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ABSTRACT 
One goal of many introductory software engineering courses is to 
simulate realistic software engineering.  Unfortunately, many of 
the practical constraints of typical courses are antithetical to that 
goal: instead of working in large teams on large projects, dealing 
with changing requirements and maintaining programs over many 
years, courses generally involve students working alone or in 
small teams with short projects than end the first time the program 
works correctly on some selected input.  Of course, it is 
impossible (and undesirable) to carry out full industrial software 
development within the context of a typical university course.  
However, it is possible to simulate some aspects of safety critical 
software engineering in an introductory software engineering 
course.  This paper describes an approach to teaching introductory 
software engineering that focuses on using lightweight analysis 
tools to aid in producing secure, robust and maintainable 
programs.  We describe how assignments were designed that 
integrate analysis tools with typical software engineering material 
and reports on results from an experiment measuring students 
understanding of program invariants. 

Categories and Subject Descriptors 
D.2.4 [Software Engineering]: Software/Program Verification: 
assertion checkers, class invariants, formal methods, 
programming by contract, reliability, F.3.1 [Logics and 
Meanings of Programs]: Specifying and Verifying and Reason-
ing about Programs - assertions, invariants, logics of programs, 
mechanical verification, pre- and post-conditions, specification 
techniques, K.3.2 [Computers and Education]: Computer and 
Information Science. 

General Terms 
Reliability, Security, Verification. 

Keywords 
Software engineering, dependability, security, invariants, static 
analysis. 

1. INTRODUCTION 
Teaching software engineering is extremely difficult.  The root of 
the problem lies in the impact of scale.  Most of the principles 
central to software engineering are crucial for producing large, 
robust, long-lived programs, but hardly relevant (and oftentimes 
counterproductive) for the smaller, non-critical, short-lived 
programs that can be developed in the scope of an academic 
course.  This means the methods and theories taught in software 
engineering courses are often regarded by students as abstract, 
academic concepts which are quickly forgotten after the final 
exam.  Without experiencing their practical impact on realistic 
programs, students rarely develop a deep understanding or 
appreciation of important ideas in software engineering. 
A common approach to this problem is to increase the size of 
programs students deal with in classes, often by having students 
work in groups.  This helps, but it is still impractical to do 
industrial size projects within the scope of a semester course.  
Students with limited time and other classes cannot be expected to 
construct an industrial scale program for a course.  Even if they 
could, one experience is often insufficient.  Because the project 
ends when the semester is over, students don’t have to try to 
figure out their code six months later to make changes to it.   
It is becoming increasingly important that all students who go on 
to produce software will know what is involved in producing 
secure and reliable software.  Nearly all software today is critical 
to some degree.  Any program running on a machine connected to 
the Internet can be exploited by an attacker, even if the function 
of that program is not itself critical.     
This paper reports on our experiences teaching an experimental 
software engineering course at the University of Virginia.  The 
course is the second computing course for most students, and 
satisfies a requirement for students in non-computing majors.  We 
taught a small experimental version of the course in Fall 2002 
with 27 students, and are currently teaching the course with 68 
students.  The course uses Liskov’s Program Development in 
Java [11] as the textbook and is heavily influenced by MIT’s 
software engineering course.  Our primary contribution is to 
develop an approach that uses lightweight analysis tools to 
support and enhance the value of the systematic and analytical 
approach to programming presented in that text and course.  

2. UNDERSTANDING CHALLENGES 
The first step to producing reliable software is to understand how 
difficult it is.  Many students leave their first programming course 
believing that their program is correct once it works as expected 
on one input.  After all, in many courses that is enough to get full 
credit for the assignment.  Students are usually not expected to 
deal with uncooperative users who generate atypical (or even 

 



malicious) inputs.  After all, no one other than the student will 
ever run the program.  
In real software engineering projects, of course, this is not the 
case.  We used several strategies to simulate quality requirements 
of deployed software.  The first was evaluating students programs 
based on subjective criteria such as how easy it would be for 
someone to maintain their code, as well as objective results from 
running their program on both public and secret test cases.  For 
some of the early assignments, students would submit their 
programs to a web form that would automatically execute their 
code on a set of test cases.  Some of the test cases were distributed 
to the students as part of the assignment, but others were kept 
secret.   When students submit their programs to the web site, 
they would receive feedback on whether or not their program 
passes each test case, but would not receive any information about 
what the test cases their program failed were.  This encouraged 
students to think carefully about their own testing strategy.  They 
were unlikely to produce a correct program without thinking 
systematically about all possible inputs to the program.   
On a simple early assignment, students were asked to place a bet 
on whether or not their program was correct.  In this case, 
correctness meant it satisfied the precise informal specification 
they provided, and that it behaved as a mythical customer 
expected for any inputs not covered clearly by their specification.  
Students could bet up to 20 points (on an assignment worth 100 
points) on their program; if their program was considered correct, 
they received their bet; if not, they lost twice their bet.    Eight (of 
25) students bet 0, although two of those had correct code.  
Fourteen students bet something between 2 and 10, ten of whom 
had code that was considered correct.  Three students bet the 
maximum 20 points, only one of whom had correct code.  
Although this was a somewhat gimmicky way of getting students 
to measure confidence in their code, it does teach several 
important lessons.  Having correct code, but no confidence that it 
is correct, is nearly useless: no one will use a program without a 
reason to be confident it will work.  Having overconfidence in 
incorrect code is dangerous: if someone relies on it for a critical 
purpose the impact of programming errors can be disastrous. 

3. ANALYSIS TOOLS 
Formal methods have often been proposed as a means to 
producing more reliable and maintainable programs.  Edsger 
Dijkstra [1] and David Gries [9] suggest approaches to teaching 
programming that closely integrate proof techniques.  Despite the 
elegance and apparent benefits of these approaches, they have met 
with limited success.  Students generally only use proof 
techniques when they are required to do so on small programs in 
course assignments.  In most students’ experience, proving 
correctness properties about programs is a tedious and academic 
process, not something they do voluntarily with an expectation 
that it will improve their programs.  Despite the value in doing 
these exercises, it is very clear that these manual techniques 
would not scale well to a program of non-trivial size.  Students 
rarely leave these courses thinking about adding explicit 
representation invariants or formal postconditions to their 
programs.   
The problem with most previous attempts to introduce formal 
methods into computer science curricula is the gap between 
formal methods and the students’ practical programming 
experience is too large.  Jeannette Wing identified tool support as 

a critical factor in integrating formal methods into undergraduate 
computer science curricula [15].  To enable widespread adoption 
of formal methods, we need both appropriate analysis tools and 
documentation and course materials that relate them to the 
abstract concepts and methods we aim to teach.  Lightweight 
analysis tools are a promising way to shrink this gap and make the 
abstract concepts we hope to teach immediately and directly 
relevant in a practical way.  After several years of research efforts 
by many groups in academia and industry, lightweight analysis 
tools are now mature enough to be used effectively in 
undergraduate education.  Whereas it requires considerable effort 
to use traditional formal methods directed towards program 
verification on even toy programs, students will be able to quickly 
and effectively use lightweight analysis tools on real programs. 
In our course we used two lightweight analysis tools: ESC/Java 
and Splint.  The Extended Static Checker for Java (ESC/Java) is 
an analysis tool for Java developed at the Compaq Systems 
Research Center [10].  ESC/Java produces warnings for 
expressions that may produce run-time errors such as an invalid 
down cast, null dereference, or out-of-bounds array fetch.  
ESC/Java also provides an annotation language for specifying 
preconditions and postconditions of methods and datatype 
invariants.  ESC/Java generates verification conditions based on 
an analysis of the source code and its annotations.  A theorem 
prover searches for counterexamples to the verification 
conditions, and translates contexts that produce counterexamples 
into warnings.  For six of the seven programming assignments in 
the course, students programmed in Java and used ESC/Java on 
all but the first assignment. 
For one of the assignments (the sixth of seven), students used C 
and the Splint lightweight analysis tool.  Splint [5, 6, 7] is an 
annotation-assisted lightweight static checking tool for C.  
Splint’s checking is done using simple dataflow analyses so it 
does not have the deductive reasoning power of ESC/Java, but 
can scale to work on large programs.  Students used Splint to 
detect and fix information hiding violations, possible null 
dereferences, and memory leaks in a provided C program.  Since 
many students are likely to end up programming in C or C++, we 
believed it was important to teach techniques for producing 
dependable and maintainable programs even when using unsafe 
languages. 

4. INTRODUCING ESC/JAVA 
To introduce ESC/Java, we provided students with a tutorial-style 
explanation of the warnings ESC/Java produces for the simple 
buggy program shown in Figure 1.  Running ESC/Java on 
AverageLength.java produces two warnings.  The first warns about 
an array index possibly too large for args[0].  This corresponds to 
the run-time error that would occur if the program is run with no 
arguments.  The second warning concerns an unsatisfied 
precondition: 

  Warning: Precondition possibly not established (Pre) 
                String name = names.getEntry (index); 
  Associated declaration is "./StringTable.java", line 131, col 10: 
       //@requires index < numEntries; 

Path information (not shown) reveals that the precondition for the 
StringTable getEntry method is not satisfied on the final interation 
of the loop.  This precondition is specified using an annotation in 
the StringTable specification that requires the value of the 



parameter passed to getEntry is less than the number of entries in 
the table. 

This example illustrates how static analysis can assist program 
development.  In the first case, the analysis detects a problem that 
might not be detected through testing.  In the second case, the 
analysis provides clearer understanding of a problem that would 
likely also be revealed through testing.  For the second 
assignment in the course, students are asked to explain and fix 
problems in the AverageLength program revealed by ESC/Java 
warnings, and to implement a simple program using the 
StringTable data abstraction.  They check their programs using 
ESC/Java, and fix any problems it reports. 

public class AverageLength { 
  public static void main (/*@non_null@*/ String args[]) { 
    String filename = args[0]; 
    try { 
      FileInputStream infile = new FileInputStream (filename); 
      StringTable names = new StringTable (infile); 
      int numnames = names.size (); 
      int totallength = 0; 
 
      for (int index = 0; index <= numnames; index++) { 
         String name = names.getNthLowest (index); 
         totallength = totallength + name.length (); 
      } 
             
      System.out.println ("The average name length is: "  
                                + (double) totallength / numnames);  
     } catch (FileNotFoundException e) { 
        System.err.println ("Cannot find file: " + filename); 
     } 
   } 
} 

Figure 1.  Buggy AverageLength implementation. 

5. INVARIANTS 
One of the goals of our course was to encourage students to think 
precisely about properties of their programs.  By considering and 
precisely documenting procedural interfaces, students will 
produce more reliable and maintainable software.  Documenting 
representation invariants will encourage students to think more 
carefully about their datatype implementations and make those 
implementations more modular and maintainable. 
Without using analysis tools, it is difficult to teach students to 
develop good invariants and to convince them that it is a 
worthwhile activity other than to satisfy a particular course 
requirement.  The problem is the effort required to precisely 
document an invariant is usually considerably more than the 
apparent benefit.  Since the assignments students are working on 
are small, both in size and time, it is unlikely they will need to 
understand someone else’s code or their own code after they have 
forgotten it.  Further, if invariants are used only to aid informal 
reasoning, their value is apparent only to the extent that students 
find it useful to reason informally about the correctness of their 
code. 
Using analysis tools can dramatically increase the benefits of 
documenting program invariants.  The difficulty in providing 
invariants increases somewhat since they need to be expressed 
using a formal annotation language.  However, once invariants are 
expressed formally the benefits of providing them increase 
dramatically.  Analysis tools can check that the specified 

invariants are maintained, and use those invariants to check 
implementations.  For teaching purposes, it is especially useful 
that warnings produced often lead students to realize than an 
invariant they are depending on for correctness is not 
documented. 
For example, consider implementing a StringSet datatype in Java 
using a java.util.Vector representation (based on the IntSet 
example in [11]).  One invariant is that all the elements of the 
representation Vector are non-null Strings.  Suppose we 
implemented a naïve choose method using: 

     public String choose () { return (String) els.firstElement(); } 

ESC/Java reports two warnings for the choose implementation.  
The first indicates a possible run-time error for the type cast.  To 
know the String cast will not produce a run-time exception, we 
need to know that all elements of the els Vector are of type String.  
This invariant of our representation can be documented using an 
annotation: //@invariant els.elementType == \type(String).  This 
invariant clearly documents the requirement that all elements of 
the representation vector must be strings.  ESC/Java will check 
that any elements added to the vector are of type string. 
The other warning reports that the precondition for firstElement is 
not satisfied.  It requires that the vector contains at least one 
element.  One way to address this would be to add a precondition 
to the choose method that requires the set contain at least one 
element: //@requires numElements > 0.  The numElements vari-
able is a specification variable that maintains the number of 
elements in the set.  We relate this to the representation by adding 
an invariant: //@invariant numElements == els.elementCount.   
Note that we have fixed the problem without changing the code.  
By adding the precondition, we have documented a restriction on 
calling contexts.  Since the precondition is specified formally, 
ESC/Java is able to check that it is satisfied by all call sites. 
For the third assignment, students implement a data abstraction 
according to a specification we provide.  In the current version of 
the course, the data abstraction is a table that associates a count 
with a string and provides methods for getting strings based on 
the rank of their associated count in the table.  This datatype is 
used by an application that uses the Google API [8] to find words 
most commonly associated with a particular search term.  
Students are expected to document their representation invariants 
both informally and as ESC/Java annotations in their code.  The 
checking provided by ESC/Java nearly always leads students to 
identify missing invariants upon which the correctness of their 
code relies.   

6. EXPERIMENT 
We conducted an experiment at the end of the course to better 
assess student difficulties with annotating invariants.  The goals 
of the experiment were to determine how well students 
understood annotating programs, and whether the problems were 
primarily syntactic or conceptual.  Our experiment was based on 
an experiment conducted by Jeremy Nimmer and Michael Ernst 
to evaluate the effectiveness of annotation inference [13]. 
Students downloaded annotated implementations of two classes 
taken from a data structures textbook [14]: StackAr (119 total 
lines, including comments and annotations), a stack of objects 
data abstraction implemented using an array; and, BitSet (113 total 
lines), a datatype that represents a set of integers with values 



between 0 and capacity-1 using an array of booleans.  Students 
were also provided with sample client programs for each 
datatype.  The programs were annotated with some correct and 
some incorrect annotations.  We instructed students to run 
ESC/Java on each datatype implementation and client, and 
eliminate the reported warnings by only changing the annotations.  
Students were asked to participate in the experiment after the end 
of the course and were not graded on their participation or 
performance in the experiment.  Seventeen students (out of 27 in 
the course) attempted the experiment.  Two did not follow the 
directions closely enough to be included in our analysis (they 
changed the code instead of the annotations), leaving 15 valid 
subjects.  There was some correlation between students overall 
performance in the course and their willingness to do the 
experiment.  The average final course rank of students who did 
the experiment was 12.3, for those who did not, 16.1.  Seven of 
the top ten students in the course did the experiment, compared to 
five of the bottom ten students.  This is too small a sample to 
make strong quantitative results, but sufficient to consider 
qualitatively. 
Based on their username, students would receive a different 
version of the zip file containing the experiment code.  Half the 
students recieved StackAr first, and the other half BitSet.  There 
were also two variations on each implementation with different 
provided annotations.  Students randomly received one version of 
each data type implementation.  The annotations were generated 
using Daikon, a tool that determines likely invariants 
automatically by analyzing program executions on test data [3, 4].  
Daikon examines values in test executions and infers useful 
invariants based on patterns and relationships detected in all 
executions.  Invariants reported by Daikon are true for all 
executions in the test data, but not necessarily true of all possible 
program executions.  Daikon has been used in conjunction with 
ESC/Java to automatically add ESC/Java annotations to Java 
programs [12].   Although students in our experiment did not run 
Daikon themselves, we believe it is realistic to believe they could 
do so in future courses.   This would have the added benefit of 
encouraging and evaluating test suites; the annotations produced 
by Daikon are directly related to the quality of the test suite.  
Daikon will produce invariants that are unsound (they hold for all 
executions in the test suite, but not for all possible executions of 
the program), and will fail to produce necessary invariants.  The 
test programs we used contained both incorrect invariants and 
missing invariants that are necessary for ESC/Java checking. 
Students were told to spend no more than 30 minutes on each 
datatype.  For the experiment, students used a modified ESC/Java 
script that would record the time, inputs and results each time 
they executed ESC/Java.  They submitted their code after 
completing the task, either because they succeeded in eliminating 
all warnings or they ran out of time.   
Table 1 summarizes student performance on the experiment.  
Over the entire experiment, only one student mistakenly removed 
correct provided annotations.  Removing incorrect annotations 
was understandably more difficult.  Most students were able to 
remove incorrect annotations that corresponded directly to 
warnings produced when ESC/Java is executed on the code and 
test client.  For example, version 1 of the BitSet datatype 
contained a single incorrect annotation that imposed a false 
precondition on the insert method:  requires bits[el] == false.  

Daikon derives this invariant, since the inadequate test suite used 
to produce this version never added an element to the set that was 
already a member of the set.  Running ESC/Java on the provided 
test client produces a warning that the precondition is not satisfied 
for a call to insert.  Four out of seven students were able to 
correctly interpret this warning and remove this precondition.  On 
the other hand, when the incorrect invariants are revealed only 
indirectly by the warnings ESC/Java produces (such as in StackAr 
version 1), only a few students were able to remove the 
corresponding incorrect invariants.   
Adding annotations requires students to realize what invariant 
should be documented, and also express it using ESC/Java’s 
annotation language.  BitSet version 2 and StackAr version 1 
require complex annotations involving a forall quantifier and a 
logical implication.  Since the students had not encountered such 
complex annotations in any of the course assignments, we were 
not surprised that no students were able to correctly produce these 
annotations.  About half the students were able to correctly add 
necessary simpler annotations.  For example, the constructor took 
an int parameter and needed a requires capacity >= 0 annotation.  
Eleven of fifteen subjects were able to correctly add the necessary 
annotation. 
 

 C
orrect 

annotations 
preserved 

Incorrect 
annotations 

rem
oved 

N
ecessary 

annotations 
added 

Ideal Solution 16.00 1.00 9.00
Best Student Solution 16.00 1.00 9.00

Average Student 16.00 0.57 4.29

B
itSet 

V
ersion 1 Standard  Deviation 0.00 0.53 3.59 

Ideal Solution 21.00 4.00 2.00
Best Student Solution 21.00 2.00 2.00

Average Student 21.00 0.88 1.13

B
itSet 

V
ersion 2 Standard  Deviation 0.00 0.99 0.99 

Ideal Solution 20.00 13.00 2.00
Best Student Solution 20.00 11.00 1.00

Average Student 19.71 3.71 1.29

StackA
r 

V
ersion 1 Standard  Deviation 0.76 4.99 0.49 

Ideal Solution 18.00 2.00 4.00
Best Student Solution 18.00 2.00 1.00

Average Student 18.00 1.25 0.75

StackA
r 

V
ersion 2 Standard  Deviation 0.00 0.89 0.46 

Table 1.  Summary of Experimental Results.  For each 
task variation, we show the number of provided 
annotations that were preserved correctly, the number of 
provided incorrect annotations that were removed, and the 
number of necessary annotations added. 

7. CHALLENGES 
There are a number of impediments to successfully introducing 
analysis tools into introductory software engineering courses.  



Since the amount of material typically covered in these courses is 
already excessive, it is necessary to exclude some other material 
to make room.  We believe this tradeoff is justified.  A primary 
goal of introductory software engineering courses should be to 
teach students to produce reliable and trustworthy programs and 
to be able to reason informally about their correctness.   
We found it very difficult to prevent students from focusing only 
on getting the code to appear to work, even when it is only 
presented as one question out of ten on a problem set.  Students 
are naturally driven by creating programs, which is generally a 
good thing.  Most students were not sufficiently convinced of the 
benefits of using analysis tools, however, to use them as part of 
that process.  Instead, they would struggle to get the code 
working, and then run ESC/Java on the code and start thinking 
about invariants and adding annotations to eliminate the warnings.  
Further, students who were not able to get the code working often 
did not even attempt to run ESC/Java on their code.  This is 
contrary to our goals, since we want to encourage students to 
consider invariants while developing their programs. 
For this year’s course, we have solved those problems by 
changing the way students use ESC/Java.  Instead of running the 
Java compiler and ESC/Java from the command line, we have 
developed a plug-in that runs ESC/Java within Eclipse, an open 
source integrated development environment [2].  The plug-in runs 
ESC/Java as part of the compilation process, and integrates 
ESC/Java warnings with compiler warnings.  It has the further 
benefit, that students can jump directly to the location of a 
warning by clicking on the message. 
A more serious challenge concerns the limitations of lightweight 
analysis tools.  Both ESC/Java and Splint are unsound and 
incomplete.  This means they produce both false positives 
(generate spurious warnings) and false negatives (miss legitimate 
problems).  Experienced developers and tool users can often 
identify false positives quickly and understand the limitations of 
the analysis that lead to them.  Introductory programmers are 
justifiably reluctant to discount a warning as a false positive.  As 
a result, they can waste many hours trying to solve a non-
problem. After they are told that the warning is incorrect, this 
experience can lead them to incorrectly assume other warnings 
are also false positives.  There is no complete solution to this 
problem, although as the quality of available tools improves it 
will be mitigated.   

8. CONCLUSION 
Software engineering courses should strive to instill in students 
the attitude necessary to produce dependable and maintainable 
programs, and intellectual and pragmatic tools that assist that 
goal.  It is becoming increasingly important that all students who 
go on to develop software have an appreciation and understanding 
of what it takes to produce reliable programs.   
Our goal of simulating large-scale safety critical software 
development in introductory software engineering courses is 
aided by the use of lightweight analysis tools.  Programmers who 
develop the habit of thinking precisely about invariants when they 
design and develop their code will produce better programs, and 
analysis tools are effective in encouraging students to do that.  
Although there are many challenges associated with using these 

tools in introductory courses, they can provide substantial 
benefits. 
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