
peer-reviewed pre-print for the 2014 Johns Hopkins Guide to Digital Media, Ryan et al, eds.

 1

“Algorithm”
Bethany Nowviskie

 The term algorithm, most commonly associated with computer science, may be used for

any effective procedure that reduces the solution of a problem to a predetermined sequence of

actions. In software, algorithms are used for performing calculations, conducting automated

reasoning, and processing data (including digital texts) – but algorithms may also be

implemented in mathematical models, mechanical devices, biological networks, electrical

circuitry, and in practices resulting in generative or procedural art (see CODE,

COMPUTATIONAL LINGUISTICS, PROCEDURAL).

 In common usage, algorithm typically references a deterministic algorithm, formally

defined as a finite and generalizable sequence of instructions, rules, or linear steps designed to

guarantee that the agent performing the sequence will reach a particular, pre-defined goal or

establish incontrovertibly that the goal is unreachable. The “guarantee” part of this description is

important, as it differentiates algorithms from heuristics, which commonly proceed by “rules of

thumb.” Like algorithms, heuristic methods can be used iteratively to reach a desired end-state

and may be responsive to feedback from external sources. However, the heuristic process is

fundamentally one of informal trial and error rather than of constrained, formally algorithmic

activity according to a set of pre-defined rules. (Non-deterministic algorithms are a class of

algorithm that attempts to solve harder problems by finding the best solution available with a

given set of constraints. They do not guarantee to find a single, best solution and may, on

repetition, present radically different outcomes.)

 Almost any everyday problem can be solved heuristically or algorithmically. We

proceed by heuristics when, for example, we’ve lost our car keys: I look in my bag. I look in my

peer-reviewed pre-print for the 2014 Johns Hopkins Guide to Digital Media, Ryan et al, eds.

 2

bag again. I search my jacket pockets. I check the front door, because I left them dangling there

last week. The weak point of the heuristic method becomes evident when its user needs to shift

gears. I’m not finding my keys in the usual places. Should I peer with trepidation into the locked

car or check the washing machine? Is it possible someone has taken them? Should I keep

looking, or is it time to give up and call a cab? In formal, graph-based problem-solving,

heuristics are sometimes used to guide the search for solutions by identifying the most promising

branches of a tree for further exploration, or by cutting out unpromising branches altogether (See

GRAPH THEORY). The basic “problem with heuristics” – which could lead to the inadvertent

elimination of the entire branch of a desired outcome branch from the search tree – “is how to

decide half-way what would be an appropriate next action, i.e. how to design heuristic rules that

lead to good solutions instead of bad ones” (Lagus). Tellingly, we often attribute decisions in

successful heuristic processes to intuition and those that result in undesirable outcomes to

confusion and bad luck.

 If heuristics fail or prove too unsystematic for comfort, we can shift to algorithmic

problem-solving (expressed here in pseudocode):

For each room in the house,

and for each item in the room;

 pick up and examine the item.

 If the item appears by objective criteria to be the missing object,

 terminate the search.

 If not, put down the item and continue this loop

 until all items in all rooms have been tested.

Eventually, if this so-called “brute force” algorithm is executed perfectly, we will either find our

keys or determine conclusively that they are not in the house. It requires no ingenuity on the part

peer-reviewed pre-print for the 2014 Johns Hopkins Guide to Digital Media, Ryan et al, eds.

 3

of the performer, and there’s a kind of predestination or special providence embedded in the

process. That is to say, we know to expect one of two prescribed outcomes before even

undertaking the search. And – as its strict definition requires – this algorithm is almost wholly

generalizable. If you suspect you have left your keys at a friend’s house, you can run the process

there. If the misplaced object is a watch, or a hat, these steps are equally applicable.

(Admittedly, it isn’t a very efficient algorithm, because it requires us, for example, to pick up and

examine heavy furnishings, and to re-examine the housecat every time it saunters into a new

room, but more elegant versions could be designed.)

 At present, advancements in programming frameworks and computing hardware

(specifically, the increasing speed and power of processors) are driving new work in concurrency

and parallelization of algorithms. This is an active, and even pressing, research area in computer

science, with implications for machine learning, a subfield of artificial intelligence (Bekkerman

et al; see ARTIFICIAL INTELLIGENCE). But the development and theorization of algorithms

has a long history. The word itself stems from the name of 9th-century mathematician Abū Ja῾far

Muhammad ibn Mūsa, al-Ḵwārizmī, and was first applied (as algorism) to any arithmetical

operation using Arabic numerals, before shifting in meaning to its current sense in the late 19th

and early 20th century. The works of Llull, Leibnitz, Babbage, Lovelace, and Boole (among

others) are infused with procedural and proto-algorithmic notions of language, logic, and

calculation, and raise many of the same questions about the applicability of algorithm to

interpretation that underlie present-day concerns about hermeneutics in digital media and the

digital humanities (Nowviskie). Jean-Luc Chabert and Évelyne Barbin offer in-depth discussion

of the many ways “algorithms were in use long before it was necessary to give a clear definition”

of the term, and describe how “problems concerning the foundations of mathematical logic”

peer-reviewed pre-print for the 2014 Johns Hopkins Guide to Digital Media, Ryan et al, eds.

 4

prompted clarification of the concept. This work crystallized largely outside the realm of

literature and linguistics in the 1930s, as thinkers like Kurt Gödel, Alonzo Church, Stephen

Kleene, Alan Turing, and Emil Post responded to formalist mathematical questions posed by

David Hilbert’s Entscheidungsproblem and worked to demonstrate the inability of algorithmic

processes to establish a truth-value for certain classes of mathematical statements. Chabert and

Barbin note with some irony that “the intuitive idea of an algorithm played an important heuristic

role in all those works” which challenged Hilbert’s mathematical formalism (455-458). Donald

Knuth’s 1968 Art of Computer Programming helped to codify five widely-accepted properties of

algorithms: that they are finite in length, definite or unambiguous, have zero or more inputs and

one or more outputs, and are composed of “effective” steps, sufficiently basic as to be

executable. Knuth also asserted, “in some loosely-defined aesthetic sense,” the desirability of

“good” algorithms, citing criteria of efficiency, “adaptability of the algorithm to computers,”

simplicity, and elegance (2-9). All of these refinements to the concept of the algorithm are

relevant both to artistic production and to the interpretation of texts and artifacts, two domains

generally predicated on ambiguity, subjectivity, and flux (see COMBINATORY AND

AUTOMATIC TEXT GENERATION, DIGITAL HUMANITIES).

 As presently understood, algorithms are expected to be both perfectly precise and entirely

implementable. An old bubblegum wrapper joke helps to make this point: How do you fit four

elephants into a Volkswagen? The algorithmic answer is that you put two in the front seat and

two in the back. Although those steps are clearly unambiguous, they are impossible to

implement. In contrast is an algorithm for writing encyclopedia articles: Step 1. Write a

paragraph. Step 2: Repeat Step 1 until the article is complete. The procedure is clearly

implementable – it was performed more than 150 times in the present volume – but it is far too

peer-reviewed pre-print for the 2014 Johns Hopkins Guide to Digital Media, Ryan et al, eds.

 5

ambiguous to be a “textbook,” or even a useful, algorithm. What constitutes a paragraph? What

criteria indicate completion? How does the algorithm know that you’re writing an article and not

a monograph, a novel, or a comic book? And how might a human agent’s interpretation and

performance of an algorithmic process alter it? That is to say, with what assumptions do we

approach algorithmic or procedural activities and how might those assumptions both shape and

be shaped by action within systems of constraint? (See WRITING UNDER CONSTRAINT.) In

other words, algorithmic methods are productive not only of new texts, but of new readings. In

“Algorithmic Criticism,” Stephen Ramsay argues that “critical reading practices already contain

elements of the algorithmic” and that algorithms “can be made to conform to the methodological

project of inventio without transforming the nature of computation or limiting the rhetorical

range of critical inquiry” (2008: 489). It is also important to acknowledge that even the most

clinically perfect and formally unambiguous algorithms embed their designers’ theoretical

stances toward problems, conditions, and solutions.

 Repositioning closed, mechanical or computational operations as participatory or playful

algorithms requires acknowledgement of a primary definition, derived from the studies of game

theorist Martin Shubik (See GAME THEORY). Shubik concludes a survey of “the scope of

gaming” with the simple statement that “all games call for an explicit consideration of the role of

the rules.” He understands this “consideration” not only as adherence by players to a set of

constraints, but also as appreciation of the impact of rules on the whole scope of play. The

ruleset or constraining algorithm in any ludic or hermeneutic system becomes another participant

in the process and, in the course of execution or play, can seem to open itself to interpretation

and subjective response – in some cases, to real, iterative or turn-based modification (Suber). In

considering the “role of the rules” we must follow C. S. Peirce, and interpret algorithmic

peer-reviewed pre-print for the 2014 Johns Hopkins Guide to Digital Media, Ryan et al, eds.

 6

specifications “in the sense in which we speak of the ‘rules’ of algebra; that is, as a permission

under strictly defined conditions” (4.361). The permission granted here is not only to perform

but also to reimagine and reconfigure.

SEE ALSO: randomness; sampling; search; Turing test.

References and further reading

Bekkerman, Ron, Mikhail Bilenko, and John Langford, eds. 2011. Scaling Up Machine

Learning: Parallel and Distributed Approaches. Cambridge University Press.

Chabert, Jean-Luc and Évelyne Barbin. 1999. A History of Algorithms: from the Pebble to the

Microchip. Springer Verlag.

Knuth, Donald E. 1968. The Art of Computer Programming. Volume 1. Boston: Addison-

Wesley Professional.

Lagus, Krista. 1995. Automated Pagination of the Generalized Newspaper Using Simulated

Annealing. Master’s thesis, Helsinki University of Technology.

Peirce, C.S. 1933. Collected Papers. Cambridge, MA: Harvard UP.

Nowviskie, Bethany. 2013. “Ludic Algorithms.” in PastPlay: History, Technology, and the

Return to Playfulness. Kevin Kee, ed. University of British Columbia Press.

Ramsay, Stephen. 2008. “Algorithmic Criticism.” In A Companion to Digital Literary Studies,

Susan Schreibman and Ray Siemens, eds. Oxford: Blackwell. 478 – 491.

Shubik, Martin. 1972. "On the Scope of Gaming," Management Science 18 (5): 34.

Suber, Peter. 2003. "Nomic: A Game of Self-Amendment". Earlham College. Available:

http://www.earlham.edu/~peters/nomic.htm

