatcher-Stateful-Reply dis-
patchers in the same dispatcher network is possible with
minimal adjustments to the above algorithms. A system
might maintain ‘stateful’ dispatchers at dedicated Publish/
Subscribe service providers and ‘stateless’ dispatchers at
client hosts or low-level routers in a Publish/Subscribe sys-
tem.

4. Algorithm Analysis

The costs and performance of our Reply algorithms
depend on their storage and communication costs. Mes-
sage-Stateful-Reply incurs storage costs in publications,
replies, and the root and leaf nodes of forwarding trees. It
incurs a potential message event cost of one reply message
traveling from each leaf of a forwarding tree to its root.
Dispatcher-Stateful-Reply requires storage at all dispatch-
ers in a forwarding tree. Its reply message event cost is sig-
nificantly less than that of Message-Stateful-Reply. Its total
message data cost is the same as Message-Stateful-Reply’s
under some circumstances but is significantly better under
bounding type-enforced constraints on reply values.
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Our analysis of Message-State and Dispatcher-State
Reply depends on the characterization of a worst-case pub-
lication. We apply the same characterization to the analysis
of both algorithms. For our analysis, worst-case is the
worst-case cost in storage and message traffic for a publi-
cation. In this section we will not be considering worst-
case cost for multiple publications, such as extended and
overlapping reply view lifetimes.

Characteristics effecting a worst-case publication are a
large forwarding tree in which all receivers are at great
depths in the tree, and where all receivers respond with a
wide range of replies in a short time interval.

For the purpose of clarity in our analysis, worst-case
forwarding trees will be Reply-optimal. By this we mean
that although the above characteristics describe our worst-
case tree, it will have features, such as constant branching
factor, that distribute the paths of reply messages well. We
will consider in a later section those trees that are non-
Reply-optimal.

Let the forwarding tree consist of a set of dispatchers,
D, and a set of receivers, R. Let the set of dispatchers and
receivers form a full and complete tree with constant
branching factor b. Require that the leaves of the tree are
only elements from set R, and the non-leaves of the tree are
only elements from set D. Hence, a worst-case, Reply-opti-
mal forwarding tree is a tree of constant branching factor
where all receivers are leaves of the tree at a depth of the
tree logb(|R|). Given these elements, we parameterize a
worst-case, Reply-optimal, publication with:

1. the branching factor, b, of the forwarding tree for a pub-
lished message,

2. the range of valid replies, P, in the reply data type for a
message,

3. the set of receiver nodes available in the Publish/Sub-
scribe network, R, and

4. the depth, d, of a forwarding node in a worst-case for-
warding tree.

The resulting costs of Message-State and Dispatcher-State
Reply are presented in Table 1. We derive these results
below.

4.1  Message-Stateful-Reply Cost

Message-Stateful-Reply stores state at the root and leaf
nodes of a forwarding tree and within publication and reply
messages. The state stored per publication at a receiver
node (leaf-node of a forwarding tree) is the publication’s
forwarding path from the root (publisher) to the leaf
(receiver) in the tree. This is of length O(log|R|) for a worst
case-publication. The state stored at the publisher is a his-
togram of received replies. A histogram will never store

more than one entry for each unique data value from set P.
Hence the size of the histogram is O(min(|P|, |R|)), where
min is a function choosing the minimum value of its argu-
ments. No state is stored at intermediate nodes of a for-
warding tree.

The length of publications and replies varies in Mes-
sage-Stateful-Reply with the length of the forwarding path
attached to publication and reply messages. It is of order
O(d).

Each node of the forwarding tree will receive all replies
that must pass through it to reach the root of the tree.
Hence, the number of message events received by a for-

warding node is O(|R|b-d). A leaf node will send one reply
event, namely, the reply passed from the receiver applica-
tion element to its local dispatcher. The publisher’s local
dispatcher (the root of the forwarding tree) will observe
O(|R|) replies if all recipients reply.

The total reply traffic, in bytes, sent by a dispatcher to
its parent in the a worst-case forwarding tree is of the order

of O(|R|(d)b-d). Recall that it receives O(|R|b-d) events
and each is of length O(d). Note that at the publisher this
cost is more precisely bound as O(|R|).

In summary, the storage cost of stateless Reply is nil for
the intermediate forwarding network while the message
traffic cost scales linearly with receiver set size. In the
worst case of publication to the entire network periphery,
reply traffic scales linearly with network size.

4.2  Dispatcher-Stateful-Reply Cost

Dispatcher-Stateful-Reply stores publication and reply
state at all dispatchers in a publication’s forwarding tree.
The purpose behind this state storage is to apply a merging
function over reply values at each dispatcher. This merging
function reduces generated reply traffic.

Dispatcher-Stateful-Reply does not store path informa-
tion in publications or replies. Hence publication length is
O(1) with respect to our parameters. Each reply message
sent in Dispatcher-Stateful-Reply is a histogram of reply
values. The reply sent by receivers is a single reply data
value. The replies received by the publisher (root node) are
reply histograms for a b-way partitioning of the replies
from receiver set R. As discussed in Section 4.1, the size of
a histogram cannot exceed the size of the data value set
from which entries consist. Hence the size of a reply mes-

sage is of order O(min(|P|, |R|b-d)). The size of histogram
data stored at any given forwarding node is also of the

order O(min(|P|, |R|b-d)).
Dispatcher-Stateful-Reply receives O(b) reply mes-

sages at each internal forwarding node of a forwarding
tree. Therefore the total bytes received in reply message at

a dispatcher at depth d is O(min(|P|b, |R|b-d)). 
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4.3  Analysis of Costs vs. Capabilities

Table 1 summarizes the costs of Dispatcher-Stateful and
Message-Stateful Reply for worst-case publications. In
particular, reply message sending cost scales linearly with
network size (|R| scales with network size) for both algo-
rithms. Additionally, the cost grows exponentially greater
towards the root of a forwarding tree. At the leaves of the
tree, message sending cost is constant. At the publisher, it
is O(|R|). The only distinction in total message cost
between the two algorithms is the factor of d in Message-
Stateful Reply due to storage of state within messages.

The cost in asynchronous message events sent or
received by a dispatcher is significantly different for the
two algorithms. It is constrained to b (the branching factor
of the forwarding tree) for Dispatcher-Stateful Reply. It
scales linearly with network size and decays exponentially
with depth in the forwarding tree for Message-Stateful
Reply. Branching factor is largely constrained in practice
and hence is relatively constant (we discuss this further in
Section 4.5.) As a result, the asynchronous event cost of
Dispatcher-Stateful Reply is significantly reduced in a for-
warding tree’s interior as compared to application of Mes-
sage-Stateful Reply. Furthermore, when P contains fewer
elements than R the total message cost for Dispatcher-
Stateful-Reply can be significantly reduced as compared to
that of Message-Stateful-Reply.

Finally, the storage cost of Message-Stateful-Reply is
significantly less than storage cost in Dispatcher-Stateful-
Reply at dispatchers acting as internal nodes in a forward-
ing tree. Message-Stateful-Reply requires no such storage.
Dispatcher-Stateful-Reply’s storage is linear with network
size and decays exponentially with depth in the forwarding

tree. However, if the size of set P is less than the size of R,
then the storage cost is constrained linearly by |P| rather
than by |R|.

To summarize, examination of the two algorithms indi-
cates that the relative merits of the two approaches depends
on (1) the acceptability of storage at arbitrary forwarding
nodes and (2) the relative size of the reply data type range,
|P| as compared to the size of the network’s receiver set,
|R|, and (3) the benefit of obtaining a lower bound on the
number of outstanding replies. In application-level sys-
tems, where dispatcher state is affordable and acceptable
and where reply value ranges are small (|P| is small), Dis-
patcher-Stateful reply can offer significant performance
improvements. Where Publish/Subscribe with Reply is
applied at the system-level or where additional dispatcher
state is not acceptable, Message-Stateful-Reply might be
more appropriate. Further, we have previously mentioned
that combinations and variations of these approaches can
be employed.

4.4  Average Storage and Bandwidth Cost for 
Dispatcher-Stateful-Reply

Resource modeling benefits from knowing the average
of algorithm cost over forwarding trees. In particular, this
is important for calculation from steady-state mean
expected resource usage. The following average calcula-
tion holds wherever a cost at a node of a forwarding tree is

O(|R|b-d): Approximate a worst-case forwarding tree and

note its height as h (|R|=bh.) If the cost at a node is O(|R|b-

d) then with the definition of h it is equivalently O(bh-d).

Publication 
Length 

Reply Length in 
bytes

Reply 
Event 
Count

Total Reply 
Sending Cost in 
bytes

Histogram
Storage Cost
(in entries)

Message-State-
ful-Reply

O(d) O(d) O(|R|b-d) O(|R|(d)b-d)
O(|R|) at publisher

O(log|R|) at receivers
O(min(|P|,|R|)) at pub-
lisher
O(0) elsewhere

Dispatcher-
Stateful-Reply 
|P|>|R|

O(1) O(|R|b-d) O(b) O(|R|b-d) O(|R|b-d)

Dispatcher-
Stateful-Reply 
|P|<=|R|

O(1) O(min(|P|, |R|b-d)) O(b) O(min(|P|b, |R|b-d)) O(min(|P|,|R|b-d))

TABLE 1. Cost of Reply at a node at depth d in a worst-case publication’s forwarding tree.
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Each layer of the tree has bd nodes. Therefore we calculate
the average cost at nodes of the tree by

from which we have derived that average cost scales with
the height of the tree. This is O(log|R|). We apply this
result in our resource model. By similar calculation, if a

cost at a node is O(|R|db-d) then cost averaged over all

nodes of a forwarding tree is O(h2) or O((log(|R|)2).
Hence, the average total reply messaging cost over nodes
of a forwarding tree is O(log(|R|)) for Dispatcher-Stateful-

Reply with |P|>|R| and is O((log(|R|))2) for and the aver-
age messaging cost of Message-Stateful-Reply.

4.5  Resource Allocation Model for Reply

If Reply is to be effective its messaging costs must be
considered, in particular relative to those of Publish/Sub-
scribe. Additionally, Dispatcher-Stateful-Reply must con-
sider that storage requirements of forwarding nodes within
a Publish/Subscribe with Reply network.

Current Publish/Subscribe systems are generally con-
structed at the application level. These systems transmit
messages using the network-level protocols provided by
operating systems. TCP/IP messaging is a typical example.

 Our previous cost analyses allow us to specify the
bandwidth requirements of links between distributed dis-
patchers in a deployed Publish/Subscribe with Reply sys-
tem. We can specify these resource requirements to a
network-level service as anticipated mean and maximum
resource usage. Additionally, we can reserve the required
memory and computational resources required for histo-
gram storage and processing. Hence, static resource reser-
vation should be sufficient to fulfill the resource
availability requirements of a Publish/Subscribe with
Reply network experiencing expected traffic under optimal
operating and network conditions.

Let our network expect to support n simultaneous publi-
cations expecting replies. Let each publisher have at most
m of the n simultaneous publications. Let a reply data type
with value range P. Let R be the set of receivers in the net-
work. Assert relatively equal distribution of receivers
throughout the dispatcher network. Then the message traf-
fic of Dispatcher-Stateful-Reply can be modeled as
• average worst-case traffic 

O(n min(log(|P|), log(|R|))), and 
• peak worst-case traffic 

O(m min(|P|, |R|)).
In addition, the histogram storage cost of Dispatcher-State-
ful-Reply can be modeled as
• average worst-case storage 

O(n min(log(|P|), log(|R|))), and 
• peak worst-case storage 

O(m min(|P|, |R|)).
For the same parameterized conditions, the message traffic
of Message-Stateful-Reply is
• average worst-case traffic 

O(n min(log(|P|)2, log(|R|)2)), and 
• peak worst-case traffic 

O(m min(|P|, |R|)).
and its storage model is
• average worst-case storage 

O(n log(|R|)), and
• peak worst-case storage 

O(m min(|P|,|R|)).
The resource model above assumes steady-state behav-

ior of the system in which mean and maximum usage sta-
tistics are sufficient to provide static reservation or
allocation of required resources.

In practice, forwarding trees are not optimal for Reply.
That is, they are not full and complete and do not have a
constant branching factor. Our analysis and the resulting
resource model assumed a relatively constant branching
factor in forwarding trees. A forwarding tree without a
constant branching factor might worse-than-expected local
and regional cost and performance.

Assume that the bandwidth and computational
resources of a Publish/Subscribe with Reply network have
been allocated with the assumption of a Reply-optimal for-
warding tree T. That is, assume that the forwarding tree is
full and complete with a constant branching factor. Given
resource allocation assuming T, there are two classes of
non-Reply-optimal forwarding trees:
• Reply-performance Preserving trees: A forwarding

tree is Performance Preserving if and only if it consists
of a subset of the nodes and edges of a Reply-optimal
tree of equivalent dimensions to T.

• Reply-performance Degrading trees: A forwarding
tree is Performance Degrading if it does not consist of
a subset of the nodes and edges of a Reply-optimal
forwarding tree of equivalent dimensions to T.

The first case preserves the anticipated performance of
Reply because it utilizes less bandwidth and computational
resources than allocated with the assumption of Reply-
optimal tree T. An example of a Reply-performance Pre-
serving tree is depicted in Figure 3. A tree with constant
branching factor 3 is shown as a set of nodes connected by
edges. The Reply-optimal tree assumed in resource alloca-
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tion was of branching factor 3. Reply-performance Pre-
serving trees utilize a subset of Reply-optimal links
between forwarding nodes. They perform fewer merging
operations at any given nodes than full use of a tree T, and
additionally send histograms of smaller than maximum
possible size observed on T. Figure 3 shows a Reply-per-
formance preserving tree as a set of shaded nodes and
thicker edges, covered by the Reply-optimal tree.

The class of Performance Degrading trees use more
bandwidth than assumed by tree T under which resource
allocation is modeled. The forwarding tree contains at least
one forwarding node N at depth d such that N has more
descendants than a node in T at depth d. In such a tree, the
bandwidth requirements from N to the root of the tree will
be greater than anticipated by a Reply-optimal tree. An
example of a Reply-performance Degrading tree is
depicted in Figure 4. In the example, a Reply-optimal tree
with branching factor 3 is assumed for T. The graph of Fig-
ure 4 cannot be covered by a tree with branching factor 3.
Consider the implications for very large trees. Let a node
N, at depth d, have 1,000,000 descendants where T
assumed 5,000 descendants at depth d. The resulting band-
width requirements from N to the root of the tree-to trans-

port the harvested 1,000,000 replies-will considerably
overload the allocated bandwidth from N to the root node.

Allocating bandwidth to account for non-optimal for-
warding trees is an important consideration in performance
in real application networks. While performance degrada-
tion near the leaves of a tree will not greatly impact perfor-
mance, variance from anticipated branching factor deep
within the interior of a tree may have a significant effect.
Handling performance degradation through avoidance of
irregular forwarding trees or compensation for their band-
width requirements is necessary. A solution strategy will
largely depend on the type of distributed Publish/Subscribe
application-level network architecture in use, and the
resource-reservation capabilities of the network-level
architecture on which it resides.

4.5.1  Hierarchical Dispatch Architectures
Hierarchical Publish/Subscribe Dispatch Architectures

easily support Publish/Subscribe with Reply. They can
guarantee that all non-Reply-optimal trees are Performance
Preserving.

Subnet-based distributed Publish/Subscribe architec-
tures consist of a graph of dispatchers. Each node of the
graph is a dispatcher that may forward published messages
to other dispatchers and receivers to which it is connected.

The connectivity of a Hierarchical Dispatch Architec-
ture always forms a tree of dispatcher nodes. Each dis-
patcher node of the tree has a fixed set of connections to
identifiable child nodes. All nodes except the root have a
single, identifiable parent node.

Any forwarding tree generated within a hierarchical dis-
patcher network is constrained to a subset of the dispatcher
network graph’s nodes and edges. If we allocate bandwidth
resources assuming a tree T, then conformance of the hier-
archical dispatcher tree to dimensions equivalent to T guar-
antees that all forwarding trees will be covered by a tree of
dimension T. Hence, all possible forwarding trees will be
Performance Preserving.

4.5.2  Peer-to-Peer Dispatch Architectures
Peer-to-peer (‘mesh’) Publish/Subscribe can create

Reply-Performance Degrading forwarding trees. In a peer-
to-peer network, there is no explicit parent of any given
dispatcher node. There are two methods that can be
employed to support resource allocation for Reply:

• Homogenize topology while holding resource require-
ments constant.
‘Mesh’-like peer-to-peer connection topologies, with
constraints on peer connectivity work well with Reply.
Let any dispatcher node of the Publish/Subscribe dis-
patcher network have between x and y connections to
other dispatcher nodes. Regardless of receiver-set size,

FIGURE 3. A Reply-performance preserving tree.

FIGURE 4. A Reply-performance Degrading tree 
where branching factor was assumed to be at most 
3 during network resource allocation.
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this topology enforces a local branching factor
between x and y for any node of a generated forward-
ing tree. If we assume bandwidth reservations with a
Reply-optimal tree T with branching factor y, then any
generated forwarding tree will be covered by a tree of
dimensions equivalent to those of T. Hence, all gener-
ated forwarding trees will be Performance Preserving.

• Vary resource requirements with connective topology.
If topology does not constrain connectivity, then band-
width must be reserved according to worst-case for-
warding trees. The required graph analysis is beyond
the scope of our work.

5. Dispatcher-Stateful-Reply 
Implementation

We have implemented Dispatcher-Stateful-Reply for
Publish/Subscribe. Our implementation, called Siena Har-
vest, is an independent co-application attached to the Siena
Publish/Subscribe architecture. Our architecture tests the
capabilities of Dispatcher-Stateful-Reply as an indepen-
dent co-application. It also demonstrates the feasibility and
utility of Reply.

5.1  Architecture

We have constructed Dispatcher-Stateful-Reply as a co-
application of a Publish/Subscribe system. By co-applica-
tion, we mean that the architectural elements of Reply
work in conjunction with unmodified elements of a Pub-
lish/Subscribe system. In particular, this co-application
works in conjunction with the forwarding nodes, called
Dispatchers, of Publish/Subscribe. It works by creating
‘hooks’ to observe the message traffic of the Dispatcher
elements.

Reply consists of a distributed collection of processes
called Harvesters. There is a Harvester associated with
each Dispatcher in a Publish/Subscribe network. A Har-
vester is co-located with its Dispatcher in a local environ-
ment, so that a computer hosts a Harvester if and only if it
hosts a Dispatcher.

The role of a Dispatcher and Harvester pair are shown
in Figure 5. A Dispatcher receives publications and for-
wards them to other sites. A Harvester receives replies to
publications, merges them, and returns the result to a site.
As discussed in Section 3, the sites from which messages
come and go are determined entirely by the forwarding
performed in Dispatchers.

In order to perform its task, a Harvester observes its
assigned Dispatcher as a ‘black box’ from which the input
and output are observed. The term ‘snooping’ refers to this
observation. Collecting the local forwarding information of

a Dispatcher allows the Harvester to know from where
replies will come, and to where the merged histogram must
be sent.

When a publication message is local to a Harvester/Dis-
patcher pair the Harvester and Dispatcher interface directly
with the publisher. Likewise, receivers also directly inter-
act with Harvesters. These interactions (boundary condi-
tions of the algorithm) are shown in Figure 6. First, a
publication is sent to a publisher’s local Dispatcher. At
some later time, the publisher requests response informa-
tion from its local Harvester. This can either be a blocking
or non-blocking call. At the same time, various receivers in
the network obtain the publication from a Dispatcher. As a
result, they may reply to their local Harvesters. Reply
information is collected and returned to the publisher’s
view of the reply harvest.

5.2  Siena Harvest Implementation

We have implemented Siena Harvest, a Dispatcher-
Stateful-Reply feature for the Siena [1] Publish/Subscribe
architecture. The implementation is a refinement of the
architecture discussed in Section 5.1. It implements Reply
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FIGURE 5. The architecture of Reply.
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as a set of distributed Harvesters that snoop on publications
travelling to and from Dispatchers.

A Harvester’s internal function is to respond to reply
and publication messages by modifying data structures and
emitting merged replies. A Harvester maintains forward-
ing-tree and reply histogram information in tables. It only
deletes entries when publishers terminate a reply histogram
view or when all possible information has been reported to
a parent node in a forwarding tree.

Siena supports a plug-in message protocol layer. We
take advantage of this it to replace existing transport com-
ponents with identical components that also snoop publica-
tions for the Harvester. The resulting components are
shown in Figure 7.

The harvester is augmented by a publication Packet_
Receiver and Packet_Sender that are directly attached
to a Hiearchical_Dispatcher. These components serve
as the input and output mechanisms for publication traffic
to both the Dispatcher and the Harvester.

5.3  Experience

Siena Harvest works well for distributed, loosely cou-
pled applications. Our experience with Siena Harvest
includes its application to a wide-area command-and-con-
trol infrastructure in which commands are published and
results are sent as replies. We are able to emit commands to
a distributed collection of computers at the same rate as in
traditional Publish/Subscribe, and harvest replies to deter-
mine the effect of our commands.

Utilizing a combination of Reply and Site-Select Mes-
saging [3], we have constructed a form of Selective
Request/Response we call Site-Select Command. It is sim-
ilar to one-to-many RPC with property-based selection of
server sites. This system is utilized to direct orders to

widely distributed, loosely coupled components based on
described qualities of relevant components [8] [2] [3]. It
allows us to issue orders by qualitative description of
receiver-site conditions. Siena Harvest allows us to
observe results from all sites receiving a command.

The space and time decoupling of publishers and receiv-
ers has interesting implications for a publisher observing
replies. First, it is desirable to support blocking and non-
blocking calls to view reply results. In a typical client-
server architecture, a blocking call is an implicit wait at the
caller for a response from the callee. A non-blocking call
does not wait for a response from a callee to return control
flow to the caller. 

Publish/Subscribe with Reply supports an initially
unknown quantity of callees (receivers) for each caller
(publication). Non-blocking ‘calls’ in Publish/Subscribe
with Reply have clear semantics, as they express publica-
tion followed by asynchronous receipt of replies. This
maintains the flow-independence property of Publish/Sub-
scribe described in  [6]. 

Blocking-call semantics for Publish/Subscribe with
Reply are complicated by the attempt to couple the pro-
gram flow of a publisher to receivers while maintaining the
temporal and spatial decoupling between them. As a mes-
sage is published, the forwarding tree for the message
grows until all receivers currently subscribed to the con-
tent/type of the message have been forwarded the message
and become leaves in the message’s forwarding tree. Dur-
ing this time, the view of the reply results will indicate an
increasing quantity of message receivers. A Publisher can-
not determine a time at which all receivers will obtain the
message. It does not know a quantity of potential receivers.
Furthermore, it cannot determine when they will reply to
the message they have received. Hence, “waiting for all
receivers to get the message” or “waiting for all receivers
to reply” are not appropriate blocking semantics. Space
and time decoupling complicate parameterization of a
“blocking wait.”

We have not yet obtained a satisfactory solution for
parameterizing a blocking wait on replies. Our current
implementation applies a fixed time-interval to blocking
wait. This is inadequate because it assumes time coupling
where none is supported. Another possible parameteriza-
tion is the rate of change in the number of received replies.
Waiting for a rate of change is a useful heuristic, but not a
precise or accurate measure of completeness. This is analo-
gous to waiting for a bag of popcorn to pop in a microwave
oven [11]. A popcorn bag invariably leaves some kernels
un-popped, and can often mislead one to stop waiting too
early if there is an anomalous decline in the number of
pops in a given time-frame. In Siena Harvest, fluctuations
in reply rates may cause us to miss the replies from some
receivers while other receivers reply outside an effective
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FIGURE 7. The event communication architecture 
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time-frame. In our work, an adequate parameterization for
a blocking semantics remains an open question.

A Harvester implementation based on snooping for-
warding information has the advantage of being indepen-
dent of the subnet forwarding algorithm to which it is
applied. In fact, the principle applied to harvesting is inde-
pendent of the associated forwarding algorithm assuming
that the algorithm guarantees that forwarding paths are
trees. Our implementation snoops message traffic. This has
two disadvantages. First, when a publisher requests inter-
mediate harvest results (polls for currently harvested
replies) it obtains only a lower bound on potential replies.
This is because the Harvester is unable to determine when
a Dispatcher is done forwarding a particular publication.
Second, examining the messages of a Dispatcher, and rein-
terpreting their contents creates needless translation over-
head. Direct communications between a Dispatcher and
Harvester would allow collection of superior information
as well as increased performance.

6. Future Work

Our future work includes experiments to determine the
load capability of Publish/Subscribe with Reply versus
Publish/Subscribe. We will examine the load capability on
several hundred distributed components with varying
application distribution graphs and usage patterns.

We will also continue to explore semantics for blocking
calls on reply harvesting. Our goal will be to establish
parameterization that is natural and useful. For example, a
linear combination of temporal parameters might be suffi-
cient for many applications. None-the-less it is possible
that time decoupling does not permit reasonable blocking
semantics for flow coupling.

Our application of the technology will continue in the
command-and-control arena. Our work in this area
involves control of wide-area software application configu-
rations. Reply provides information about remote com-
mand execution to the publisher of a command. What is
returned after the issuing of a command is a histogram of
results, and this leads to interesting questions for the repre-
sentation of success, failure, and exception conditions as an
interpretation of histogram data.

7. Conclusions

Publish and Subscribe with Reply is an elegant exten-
sion of existing, state-of-the-art distributed Publish and
Subscribe architectures. Intuitively, Reply works because it
follows, in reverse, the forwarding path generated by dis-
tributed Publish/Subscribe forwarding algorithms. It is a
natural extension of Publish/Subscribe because it does not

impose coupling in time or space between components.
Furthermore, it maintains the efficiency of data-push appli-
cations.

We considered algorithms that do and do not maintain
state at intermediate forwarding nodes in a Publish/Sub-
scribe system. A stateless algorithm may be required if
intermediate storage throughout a network is not accept-
able. However, Dispatcher-Stateful-Reply, an algorithm
maintaining intermediate state, was shown to scale with a
significant advantage over a stateless algorithm when the
range of valid replies is small. The stateless algorithm,
Message-Stateful-Reply, was shown to be equally effective
when the range of valid replies is large.

Assuming bounded domains for reply-types, Reply
scales with network size as well as Publish/Subscribe. For
many applications this will be an important bound on reply
applications. For applications in which the range of replies
is effectively unbounded, extra cost must be assumed and
the benefits of stateful reply are not significant.

Averaged over all nodes in a forwarding tree, worst-case
cost for a single publication is of the order of the logarithm
of network size. The worst case number of asynchronous
replies received at any node is of the order of the branching
factor of a forwarding tree, and can be constrained by dis-
patcher connectivity. This allows us to consider the aver-
age and peak resource requirements of stateful and
stateless reply algorithms.

Our implementation of Dispatcher-Stateful-Reply for
Siena demonstrates the effectiveness of the Reply algo-
rithm and has already been useful in an experimental dem-
onstration of distributed command-and-control.
Acknowledging receipt of publications, distributed query,
and selective command [3] are three examples of loosely
coupled, event-driven distributed systems that can apply
Publish/Subscribe with Reply. Its efficiency will allow
such systems to achieve significant scale.

Publish and Subscribe with Reply provides an important
framework for large-scale distributed applications with
important roles. It supports a variant of Request/Response-
like semantics in a Publish/Subscribe framework. Gener-
ally, it allows the establishment of a two-directional com-
munication over the dynamic binding of a publisher to
receivers for a given message. This capability greatly
enhances the set of loosely-coupled, distributed applica-
tions that may benefit from Publish/Subscribe.
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