
Simulating Critical Software Engineering

David Evans Michael Peck
University of Virginia, Department of Computer Science

Charlottesville, VA

[evans, mike]@virginia.edu

ABSTRACT
One goal of many introductory software engineering courses is to
simulate realistic software engineering. Unfortunately, many of
the practical constraints of typical courses are antithetical to that
goal: instead of working in large teams on large projects, dealing
with changing requirements and maintaining programs over many
years, courses generally involve students working alone or in
small teams with short projects than end the first time the program
works correctly on some selected input. Of course, it is
impossible (and undesirable) to carry out full industrial software
development within the context of a typical university course.
However, it is possible to simulate some aspects of safety critical
software engineering in an introductory software engineering
course. This paper describes an approach to teaching introductory
software engineering that focuses on using lightweight analysis
tools to aid in producing secure, robust and maintainable
programs. We describe how assignments were designed that
integrate analysis tools with typical software engineering material
and reports on results from an experiment measuring students
understanding of program invariants.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification:
assertion checkers, class invariants, formal methods,
programming by contract, reliability, F.3.1 [Logics and
Meanings of Programs]: Specifying and Verifying and Reason-
ing about Programs - assertions, invariants, logics of programs,
mechanical verification, pre- and post-conditions, specification
techniques, K.3.2 [Computers and Education]: Computer and
Information Science.

General Terms
Reliability, Security, Verification.

Keywords
Software engineering, dependability, security, invariants, static
analysis.

1. INTRODUCTION
Teaching software engineering is extremely difficult. The root of
the problem lies in the impact of scale. Most of the principles
central to software engineering are crucial for producing large,
robust, long-lived programs, but hardly relevant (and oftentimes
counterproductive) for the smaller, non-critical, short-lived
programs that can be developed in the scope of an academic
course. This means the methods and theories taught in software
engineering courses are often regarded by students as abstract,
academic concepts which are quickly forgotten after the final
exam. Without experiencing their practical impact on realistic
programs, students rarely develop a deep understanding or
appreciation of important ideas in software engineering.
A common approach to this problem is to increase the size of
programs students deal with in classes, often by having students
work in groups. This helps, but it is still impractical to do
industrial size projects within the scope of a semester course.
Students with limited time and other classes cannot be expected to
construct an industrial scale program for a course. Even if they
could, one experience is often insufficient. Because the project
ends when the semester is over, students don’t have to try to
figure out their code six months later to make changes to it.
It is becoming increasingly important that all students who go on
to produce software will know what is involved in producing
secure and reliable software. Nearly all software today is critical
to some degree. Any program running on a machine connected to
the Internet can be exploited by an attacker, even if the function
of that program is not itself critical.
This paper reports on our experiences teaching an experimental
software engineering course at the University of Virginia. The
course is the second computing course for most students, and
satisfies a requirement for students in non-computing majors. We
taught a small experimental version of the course in Fall 2002
with 27 students, and are currently teaching the course with 68
students. The course uses Liskov’s Program Development in
Java [11] as the textbook and is heavily influenced by MIT’s
software engineering course. Our primary contribution is to
develop an approach that uses lightweight analysis tools to
support and enhance the value of the systematic and analytical
approach to programming presented in that text and course.

2. UNDERSTANDING CHALLENGES
The first step to producing reliable software is to understand how
difficult it is. Many students leave their first programming course
believing that their program is correct once it works as expected
on one input. After all, in many courses that is enough to get full
credit for the assignment. Students are usually not expected to
deal with uncooperative users who generate atypical (or even

malicious) inputs. After all, no one other than the student will
ever run the program.
In real software engineering projects, of course, this is not the
case. We used several strategies to simulate quality requirements
of deployed software. The first was evaluating students programs
based on subjective criteria such as how easy it would be for
someone to maintain their code, as well as objective results from
running their program on both public and secret test cases. For
some of the early assignments, students would submit their
programs to a web form that would automatically execute their
code on a set of test cases. Some of the test cases were distributed
to the students as part of the assignment, but others were kept
secret. When students submit their programs to the web site,
they would receive feedback on whether or not their program
passes each test case, but would not receive any information about
what the test cases their program failed were. This encouraged
students to think carefully about their own testing strategy. They
were unlikely to produce a correct program without thinking
systematically about all possible inputs to the program.
On a simple early assignment, students were asked to place a bet
on whether or not their program was correct. In this case,
correctness meant it satisfied the precise informal specification
they provided, and that it behaved as a mythical customer
expected for any inputs not covered clearly by their specification.
Students could bet up to 20 points (on an assignment worth 100
points) on their program; if their program was considered correct,
they received their bet; if not, they lost twice their bet. Eight (of
25) students bet 0, although two of those had correct code.
Fourteen students bet something between 2 and 10, ten of whom
had code that was considered correct. Three students bet the
maximum 20 points, only one of whom had correct code.
Although this was a somewhat gimmicky way of getting students
to measure confidence in their code, it does teach several
important lessons. Having correct code, but no confidence that it
is correct, is nearly useless: no one will use a program without a
reason to be confident it will work. Having overconfidence in
incorrect code is dangerous: if someone relies on it for a critical
purpose the impact of programming errors can be disastrous.

3. ANALYSIS TOOLS
Formal methods have often been proposed as a means to
producing more reliable and maintainable programs. Edsger
Dijkstra [1] and David Gries [9] suggest approaches to teaching
programming that closely integrate proof techniques. Despite the
elegance and apparent benefits of these approaches, they have met
with limited success. Students generally only use proof
techniques when they are required to do so on small programs in
course assignments. In most students’ experience, proving
correctness properties about programs is a tedious and academic
process, not something they do voluntarily with an expectation
that it will improve their programs. Despite the value in doing
these exercises, it is very clear that these manual techniques
would not scale well to a program of non-trivial size. Students
rarely leave these courses thinking about adding explicit
representation invariants or formal postconditions to their
programs.
The problem with most previous attempts to introduce formal
methods into computer science curricula is the gap between
formal methods and the students’ practical programming
experience is too large. Jeannette Wing identified tool support as

a critical factor in integrating formal methods into undergraduate
computer science curricula [15]. To enable widespread adoption
of formal methods, we need both appropriate analysis tools and
documentation and course materials that relate them to the
abstract concepts and methods we aim to teach. Lightweight
analysis tools are a promising way to shrink this gap and make the
abstract concepts we hope to teach immediately and directly
relevant in a practical way. After several years of research efforts
by many groups in academia and industry, lightweight analysis
tools are now mature enough to be used effectively in
undergraduate education. Whereas it requires considerable effort
to use traditional formal methods directed towards program
verification on even toy programs, students will be able to quickly
and effectively use lightweight analysis tools on real programs.
In our course we used two lightweight analysis tools: ESC/Java
and Splint. The Extended Static Checker for Java (ESC/Java) is
an analysis tool for Java developed at the Compaq Systems
Research Center [10]. ESC/Java produces warnings for
expressions that may produce run-time errors such as an invalid
down cast, null dereference, or out-of-bounds array fetch.
ESC/Java also provides an annotation language for specifying
preconditions and postconditions of methods and datatype
invariants. ESC/Java generates verification conditions based on
an analysis of the source code and its annotations. A theorem
prover searches for counterexamples to the verification
conditions, and translates contexts that produce counterexamples
into warnings. For six of the seven programming assignments in
the course, students programmed in Java and used ESC/Java on
all but the first assignment.
For one of the assignments (the sixth of seven), students used C
and the Splint lightweight analysis tool. Splint [5, 6, 7] is an
annotation-assisted lightweight static checking tool for C.
Splint’s checking is done using simple dataflow analyses so it
does not have the deductive reasoning power of ESC/Java, but
can scale to work on large programs. Students used Splint to
detect and fix information hiding violations, possible null
dereferences, and memory leaks in a provided C program. Since
many students are likely to end up programming in C or C++, we
believed it was important to teach techniques for producing
dependable and maintainable programs even when using unsafe
languages.

4. INTRODUCING ESC/JAVA
To introduce ESC/Java, we provided students with a tutorial-style
explanation of the warnings ESC/Java produces for the simple
buggy program shown in Figure 1. Running ESC/Java on
AverageLength.java produces two warnings. The first warns about
an array index possibly too large for args[0]. This corresponds to
the run-time error that would occur if the program is run with no
arguments. The second warning concerns an unsatisfied
precondition:

 Warning: Precondition possibly not established (Pre)
 String name = names.getEntry (index);
 Associated declaration is "./StringTable.java", line 131, col 10:
 //@requires index < numEntries;

Path information (not shown) reveals that the precondition for the
StringTable getEntry method is not satisfied on the final interation
of the loop. This precondition is specified using an annotation in
the StringTable specification that requires the value of the

parameter passed to getEntry is less than the number of entries in
the table.

This example illustrates how static analysis can assist program
development. In the first case, the analysis detects a problem that
might not be detected through testing. In the second case, the
analysis provides clearer understanding of a problem that would
likely also be revealed through testing. For the second
assignment in the course, students are asked to explain and fix
problems in the AverageLength program revealed by ESC/Java
warnings, and to implement a simple program using the
StringTable data abstraction. They check their programs using
ESC/Java, and fix any problems it reports.

public class AverageLength {
 public static void main (/*@non_null@*/ String args[]) {
 String filename = args[0];
 try {
 FileInputStream infile = new FileInputStream (filename);
 StringTable names = new StringTable (infile);
 int numnames = names.size ();
 int totallength = 0;

 for (int index = 0; index <= numnames; index++) {
 String name = names.getNthLowest (index);
 totallength = totallength + name.length ();
 }

 System.out.println ("The average name length is: "
 + (double) totallength / numnames);
 } catch (FileNotFoundException e) {
 System.err.println ("Cannot find file: " + filename);
 }
 }
}

Figure 1. Buggy AverageLength implementation.

5. INVARIANTS
One of the goals of our course was to encourage students to think
precisely about properties of their programs. By considering and
precisely documenting procedural interfaces, students will
produce more reliable and maintainable software. Documenting
representation invariants will encourage students to think more
carefully about their datatype implementations and make those
implementations more modular and maintainable.
Without using analysis tools, it is difficult to teach students to
develop good invariants and to convince them that it is a
worthwhile activity other than to satisfy a particular course
requirement. The problem is the effort required to precisely
document an invariant is usually considerably more than the
apparent benefit. Since the assignments students are working on
are small, both in size and time, it is unlikely they will need to
understand someone else’s code or their own code after they have
forgotten it. Further, if invariants are used only to aid informal
reasoning, their value is apparent only to the extent that students
find it useful to reason informally about the correctness of their
code.
Using analysis tools can dramatically increase the benefits of
documenting program invariants. The difficulty in providing
invariants increases somewhat since they need to be expressed
using a formal annotation language. However, once invariants are
expressed formally the benefits of providing them increase
dramatically. Analysis tools can check that the specified

invariants are maintained, and use those invariants to check
implementations. For teaching purposes, it is especially useful
that warnings produced often lead students to realize than an
invariant they are depending on for correctness is not
documented.
For example, consider implementing a StringSet datatype in Java
using a java.util.Vector representation (based on the IntSet
example in [11]). One invariant is that all the elements of the
representation Vector are non-null Strings. Suppose we
implemented a naïve choose method using:

 public String choose () { return (String) els.firstElement(); }

ESC/Java reports two warnings for the choose implementation.
The first indicates a possible run-time error for the type cast. To
know the String cast will not produce a run-time exception, we
need to know that all elements of the els Vector are of type String.
This invariant of our representation can be documented using an
annotation: //@invariant els.elementType == \type(String). This
invariant clearly documents the requirement that all elements of
the representation vector must be strings. ESC/Java will check
that any elements added to the vector are of type string.
The other warning reports that the precondition for firstElement is
not satisfied. It requires that the vector contains at least one
element. One way to address this would be to add a precondition
to the choose method that requires the set contain at least one
element: //@requires numElements > 0. The numElements vari-
able is a specification variable that maintains the number of
elements in the set. We relate this to the representation by adding
an invariant: //@invariant numElements == els.elementCount.
Note that we have fixed the problem without changing the code.
By adding the precondition, we have documented a restriction on
calling contexts. Since the precondition is specified formally,
ESC/Java is able to check that it is satisfied by all call sites.
For the third assignment, students implement a data abstraction
according to a specification we provide. In the current version of
the course, the data abstraction is a table that associates a count
with a string and provides methods for getting strings based on
the rank of their associated count in the table. This datatype is
used by an application that uses the Google API [8] to find words
most commonly associated with a particular search term.
Students are expected to document their representation invariants
both informally and as ESC/Java annotations in their code. The
checking provided by ESC/Java nearly always leads students to
identify missing invariants upon which the correctness of their
code relies.

6. EXPERIMENT
We conducted an experiment at the end of the course to better
assess student difficulties with annotating invariants. The goals
of the experiment were to determine how well students
understood annotating programs, and whether the problems were
primarily syntactic or conceptual. Our experiment was based on
an experiment conducted by Jeremy Nimmer and Michael Ernst
to evaluate the effectiveness of annotation inference [13].
Students downloaded annotated implementations of two classes
taken from a data structures textbook [14]: StackAr (119 total
lines, including comments and annotations), a stack of objects
data abstraction implemented using an array; and, BitSet (113 total
lines), a datatype that represents a set of integers with values

between 0 and capacity-1 using an array of booleans. Students
were also provided with sample client programs for each
datatype. The programs were annotated with some correct and
some incorrect annotations. We instructed students to run
ESC/Java on each datatype implementation and client, and
eliminate the reported warnings by only changing the annotations.
Students were asked to participate in the experiment after the end
of the course and were not graded on their participation or
performance in the experiment. Seventeen students (out of 27 in
the course) attempted the experiment. Two did not follow the
directions closely enough to be included in our analysis (they
changed the code instead of the annotations), leaving 15 valid
subjects. There was some correlation between students overall
performance in the course and their willingness to do the
experiment. The average final course rank of students who did
the experiment was 12.3, for those who did not, 16.1. Seven of
the top ten students in the course did the experiment, compared to
five of the bottom ten students. This is too small a sample to
make strong quantitative results, but sufficient to consider
qualitatively.
Based on their username, students would receive a different
version of the zip file containing the experiment code. Half the
students recieved StackAr first, and the other half BitSet. There
were also two variations on each implementation with different
provided annotations. Students randomly received one version of
each data type implementation. The annotations were generated
using Daikon, a tool that determines likely invariants
automatically by analyzing program executions on test data [3, 4].
Daikon examines values in test executions and infers useful
invariants based on patterns and relationships detected in all
executions. Invariants reported by Daikon are true for all
executions in the test data, but not necessarily true of all possible
program executions. Daikon has been used in conjunction with
ESC/Java to automatically add ESC/Java annotations to Java
programs [12]. Although students in our experiment did not run
Daikon themselves, we believe it is realistic to believe they could
do so in future courses. This would have the added benefit of
encouraging and evaluating test suites; the annotations produced
by Daikon are directly related to the quality of the test suite.
Daikon will produce invariants that are unsound (they hold for all
executions in the test suite, but not for all possible executions of
the program), and will fail to produce necessary invariants. The
test programs we used contained both incorrect invariants and
missing invariants that are necessary for ESC/Java checking.
Students were told to spend no more than 30 minutes on each
datatype. For the experiment, students used a modified ESC/Java
script that would record the time, inputs and results each time
they executed ESC/Java. They submitted their code after
completing the task, either because they succeeded in eliminating
all warnings or they ran out of time.
Table 1 summarizes student performance on the experiment.
Over the entire experiment, only one student mistakenly removed
correct provided annotations. Removing incorrect annotations
was understandably more difficult. Most students were able to
remove incorrect annotations that corresponded directly to
warnings produced when ESC/Java is executed on the code and
test client. For example, version 1 of the BitSet datatype
contained a single incorrect annotation that imposed a false
precondition on the insert method: requires bits[el] == false.

Daikon derives this invariant, since the inadequate test suite used
to produce this version never added an element to the set that was
already a member of the set. Running ESC/Java on the provided
test client produces a warning that the precondition is not satisfied
for a call to insert. Four out of seven students were able to
correctly interpret this warning and remove this precondition. On
the other hand, when the incorrect invariants are revealed only
indirectly by the warnings ESC/Java produces (such as in StackAr
version 1), only a few students were able to remove the
corresponding incorrect invariants.
Adding annotations requires students to realize what invariant
should be documented, and also express it using ESC/Java’s
annotation language. BitSet version 2 and StackAr version 1
require complex annotations involving a forall quantifier and a
logical implication. Since the students had not encountered such
complex annotations in any of the course assignments, we were
not surprised that no students were able to correctly produce these
annotations. About half the students were able to correctly add
necessary simpler annotations. For example, the constructor took
an int parameter and needed a requires capacity >= 0 annotation.
Eleven of fifteen subjects were able to correctly add the necessary
annotation.

 C
orrect

annotations
preserved

Incorrect
annotations

rem
oved

N
ecessary

annotations
added

Ideal Solution 16.00 1.00 9.00
Best Student Solution 16.00 1.00 9.00

Average Student 16.00 0.57 4.29

B
itSet

V
ersion 1 Standard Deviation 0.00 0.53 3.59

Ideal Solution 21.00 4.00 2.00
Best Student Solution 21.00 2.00 2.00

Average Student 21.00 0.88 1.13

B
itSet

V
ersion 2 Standard Deviation 0.00 0.99 0.99

Ideal Solution 20.00 13.00 2.00
Best Student Solution 20.00 11.00 1.00

Average Student 19.71 3.71 1.29

StackA
r

V
ersion 1 Standard Deviation 0.76 4.99 0.49

Ideal Solution 18.00 2.00 4.00
Best Student Solution 18.00 2.00 1.00

Average Student 18.00 1.25 0.75

StackA
r

V
ersion 2 Standard Deviation 0.00 0.89 0.46

Table 1. Summary of Experimental Results. For each
task variation, we show the number of provided
annotations that were preserved correctly, the number of
provided incorrect annotations that were removed, and the
number of necessary annotations added.

7. CHALLENGES
There are a number of impediments to successfully introducing
analysis tools into introductory software engineering courses.

Since the amount of material typically covered in these courses is
already excessive, it is necessary to exclude some other material
to make room. We believe this tradeoff is justified. A primary
goal of introductory software engineering courses should be to
teach students to produce reliable and trustworthy programs and
to be able to reason informally about their correctness.
We found it very difficult to prevent students from focusing only
on getting the code to appear to work, even when it is only
presented as one question out of ten on a problem set. Students
are naturally driven by creating programs, which is generally a
good thing. Most students were not sufficiently convinced of the
benefits of using analysis tools, however, to use them as part of
that process. Instead, they would struggle to get the code
working, and then run ESC/Java on the code and start thinking
about invariants and adding annotations to eliminate the warnings.
Further, students who were not able to get the code working often
did not even attempt to run ESC/Java on their code. This is
contrary to our goals, since we want to encourage students to
consider invariants while developing their programs.
For this year’s course, we have solved those problems by
changing the way students use ESC/Java. Instead of running the
Java compiler and ESC/Java from the command line, we have
developed a plug-in that runs ESC/Java within Eclipse, an open
source integrated development environment [2]. The plug-in runs
ESC/Java as part of the compilation process, and integrates
ESC/Java warnings with compiler warnings. It has the further
benefit, that students can jump directly to the location of a
warning by clicking on the message.
A more serious challenge concerns the limitations of lightweight
analysis tools. Both ESC/Java and Splint are unsound and
incomplete. This means they produce both false positives
(generate spurious warnings) and false negatives (miss legitimate
problems). Experienced developers and tool users can often
identify false positives quickly and understand the limitations of
the analysis that lead to them. Introductory programmers are
justifiably reluctant to discount a warning as a false positive. As
a result, they can waste many hours trying to solve a non-
problem. After they are told that the warning is incorrect, this
experience can lead them to incorrectly assume other warnings
are also false positives. There is no complete solution to this
problem, although as the quality of available tools improves it
will be mitigated.

8. CONCLUSION
Software engineering courses should strive to instill in students
the attitude necessary to produce dependable and maintainable
programs, and intellectual and pragmatic tools that assist that
goal. It is becoming increasingly important that all students who
go on to develop software have an appreciation and understanding
of what it takes to produce reliable programs.
Our goal of simulating large-scale safety critical software
development in introductory software engineering courses is
aided by the use of lightweight analysis tools. Programmers who
develop the habit of thinking precisely about invariants when they
design and develop their code will produce better programs, and
analysis tools are effective in encouraging students to do that.
Although there are many challenges associated with using these

tools in introductory courses, they can provide substantial
benefits.

9. ACKNOWLEDGMENTS
The authors thank Mike Ernst and Jeremy Nimmer for providing
code and assistance for the experiment, the National Science
Foundation for supporting this work through NSF CCLI 0127301,
Sol Chea, Serge Egelman, Tiffany Nichols, and the CS201J
students.

10. REFERENCES
[1] Edsger Dijkstra. A Discipline of Programming. Prentice

Hall, 1976.
[2] Object Technology International. Eclipse Platform

Technical Overview. Feb 2003.
http://www.eclipse.org/whitepapers/eclipse-overview.pdf

[3] Michael Ernst. Dynamically Discovering Likely Program
Invariants. PhD Thesis, U. Washington. August 2000.

[4] Michael Ernst, J. Cockrell, William Griswold and David
Notkin. Dynamically discovering likely program invariants
to support program evolution. IEEE Transactions on
Software Engineering, Feb 2001.

[5] David Evans, John Guttag, Jim Horning and Yang Meng
Tan. LCLint: A Tool for Using Specifications to Check Code.
SIGSOFT Foundations of Software Engineering. Dec 1994.

[6] David Evans. Static Detection of Dynamic Memory Errors.
SIGPLAN Conference on Programming Language Design
and Implementation. May 1996.

[7] David Evans and David Larochelle. Improving Security
Using Extensible Lightweight Static Analysis. IEEE
Software, Jan/Feb 2002.

[8] Google Web APIs. http://www.google.com/apis/
[9] David Gries. The Science of Programming. Springer-

Verlag, 1981.
[10] K. Rustan M. Leino. Extended Static Checking: a Ten-Year

Perspective. Schloss Dagstuhl Tenth-Anniversary
Conference. Springer LNCS volune 2000, 2001.

[11] Barbara Liskov with John Guttag. Program Development in
Java: Abstract, Specification, and Object-Oriented Design.
Addison Wesley, 2001.

[12] Jeremy W. Nimmer and Michael D. Ernst. Static
verification of dynamically detected program invariants:
Integrating Daikon and ESC/Java. First Workshop on
Runtime Verification, July, 2001.

[13] Jeremy W. Nimmer and Michael D. Ernst. Invariant
inference for static checking: An empirical evaluation.
SIGSOFT Foundations of Software Engineering, Nov 2002.

[14] Mark Allen Weiss. Data Structures and Algorithm Analysis
in Java. Addison Wesley Longman, 1999.

[15] Jeanette Wing. Weaving Formal Methods into the
Undergraduate Computer Science Curriculum. 8th
International Conference on Algebraic Methodology and
Software Technology, May 2000.

