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Abstract—Despite protracted efforts by researchers and
practitioners, security vulnerabilities remain in modern soft-
ware. Artificial diversity is an effective defense against many
types of attack, and one form, address-space randomization,
has been widely applied. Present implementations of address-
space randomization are either coarse grained or require
source code. We present an approach to fine-grained ran-
domization of the stack layout that operates on x86 binary
programs. Randomization is applied on a function-by-function
basis. Variable ordering on the stack is randomized and
random-length padding inserted between variables. Optionally,
canaries can be placed in the padding regions. Transform
determination is speculative: the stack layout for a function
is inferred from the binary, and then assessed by executing
the transformed program. If a transform changes a program’s
semantics, progressively less aggressive transforms are applied
in sequence. We present results of applying the technique to
various open-source programs including details of example
exploits that the technique defeated.
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I. INTRODUCTION

We present an approach to stack-layout randomization
that does not require access to the source program or
other development artifacts. Randomization of the layout
of local variables in the stack frame is implemented using
dynamic binary translation. The goal of our approach to
stack-layout randomization is to enhance the security of a
software system using only the binary form of the software.
The ability to randomize based on limited information is
especially important, because having software of unknown
quality and for which only the binary form is available is a
common circumstance.

Stack layout randomization is a form of artificial diversity.
Artificial diversity is an approach to protecting a vulnerable
program from defined classes of attack by artificially varying
one or more aspects of the program. Each instance of the
program provides identical normal functionality but differs
from the other instances in the details of some characteristic
such as an element of addressing that has been randomized.
Exploiting a vulnerability requires determination of these
details, and that determination usually requires a state-space
search. Artificial diversity can (but does not necessarily) gen-

erate entropy that makes the cost of this search prohibitively
expensive to an adversary.

Many attacks on vulnerable software succeed because
the perpetrators have knowledge of the layout of program
elements in memory. Thus, one important form of artificial
diversity is address space layout randomization (ASLR) in
which the layout of elements in memory is randomized.
Implementations that are currently deployed for binary pro-
grams [16] are coarse gained; they randomize details such as
the base addresses of the stack, the heap, and the code. More
aggressive fine-grained randomizations have been developed
that randomize details such as the order of functions and
the stack layout. These approaches rely, however, on the
availability of the source program [6, 7, 9, 17].

The security benefits of randomizing the stack layout are
many; exploits might be completely thwarted or severely
limited. The benefits realized depend on the nature of the
exploit, the vulnerability, and the randomization used.

There is a need, then, for a stack-layout randomization
technique that can provide fine-grained randomization with-
out using information from the program source. We sought
to develop a technique that would meet the following goals:

• Operate on binary programs designed to execute on a
common target platform (x86) using only data gathered
from the binaries themselves.

• Require only relatively simple analysis of the binary
program.

• Provide a fine-grained transformation; that is, random-
ize stack frames of functions so that the order of
variables is changed.

• Apply to real programs and scale to large programs.
• Incur a small overhead during execution.
In this paper we describe our technique (which we refer

to as SLR) and show that it achieves these goals. We also
present a performance assessment.

SLR uses static analysis to develop a hypothesis about the
layout of local variables in the stack frame for each function.
It transforms each function to reorder the stack based on this
hypothesis, then evaluates the hypothesis by executing the
transformed program. In this sense, SLR is a speculative
technique; static analysis of binary code rarely determines
the stack layout perfectly, so static analyses must be verified



empirically. If an analysis prescribes a transformation that
changes the semantics of a function, different and less fine-
grained randomizations are tested until a behavior- and
semantics-preserving randomization is found.

The key contributions of this paper are: (a) the use
of a speculative and dynamically verified approach to the
determination of the stack-frame layout, and (b) the use
of dynamic binary translation to implement stack-frame
randomization.

In the next section, we present the assumed threat model.
The way in which SLR develops the hypothesis about
the stack layout is presented in section III. In section V
we describe the overall process by which the hypothesis
is evaluated and modified if needs be. We describe the
implementation of stack randomization in section IV, and
present our evaluation of SLR’s efficacy and performance
in section VI. Related work is discussed in section VII, and
we conclude in section VIII.

II. THREAT MODEL

In this work, we assume the following threat model:
• The subject program is created and distributed in binary

form to an end user and possibly to a malicious third
party.

• The subject program is released with no guarantees of
the absence of software faults that leave it vulnerable
to exploitation by an attacker.

• The subject program is assumed to be free from self-
modifying code and from intentionally planted back-
doors, trojans, etc.

• No development information is available about the
subject program.

• The environment in which the program runs is trusted
and we assume the attacker does not have direct access
to the hardware on which it runs.

• The attacker has access to an unprotected version of
the program on which to test malicious inputs that he
or she can submit to the protected program.

• Attacks of interest are those which rely on data being
located predictably, such as buffer overflow and format
string attacks.

In summary, these characteristics are typical of programs
that are usually described as Software Of Unknown Prove-
nance (SOUP).

III. DETERMINING THE STACK LAYOUT HYPOTHESIS

Randomization of the stack frame layout for a function
requires determination of:

• The current layout of the stack frame, i.e., the addresses
of the function’s local variables as set by the compiler.

• The instructions that manipulate the different variables
in the stack frame.

In principle, if this information were available, the layout
of the stack frame could be changed and the instructions that
access the stack frame modified to reflect the new layout.

The new layout of the stack frame could be based on
any security-relevant criteria. For example, memory objects
could be placed in random order, padding introduced before,
after or within the stack, canaries included, encryption
applied, or scalars placed at lower addresses than arrays.
Items on the stack could also be removed and promoted to
the heap. In our current approach, we limit transformations
to placement of memory objects in random order and the
introduction of random length padding. This choice was
made so as to gain information about the potential of simple
stack-layout randomization.

Starting with a binary program, precise determination
of the stack layout and the instructions that reference the
stack is problematic. Modern compilers employ a wide
range of techniques to minimize both the use of storage
and program execution time. The result is binary programs
with unpredictable structures. For example, when generating
code for the x86 architecture, compilers frequently inline
functions, fold constants, pack stack frames, unroll loops,
and include hand-written assembly for common functions
like memcpy.

Our approach to SLR is based on two assumptions:
• Knowledge of the size of variables is all that is needed

to determine boundaries. Type information of stack
variables is useful for SLR, because type information
helps to determine the size of variables. This bene-
fit from type information is especially important for
determining fields in records (structs in C). However,
our goal with this work was to assess the possibility
of using simple heuristics for boundary determination,
and so we do not determine nor use variable type
information.

• The predominant mechanism by which instructions ac-
cess stack variables is through scaled or direct address-
ing based on an offset indicating the variable starting
location. Where indirect addressing is used, that use is
for access to variables whose locations can be inferred
from previous direct or scaled addressing based on an
offset indicating the variable starting location.

The second assumption does not necessarily hold, and so
we use a speculative approach. The assumption is used to
create an initial layout inference and an inference of which
instructions access variables in this layout. These inferences
are then evolved and refined.

Layout inferences are produced using (a) a set of simple
heuristics, (b) assumptions about the manner in which the
stack is allocated and deallocated, and (c) assumptions about
the general stack frame layout. These assumptions hold for
binaries produced by C/C++ compilers that use the cdecl
x86 calling convention in which stack frames are in the form
seen in Figure 1.



A key requirement for the heuristics is the use of an
out arguments region for outgoing parameters for called
functions. In principle, any calling convention where this
general structure is maintained could be supported. Dynam-
ically allocated stacks are out of scope for this work, as are
compiler conventions where the out arguments region is not
used and the stack expands and contracts before and after
each function call.

To support the modification of instructions that access the
stack, in the implementation of stack-layout randomization,
all of the instructions in the binary program are inserted
individually into a database. During static analysis, the
binary program is processed by a static analysis system.
We use a recursive descent disassembler (IDAPro) [10] and
a linear scan disassembler (objdump). To ensure we have
all instructions in the database, we added a disassembly
validator module. The disassembly validator iterates over
every instruction found by both IDA Pro and objdump,
and verifies that both the fallthrough and (direct) target
instructions are inserted into the instruction database. This
information in the database allows the control-flow graph to
be constructed.

Since exact instruction start locations in the executable
segment are not known, some of the instructions in the
instruction database may not represent instructions that were
intended by the program’s original assembly code. We make
no attempt to determine which are the intended instructions
and which are not. Instead, SLR modifies all instructions
matching patterns of local variable access (see below). Any
data address that is mis-identified as a code address will not
be executed and will result in corrupted data if transformed
by SLR. We rely on testing to catch those cases. We believe
the probability of data being interpreted as a stack accessing
instruction is low.

Finally, static analysis determines the functions and the
out-arguments region size that IDA Pro detects. Once static
analysis is complete, the next part of the approach is to find
out if the subject function has a stack frame. The presence of
a local-variable region in the stack is detected by scanning
each instruction in the entry block of the function’s control-
flow graph for a stack allocation instruction:

sub esp,<constant>

Scanning only the entry block avoids cases where a stack
may be allocated differently depending on some condition.
If the entry block does not contain this pattern, the function
is determined to be non-transformable and is skipped, and
the transformation process is restarted for the next function.
Otherwise the stack size, the number of saved registers, and
the out argument region size are recorded. The size of the
out-argument region is determined during static analysis.

Once the existence of the local-variable region is estab-
lished, each instruction of the function is analyzed and a set
of local variable boundary inferences are determined based

 

Figure 1. General form of the stack layout.

on instruction patterns accessing the stack. Memory access
patterns accessing the stack can take one of three forms:

• Direct: A constant value added to esp or subtracted
from ebp (e.g., [esp+0x10]).

• Scaled: A constant value added to an indexed (variable)
offset from esp or ebp (e.g., [esp+eax+0x10]).

• Indirect: The stack is accessed by means other than
through offsets to esp or ebp (e.g., [ebx]).

Inferring a boundary interface for every constant offset
found in both direct and scaled memory accesses is a nave
approach but surprisingly high levels of accuracy have been
reported [2].

The possibility of inaccuracy is the reason we describe
SLR as speculative. SLR assumes these inferred boundaries
are correct and determines their validity by testing. If testing
reveals that the program’s semantics have been changed,
three additional heuristics are used: (1) variable boundaries
are assumed for direct memory access offsets only, (2)
variable boundaries are assumed for scaled memory accesses
only, and (3) the entire stack frame is treated as one large
variable as a “catch all” case.

In summary, the four inferences are:
• All Offset Inference (AOI): Any constant offsets of ebp

and esp for direct and scaled accesses that access the



local variables region of the stack are considered local
variable boundaries.

• Scaled Offset Inference (SOI): Any constant offset used
in scaled stack access instructions is considered a local
variable boundary.

• Direct Offset Inference (DOI): Any constant offset used
in direct stack access instructions is considered a local
variable boundary.

• Entire Stack (ESI): The entire stack frame is considered
one local variable.

A memory access relative to esp or ebp may access
incoming parameters to the function, since the size of the
frame is known, if a boundary exceeds the stack frame these
offsets are ignored. Additionally, the out arguments region
contains reusable space, and so any offset accessing this
region is omitted from the layout inference.

For each function, all four inferences are applied to form
four individual hypotheses. These four hypotheses are sorted
by the number of variables detected and applied in order,
highest to lowest. In practice, as might be expected, the order
is almost always AOI, DOI, SOI, and ESI.

IV. STACK LAYOUT RANDOMIZATION

The overall SLR process is shown in Figure 2. This
process is applied to each function in the program inde-
pendently. Thus, the whole process shown in Figure 2 is
repeated a number of times equal to the number of functions
in the program.

The four hypotheses of the stack layout for the subject
function are created for each function in the binary program
using the four inferences described above, and test data is
created or acquired for the program. Recall that the layout
hypotheses are limited to the boundary address between
individual variables in the stack frame, and that no attempt
is made to determine the types of the variables.

The dependence of this approach on testing raises the
question of where test cases will come from. The approach
has no specific requirements that constrain the test data.
Existing test cases can be used or new tests developed using
any test-case development technology. Novel test-coverage
metrics are suggested by the SLR concept. When assessing
the effects of a transformation by testing, measurement of
the extent to which stack variables have been referenced
or set would provide insight into the degree to which
the randomization has been assessed. We do not presently
capture this coverage information.

Using the hypothesized stack layout determined by AOI
(AOI is the heuristic that detects the largest number of
variables because it is the most aggressive), a new layout
is created by randomizing the hypothesized layout for the
subject function (randomization 1 in Figure 2). In this
randomization, space for variables is contiguous, i.e., there
is no padding between variables.
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Figure 2. Overall approach to stack randomization.

Once the randomization has been created, the necessary
binary rewriting rules for dynamic binary translation are
defined to transform the binary function from its original
stack layout to the new, randomized layout, and then the
program is tested.

If testing is successful, then the entire process is repeated
for the subject function with the same hypothesis about the
stack layout but a different randomization (randomization
2 in the Figure 2), again without padding. The program
is then tested again. This second transformation is carried
out to check the results of the first transformation. The
claim is that, if two randomizations leave the program in
a form that passes the available test cases, the chances of
the randomizations having altered the program’s semantics
are small.

If testing with the second randomization is successful,
a third transformation is applied to the subject function,
again starting with the original binary program and the
original stack-layout hypothesis. In this third transformation,
random padding whose length lies between 4096 and 8192
is added between local variables, before the stack frame,
and after the out arguments region (if one exists). This third
randomization is then tested as the other two were. If testing
is successful, this is the randomization of the stack that is
used in the transformed program.

If testing fails for any of the three randomizations of
the subject function, then the semantics of the program
have been changed by the stack randomization, and so the
hypothesized stack layout must have been wrong. In that
case, the hypothesized stack layout that detected the next
largest number of variables in the function is selected, and



Context 
Switch

Fetch

Decode

Translate

New 
PC

Done?

No

SLR Virtual Machine

Yes

Context 
Capture

Cached?

Yes

New Fragment

Next PC

SLR Rewrite 
Rules
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the three-phase test process is repeated. Again, any failing
tests lead to abandoning of the hypothesized layout, and the
process resumes with the next one.

In the worst case, all four hypothesized stack layouts
from the four different inferences will affect the program’s
semantics and be rejected. In that case, the subject function
is left unmodified. We present data on the application
success with these four approaches to stack layout analysis
in section VI.

This speculative transformation and assessment process
is repeated for each function in the program. Needless to
say, for a large program with many functions, this process
requires a lot of resources. Fortunately, the process can be
conducted in parallel for all the functions in a program, and
so the time taken for the analysis can be reduced by using
additional equipment. Also, optimizations are possible in the
transformation mechanism. For example, since transforms
have a high success rate (see section VI), processing more
than one function at a time might be possible.

V. RANDOMIZATION BY DYNAMIC BINARY
TRANSLATION

In order to implement the randomization in SLR, all
instructions that reference the stack have to be modified
so that they access the stack using locations that reflect
the results of randomization. Modification of the program’s
instructions so that they can use the randomized stack is
effected by dynamic binary translation using a per-process
virtual machine (PVM) system (see Figure 3), in our case
the PVM is Strata [14] .

PVMs load an application dynamically and mediate ap-
plication execution by examining and translating an applica-
tion’s instructions before they execute on the host processor.
Most PVMs operate as co-routines with the application that
they are protecting. Translated application instructions are
held in a PVM-managed cache called a fragment cache.
The PVM is first entered by capturing and saving the
application context (e.g., program counter (PC), condition
codes, registers, etc.) Following context capture, the PVM

processes the next application instruction. If a translation
for this instruction has been previously cached, the PVM
transfers control to the cached translated instructions.

If there is no cached translation for the next application
instruction, the PVM allocates storage in the fragment cache
for a new fragment of translated instructions. The PVM then
populates the fragment by fetching, decoding, and translating
application instructions one-by-one until an end-of-fragment
condition is met (e.g., an indirect branch). As the application
executes under the PVM’s control, more and more of the
application’s working set of instructions materialize in the
fragment cache thereby allowing the overhead imposed by
dynamic binary translation to be small; in the case of the
PVM used for SLR the average overhead measured on
standard benchmarks is around 8% [19] .

The translations in SLR that the PVM applies are the
modifications to instructions that are needed to implement
the randomization of the stack layout. These modifications
are documented as a list of rewrite rules. The rewrite
rules define the instructions that have to be modified, the
associated modifications, and the fallthrough map, i.e., the
address of the next instruction. The rewrite rules are written
by the stack randomization system based on a randomization
of a stack-layout hypothesis.

In SLR, the PVM loads the rewrite rules and the PVM’s
instruction-fetching mechanism checks and then reads the
SLR rewrite rules as appropriate. After modifying an in-
struction, the PVM modifies the PC from the fallthrough
map that SLR provides in the rewrite rules. (see Hiser et.
al [11] for further PVM details).

VI. PERFORMANCE ASSESSMENT

To evaluate SLR we conducted three assessment experi-
ments:

• We measured the effectiveness of the transformation
mechanism for a set of open-source programs for which
accepted regression tests are available.

• We measured the performance overhead imposed by the
transform using SPEC 2006 benchmarks [15].

• We applied SLR to a set of test programs designed to
measure protection against buffer-overflow attacks.

We present our results in the following subsections.

A. Transformation Effectiveness

To evaluate the effectiveness of SLR on real programs,
we transformed 18 Unix core utilities version 7.4. Stack
layout randomization depends on regression tests to validate
layout inferences, and so we selected eighteen based on the
availability of regression tests provided by the vendor.

We compiled all 18 utilities using gcc version 4.4.3 with
O3 optimizations and dynamic linking on Linux kernel
2.6.32-35-generic as part of Ubuntu 10.04.03 LTS.
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Stack 

chgrp 178417 194 102 101 95 3 2 1

chmod 175762 183 98 97 94 2 0 1

chown 182694 198 104 103 95 5 2 1

cp 277293 281 155 154 143 10 0 1

dd 158884 169 86 85 78 6 0 1

df 224101 200 104 103 99 3 0 1

du 303089 267 150 149 140 7 1 1

install 249529 279 150 149 146 2 0 1

ln 166473 174 95 94 90 3 0 1

ls 265823 297 177 176 166 8 1 1

mkdir 133611 140 71 70 64 5 0 1

mv 237304 279 154 153 136 14 1 2

pr 166462 155 82 81 77 3 0 1

readlink 148021 155 81 80 74 4 1 1

rmdir 166931 113 57 56 54 1 0 1

rm 104519 192 98 97 88 8 0 1

tail 152468 156 86 85 79 3 2 1

touch 155188 145 73 72 66 5 0 1

Average 191476 199 107 106 99 5 1 1

(rounded to the nearest integer)

Figure 4. Statistics for the binary programs used for assessment.
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Figure 6. Performance of the Direct Access Inference heuristic

Only those functions that were not dynamically linked
were transformed, i.e., only those functions whose defini-
tions can be found statically in the binary. Libraries should
be transformed and evaluated separately as separate regres-
sion tests are needed to properly test all library functions.
Additionally, libraries should only need to be transformed
once and reused by any number of binaries.

Figure 4 shows the statistics of the binaries used and
the way in which functions were transformed. For each
program, all but one of the transformable functions were
transformed using one of the layout inference heuristics. The
exception was present in all programs and removed from
transformation through regression testing.

Also present in every program was a function that was
always reverted to using ESI, the most conservative layout
heuristic. The vast majority of transformations, 93.6%, were
based on layouts produced by our most aggressive heuristic,
AOI. Thus 6.4% of all functions initially transformed with
AOI resulted in semantic changes detected by regression
testing that triggered a transformation rollback.

Figure 5, Figure 6, and Figure 7 show the distribution
of the number of memory objects detected on the stack by
each layout heuristic used for each function randomization,
where a memory object may be a local variable or the out
arguments region. In Figure 5, the distribution for AOI shows
that 56.9% of all AOI inferences used found only one or two
stack memory objects per function. Since AOI is the first
inference used by default, this result suggests most functions
use few or no local variables, perhaps leaving the stack with
only an out-arguments region.

The distributions for both DOI and SOI, Figure 6 and
Figure 7, show that DOI is generally more aggressive than
SOI. Bhatkar et al. [7] report dynamic analysis performed
on a suite of eight programs for which they find an average
of 87% of the stack accesses made are to non-buffer stack
variables. If non-buffer stack variables are most prevalent,
then prevalence of direct accesses is also expected since this
is the typical access mechanism for non-buffer variables.
DOI would also be expected to infer the presence of larger
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Figure 7. Performance of the Scaled Access Inference heuristic

numbers of variables than SOI because direct references are
more common.

If a layout inference is only able to find one stack
memory object, then the layout is reducible to the most
conservative layout inference, ESI. In many cases SOI is
either reducible to ESI, see Figure 7, or produces a very
course grained layout consisting of only two memory objects
usually indicating the separation between the out arguments
region and the remaining stack. This might explain why few
functions (at most two unique functions) are transformed
with ESI. Course-grained inferences are less likely to break
expected behavior, and by default if ESI and SOI produce the
same number of memory objects, the scaled-offset inference
is attempted first.

B. Execution Time Overhead

To evaluate run-time overhead, SLR was applied to a
set of seven SPEC CPU2006 C benchmarks. Execution-
time overhead (wall clock time) was measured on a system
with a dedicated 4-core, AMD Phenom II B55 processor,
running at 3.2 GHz. The machine has a 512KB L1 cache,
a 2MB L2 cache, a 6MB L3 cache, and 4GB of main
memory. Performance numbers were generated by running
the benchmark 3 times. For these measurements, the test
programs were compiled using gcc version 4.4.3 with O2
optimizations and dynamic linking on Linux kernel 2.6.32-
34-generic as part of Ubuntu 10.04.03 LTS. The regression
tests used for each benchmark consisted of a subset of the
SPEC train and test input suites for each program.

Figure 8 shows the statistics for each program and how
functions were transformed. This data is consistent with the
results from the coreutils programs (see Figure 4). However,
the regression tests used for SLR were not extensive as
the goal of this experiment was to provide execution-time
performance results. We provide these statistics to show
that actual transformations were made to these benchmarks,
and most transformations used our most aggressive layout
heuristics. However, without extensive regression testing
many of these transformations might actually be based on
incorrect layout assumptions. The only functionality of any
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bzip 67339 101 65 64 60 2 0 2

lbm 16560 44 22 21 19 2 0 0

libquantum 44839 136 86 85 79 3 3 0

mcf 17047 49 25 24 24 0 0 0

milc 127066 281 169 168 156 8 0 1

sjeng 147758 176 103 101 93 3 2 3

sphinx3 187182 391 277 276 270 5 0 1

Average 86827 168 107 106 100 3 1 1

(rounded to the nearest integer)

Figure 8. Statistics of the SPEC2006 benchmarks used for timing assessment
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consequence for these benchmarks is that which is executed
for performance testing, so as long as this expected output
did not break and SPEC did not report any errors or
output discrepancies, as compared with the baseline data,
we considered the transformation successful.

Figure 9 and Figure 11 show the runtimes and run-time
overheads of seven programs with and without SLR applied.
The execution-time overhead of the PVM, the software
dynamic translator, averaged 3.4% over the execution times
of the compiler-produced binary (native) code. The average

execution-time overhead of the PVM running the SLR
binary rewriting rules over the native run was 15.6% and
ranged between 2.4% and 59.5%. SLR, then, only incurs
a 9% overhead over the PVM alone, i.e., dynamic binary
translation but with no transformations being applied.

The current implementation of SLR makes no effort to
keep stack variable alignment, and this can cause cache
performance losses that can greatly increase the overhead
in certain programs. The worst overhead we found was
59.5% for sjeng. Retransforming this program with stack
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Figure 10. Results of running the Wilander buffer-overflow exploit tests.
In these tables, “f” indicates a segfault result, “p” indicates that the exploit
was prevented and output was generated, and “s” means that the exploit
was successful.

alignment, we were able to improve the overhead to 36.8%.
The results of security analysis (see section C) suggest
misalignment of the stack may have security benefits; we
therefore leave it to the user to decide if the performance
penalty of misalignment is worth the security benefits. The
remaining programs had an overhead of less than 16%, with
many falling under 10%. If we consider the overhead for
unaligned sjeng as intolerable and accept the overhead for
all other programs, then replacing the overhead results for
sjeng unaligned with the alignment enforced randomization,
the average overhead from SLR is 12.4%.

The more functions that are transformed by SLR, the
more instruction rewriting rules must be generated. Reading
and processing this file is part of the transformation’s
overhead. For the SPEC benchmarks we analyzed, less than
2 MB of rewriting rules were generated. However, for very
large programs, it is conceivable that SLR could require
large instruction-rewriting rule files. The rewriting rules are
currently stored in ASCII plaintext, and we believe that a
binary encoding of the rewrite rules and an efficient storage
technique, such as gzip, could easily reduce the processing
time and reduce the memory footprint.

C. Security Effectiveness

We applied SLR to the Wilander buffer overflow test
suite [18], specifically to the stack-based buffer overflow
subset consisting of twelve exploits. The Wilander suite
provides buffer overflows that are able to determine the
appropriate amount by which to overflow the vulnerable
buffer at run-time. This functionality makes these overflows
some of the most difficult cases to thwart.

For SLR, the Wilander suite is problematic because all
valid inputs, except for no input, trigger a buffer overflow
that results in execution of arbitrary code. Developing a set
of regression tests for this suite is problematic, because the
expected behavior (in some sense the correct behavior) is a

buffer overflow that opens a shell. But this is precisely what
SLR intends to defeat.

In order to apply SLR, we compared the binary with the
original source code manually to determine which of the
four layout heuristics could be used for each function.

The stack-based subset of the Wilander suite contains six
functions each containing two exploits for a total of twelve
stack-based exploits. From the manual analysis of the binary,
we determined that five functions could be transformed with
AOI, which correctly identified all variable boundaries.

For the sixth function, a buffer is randomly accessed using
constant indices in the source code. As a result, the binary
contains constant offsets that refer to part of the buffer,
which AOI incorrectly identifies as variable boundaries.
The most aggressive layout inference we were able to
use that was not affected by the random access of array
elements was SOI. The inference produced by SOI was very
course grained, only identifying a boundary between the out-
arguments region and the local-variables region.

The Wilander test suite was randomized three times using
SLR, and all stack-based exploits were attempted for all
three randomized versions. Any exploit which failed to
achieve the goal of opening a shell was considered thwarted.
In all three randomizations, SLR thwarted all but one of
the twelve exploits; see Figure 10 (a). The only exploit that
managed to succeed was implemented in the function which
was transformed using SOI. Analysis of the exploit indicated
that the exploit could be thwarted by layout randomization
alone, because the overflow targets another variable on the
stack. However, SOI was not sufficiently fine-grained to find
the boundaries necessary for successful randomization.

For the other eleven exploits, the run-time behavior was
either a segmentation fault or a test suite exploit failure
report. Since the layout inferences for each functions were
validated manually to identify variables correctly, a segmen-
tation fault was considered evidence that SLR thwarted the
attack.

The exploits that produced segmentation faults and those
that produced exploit failure reports from the test suite
were not consistent across the three randomizations. Some
exploits require a certain layout of variables to succeed. If
this layout is not found, such as if the target data is below the
buffer, the attack is considered not possible and the exploit
is aborted after printing a message indicating the attack was
not possible. Since the layout of variables is random, in some
variations the layout was susceptible to an attack while in
others the attack was thwarted.

The cause of the segmentation fault for exploits not
resulting in an exploit failure report was the random padding
added by SLR. The padding caused the exploit to overflow a
buffer not intended to be overflowed. The Wilander overflow
exploits are very robust. At run-time, they calculate the
distance from the buffer being overflowed to the target
data. After calculating this distance, a block of characters
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equal in length to the distance are placed in a temporary
buffer of static size. However, SLR adds a random amount
of padding between variables, thus increasing the distance.
The minimum padding amount between any two variables
exceeds the statically allocated space for the temporary
buffer, and, as a result, an overflow occurs triggering a
segmentation fault. In most situations this overflow occurs
in the glibc function memset.

While these results show both padding and randomization
were effective in thwarting all but one exploit, had SLR been
applied to memset, the added padding might have obfuscated
the overflow that generated the segmentation fault, thus
allowing the exploit to continue and possibly succeed. We
altered the Wilander test suite so that the temporary buffer
had as much space as necessary to prevent the segmentation
fault overflow, and reran the experiment. The results are
shown in Figure 10 (b).

Because the test suite calculates distances necessary for
overflow at runtime, and the previous cause of exploitation
failure had been removed, the expected result was attack
success for randomizations where the target data had not
been moved so as to prevent the attack. Instead, SLR was
successful in thwarting most attacks. All exploits rely on
the assumption that local variables are placed on boundaries
with addresses that are divisible by four. Stack-layout ran-
domization adds a random padding between variables, and
therefore four-byte alignment is not guaranteed. The buffer
is still overflowed, but target data was not corrupted in the
necessary way to execute the payload.

The Wilander suite was engineered to provide sophisti-
cated exploits that are highly likely to succeed in overflowing
a buffer. Nevertheless, SLR was able to thwart attacks,

even when the code was altered to improve the probability
of attack. Unexpectedly, the fact that the padding added
between variables left boundaries on addresses that were not
divisible by four defeated some attacks. For more common
and likely less well engineered attacks, we would expect
SLR to be equally successful.

VII. RELATED WORK

Although a variety of different stack diversity mechanisms
are available, the techniques are effected by either source-to-
source transformation, recompilation of the original source
using a modified compiler, or work at course granularity of
memory.

One of the earliest approaches to stack protection was
StackGuard [9]. StackGuard offers protection against over-
writing of return address using canaries. ValueGuard sup-
plements data items with canaries to permit detection of
corruption of data [17]. All data items are replaced with
a pointer to a combination of an equivalent data item and a
canary.

A different approach to protection is the use of artificial
diversity. Bhatkar and Sekar present an approach to data
protection in which data representation is randomized using
an exclusive-OR with a random key [6]. The encoding is
reversed prior to the use of the data. PointGuard applies
randomization to pointers, reversing the randomization prior
to dereferencing the pointer [8].

Address Space Layout Randomization (ASLR) is a ran-
domization technique in which the major runtime entities
(stack, heap, code) are placed at random locations by the
system software (see for example [12]). Bhatkar et al.
have developed a comprehensive implementation of address



randomization as a source-to-source transformation that can
continuously randomize local variable layouts, padding be-
tween the variables, and padding between stack frames [7].
An earlier work by Bhatkar et al. added random amounts of
padding between the stack frame and local variable section
of the stack frame provided only the binary, but limited the
functions that could be transformed, especially because of
the use of static binary rewriting tools [5].

Determination of stack-frame contents from program bi-
naries has been studied by several researchers. Balakrishnan
and Reps have developed a range of techniques using Value
Set Analyses [1–4, 13], however reported techniques for
variable recovery require extensive resources, and results
have only been reported for small device drivers. Their
results indicate that, while the approach provides a high per-
centage of accuracy for stack variables, the effort improves
only marginally upon naı̈ve techniques.

VIII. CONCLUSION

We have presented an approach to diversifying stack
contents that does not require access to details of a program
other than the binary form.

The core of the technique is a set of naı̈ve inferences
from which we derive hypotheses about the boundaries of
memory objects on the stack. The approach is speculative in
that the hypotheses are evaluated by testing the transformed
program.

The approach has been implemented using dynamic bi-
nary translation and evaluated using a suite of test programs.
The ability to randomize the stack frame for each function in
relatively large programs was demonstrated, the execution-
time overhead was shown to be reasonable, and the security
efficacy of the technique was evaluated using a set of test
programs containing carefully constructed vulnerabilities.
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