
Automatic Design of Custom Wide-Issue Counterflow Pipelines

Bruce R. Childers†, Jack W. Davidson

Department of Computer Science
University of Virginia

Charlottesville, Virginia 22903

Telephone: 804-982-2292, Fax: 804-982-2214

{brc2m†,jwd}@cs.virginia.edu

†Corresponding author.

Abstract

Application-specific processor design is a promising approach for meeting the performance and cost goals
of a system. Application-specific integrated processors (ASIP’s) are especially promising for embedded
systems (e.g., automobile control systems, avionics, cellular phones, etc.) where a small increase in perfor-
mance and decrease in cost can have a large impact on a product’s viability. Sutherland, Sproull, and Mol-
nar have proposed a new pipeline organization called the Counterflow Pipeline (CFP) that may be
appropriate for ASIP design. This paper extends the original CFP microarchitecture to a very long instruc-
tion word (VLIW) organization for the custom design of instruction-level parallel processors tailored to the
requirements of computation-intensive inner loops. First, we describe our extensions to the CFP to support
automatic customization of application-specific VLIW processors. Second, we present an automatic design
system that customizes a wide-issue counterflow pipeline (WCFP) to the resource and data flow require-
ments of a software pipeline loop. Third, we show that custom asynchronous WCFP’s achieve cycles per
operation measurements that are competitive with custom VLIW organizations at a potentially low design
complexity. Finally, the paper describes several enhancements that can be made to WCFP’s to further
improve performance of kernel loops.

1

Abstract

Application-specific processor design is a promising approach
for meeting the performance and cost goals of a system. Appli-
cation-specific integrated processors (ASIP’s) are especially
promising for embedded systems (e.g., automobile control sys-
tems, avionics, cellular phones, etc.) where a small increase in
performance and decrease in cost can have a large impact on
a product’s viability. Sutherland, Sproull, and Molnar have
proposed a new pipeline organization called the Counterflow
Pipeline (CFP) that may be appropriate for ASIP design. This
paper extends the original CFP microarchitecture to a very
long instruction word (VLIW) organization for the custom
design of instruction-level parallel processors tailored to the
requirements of computation-intensive inner loops. First, we
describe our extensions to the CFP to support automatic cus-
tomization of application-specific VLIW processors. Second,
we present an automatic design system that customizes a wide-
issue counterflow pipeline (WCFP) to the resource and data
flow requirements of a software pipeline loop. Third, we show
that custom asynchronous WCFP’s achieve cycles per opera-
tion measurements that are competitive with custom VLIW
organizations at a potentially low design complexity. Finally,
the paper describes several enhancements that can be made to
WCFP’s to further improve performance of kernel loops.

1. Introduction

Application-specific processor design is a promising
approach for improving the cost-performance ratio of an
application. Application-specific processors are espe-
cially useful for embedded systems (e.g., automobile
control systems, avionics, cellular phones, etc.) where a
small increase in performance and decrease in cost can
have a large impact on a product’s viability. A new com-
puter organization called the Counterflow Pipeline
(CFP), proposed by Sproull, Sutherland, and Molnar
[29], has several characteristics that make it an ideal tar-
get organization for the synthesis of application-specific
ILP-processors. The CFP has a simple and regular struc-
ture, local control, high degree of modularity, asynchro-
nous implementations, and inherent handling of
complex structures such as register renaming and specu-
lative execution.

General-purpose processors are good for average
workloads, as typified by popular benchmark suites
such as SPEC’95. These architectures are optimized to
execute applications containing a set of common opera-

tions and exhibiting similar behavior (e.g., such as the
frequency of control-transfer operations). The ever
increasing demand for performance and the need to han-
dle arbitrary code has lead to very complex and costly
general-purpose microarchitectures. For example, the 4-
way superscalar HP PA-8000 microprocessor [15] is
optimized for exploiting instruction-level parallelism
(ILP) across a variety of application types; this goal
requires the PA-8000 to tolerate high-latency operations
such as memory accesses and the frequent presence of
control transfer operations. To keep such an aggressive
design busy requires large instruction windows and
complex structures (e.g., register rename buffers, data
prefetching support) to overcome high-latency opera-
tions and control dependences. The PA-8000 does this
with a 56-entry instruction re-order buffer, data prefetch
instructions, predicated execution, and branch predic-
tion and history tables.

The cost of high-performance general-purpose pro-
cessors is often prohibitive for many embedded applica-
tions; however, many such applications would benefit
from this level of performance. An alternative to an
architecture such as the PA-8000 is a custom processor
matched to an application’s performance and cost goals.
A custom architecture has the flexibility to include the
minimal instruction set and microarchitecture elements
that give good performance and low cost for a single
code without the complexity of devices for general-pur-
pose codes. Because cost and time-to-market constraints
are very important to embedded systems [28], an ASIP
architecture should permit automatic design, including
high-level architectural design. Such an architecture and
design system is the focus of this paper.

Our research uses an application expressed algorith-
mically in a high-level language as a specification for an
emedded microprocessor. By using aggressive hard-
ware/software co-design techniques, an ASIP synthesis
system lets an expert specify a system without consider-
ation for low-level implementation details. This design
style can lead to a significant reduction in a product’s
development cycle and cost because fewer people are
needed and more design trade-offs can be explored in a
limited time than in a traditional work flow [19].

The counterflow pipeline is a good candidate for this
type of fast, aggressive synthesis because of its extreme

Automatic Design of Custom Wide-Issue Counterflow Pipelines

Bruce R. Childers, Jack W. Davidson
Department of Computer Science

University of Virginia
Charlottesville, Virginia 22903

{brc2m, jwd}@cs.virginia.edu

2

composability and simplicity. This substantially reduces
the complexity of synthesis because a CFP synthesis
system does not have to design control paths, determine
complex bus and bypass networks, etc. The modularity
of the CFP is also an enabling technology: it is easy to
incorporate functional devices for the specific needs of
an application (e.g., including a multiply-accumulate
unit) and to explore design trade-offs such as the num-
ber and type of functional units.

Our previous work discusses the advantages and dis-
advantages of application-specific CFP’s [4]. This paper
builds on that work and proposes a new wide instruction
word CFP, which we call a wide counterflow pipeline
(WCFP), that is appropriate for the automatic design of
statically scheduled ILP-processors. We also present a
simple and effective design methodology for automati-
cally building and evaluating application-specific VLIW
counterflow pipelines. The paper demonstrates that cus-
tom WCFP’s achieve performance that is competitive
with custom VLIW processors.

This paper is organized as follows. The first section
has introductory material about our design strategy and
the counterflow pipeline. The second section describes
our extensions to the original CFP to make it a VLIW
architecture appropriate for application-specific proces-
sor design. The third section presents a simple and
effective methodology for deriving WCFP’s tailored to
the requirements of an application’s kernel loop. The
fourth section contains experimental results that indicate
asynchronous WCFP’s achieve performance on par with
custom VLIW organizations. This section also suggests
several enhancements that may further improve perfor-
mance. The fifth section has related work and the final
section concludes the paper.

1.1. Design Strategy

Most high-performance embedded applications have
two parts: a control and a computation-intensive part.
The computation part is typically a kernel loop that
accounts for the majority of execution time. Increasing
the performance of the most frequently executed portion
of an application increases overall performance. Thus,
synthesizing custom hardware for the computation-
intensive portion of an application may be an effective
technique to increase performance.

The type of applications we are considering need
only a modest kernel speedup to effectively improve
overall performance. For example, JPEG has a function
j_rev_dct() that accounts for 60% of total execution
time. This function consists of applying a single loop
twice (to do the inverse discrete cosine transformation),
so it is a good candidate for a custom counterflow pipe-
line. Figure 1 shows a plot of Amdahl’s Law for various
speedup values of j_rev_dct(). The figure shows that

a small speedup of the kernel loop of 6 or 7 achieves
most of the overall speedup.

We use the dependency graph of an application’s ker-
nel loop to determine processor functionality and inter-
connection network. Processor functionality is
determined from the type of operations in the graph and
processor interconnection is determined by exploring
the design space of all possible interconnection network.

The target system architecture for our synthesis tech-
nique has two processors: a traditional processor for
executing control code and a WCFP processor for exe-
cuting the computation portions of an application. Our
work customizes a WCFP to the kernel computation for
improved performance.

For applications where there is not a clearly identifi-
able kernel, the above strategy will not be as effective.
However, most applications we have examined have
execution profiles similar to JPEG—one kernel that
consists of over 50% of the overall execution of the
application. We profiled several applications from the
MediaBench benchmark suite (a collection of popular
multimedia applications) [18] and found that most of
these applications had a single loop that accounted for
the majority of execution time. These applications
included programs for GSM 6.10 full rate speech cod-
ing, adaptive differential pulse code modulation
(ADPCM), image compression/decompression (EPIC),
MPEG-III audio playback (not included in Media-
Bench), and CCITT G.721 voice compression/decom-
pression. For these benchmarks, the kernel computation
accounted for 53% to 85% of execution time. In some
cases, the loop had a “helper” function which could be
inlined by an optimizing compiler to create a self-con-
tained computation kernel (i.e., one that does not have
any function calls). In this paper we consider only the
requirements of kernel loops.

1.2. Counterflow Pipeline

This section presents a brief overview of the original
counterflow pipeline proposal. Sproull, Sutherland, and
Molnar given a more detailed discussion of CFP’s [29].

1

1.25

1 .5

1.75

2

2.25

2 .5

1 3 5 7 9 11 13 15

K e r n e l sp e e d u p

O
ve

ra
ll

sp
ee

d
u

p

Figure 1: Overall speed-up for JPEG

3

The CFP has two pipelines flowing in opposite direc-
tions as shown in Figure 2. One is the instruction pipe-
line, which carries instructions from an instruction fetch
stage to a register file stage. When an instruction issues,
an instruction bundle is formed that flows through the
pipeline. The instruction bundle has space for the
instruction opcode, operand names, and operand values.
The other pipeline is the results pipeline that conveys
results from the register file to the instruction fetch
stage. Whenever a value is inserted in the result pipe-
line, a result bundle is created that holds a result’s name
(i.e., register name) and value.

The instruction fetch stage decodes and issues
instructions and creates their instruction bundles. It also
discards results from the pipeline. The register file holds
destination register values of instructions that have
exited the pipeline. It is updated with an instruction’s
destination register whenever an instruction enters the
stage.

The CFP has pipelined functional units called sidings
that execute instructions. Sidings are connected to the
processor through launch and return stages, which ini-
tiate siding operations and return values from sidings.
Figure 2 shows an example siding for memory that is
connected to the pipeline by mem_launch and
mem_return. Instructions may also execute in a pipe-
line stage of an appropriate type (e.g., an addition stage)
without using a siding.

The instruction and result pipelines interact: instruc-
tions copy values to and from the result pipeline. This
interaction is governed by rules that ensure sequential
execution semantics. There are four rules that control
instructions: 1) instructions must stay in sequential
order; 2) an instruction must acquire its source operands
prior to executing (called garnering); 3) an instruction

inserts a copy of its destination register in the result
pipeline when it finishes executing (called updating);
and 4) an unexecuted instruction may not move past the
last stage capable of executing it.

There are three other rules that ensure result values
are current for their position in the pipeline and not val-
ues from previous operations with the same name. The
rules are: 1) an instruction copies a result’s value if a
result register name matches one of its source operands;
2) a result register matching an unexecuted instruction’s
destination register is invalidated; and 3) a result regis-
ter matching an executed instruction’s destination is
updated with the destination’s value.

Arbitration is required between stages so that instruc-
tion and result bundles do not pass each other without a
comparison made on their operand names. In Figure 2,
the blocks between stages depict arbitration logic.

A final mechanism called a poison pill purges the
pipeline when a branch is mispredicted (it is also used
for exception handling). A poison pill is a special result
that is inserted by a branch stage on a misprediction. A
poison pill kills instructions it encounters while flowing
through the result pipeline, and for branches, this
removes speculatively issued instructions.

As Figure 2 shows, stages and functional units are
connected in a very simple and regular way and the
behavior of a stage is dependent only on the adjacent
stage in the pipeline, which permits local control of
stages and avoids the complexity of conventional pipe-
line synchronization.

2. Wide Counterflow Pipelines

We have extended the original counterflow pipeline
organization to a VLIW microarchitecture. This new
architecture, which we term a wide counterflow pipeline
(WCFP), issues several statically scheduled operations
per instruction to exploit instruction-level parallelism in
kernel loops.

Figure 2: An example counterflow pipeline

reg_file

mem_return

Arbitration

iu_return

iu_launch

mem_launch

eff_addr

branch

reg_fetch

instr_fetch

M
e
m
o
r
y

I
U

In
st

ru
ct

io
n

s

R
es

u
lt

s

Dataflow

resultreg_file

resultmem_return

resultadd_cmp

resultmem_launch

resultinstr_fetch

m
e
m
o
r
y

Figure 3: A WCFP that issues two operations per
instruction.

4

An example WCFP is shown in Figure 3 that issues
three operations per instruction. In this example, the
width of the result pipeline is matched to the maximum
width of an instruction (in this example, the width is 2
since the add and cmp stage generates two results).

2.1. Wide instructions

WCFP instructions have groups of operations that are
issued simultaneously. There are no rules for what oper-
ations may be scheduled in an instruction; however,
every operation in an instruction must use a different
destination register to ensure correct execution (i.e.,
there is no dependence checking between operations in
an instruction—the WCFP does, however, enforce
dependences between instructions). Restrictions such as
issuing multiple memory operations together are deter-
mined by the operation repertoire of functional devices.
For example, issuing two loads together requires a
memory unit with an operation for doing two memory
accesses simultaneously.

The operations in an instruction move through a
WCFP in lock-step, although they may execute in dif-
ferent stages or sidings. For example, the operations in
the instruction:

(ld [r5],r6; add r7,1,r7; cmp r10,0)

execute in two stages in Figure 3. The load is started in
mem_launch and finished in mem_return, and the
addition and comparison are done in add_cmp.

Doing operations in separate stages lets them execute
at the most appropriate point in the pipeline. From
extensive experimentation, we have found that the best
location for an operation to execute is usually in the
stage immediately after the point where the operation
acquires its last source operand. Because individual
operations in an instruction may garner their operands in
different stages and become ready to execute at different
times, the location where each operation executes
should be tailored to the data flow behavior of the appli-
cation to significantly improve performance.

2.2. Pipeline Stage

Figure 4 shows a block-level diagram of a wide counter-
flow pipeline execution stage. Conceptually, an execu-
tion stage has three processes: 1) garner, 2) execute, and
3) control. The garner process checks for matching reg-
ister names in an instruction and result bundle. If a
match is found, the instruction and result are updated
according to the pipeline rules from Section 1.2.

The execute process checks whether an instruction
executes in the stage. If it does, it waits until the opera-
tion it executes has all of its source operands before
doing the operation. After executing the operation, a
new result is generated and interested into the result
pipeline.

The control process monitors the activity of a stage
and indicates to adjacent arbitration units whether it is
ready to advance an instruction or result, or accept a
new instruction or result. The control process also
moves instruction and result bundles between stages and
inserts results generated by the execute process into the
result pipeline.

The writeback buffer in Figure 4 is used to insert new
register values into the result pipeline. This buffer holds
destination values generated by executing an operation
in the stage. The control process moves values from the
buffer to the result pipeline. There are two feasible ways
to do this. In the first choice, the control process waits
until the result register is empty before moving the value
from the writeback buffer to the result pipeline register.
This inserts a new value into the stream of result bun-
dles flowing through the result pipeline. This approach
is relatively simple; however, it increases pressure on
result pipeline bandwidth by generating new result
packets for every destination register, which in turn
causes additional garner operations over the execution
lifetime of a loop.

The second alternative moves the buffer’s value
immediately to the result register, regardless of whether
the register is empty. When there is a bundle in the result
register with enough space to hold the buffer’s value, the
value is packed into the existing bundle. Packing results
limits the number of individual packets flowing through
the result pipeline, which reduces the number of garner
operations and improves result pipeline bandwidth utili-
zation. We have found packing results improves perfor-
mance by 1-11% on several benchmarks.

The writeback buffer has another advantage: it lets
results flow through a stage during the execution of an
operation by decoupling the execute process from other
stage activity. Our experiments indicate that for good

writeback buffer

execution
process result register

control process

garner processinstruction
register

to neighbor from neighborto arb. logic

instruction pipeline result pipeline

to arb. logic to neighborfrom neighbor

Figure 4: A diagram of a WCFP execution stage.

5

performance it is key to avoid delaying the delivery of
results to their consumer operations. For this, results
need to move through a stage as quickly as possible, for
which a writeback buffer is perfectly suited. The inclu-
sion of a buffer improves performance by up to 13%.

Launch and return stages are treated similarly to exe-
cution stages, except launch and return operations are
done by the execute process, which communicates with
a siding to initiate an operation or return a result.

2.3. Predicated Execution

The WCFP supports predicated execution to eliminate
control flow in kernel loops. As demonstrated by other
work [20], this can expose significant ILP by flattening
the control flow graph into a sequence of operations that
can be scheduled together.

The wide CFP handles predicated execution natu-
rally by treating predicates as any other source operand
and checking the value of the predicate before executing
or launching an operation. If the predicate is false, the
operation is not done.

Predicated execution in the WCFP requires the origi-
nal value of the destination register be inserted into the
result pipeline when a false predicate is encountered.
This is done by including the destination register as a
source operand to a predicated operation, and copying
the original value of the destination register to the result
pipeline on a false predicate. The original value is
inserted because dependent operations may be waiting
for the destination register, and if a value were not gen-
erated, those operations would deadlock.

3. Automatic Pipeline Design

Our work focuses on techniques for automatically gen-
erating wide counterflow pipelines customized to the
resource requirements of an application’s kernel loop.
The customization process operates at the architectural-
level on pre-designed functional devices such as pipe-
line stages, register files, and functional sidings.

The design space of WCFP’s is defined by processor
functionality and topology. Processor functionality is
the type and number of devices in a pipeline and topol-
ogy is the interconnection of those elements. We charac-
terize processor functionality by an user-supplied
synthesis database of computational elements that indi-
cates device type (siding or stage) and semantics (as
instruction opcodes) for each database entry. WCFP
topology is determined by the order of pipeline stages
because WCFP functional devices are interconnected
via stages. Thus, given what functional devices a WCFP
contains, the topology space is all combinations of pipe-
line stages, excluding some combinations that do not
make sense (e.g., placing a siding’s return stage before

its launch stage).
Figure 5 is a diagram of the customization process.

The customization system accepts an application pro-
gram (in C) with its kernel loop annotated as an input to
the code improver vpo [2], which compiles the applica-
tion and transforms the loop using classic optimizations
such as strength reduction, induction variable elimina-
tion, global register allocation, loop invariant code
motion, etc. Other optimizations are also currently done
by hand prior to synthesis, including scalar replacement,
path height reduction, and if-conversion.

vpo passes the optimized kernel loop to the synthesis
phase, cfpsyn, which selects and instantiates computa-
tional devices from the design database and derives the
processor interconnection network. The synthesis step
emits a description of the custom pipeline for the simu-
lator, cfpsim, which collects performance statistics and
an execution trace.

3.1. Pipeline Customization

The optimized instructions emitted by vpo and the syn-

1 genCounterflowPipeline(SynthesisDB DB, Loop L) {
2 // step 1: form the software pipeline kernel

3 PipelineKernel kernel ← moduloSchedule(L);

4 // step 2: generate wide counterflow pipeline
5 WideCounterflowPipeline WCFP ←

6 genPipeline(kernel, DB);

7 // step 3: generate instruction set architecture
8 InstructionSet ISA ← generateInstrSet(WCFP);
9 // step 4: form kernel and emit ISA & WCFP

10 InstrSched sched ← softwarePipeline(kernel, ISA);
11 sched.emit();
12 WCFP.emit();
13 }

Figure 6: A software pipeline is formed that acts as
a specification for a WCFP and instruction set.

kernel

database

vpo

cfpsyn

cfpsim

execution trace

Figure 5: vpo optimizes a kernel loop that serves as
a specification for a WCFP determined by cfpsyn.
The WCFP is simulated and analyzed by cfpsim.

6

thesis database are used to derive a custom WCFP. The
synthesis process has four steps as shown in Figure 6.
Each step is described in the following sections.

3.1.1 Software Pipelining

The first step of WCFP synthesis generates a software
pipelined loop from the instruction sequence emitted by
vpo using a variation of iterative modulo scheduling
[22].

The resource constraints modeled by the software
pipelining step are the operation slots in an instruction.
The width of the instruction word (i.e., number of opera-
tion slots) is a user-supplied parameter to the synthesis
system. The synthesis database determines scheduling
latencies and what operations may appear together in an
instruction word. The database specifies a single con-
straint: the number of siding operations of a particular
type that can be initiated in an instruction. Using this
information, a software pipeline is formed that serves as
a specification for a custom WCFP.

3.1.2 Pipeline Extraction

The software pipeline kernel is used to generate a
WCFP and to specify the operations the processor sup-
ports. In our current system, every operation in the pipe-
line kernel is assigned a pipeline stage, and for high
latency operations, a functional siding is also assigned.

Figure 7 shows how a WCFP is generated from a
software pipeline. The algorithm iterates over instruc-
tions in the pipeline kernel to group instruction opera-
tions. The operations are placed in groups that represent
the functionality a custom WCFP supports. Groups are
formed based on latency: low latency operations are
grouped together to generate a single pipeline execution
stage and high latency operations are grouped with sim-
ilar operations from the same instruction to generate
functional sidings. For low latency operations, there is
always a single group for an instruction, and for high
latency operations there may be multiple groups for
each distinct operation class (e.g., loads vs. multiplies).

After operations are grouped, the groups are used to
derive pipeline stages and sidings that have the seman-

tics required by each group. Pipeline stages are inserted
in the order of the software pipeline kernel, beginning
with instruction fetch. This order allows multiple kernel
iterations to be present in the pipeline at the same time,
which lets one iteration complete while another is spec-
ulatively issued. Currently, an execution stage is created
for every low latency operation group and we do not
assign multiple operation groups to a single device. A
functional siding and return and launch stages are cre-
ated for a high latency operation group if one with the
required semantics does not already exist. This ensures
only one siding of a particular type is ever created (e.g.,
there is one multiplier) because these devices are expen-
sive and can have several operations in flight at once
(they are pipelined). When a siding is created, its launch
and return stages are also inserted in the pipeline. The
return stage is inserted so the number of stages between
launch and return equals the siding’s pipeline depth,
which ensures the siding can be fully utilized.

3.1.3 Instruction Set Extraction

The synthesis system determines an instruction set for a
WCFP, including instruction format design and opcode
assignment. Instruction format design is currently done
at a high-level and abstracts out many details about bit
field widths (e.g., width of immediates and register
specifiers), opcode encodings, and field arrangement.
Instead, instruction set extraction assigns opcodes to
each pipeline operation, identifies the status information
kept for every operation, and canonicalizes the order of
operations in an instruction in a bit-field independent
way. It also creates an intermediate representation of a
WCFP’s instruction set that is used during code genera-
tion to build and emit WCFP instructions.

3.1.4 Code Generation

The final step of WCFP synthesis is code generation,
which forms the complete instruction schedule, includ-
ing loop preconditioning and control processor setup
and tear-down code for the kernel processor.

The full software pipeline is built using the pipeline
kernel. The first step of creating the full instruction
sequence is modulo variable expansion (MVE), which
eliminates dependence conflicts on registers whose life-
times are greater than the software pipeline initiation
interval (II). MVE works by unrolling the kernel enough
times to remove register name conflicts by renaming.
The unroll factor is computed using the maximum life-
time of all registers in the kernel. If the maximum life-
time is f > II, then the kernel is unrolled times.
Static register renaming is used to eliminate resource
conflicts for registers with lifetime > II. An alternative
method eliminates these conflicts using rotating regis-
ters [24]. One advantage to rotating registers is only a
small number of architecturally visible registers are

1 generatePipeline(InstructionKernel kernel,

2 SynthesisDatabase DB) {

3 WCFP ← new WideCounterflowPipeline();
4 forall word in kernel do {
5 groups ← formOperationGroups(word, DB);
6 generatePipelineStages(WCFP, groups);
7 }
8 return WCFP;
9 }

Figure 7: A WCFP is generated by grouping opera-
tions from an instruction into sidings and stages.

F f
II
----=

7

needed; however, the scheme does require hardware and
instruction set support. Because our synthesis system
has control over register file geometry and instruction
set architecture, static register renaming is used for
MVE.

After unrolling the kernel, prologue and epilogue
code is generated to begin and end the software pipeline.
Although WCFP’s support predicated execution, it is
not used to eliminate prologue and epilogue code.
Indeed, generating prologue and epilogue code and
using static register renaming presents a limitation: the
number of iterations of the pipeline kernel must be (s -
F) + F × i, where s the iteration span of the kernel and i
≥ 0. The trip count of the original loop must be adjusted
to fit this equation. The standard technique to do this is
loop preconditioning, which executes the original loop a
limited number of times until the iteration count
matches the requirements of the software pipeline. Our
system does loop preconditioning on the control proces-
sor and transfers control to the kernel processor at the
end of the preconditioning loop. We are investigating
adding support for rotating registers and branch-based
predication as developed by Rau et al. [25] to eliminate
the need for prologue and epilogue code and loop pre-
conditioning.

The code generation step is also responsible for gen-
erating the kernel processor start-up and tear down code.
This code is stitched into the application in place of the
original kernel loop. The code initiates and finishes
WCFP processing by initializing loop live-in registers
and copying live-out registers from the WCFP.

4. Experimental Results

In this section we demonstrate that custom wide coun-
terflow pipelines achieve performance that is equivalent
to traditional VLIW architectures tailored to an applica-
tion’s resource requirements.

4.1. Methodology

The goal of our present work is to see how far WCFP’s
can be pushed with minimal microarchitecture changes
to get good performance in an application-specific set-
ting. To that end, the experiments in this paper use
WCFP’s customized to the resource and data flow
requirements of benchmark applications.

4.1.1 Evaluation

The performance statistics in this paper were collected
using several common benchmarks. The benchmarks
have integer versions of the Livermore loops number 1
(k1), 5 (k5), 7 (k7) and 12 (k12), the finite impulse
response filter (fir), vector dot product (dot), and other
kernels extracted from large applications. These loops
include the 2-D discrete cosine transformation (dct)

used in image compression and an implementation of
the Floyd-Steinberg image dithering algorithm (dither).
We also extracted the vector computation a = bk mod d
from RSA encryption (mexp). The final benchmark is
the kernel from the European GSM 6.10 standard for
full rate speech decoding (gsm). The benchmarks were
compiled using the code improver vpo [2] for the
SPARC architecture.

4.1.2 Pipeline Simulation

We have built a behavioral microarchitecture simulator
for asynchronous wide CFP’s. The simulator is highly
reconfigurable to permit microarchitecture experimenta-
tion, and it generates a detailed program execution trace
that is post-processed by a separate analysis tool to col-
lect performance statistics.

To model asynchronous pipelines our simulator var-
ies computational latencies. Table 1 shows the latencies
we use in our simulation models.

The latencies in the table are expressed relative to
how long it takes an instruction or result to move
between adjacent pipeline stages. Using the base values
from Table 1, we derive other pipeline latencies. For
example, a simple operation such as addition takes 5
time units. High latency operations are scaled relative to
low latency ones, so an operation such as multiplica-
tion—assuming it is four times slower than addition—
takes 20 time units.

4.2. Wide Counterflow Pipelines

We have used the design methodology described in the
previous section to generate custom asynchronous wide
counterflow pipelines for several benchmark applica-
tions.

4.2.1 WCFP Performance

Figure 8 shows measurements of cycles per operation
for custom wide counterflow pipelines for each bench-
mark from Section 4.1.1 using two design databases.
The first database has functional sidings that issue a sin-
gle operation at a time. This means that siding opera-
tions may not be scheduled in the same instruction as
any other operation of a similar type. The second data-
base uses sidings which can do two operations of a sim-
ilar type at once.

Operation Latency

Stage copy 1 time unit

Garner, kill, update 3 time units

Return, launch 3 time units

Instruction operation 5 time units

Table 1: Computational latencies

8

The measurements in the figure were calculated
using effective cycles per operation (ECPO). Because an
asynchronous WCFP implementation is used, the execu-
tion latency must be normalized by an effective clock
cycle (ECC) to derive CPO measurements. Given ECC,
the formula for ECPO is:

ECPO = (latency/ECC)/instruction count.
For the graphs in Figure 8, ECC is 8. This normalization
factor is used because it takes 3 time units to garner a
source operand and 5 time units to execute an instruc-
tion. A synchronous CFP must perform at least these
two operations in a clock cycle. We believe an ECC of 8
is conservative because simple CFP structures should
lead to very fast effective clock cycle speeds, possibly
faster than traditional architectures (despite potential
penalties due to asynchronous implementation).

The top graph in the figure shows CPO measure-
ments ranging from 0.56 to 1.09 for instruction widths
of 2 and 4. Measurements are reported only for these
instruction widths because at higher widths there is no
change in performance. However, the single-issue pipe-
lines do not take full advantage of available instruction
parallelism in the benchmarks. This is attributable to the
number of loads and multiplications in the bench-
marks—these operations account for most of the avail-
able ILP. The single-issue database has functional

devices that can do only a single memory operation or
multiplication per instruction, which adversely affects
the software pipeline initiation interval.

The dual-issue database has sidings that can do two
memory operations or multiplications per instruction,
which better matches the type of parallelism available in
the benchmarks. The bottom graph in Figure 8 shows
that CPO measurements for the dual-issue pipelines
range from 0.25 to 1.17. The figure also demonstrates
that for some benchmarks, CPO improves for an instruc-
tion width of 8 with dual-issue sidings over single-issue
sidings. In this case, iterative-modulo scheduling is able
to find a software pipeline with a smaller initiation inter-
val, which led to better performance.

The measurements in Figure 8 indicate that custom
wide CFP’s are able to effectively exploit instruction-
level parallelism in the benchmark loops.

4.2.2 Pipeline Refinement

Although the pipelines generated by our synthesis meth-
odology effectively exploit instruction parallelism, the
order of pipeline stages could be modified to use a
loop’s execution behavior to get better performance.

As we have shown elsewhere [3], there are several
factors that affect the performance of counterflow pipe-
lines, such as the distance results flow between their

Figure 8: Clocks per operation for custom WCFP’s
with database with (a) single-issue sidings and (b)
dual-issue sidings.

Performance of Custom WCFP's with

Dual Issue Sidings

0.0

0.2

0.4

0.6

0.8

1.0

1.2

fir k1 k5 k7 k12 gsm dither dct dot mexp

C
lo

ck
s

pe
r

op
er

at
io

n

Benchmarks

Instr. width 2 Instr. width 4 Instr. width 8

Performance of Custom WCFP's with

Single Issue Sidings

0.0

0.2

0.4

0.6

0.8

1.0

1.2

fir k1 k5 k7 k12 gsm dither dct dot mexp

C
lo

ck
s

pe
r

op
er

at
io

n

Benchmarks

Instr. width 2 Instr. width 4

Figure 9: Performance improvement of WCFP’s
obtained by refining the placement of stages to
match the dynamic flow of instructions and results.

Speedup of Refined WCFP's

with Single Issue Sidings

0.0

0.5

1.0

1.5

2.0

2.5

fir k1 k5 k7 k12 gsm dither dct dot mexp

S
pe

ed
up

Benchmarks

Instr. width 2 Instr. width 4

Speedup of Refined WCFP's

with Dual Issue Sidings

0.0

0.5

1.0

1.5

2.0

2.5

fir k1 k5 k7 k12 gsm dither dct dot mexp

S
pe

ed
up

Benchmarks

Instr. width 2 Instr. width 4 Instr. width 8

9

producer and consumer operations, the number of
instructions between producer and consumer, overlap-
ping the movement of results and instructions in the
pipeline, and balancing the pipeline using the execution
characteristics of the application. The impact of these
factors can be mitigated by arranging the order of pipe-
line stages to match the dynamic flow of results and
instructions using a loop’s execution trace.

Figure 9 shows the speedup of custom pipelines from
Section 4.2.1 whose stage orders have been refined to
match the execution behavior of each benchmark. The
figure demonstrates that pipeline refinement is very
important for good performance. Indeed, in all cases,
performance was improved with speedup ranging from
1.03 to 2.16 and an average of 1.38.

A very simple methodology is used to refine a
WCFP’s stage order. The technique is based on identify-
ing the ideal stage position to execute an operation in
the pipeline. The best location is a place where the oper-
ation has garnered its source operands and the opera-
tion’s execution can be overlapped with the execution of
some other instruction.

The refinement process works by selecting each
pipeline stage in turn to be moved to a new location.
After selecting a stage, the execution trace is examined
to determine where the operation that executes in the
selected stage becomes ready to execute. There are two
possible locations: 1) the operation becomes ready in a
stage before the selected stage, or 2) the operation
becomes ready at the selected stage (this happens when
an operation stalls in its execution stage while waiting
for its source operands).

In the first case, the selected stage is moved to a loca-
tion after the point at which the operation becomes
available. The exact position is selected by scanning the
execution trace to identify a place in the pipeline where
the operation will stall while waiting for some other pre-

ceding operation to advance. This moves the selected
stage to a point where the execution latency of the oper-
ation is masked by the pipeline delay. This point also
ensures that succeeding instructions advance until the
last possible stage before stalling.

In the second case, the stage is moved very late in the
pipeline and a new execution trace collected. After col-
lecting the new trace, it is likely that the selected stage’s
operation will garner its source operands before reach-
ing the selected stage. Thus, the first case applies and
the selected stage is moved to an appropriate pipeline
position.

Care must be taken when moving a stage that is
between launch and return stages. When a siding is gen-
erated by the synthesis system, its launch and return
points are separated by enough stages to match the
depth of the siding. The refinement methodology main-
tains this distance by inserting “empty stages” in the
place of a stage moved from between a siding’s launch
and return point. An empty stage serves as a place-
holder in the pipeline and does no processing. In the
special case when a stage is moved to a position occu-
pied by an empty stage, the empty stage is simply
replaced by the new stage.

After moving a stage, a new execution trace is col-
lected. If performance degrades, the process reverts to
the previous pipeline and tries moving a different stage.

The entire process is repeated for every pipeline
stage until there is no further performance improvement
for all stages. The refinement process effectively
traverses the design space of pipeline stage orders to
find one that gives good performance. One limitation of
this method is that it moves a single stage at a time and
only keeps a move if performance improves. However,
it may be advantageous to make a bad move, which may
enable a very good move later in the process. We are
currently investigating other methods of searching the

Figure 10: A comparison of clocks per operation for custom WCFP and VLIW organizations.

VLIW vs. WCFP with Single-Issue Sidings

0.0

0.2

0.4

0.6

0.8

1.0

1.2

fir k1 k5 k7 k12 gsm dither dct dot mexp

C
lo

ck
s

P
er

 O
pe

ra
tio

n

Benchmarks

WCFP Width 2 VLIW Width 2 WCFP Width 4
VLIW Width 4 WCFP Width 8 VLIW Width 8

VLIW vs. WCFP with Dual-Issue Sidings

0.0

0.2

0.4

0.6

0.8

1.0

1.2

fir k1 k5 k7 k12 gsm dither dct dot mexp

C
lo

ck
s

P
er

 O
pe

ra
tio

n

Bencmarks

WCFP Width 2 VLIW Width 2 WCFP Width 4
VLIW Width 4 WCFP Width 8 VLIW Width 8

10

design space, such as simulated annealing, and automat-
ically including profile-feedback information to the syn-
thesis system.

The simple refinement methodology described in this
section is effective and important for achieving good
performance from WCFP’s. The counterflow pipeline’s
composability and design abstraction makes such a pro-
cess possible and practical; it is not apparent how to do
this with a traditional microarchitecture.

4.2.3 VLIW vs. WCFP Comparison

Figure 10 shows a comparison of traditional synchro-
nous VLIW architectures versus custom wide counter-
flow pipelines. The data in the figure was collected
using the same software pipeline for the traditional
VLIW architecture and the WCFP, ensuring a fair com-
parison between the two organizations using the same
instruction schedule. Furthermore, this ensures that the
VLIW has the same resource capabilities as the WCFP.

The figure shows a comparison of clocks per opera-
tion for both VLIW and WCFP processors with varying
instruction and functional siding widths. As the figure
indicates, WCFP’s achieve CPO measurements that are
competitive with traditional VLIW’s architectures with
similar resource capabilities. The figure shows that the
WCFP has performance within 0-18% of the traditional
VLIW architecture (the average is 8.6%), and in most
cases, the performance is within 7% of the VLIW. For
some cases, the WCFP does better than the VLIW.
Indeed, for the k5 benchmark, the custom pipeline is
22% better. This benchmark has a good balance between
the type of operations and the flow of instructions and
results, which led to peak performance with minimal
pipeline stalls.

4.3. WCFP Enhancements

Although performance is good for most benchmarks in
Figure 10, the more aggressive designs (instruction
widths of 4 and 8 for dual-issue sidings) have a greater
relative difference in performance between the WCFP
and VLIW architectures than for less aggressive
designs. This appears to be influenced by partitioning
operations into groups. For some benchmarks, like dct
and dot, large operation groups can adversely affect per-
formance because all operations in a group must acquire
their source operands prior to any operation executing.
This can significantly delay the execution of some oper-
ations that become ready very early. For dct and dot,
performance is 18% worse than an equivalent VLIW
architecture with an instruction width of 8.

If the execution of operations in a group is decou-
pled, then those operations which garner their source
operands early could execute early and generate their
destination value as soon as possible and potentially

avoid unnecessary pipeline stalls. For example, consider
an operation along a loop-carried dependence path that
is grouped with other operations near the bottom of the
dependence graph. If the operation is executed late in
the pipeline, then it will likely delay the execution of the
succeeding loop iteration. However, if the operation is
decoupled from the other operations in the group, it
could execute as soon as possible.

We are presently studying ways to decouple the exe-
cution of instruction operations. One possible solution
lets operations execute as soon as they are ready regard-
less of whether other operations in the same group have
acquired their source operands. In this scheme, the oper-
ations move together through the instruction pipeline in
a single instruction. This may lead to an inefficient
design because all operations in a group must wait while
any one operation executes. A more aggressive pipeline
design fully decouples instruction operations, including
the movement of operations in the pipeline. In this
scheme, operations in an instruction are issued together
to separate pipelines for each instruction slot. This lets
operations move independently of their issuing group
and execution stage positions can be set to the place
most appropriate for each individual operation. Because
this scheme allows operations to move out of sequential
order, dynamic register renaming or dependence check-
ing is required to ensure correct execution.

We have modified the dct and dot benchmarks to do a
limited form of decoupled execution and have found
this improves performance greatly, making the gsm and
dot pipelines competitive with equivalent VLIW organi-
zations. Based on our preliminary work, we believe
fully decoupled execution will significantly improve
performance of application-specific WCFP’s.

4.4. Related Work

In the last ten years, asynchronous microprocessors
have gained much attention because of their promise for
design ease, high performance, and low cost. There have
been several asynchronous microprocessor proposals,
including a design from the California Institute of Tech-
nology [30], a decoupled access-execute microarchitec-
ture from the University of Utah [27], and a low-power
implementation of the ARM architecture from
Manchester University [9, 10].

Although the counterflow pipeline was proposed as
an asynchronous organization for general-purpose
microprocessors [29], there has also been a proposal for
synchronous version [21]. However, this work adds sig-
nificant hardware structures to the original design to get
good performance on a wide variety of applications. In
our work, we customize counterflow pipelines to a sin-
gle application to get high performance without intro-
ducing new microarchitecture enhancements.

11

There has also been much interest in automated
design of application-specific integrated processors
(ASIPs) because of the increasing importance of high-
performance and quick turn-around in the embedded
systems market. ASIP techniques typically address two
broad problems: instruction set and microarchitecture
synthesis. Instruction set synthesis attempts to discover
micro-operations in a program (or set of programs) that
can be combined to create instructions [14, 15]. The
synthesized instruction set is optimized to meet design
goals such as minimum program size and execution
latency. Microarchitecture synthesis derives a micropro-
cessor implementation from an application (or set of
applications). Many microarchitecture synthesis sys-
tems use a co-processor strategy to synthesize custom
logic for a portion of an application and to integrate the
custom hardware with an embedded processor core [7,
13, 26]. Another microarchitecture synthesis approach
tailors a single processor to the resource requirements of
the target application [5, 8]. Although instruction set and
microarchitecture synthesis can be treated indepen-
dently, many co-design systems attempt to unify them
into a single framework [11].

Our current research focus is microarchitecture syn-
thesis. We customize a counterflow pipeline microarchi-
tecture to an application using RISC operations and
information about the data flow of the target application.
Our synthesis technique has the advantage that the
design space is well defined, making it easier to derive
custom pipeline configurations that meet design goals.

5. Summary

This paper demonstrates that custom wide-issue coun-
terflow pipelines are well-suited for automatic design of
application-specific microprocessors. In the paper, we
extend the original counterflow pipeline processor to a
wide instruction organization that is easily customized
to the requirements of an application’s kernel loop, and
we present a simple and effective technique for custom-
izing wide CFP’s to an application. We show that cus-
tom asynchronous WCFP’s achieve performance that is
competitive with traditional VLIW organizations at a
potentially low design cost. Finally, this paper suggests
several enhancements to the WCFP that may further
improve performance of kernel loops.

References

[1] Allan V. H., Jones R. B, Lee R. M., et al., “Software
pipelining”, ACM Computing Surveys, pp. 367–432,
Vol. 27, No. 3, September 1995.

[2] Benitez M. E. and Davidson, J. W., “A portable glo-
bal optimizer and linker”, SIGPLAN Notices 1988

Symp. on Programming Language Design and Imple-
mentation, pp. 329–338, Atlanta, Georgia, June 1988.

[3] Childers B. R. and Davidson J. W., “A design envi-
ronment for counterflow pipeline synthesis”, Workshop
on Languages, Compilers, and Tools for Embedded Sys-
tems (LCTES ‘98), held in conjunction with PLDI ‘98,
Montreal, Canada, June 19–20, 1998.

[4] Childers B. R. and Davidson J. W., “Architectural
considerations for application-specific counterflow
pipelines”, to appear, 20th Anniversary Conf. on
Advanced Research in VLSI (ARVLSI’99) , Atlanta,
Georgia, March 1999.

[5] Corporaal, H. and Hoogerbrugge J., “Cosynthesis
with the MOVE framework”, Symp. on Modelling,
Analysis, and Simulation, CESA ‘96, pp. 184–189, Lille,
France, July 1996.

[6] Davis A. and Nowick S. M., “An introduction to
asynchronous circuit design”, Technical Report UUCS-
97-013, University of Utah, Sept. 1997.

[7] Ebeling C., Cronquiest D. C., Franklin P., et al.,
“Mapping applications to the RaPiD configurable archi-
tecture”, IEEE 5th Annual Symp. on Field-Programma-
ble Custom Computing Machines, pp. 106-115, Napa
Valley, California, April 16–18, 1997.

[8] Fisher J. A., Faraboschi P., and Desoli G., “Custom-
fit processors: Letting applications define architec-
tures”, Technical Report HPL–96–144, Hewlett-Packard
Laboratories, Palo Alto, California, 1996.

[9] Furber S. B., Day P., Garside J. D., Paver N. C., and
Woods J. V., ‘‘AMULET1: A micropipelined ARM’’,
Proceedings of the IEEE Computer Conference, March
1994.

[10] Furber S. B., Garside J. D., Temple S. et al.,
“AMULET2e: an asynchronous embedded controller”,
Int’l Conf. on Adv. Research in Asynchronous Circuits
and Systems (Async97), pp. 290–299, Eindhoven, The
Netherlands, April 1997.

[11] Gupta R. K., and Micheli G., “Hardware-software
co-synthesis for digital systems”, IEEE Design and Test
of Computers, Vol. 10, No. 3, pp. 29–41, Sept. 1993.

[12] Hauck S., ‘‘Asynchronous design methodologies:
An Overview’’, Proc. of the IEEE, Vol. 83, No. 1, Janu-
ary 1995, pp. 69–93.

[13] Hauser J. R., and Wawrzynek J., “Garp: A MIPS
processor with a reconfigurable coprocessor”, IEEE 5th
Annual Symp. on Field-Programmable Custom Comput-
ing Machines, pp. 12–21, Napa Valley, California, April
16-18, 1997.

[14] Holmer B., Automatic Design of Instruction Sets,
Ph.D. thesis, University of California, Berkeley, 1993.

12

[15] Huang I-J and Despain A. M., “Synthesis of appli-
cation specific instruction sets”, IEEE Trans. on Com-
puter-Aided Design of Integrated Circuits and Systems,
Vol 14, No. 6, pp. 663–675, June 1995.

[16] Hunt D., “Advanced performance features of the
64-bit PA-8000”, COMPCON ‘95 Digest of Papers, pp.
123–128, March 1995.

[17] Jank K. J., Lu S-L, Miller M. F., “Advances of the
counterflow pipeline microarchitecture”, Proc. 3rd Int’l
Symp. on High-Performance Computer Architecture,
pp. 230–236.

[18] Lee C., Potkonjak M., Magione-Smith W. H.,
“MediaBench: A tool for evaluating and synthesizing
multimedia and communications systems”, Proc. of the
30th Int’l Symp. on Microarchitecture (MICRO-30) , pp.
330–335, Research Triangle Park, North Caronlina,
Dec. 1997.

[19] Lin Y-L., “Recent developments in high-level syn-
thesis”, ACM Trans. on Design Automation of Elec-
tronic Systems, pp. 2–21, Vol. 2, No. 1, Jan. 1997.

[20] Mahlke S. A., Hank R. E., McCormick J. E., et al.,
“A comparison of full and partial predicated execution
support for ILP processors”, Proc. 22nd Int’l. Symp. on
Computer Architecture, pp. 138–149, Santa Margherita
Ligure, Italy, June 1995.

[21] Miller M. F., Janik K. J., and Lu S-L, “Non-stalling
counterflow architecture”, Proc. 4th Int’l Symp. on
High-Performance Computer Architecture, pp. 334–41,
Las Vegas, Nevada, Feb. 1-4, 1998.

[22] Rau B. R., “Iterative modulo scheduling: An algo-
rithm for software pipelined loops”, Proc. of 27th
Annual Int’l Symp. on Microarchitecture, pp. 63–74,
Dec.1994, San Jose, California.

[23] Rau B. R. and Fisher J. A., “Instruction-level paral-
lel processing: History, overview, and perspective”, J. of
Supercomputing, Vol 7, pp. 9–50, May 1993.

[24] Rau B. R., Lee M., Tirumalai P., et al., “Register
allocation for modulo scheduled loops”, SIGPLAN
Notices 1992 Symp. on Programming Language Design
and Implementation, pp. 283–299, June 1992, San Fran-
cisco, California.

[25] Rau B. R., Schlansker M. S., and Tirumalai P. P.,
“Code generation schema for modulo scheduled loops”,
Proc. of 25th Annual Int’l Symp. on Microarchitecture,
pp. 158–169, Dec.1992.

[26] Razdan R. and Smith M. D., “A high-performance
microarchitecture with hardware-programmable func-
tional units”, Proc. of 27th Annual Int’l Symp. on
Microarchitecture, pp. 172–180, Dec.1994, San Jose,
California.

[27] Richardson W. and Brunvand E., "Fred: A Decou-

pled Self-Timed Computer," Int’l Conf. on Adv.
Research in Asynchronous Circuits and Systems
(Async96), pp. 60–68, Aizu, Japan, March 1996.

[28] Schlett M., “Trends in embedded microprocessor
design”, IEEE Computer, pp. 44–49, Aug. 1998.

[29] Sproull R. F., Sutherland I. E., and Molnar C. E.,
“The counterflow pipeline processor architecture”,
IEEE Design and Test of Computers, pp. 48–59, Vol. 11,
No. 3, Fall 1994.

[30] Tierno J., Martin A. J., Borkovic D., and Lee T. K.,
“A 100-MIPS GaAs asynchronous microprocessor”,
IEEE Design and Test of Computers, Vol 11., No 2., pp.
43–49, 1994.

