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Abstract
The design and implementation of real-time database systems presents mény new and chalienging '
problems. Compared with traditional databases, database systems for time-critical applications
have the distinct feature of satisfying timing constraints associated with trarisactions. Transactions
in real-time ‘database systems should be scheduled considering both data consistency and timing
constraints. In addition, a real-time database must adapt to changes in the operating environment
and guarantee the completion of critical tasks. The effects of scheduling decisions, and
_concurrency control mechanisms on real-time database systems have typically been demonstrated
in a simulated environment. In this paper we preéem a functional real-time relational database
‘manager, called MRDB, which provides an operational piatform for research in real-time database
issues. Current research issues involving the development of run-time estimates for use in
scheduling decisions, temporal consistency‘ characteristics, and our eﬁfdns in using these are also

discussed.

This work was supported in part by ONR under contract NQ0014-88-K-0245, by CIT contract
# CIT-INF-90-011, and by IBM Federal Systems Division.



1. Introduction

As coﬁlputers become essential parts of real-time systems, real-time corﬁputirﬁg is émerging as
an important discipline and an open research area in computer science and engineering {Stang8].
The grpwing im portance of real-time computing ir_x a diverse number of applications such as defense
© . systems, industrial éu:omation, aerospace and nuclear reactor control, has resulted in an increaséd
effort in this area. Very few conventional database systems allow users to specify temporal
constraints or ensure that the system meets those constraints. I[nterest in this new application
domain is growing ih the database community. Further evidence of the rising importance and the
rapid growth of research in the re.ai-time' database field can be seen in the large number of research
results which have recently appeared in the literature {Abb88, Abb89, Abb90, Shass, Sha91,.
Son88, Son8Y, Son9(a, Son90b, Son90c,' Sbn91§. |

Real-time database systems (RTDBS) can be useful for applications which are both data intensive
and subject 1o real-time constraint;v,. Appropriate methods and techniques for designing and
implementing-database systems that take timing constraints into account are playing an ever
increasing role in determining the success or failure of real-time systems. In recent workshops
[IEEES0, ONR90], developers of real-time systems have pointed to the need for basic research in
database systems that satisfy timing constraint requirements in collecting, updating, and retrieving

. shared data.

The distinct feature of reai—zime database systems, as compared to traditional databases, is the
requirement 1o satisfy Ehe—temporal aspects associated with transaétions.. T‘lmé is t'he key to be
considered in RTDBS. The correctness of {he‘s_ystcx_n depends not only on the 1ogicél'resulis but
" also on the time within which the results are‘produced. lThe temporal aspecté associated with a'
| transacﬁoh include timing constraints and a temporal consistency component. Transactions must
be scheduled in such a way that they can be corﬁpieted before their corresponding deadline expires,
and the énfo:mation' requested returned éccording 10 the speciﬁ;ed temporal consistency
requirements. For example, both the update and retrieval transactions on the tracking data of a
missile fnust be processed within the given deadlines: otherwise, the information provided could

be of little value. In such a system, transaction processing must satisfy not only the database
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consistency requirements but also the timing constraints associated with the sransaction [Son90bl.

A real-time database system has many similarities with conventional database management
systems and with conventional real-time Systems. The RTDBS lies as the interface between the two
type of systems, and is not quite the same as either one of the two. A RTDBS must process
transactions and guarantee that database consistency is not violated just as in a conventional
database system. Convemional database systems, however, do not stress the notion of time
constraints or deadlines with respect to transactions. Individual temporal constraints are not téken
into account when making scheduling decisions. The perfdrmance goal for conventional database
systems is usuaily expressed in terms of minimizing average response times instead of constraints

on individual transactions.

Convenuonal real time systems do take transaction temporal specifications into account, but
ignore data COUSiSteﬂcy issues. Real-time systems also typacal!y work with processes which have
predictable resource requirements, 0 include data requirements. A RTDBS tends to make
unpredictable data accesses. This exasperates the scheduling problem, and highlights another
" difference between a conventional real-time system and a real-time database system. The
conventional real-time system attemnpis to énsure that no temporal constraints are violz_ated. In a
RTDBS it is impossible to guaraniee all temporal constraints because of the unpredictable random
data accesses, so the system must strive to minimize the number of constraints which are violated

{Abb89, Son90b, Son90c}.

_ State-of-the-art database systems are typicail y not used in real-time abplications due to two major
: inadéquacies: lack of predictability and poor perforfnancé-[SonSS, Son89). Current database
systefns do not schedule {heif transactions to meet respbnse réquirements’ and they comrmoniy lock
data objects to assure the consistency of the database, The problem is that locks and time-driven
scheduling are incompatible. Low priority transactions can and- will block higher.priori'ty
transacnons leading to pnonty inversions and response requirement failures. Recehtly, a
considerable research effort has been focused on real-time database scheduling and data

consistency control mechanisms. The integration of the two in real-time database systems is not



trivial, becauée all existing concurrency control methods synchronize concurrent data accesses by
the combination of two measures; block and rollback, both of which create barriers for time-critical
scheduling. Concurrency eontrol mechanisms such as Priority Inheritance, Priority Ceiling
Protocol, and Conditional Restart have been studied and implemented in an attempt to manage the
“integration of real-time scheduling and data consistency requirements in reai-time databases
[Ab689. Car89, Hua%0, Lin90, ShaS1]. They are typically compatible with time-driven scheduling,

and meet both the required system response predictability and temporal consistency.

. The design and evaluation of a RTDBS presents challenging problems. In this paper we describe
a functional multi-user real-time refational database system (MRDB), which \-\;e have developed
for exploring real-time database issues. In addition, wé examine issues invoiviﬂg the develépment
of‘cr.edible run-time estimates for use in real-time database scheduling decisions, the integration of

~ data and temporal funcﬁonamy, and the use of temporal consistendy specifications in performing
database Operétions. The remainder of the paper is organized as follows. Section 2 provides the
reader with information on temporal constraint issues and temporal functionality which were sought
in the design of MRDB. Section 3 describes our multi-user real-time relational database (MRDB)
and the environment in whidh it operates. Section 4 presents real-time scheduling policies that are
implemented in MRDB, our derivation and use of run-time estimates and some initial run-time
performance measurements. Finally, section 5 summarizes the work conducted and the areas of -

futﬂre wprk, .

- 2. Temporal Functionality and Issues |

One of the major goals in designing real-time database systems is to meet timing constraints, It
is also one of the major problems when desi gning a real-time scheduler which attempts to minimize
the probability of transaétions failing to meet their respectixie deadlines. Vario.us approaches have
been investigated or designed in developing systems which attempt to achieve this goal. The
designers of CASE-DB [0Ozs090] used an iterative evaluation technique' coupled with a risk
probability attribute in an attempt 0 provide as much information as possible with_in a given

deadline, The priority ceiling protocol, which was initially developed as a task scheduling protocol



for real-time operating systems, has been extended for use in RTDB systerhs [Sha91}. It is based
on a two-phase locking protocol and employs blocking, versus rollback, in an attempt {0 minimize

the number of transactions which fail to meet their deadline.

Approaches such' as these attempt to make scheduling decisions bzised mainly on transaction
attributes such as priority, release time and deadline. These transaction characteristics are critical
pieces in the scheduling puzzle, bul they are not the only attributes available for use in solving the
problem. One key éttribute: absent from most scheduling decisions is a viable transaction run-time
estimate. Numerous research efforts have explored the possibility of using run-time estimates in
the schedulmg decision process. Run-time- esttmatcs have been used in workload policies, priority

‘ a351gnment policies, conflict resolution pOllCIES and IO scheduling policies. These run- umc
e_zstimates have typically been model-driven. The results derived have shown that rin-time
estimates are a credible option for use in scheduling decisions. However, the derivation and use of
run-time estimates in a functional reai'-timeldatabase has not been explored extensively, Schedulers
which do not i'ncorporate Eun-zime estimates into account are failing to use a key attribute which can
simplify the scheduling decision. Scheduling decisions which do not take computation
requifemems into account allow such occurrences as processor time to be expended upon

transactions which cannot meet deadline criteria,

If the real—iime database scheduler can be pr_ovided with an estimate of trahsaction execution
time, that information can be used in determining which transaction is closest to missing a deadline,
and hence should be given higher priority, or which transaction can be delayed without risking
violation of their urmng constraints. In 3ddmon run-time estimates can be used by the scheduler
to initially screen transactions to determine ehgxb:l:zy ‘All transactions with feassble deadlmes'
| (release time plus run-time estimate less than deadline time) remain in the system and are el.:gxble
for service, while all ineligible transactions are aborted. |

We s'odght -predictability. and accuracy in explbﬁng the feasibility of ‘i'ising run-time estimates in
scheduimg decisions for real-time database systems. Without a predictable and accurate run- -time
estirnate litile can be gained in the scheduling decision cycle, while leaving the system suscepnble

to unpredictable behavior. That is not to say that run-time estimates have 1o be correct 100% of the



time, since the typical real-time database performance goal is usually expressed in terms of
minimizing missed deadlines, not guaranteeing no missed deadlines. Howaver, because of their
serious impact on scheduling decisions, the run-time estimates must be both predictable and

reliable.

Often é significant portion of a real-time database is highly perishable in the sense that it has
value only if it is used in time. In addition to deadlines, therefore, other kinds of temporal
information should be associated with data as we-il as transactions in a real-time database system.
For example, each sensor input could be indexed by the time at which it was taken. Once entered
in the database, data may become out-oi-date if it is not updated within a certain period of time. To

| quahtify this notion of age, data may be associated with a valid inte;'val. The valid interval indicates
the time interval after the most recent updating of a data object during »thch a transaction may
access it with 100% degree of accuracy. What occurs when a trziﬁsaction attempts to access a data |
object outside of its valid interval is dependeni upon the serﬁantics of data objects and the particular
implementation. For some data objects, for instance, reading it out of its valid interval would resultA
in 0% accurate values. In genefai. each data object can be associated with a validity curve that
represents ils degree of validity with respect to the time elapsed after the data object was laét
modified. The system can compute the validity of data objects at the given time, provided the time

of last modification and its validity curve [Liu88, Son91].

A real-time transaction should include its temporal g:o‘nsistcncy requirement which ‘speci-ﬁes the
" validity of data values accessed by the transaction. For example, if the temﬁ)oral consistency
requirement is 10, it indicates that data objects accessed by the transaction cannot be older than 10
time units relative to the stan ti'me of the transaction. This temporal congistency requiremént_can
be épeciﬁed as either hard or soft, just as deadlines are. If it is hard, an attempt to read an invaiid

‘data object (i.e., out of its valid interval) will cause the transaction to be aborted.

While a deadline can be thought of as providing a time interval as a constraint in the future,
temporal éonsistency specifies a temporal window as a constraint in the past. As long as the

temporal consistency requirement of a transaction can be satisfied, the system must be able to



provide an answer using available (may not be up-to-date) information. The answer may change as
valid intervals change with time. In a distributed database system, sensor readings may not be
reflected to the database at the same time, and may not be reflected consistenily dueto the delays in
mec‘essing and communication. A temporal data model for real-time database systems must
therefore be able to accommodate the information that is partial and out-of-date. One of the aspects
that distinguishes a tcmporal data modet for a real-time database systems from that of conventional
database systems is that values in a real-time database system are not necessarily correct all the

~ time, and hence the system must be selective in interpreting data vatues [Son90¢].

Another design goal of real-time database 'system_s is to enhance the temporal functionality
associated with the data stored within the database. Tempoi-ai informatiori has been stored in
convéntidnal databases for many y.eafs: accounting and payroll systems are typical examples. In
these systems fhe attributes involving time are mahipulated solely by the application programs.
None of these systems interpret temporal domains when deriving new relations or extracting data.
Most conventional database systems represent the state of an enterprise at a single moment of time.
Although the contems of the database continue to change as new information is added, these
changes have typically been viewed as modifications to the state, with the old, out-of-date data
being deleted from the database. The new state also does not necessarily reflect the current status

of the real world, since changes to the database always lag behind changes in the réal world [Sno87].

3. Impltementation of MRDB and Assumptions'
| MRDB is a functionally complete relational database manager. It offers not only a functionally
complete set of relational operators such as project, select, join, union and set difference, ‘and
aggrégate operators such as max, min, avg, count and sum, but also necessary refa}ion operators
sﬁch as create, insert, update, delete, rename, co}npress, extract, import, export, sort, and print.
These operators give the user a fair amount of relational power and convenience for managing the

database.

MRDB is a multi-user real-time relational database system whose origins can be traced back to

SDB (Simple Relational Database) [Bec90]. SDB is a single-user relational database system, and
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hence the code is not necessarily re-entrant. Numerous modifications had to be made to provide a
. multi-user envirqnment with temporal functionality. MRDB is designed along the traditional
client-server paradigm. It has a multiple-threaded server that is capable of accepting MRDB
cOﬁlmaxlds from multiple client sites. MRDB was designed with the goal of providing a temporal
platform for conducting research on real-time database issues. It allow us to analyze real-time
database mechanisms in an operational environment. This is ;'i major and natural step forward from
performance analysis conducted in a simulated real-time database environment. Simulated
environments are not a substitute for functional systems. They fail to account for all factors found -
in an operational system, and tend to be more subjective in the sense that systerﬁ parameters &an be
readily modiﬁed. An operational system cannot be modified to fit the real-time mechanism being
analyzed. The results derived from an operational real-time database system provide us with a set

of more realistic performance measurements.

The MRDB server is the heart of the database fnanagexhent system, It ié responsible for receiviné
and acting on requests from multiple clients, and returning desired information to the clients. The
server contains an infinite loop that accepts high-level database requests _(é.g., create, union, insert)
from muitiple clients. The requests come in as packets. The MRDB system provides two different
types of packets: call packets and return packets. The call packet is created by the client and is the
database transaction. The call packet contains all the information that the server needs to carry out
the desired database access operation, to include the timing constraint and temporal consistency
specifications associated with the transaction. Clients are able to specify timing constraints and

"temporal consistency specifications for each transaction submitted to the server thread. A different .
timing constraint can be specified for each transaction submitted, or the client can ailow the timing
constraint to default to a system deadline previously established. The MRDB client thread passes
the call packet forward to the MRDB server. The server performs some prep‘rbcessing and then

forwards the packet to the MRDB scheduler.

The MRDB scheduler uses a run-time estimate evaluation technique to determine if the system
can provide the client with the information requested within the timing constraint specified. The

MRDB server will spin-off a separate MRDB thread 10 execute the transaction if the scheduler
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makes the determination that a transaction can be computed within the given deadline. The client
will be informed, and no thread spun-off if the MRDB scheduler determines that the result cannot
be completed within the specified timing constraint. The thread will execute until completion and
then forward the call packez back to the client. The client thread will process the return packet
accordingly. A transaction is not preempted by the MRDB thread everi if the determination has
been made that a deadline is missed. The fact that a transaction has missed its deadline will be

reported to the client, along with the results of the transaction.

MRDB also associates a temporal ‘valid time’ attribute with each relation created m MRDB.
Thxs is inherent to the system, requmng no ciaent involvement. The temporal attribute is attached
to each tuple of a relation and is comparable to a timestamp that represents the valid time that the
stored information models reality. The client cannot set or modify the values associated with the
valid time attribute. However, this attribute can be manipulated for use in spécifying transaction

temporal consistency requirements, For example,
select trk_num from trackfile where valid time < 1

- will return olnly the track numbers (trk_num) of tuples inserted or updated in the database relation
(trackfile) within the last second of the transaction release time. Track numbers with valid time
attribute values older than a second are active within the relation, but do not satisfy the temporal
consistency requirement specified. MRDB also allows ﬁsers of the system to manipulate ;hc valid
time attribute in output displays and in creating and 'rﬁanipuiéting relations that are similar to those
found in historical temporal database éystems [Sno87]. A relation without the temporal attribute
valid time attribﬁte can be formcd by projecting or selecting attributes other than valid time into
a new relation. The MRDB system will process such relations Without attaching any temporal

.meaning to them,

The MRDB system employs a strict two phase locking (2PL) protocol for concurrency control
[BerS’?]; ‘The strict locking protocol was selected for concurrency control because of its prevalence

in commercial applications system and because of its desirable characteristic of being recoverable



and avoiding cascading aborts. Furthermore, abort can be impiemented by restoring before images.
Numerous conflict resolution policies suqh as High Priority, Priority Inheritance, Priority Ceiling
Protocol and Conditional Priority Inheritance have been studied extensively in conjunction with a
locking protocol environment [Abb89, HpaQO, Lin89, Sha88]. The results indicate that such
conflict resolution policies are compatible with ti_nie—driven scheduling, and meet both the required
' goals of system response predictability‘ and temporal conéi’sténcy. The area of conflict resolution
policies, a significant area with respect 10 the scheduling of transactions in a manner which
minimizes missed deadlines, is an ongoing area of research within MRDB, and is not addresﬁed

further in this paper.

A MRDB transaction is characterized by its timing constraints and its computation requirements.
The timing constraints are a release time ‘r’ and deadline ‘4’. The release time is the time
associated with the transmittal-of the transaction by a client site.” A computation requirement is
represented by a run-time estimate ‘rte’ which approximates the amount of computation, IO, and
" communication costs associated with processing a transaction. The deadline corresponds to the

. client specified timing constraint.

The release time and deadline are known to the MRDB scheduler when a transactioﬁ an*ivés. _
The computati_on. requirements are calculated bascd on the operation being performed and‘ the
.physical characteristics of the data involved. This informé{ion is made évaiiéble prior to the
schéduling décision being made. We feel it is viable to estimate the execution time of a transaction

without having ‘prior knowledge of the exact data access pattern of a transaction.

The go'ai‘ of our system is to minimize the number of transactions that miss their deadlines, i.e.,
~ that finish after time ‘d’. If transactions can miss deadlines, one must address the issue as to what

happens to transactions that have already missed their deadlines but have not yet finished. There



are two alternatives.  One is to assume that a transaction that has missed its deadline can be aborted.
This may be reasonable where the value of a transaction is dependent on the timeliness of the return
response. For exémp!e suppose that a transaction is submitted to update the ballistic path of a
pmjecule based on a radar sensing. If the deadlme is missed, it méy be more desirable not to
perform the operation of updating the balhsuc path, but instead to re- submit the update request
based on a newer sensor reading, The conditions that led to the triggering of the transaction may
have changed. The initiator of the transaction may be better served if the transaction is re- |

submitted.

A second option is to assume méz all transactions must eventually be completed, regardless of
whether they have miss‘ed their deadlines. This may be a correct approach in an'application such
as banking where a customer would rather have his financial transacuon done late rather than not
arall. Ifthe decasmn is made to process the transacuon there is still the issue of the priority of tardy
transactions with respect to other transactions in the system. Transactions which cannot meet their
deadlines -could receive a higher priority as their lateness increases. or they could be postponed to

a later more convenient time,

The MRDB implementation decision was a combination of the two appréaches. When a
transaction enters the system, a determination is made as to whether a transaction can be executed
within the temporal constraint associated with it. If the transaction cannot meet its deadline, it is
aborted. This has fhe nice quality of not allowing computation time to be expended on transactions

“which cannot physically meet their deadlines. To allow such transactions into the system can
adversely affect overall system performance espec;iaily dur'i'ng high load periods. Aborting a few -
laze transactions helps all other transactions meet their deadlines, by ehmmanng the competition for
resources by tardy transacuons Once a transaction has been accepted for processing, it is executed
to compleuon, regardless as to whetherornot a deadhne has been met. This approach was adopted

as a means of validating the run- -time estimates derived by the scheduler

The MRDB system has been developed on Sun workstations under the Unix operating sysiem.

MRDB is written in C and designed to operate across a local area network, with multiple client
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nodes accessmg the centralized database maintained by the system MRDB was designed for Unix
because of the prevalence of the operating system. MRDB has the nice property of being readily
ported to other Unix sites interested in real-time database research and issues. The argument can
be madg that real-time database operations need to be coherent with thé operating system, because
©correct fuhctioning and timing behavior of database cohtrol algorithms depend on the services of
the underlying operating system. We have found, through our performance analysis of MRDB, that
dedicated resources in an environment such as above can provide predictable, anatyzable, and

meaningful results.

4. MRDB Scheduling Policies and Run-Time Estimates 7
“The MRDB‘scheduiing algorithms havé three components: a policy to determine which tasks are
eligible for service, a policy for assigning priorities 1o tasks, and a conflict resolution policy. Only

the first two policies are explored in the remainder of this paper.

4.1 Scheduling Policies

The MRDB scheduler is invoked whenever a transaction enters the system or terminates. The
schedu!er can also be invoked to resolve contention (for either the CPU or data) when conflicts
occur between transactions. The first action of the scheduleris to divide the set of ready transactions
kinm two catggories, those transactions that are ca;;abte of meeting their temporal constraints
(eligible) and those transactiéns that cannot meet their temporal constraints (ineligible). All
ineligible transaction.s are éborted and the MRDB client is informed ofA the decision. Eligible
transactions remain in the system and are eligible for mnher processing. This approach differs from
- a Not Tardy {Abb89, Abb90] policy which accepts transactions that are currentky not late, but may
.be ina position where it is physically impossible to make their deadlines. Only those transactions
with Feasible Deadimes are considered 1o be eligible. A transacuon has a feasible deadline if its

deadline is iess than or equal- to the current time plus its run-time estimate.

current time (t) + run-time estimate(rte) < deadline (d)
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In other words, based on the run-time estimate, there is enough time to complete the transaction
before its deadline. This policy can be adapted to account for the amount of service time a

transaction has already received. The modi fied policy would be as foi}ows:
current time (1) + run-time estimate(rte) - p < deadline (d)

Where ‘p’ equals the amount of service time a transé,ction has accumulated. This modified policy
allows &ansactions to be screened for eligibility during the course of execution. Transactions that
have been blocked, due to either data or CPU contention, could be re-evaluated to determine if they
are still capable of meeting their temporal constraint. Note that the success of both of these policies
is contingent on the accuracy of thelrun-{ime gstimate. Erroﬁeous run-time estimates which ovler-
estimate the actual computational requirements will cause transactions 1o be aborted needlessly.
Low estimates can degrade system performance ﬁy allowing transactions, which in reality cannot
meet temporal constraints, to compete for system reso&rces among transactions which are trying to

meet deadlines.

There are many ways for assigning pribrities' to real-time tasks. Three policies extensively
studied by earlier researchers include First Come First Serve (FCFS), Earliest Deadline (ED) and
Least Slack.(LS) {Abb88,-Abb89]. The primary weakness of FCES is that it does not make use of
deadline information. It discriminates against a newly arrived task with an urgent deadline in favor
of an older task which may not have such an urgent deadline.. The ED policy has shown itself to.be -
effective in certain applications, but it fails to take into account the run-time estimates. The LS -
_ priority assignment policy was adopted for MR-IﬁB. The slack time for a transaction is an estimate
of how long we can delay the execution of a transaction and still meet its deadline. It is computed

by subtracting the current time plus the run-time gstimate frorﬁ the deadline of the transaction,
Slack (s) = deadline (d) - (current time (t) + run-time estimate (rte))

The smaller the slack, the higher the priority. A negative slack time is an estimate that it is
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physically impossible for the transaction to meet its deadline. This priority assignment policy does
not take the amount of prior service time into account. The aésignment of priority is static,
occurring once when the transaction enters the system. The priority computed at that _time remaing
‘with the transaction throughout its execution life. A continuous LS policy could be used which does
take service time into account. The continuous evaluation of pricrities causes the LS of all active
transaction to be recomputed whenever there is contention for the CPU or data. This continuous
evaluation can lead to degraded performance as shown in the simple example of Figure 1. The
example gives the parameters for three transactions, shows the LS computations for both
‘cominuous and static versions, and plots their CPU usage based on those priority éssignments. The

problem of continuous LS is displayed with the arrival of transaction Ty at time 2.5, The arrival of

Given: Transacﬂon r - e d
T, 0 3 4
Tz | 2 5
T, 25 1 6
Time Continuous LS ‘ Static L.S
s = d-(t+rte-p) § = d-(t+rte)
0 S1=4-(0+3-0)=1 S;=4-0+3)=1
1 S;=4-(1+3-1)=1 Sy= 1
Sy=5-(1+2-0)=2 L Sy=5-(1+2)=2
2.5 S1=4-Q25+3-25=1 Sy=1
S;=5-(25+2-0)=05 Sy=2
S3=6-Q25+1-0)=25 S3=6-25+1)=235 -
T, T, T T T T, Ts
f i —t— i ': t I
0 2.5 45 5 6 0 3 3 6

Figure 1. Continuous LS vs Static LS
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T causes the priority of T, to become higher than T, resulting in Tz gaining control of the CPU,
and T, being blocked. This causes all three transactions to miss their deadlines. The static LS

version allows all three to meet their deadlines.

A negative slack time could occur if a ransaction has already misséd its deadline or is about to
miss its deadline. The possibility of a negative slack time does not exist if a feasible deadline
eligibility screening policy is implemented, and the LS priority assignment policy is static. The
initial screening conducted to determine eligibility will eliminate any transaction which cannot
physically meet their deadlines and the static LS priority will prevent tﬂé slack associated with an
eligible transaction from ever becoming_ negative. The current MRDB versions uses static LS as

. the means of assigning pn‘oritieé to transaction for scheduling, in an attempt to expedite those

_transactions which can least afford to be delayed.

4.2 Run-Time Estimates
Conventional real-time systems typically deal with processes which have predictable resource

requirements, These predictable requirements allow for a static evaluation of computation costs.

Real-time databases normally deal with transactions which have unpredictable resource

recjuirements. The random nature of such data accesses complicates the scheduling process in real-

time database systems. A considerable amount of research effort has focused on real-time databgse

scheduling issues and the use of run-time estimates. The use of run-time estimates in scheduling
decisions have been examined in workload screening, priority ass,ignmént, conflict resolution and

IO scheduling policies, The rééults from ihg research conducte.d to date have indicated that run-

time estimates are a viable _option for improving scheduling decisions [Abb89, Son91].. The fact
that critical information such as runl-time costs can improve scheduling decisions and subsequently
overall system pcrfo’rmaﬁce is quite intuitive. However, the derivation of run-time estimates have
typically been model driven. The derivation and use of run-time estimates in a functional real-time

database has not been appropriately explored.

One of the goals in the design of MRDB was to derive credible run-time estimates and to integrate

those estimates in scheduling decisions. The approach we used was to exploit the physical
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characteristics of the da-ta (such as attribute types, number of atributes in a relation, and the
numbers of tuples in a relation) being manipulated, along with the type of database opgration being
performed (such as union, set difference and project), in an attémpt to derive credible run;tjrne

estimates. While the arrival and types of transactions entering the system and the data which they
access may be random, the computation steps involved in providing Ehe appropriate response are
not unpredictable. The steps required to execute any MRDB command is static in nature, and in a

simplified outlook, only the number of iterations involved is dynamic.

. The dynamic nature of the computation is dependent on the number and types of at_tn‘l;utes .
involived, along with the number of tuples which constitute a relation. For example, the run-time
cdét for selecting values from a relation consisting of only a single tuple is minimal. It consists of
basic start-up costs (such as transmitting the command, preprocessing, opening of relations, and
reading in the-data from disk), the actual computétion cost in selecting that single value, and basic
shut-down operations (such as providing the transaction results). The run-time cost for selecting
the same set of values from a relation.of five hundred entails the same‘basic costs associated with
opening and closing operations for a single tuple relation, only the computation costs increase in

relation to the number of tuples that have to be processed.

Other factors such as system load and data conflicts do not a_ffect the run-time costs associated

. with a given transaction. Such factors only increase the competition for system resources, such as
the CPU and 1O access. For example, given the cost for selecting values from a given relation is
‘2’ time units. If half that time-is consumed, and that select operation is subsequendy blocked by a
higher priority transactioﬁ whether it be for CPU or data contention reasons, it will still require *1°

time unit to complete once it becomes unblocked.

With this épproach, we ran numerous performance measurements tests to capture the run-time
- costs. The results indicated that viable run-time estimates could be derived based on the physical
characteristics of the data being manipulated and the operation being.p'erfomed. The results which
follow aré a small extract from those numerous run-time cost analysis experiments, The results are

based on database operations performed on relations of the format displayed in Figure 2. This
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relation represents the track data generated by the Interim Battle Group Tactical Trainer, for an outer

air battle scenario being used at the Naval Ocean Systems Center [ButS0].

Attribute Name Type Meaning

trk_num integer track number

lat_track real - latitude of track

long_track real longitude of track

bearing ‘ real bearing from data link ref point
‘dep_high ' real depth or height of platform
lat_dlrp real latitude of data link ref point .
long_drlp real | longitude of data link ref point
platform_Ltype ¢har type of platform '

cat char’ category of platform

time integer greenwich mean time

trkqa ‘ integer confidence of measurements
lat_tdir char latitude direction

long_tdir char longitude direction

course real - bearing minus data link ref point
speed real speed of platform

range real range from ref pt in nautical miles
nuclear char nuclear classification of platform

Figure-2. Attributes of the track relation

4.3 Performance Results
The results of run-time estimate performance measurements for four basic MRDB commands
| (project, select, union, set difference) operating on relations displayed above are given in Figure 3, .
and graphically displayed in Figure 4l. The x-axis of Figure 4 is in total tuples processed by the
operation, The y-axis is the total elapsed time from the start of the operation until the final result is
received at the client node. The performance measurements were conducted in an attempt to isolate
the cost factors attributable to the operations performed, and. the size of the data processed
N (measured by the number of tuples in the relations). The operations wek initiated from a separate
client node, transmitted 1o the server node, and the appropriate results returned back to-the client.

The run-time costs account for activities from the initiation of the operation to the receipt of the
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appropriate result. The results shown are based on 200 performance measurements for each of the
-operations and relation sizes shown. The large sample measurement size was required to validate

the results produced.

The results show that the project and select operation run-time costs grow in a linear fashion in
relation to the size of the data being processed. The union and set difference operations run-time
COSLS grow exponential}y in relation to the size of the data being processed. The run-time cost is the
mean of the 200 performance measuremenis. There was minimal deviation between the mean run-
time cost and the performance measurements used in deriving the meah, usually witﬁ 90% of the
performance measurements falling within £10% of the mean. The deviation which did occur
between measurements can be attributed to the limited clock granularity of the hardware involved,

and to the underlying operating system.

Operation | Tuple | Run-time | Tuple | Run-time | Tuple{ Run-time | Tuple| Run-time
Si Co Siz Co i Si Cost

1.266 50 2.213 100 3.141 200 4.902

Project 1
Select 1 1.179 50 1.436 100 1.701 200 | 2.218
Union 2 2.714 100 | 5499 | 200 | 10,002 | 300 16.248
Set Diff 2 3.033 100 6.723 200 | 11,984 | 300 [ 19.183
Figure 3. MRDB run-time costs
time s ‘ x
' proj —
SR
2 &
0 ,x'll

0 56 100 130 200 250 # of tuples

Figure 4. MRDB run-time costs
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Our run-time cost results did show that run-time estimates could be derived not only based on
the database opération being berformed and relation size, but also on the number and types of
" attributes which make-up relations. - However, the results also' showed that such derived run-time
estimates were heuristic in nature, and that no guarantee could "be made that a given transaction’s
actual run-time cost would be as estimated. One of the primary contributing factors was the support
of the underlying operating syétem. However, it is still possible to establish functions which
generate acceptably accurate run-time estimates based on the physical characteristics of the data and

the operations being executed, and that is What is implemented in the MRDB system.

The MRDB system maintains data on the phys:cal characteristics of the relations in the database.
When the scheduler is invoked it extracts Lhe physical charactenstxcs data for the relations bemg
processed by a given transaction. This information is used i in conjuncuon with the operation being
performed to derive a run-lime estimate. The run-time estimate is subsequehtly us_cd in system
scheduling decisions. An extract of sysiem performance measurements conducted to verify that
system generated run-time estimates closely approximated actual run-time Cosls is given in Figure
5. The solid lines show the sysﬁem generated run-time estimate for the aggregate operations avg
max, and sum. The dashed lines show the actual run-time costs for those operations based on 200

performance measurements. The system estimate closely approximates the actual cost.

time 2.2
. . ) . avyg H—
2.1 ' . 7 avg/ast -w -
“ Max —he—
24 max/est -4 -
sum

UM/ @St -+ -

o 50 100 150 200 250 - # of tuples

Figure 5. Run-time estimates versus actual cost
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While no guarantee can be made for a given transaction, it is possible to state that a given
percentage of transactions can complete within the run—tiine estimate generaled by the system.
Addiﬁonaﬂy, it can be stated that the run-time estimates generated will be within a given percentage
of the écmal run-time costs. For exaniple, raising the system generated run-time estimates by 10%
resulted in approximately 90% of ihe transactions accepted for processing by MRDB having actual
run-time costs within the system generated vaiﬁes. Thé down-side of raising the estimate is that
some transactions, whose actual run-time cost is below the system generated estimate, may be
neediesély aborted. The percentage of these depends on the tighmess of the temporal deadlines

attached to the transactions.

5. Conclusions

A real-time database manager is one of the critical 'corr':ponents of real-time systems, in which
tasks are associated with deadlines and a significant portion of data is highly perishable in the sense
that it has value to the system only if it is used quickly. “To satisfy the timing requirements,
transéctions must be scheduled considering not only the consistency requirements but also their
" temporal constraints. In addition, the system sho_uld be predictable, such that the possibility of
missing a deadline for a given transaction can be determined prior to the execution of that

transaction or before that transaction’s deadline expires.

In this paper, we have presenté'q a relation database manager which possesses temporal
functionality, developed for investigating real-time datzibasé issues. Since the characteristics of al
real-time database manager are distinct from conventional database rrianagers, there are diffcmnt ‘

_issues to be considered in developing a real-time database manager. For exaznpl;:, the use of run-
time estimates in scheduling policies, and the ability ;o place temporal consiscency constraints on
database operations. MRDB was designed with thé goal of pfoviding an operational platform for
conducting research on real-time database issues. Previous studies using simulated envirbnments
have provided valuable information with respect to real-time database issues. However,

performance results in some of the simulated studies are sometimes contradictory since théy make

different assumptions about system environments. We feel that an operational environment for
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investigating real-time database issues will eliminate some of the problems associated with

simulated systems and provide valuable and applicable insights to real-time database issues.

‘The MRDB system is completely functional. The foundation now exists for studying real-time
database issues in an operational environment. Tﬁe results achieved ‘in deriving and applying
heuriétic' run-time estimates and the ability to attach temporal consistency specifications are
promising. However, as with any active real-time database research project, there remains many
technical issues associated with real-time database management which need further investigation.
It is our goal to facilitate further de#elopment in this area. To that end we have oriented our work
effort toward integrating and anélyzing various conflict resolution mechérﬁsms, 1o include
optimistic concurrency control mechanisms based on the notion of dynamic adjustment of

serialization order [Lin90]. We also plan to extend the system to a distributed database

environment, capture system performance measurements, and improve the temporal functionality.
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