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Models of disk I/0 systems often assume that the pattern of requests for cylinders is uniform, and
that requests are mutuelly independent., Neither assumption holds well in practice, As a result, a
disk system may experience much more head movement than its designer expects.

This paper presents a technigue for reordering the cylinders on a disk to achieve a reduction in
expected seek time, based on observed cylinder request probability distributions. The technique
allows the disk system to restructure itself over time, eliminating the need for careful layout at
design time. Using data taken from a typical computer system, the restructuring technigue is shown
to yield significant savings in expected seek time,
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ment - secondary storage devices; D.4.2 [Operating Systems]: File Systems Management - ‘access
methods;
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1. INTRODUCTION

A typical disk input/output system consists of a series of rotating platters that are
divided into areas known as cylinders. An assembly of read/write heads moves from
cylinder to cylinder servicing requests. Requests arrive to the system at random times, and
each request is for a random cylinder. A queueing mechanism stores requests when
requests arrive faster than they can be serviced. '

The process by which the “next” request is selected from the queue is known as head
scheduling [5]. For most scheduling disciplines, such as SCAN [4] and Shortest-Seek-
Time-First [11], the average time required to move the head from one requested cylinder to
the next approaches zero as the number of requests per unit of time becomes infinite. Thus,
we expect the throughput of the system to become large under heavy offered loads. Unfor-
tunately, most systems are not characterized by heavy disk loads. In fact, excessive I/0
load typically represents a flaw in the design of the computer system as a whole [2].

In this paper we investigate techniques for reducing the average seek time that are
effective even when the load is light. The methods described are based on the idea of reord-
ering the cylinders (i.e., moving the data and providing a mapping function) such that,
when requests arrive to a lightly loaded system, the resulting sequence of head positions is
probabilistically optimal. In other words, we rearrange the information on the disk so that
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the movement of the head approximates an optimal schedule that could be planned if the
requests were known in advance. The net effect is that the disk system appears to be con-
siderably faster than it would be without such reorganization.

The paper describes two models of disk system behavior. The first model represents
the motion of the head as a Markov process, and is based on measured conditional head
transition probabilities. The second model assumes that the requests are mutually indepen-
dent; it requires only that the steady-state head position probabilities be measured. The
first model is the better approximation, but requires quadratic space; the second model
gives reasonable performance increases while requiring only linear space.

Because the optimal cylinder reorganization problem is NP-complete, we present
approximate optimization algorithms for each of the two models. The algorithms are

shown to produce very good results using request traces taken from a typical UNIX™ sys-
tem. The numerical results suggest that the concept of cylinder reorganization can be
extremely useful in practical applications.

2. MOTIVATION

Most studies of disk system behavior assume that the distribution of requests for
cylinders is uniform, and that cylinder requests are probabilistically independent. For
several reasons, neither assumption holds in practice. Unfortunately, head scheduling dis-
ciplines that take advantage of this nonuniformity have minimal impact on performance,
because the probability that more than one request is in the queue is typically small. Most
requests are simply serviced in First-Come-First-Served order.

A good example is provided by the 4.2 Berkeley UNIX (4.2 BSD) system. In this sys-
tem large disks are divided into several smaller, logical devices, each of which contains a
filesystem. These filesystems are arranged so that data in individual files can be accessed
quickly [14]. This may be an appropriate design criterion in some applications: however,
this arrangement may lead to performance degradation in applications such as timesharing,
where total system performance is most important.

Nonuniformity of cylinder requests arises in the 4.2 BSD system for two reasons.
First, directory structures are accessed much more frequently than files. Since each direc-
tory references many files, it is reasonable to expect that a directory will be accessed many
times for each time a particular file is accessed. Second, placing multiple, independent
filesystems on one physical disk can lead to nonuniformity, because different filesystems
may be accessed at different rates.

Interdependence of cylinder requests in the UNIX system arises because operations on
particular filesystems are often related. For instance, a directory lookup operation typi-
cally precedes access to the data contained in a file. Because multiple filesystems share one
physical disk, there are typically several groups of cylinders within which requests are
interdependent, and between which requests are independent.

As an example, consider Figure 1. This graph shows the cylinder access probability
distribution measured on a Fujitsu EAGLE disk drive, during a day of typical activity. The
842-cylinder physical disk is divided into five logical devices: a “root” filesystem, a “"swap”
area, and three “user” filesystems. These five logical devices are shown horizontally
separated in the figure.

Although no interdependence is shown in this figure, it is clear that requests are not
uniformly distributed across the cylinders. The most apparent feature of Figure 1 is the
sharp peak at cylinder zero (the leftmost). This is the location of the “super block™ of the
root filesystem; it is the root of the entire filesystem tree and is accessed several orders of
magnitude more frequently than the average. Other peaks reflect the location of directory
information on the disk.
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FIG. 1. Nonuniform cylinder access probability distribution measured on Fujitsu EAGLE disk with VAX
11/780 and 4.2'BSD UNIX {N = 842 cylinders). &, Root file system. b. Swap file system. c, d, e. User file
systems. .

3. BACKGROUND

Related studies have treated the seek time optimization problem in two ways. First,
Maruyama and Smith [12] describe a method for reorganizing databases in which access
probabilities for individual records are known. These records are allocated to particular
cylinders in a way that minimizes seek time, balanced with the cost of performing inser-
tions and reorganization operations. Their model is primarily concerned with performance
optimization of individual files in database systems; it is much more microscopic than the
model presented in this paper.

The second related model is that of Grossman and Silverman [9]. The Grossman and
Silverman study is concerned with reorganizing disks on a cylinder-by-cylinder basis. The
access probability distribution for individual cylinders is known, but the dependent proba-
bilities are unknown. Grossman and Silverman divide disk accesses into two categories:
purely independent accesses and purely sequential accesses. By combining the two access
patterns in a Markov process, they obtain a reasonable approximation of disk system
behavior.

Other related studies include those by Vaquero and Troya, which generalizes the
results of Grossman and Silverman to include dependent probabilities [18], by Flory, Gun~
ther, and Kouloumdjian, which describes clustering methods for improving seek time [6],
and by Bergmans, which investigates reorganization techniques for linear (disk-like) and
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other storage devices [1].

4. DEPENDENT PROBABILITY MODEL

The unique features of this study are that it takes account of dependent cylinder
access probabilities, that it provides a means for adapting to changes in access patterns over
time, and that it results in dramatic improvements in practical situations. In this section
we describe the Markov model that is based on dependent cylinder access probabilities. We
develop two heuristic algorithms for solving the optimal reorganization problem: a
“greedy” algorithm and one based on the technique of simulated annealing.

4.1. Model

Let the disk contain N cylinders, numbered zero through M = N — 1. Let the proba-
bility of accessing cylinder j next, given that the head is at cylinder i be p;. Further, let
the steady-state probability that the head is at cylinder i be #;. The #; can either be
measured directly or found as the eigenvalues of the matrix p;;.

As long as the p;; depend only on ¢ and j, and not on any past history of head move-
ment, then the motion of the head from cylinder to cylinder can be represented as a Mar-
kov process. In fact, it may be the case that the p;; do depend on longer access patterns;
the Markov model must be regarded as an approximation. Nonetheless, the results
obtained with the Markov model are significant enough that the approximation appears to
be a reascnable one.

As shown in [7], the expected seek distance E[S], measured in cylinders. can be
expressed as follows:

M
E[S]= } EIS|head is at cylinder i] prob (head is at cylinder i) (4.1
i=0
M M
= z Z |i"'j| Dij ;.
i=0 j=0

I we let p; be the probability over all time of moving the head from cylinder i to
cylinder j, then Pij = py Wi,

Now. we define an operator similar to the dot product goperator, except that it operates
on two N_by N matrices. For any two N by N matrices A and B with elements a;; and

by, A ©B =L, EX, a; by;. The expected seek distance can now be expressed in terms
of a matrix of costs (distanc&el). and the matrix of head transition probabilities:

Elsl=¢0©p, (4.2)
where
0 1 2 . M
1 0 1 w M=-1
=12 1 ) w M—21

and
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p= {pij l

The problem of minimizing the expected seek distance based on the arrangement of
cylinders becomes one of finding the permutation of either & or p that minimizes equation
(4.2).) If we regard P as the set of probabilities of making transitions between logical
cylinders (i.e., cylinder numbers as seen by the remainder of the system), then the permu-
tation ¢’ of ¢ reflects the changed cost of making logical transitions due to cylinder reor-
ganization. If we regard P as the set of probabilities of making transitions between physical
cylinders (i.e., cylinder numbers as seen by the physical disk medium), then the permuta-
tion p' of P reflects the changed probability of making physical head transitions due to reor-
ganization. For the remainder of this paper, we choose to take the latter view.

The Toeplitz form of the cost matrix & suggests the form of the (permuted) transition
probability matrix that minimizes E[S]. In particular, Popr Will have its largest values near
the diagonal. with values diminishing away from the diagonal. This explains two common
file system design practices:

Place associated data near each other: If the transition from cylinder i to j is highly prob-
able, then placing cylinder j next to (or near) cylinder i implies large values near the diag-
onal of p. Since the values of & near its diagonal are small, this can be expected to lower
the e{xpe]:cted seek distance. This practice is used extensively in the 4.2 BSD UNIX file sys-
tem [14].

Place the most frequently accessed records near the middle of the disk: If cylinder i is fre-
quently accessed, then transitions to and from that cylinder may be more likely than oth~
ers. Thus, the values of py; and py, for any j, may be comparatively large. Since the
values of ¢ are smallest in the middle row and column, placing the large values of p near
the middle lowers expected seek distance. This practice is used in the DEC FILES-11 filesys-
tem, in which directory information is placed near the middle of each disk [19].

4.2.. Algorithms

The combinatorial minimization problem described above gives rise to a decision prob-
lem that asks, for a given real number R, if there is a permutation of B, F, such that
E[S] < R. Let the minimization problem be called Pyp, and the decision problem be called

Pop.

THEOREM 1: fpp is NP-complete.

PROOF: see [3).

It is shown in [3] that the problem Ppp is a generalization of the Optimal Linear
Arrangement problem of circuit design theory [8]. In this problem, the objective is to find
the linear arrangement of N interconnected circuits that minimizes the total length of wire
E'e%uired. The problem is also similar to the Quadratic Assignment problem, described in
8]

Because of the apparent intractability of Pyp, we seek appropriate heuristic methods
for finding an approximation to P,y. In this section we consider two algorithms, both
based on swapping adjacent cylinders.

The first algorithm is a “greedy” algorithm; it repeatedly examines each pair of adja-
cent cylinders and exchanges them whenever doing so reduces E[S]. Although the greedy
algorithm is susceptible to becoming “stuck’™ at local optima, in practice it appears to

1A permutation of a matrix is a new matrix obtained by performing simultaneous row and column exchanges.
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perform well.

Calculating the change in E[S] for adjacent cylinder swaps is relatively simple. Let
the cylinders to be swapped be cylinders y¥ and ¥+ 1. The change in E[S] can be expressed
as follows:

AE[S] = new E[S]— ol E[S] (4.3)
= E[SIcylinder y is in location y+1] (4.3a)

+ E[S Icylinder y +1 is in location y] (4.3b)

— E{S Icylinder ¥y is in location ] (4.3¢)

— E[S Icylinder y + 1 is in Iocation ¥+ 1], (4.3d)

First, we note that swapping cylinders y and y+1 has no effect on terms of E[S] that
do not contain either ¢ or ¥+ 1 as subscripts. Thus, all such terms of AE[S] cancel out,
leaving AE[S] in terms of the “contributions™ of cylinders y and y+ 1. The contribution
to the old E[S] by cylinder y (4.3¢) is

Z r—iXpy +p) + T G = yXpsy + pyid. (4.4)
i<y P>y :

Likewise, the contribution to the old E[S] by cylinder v+ 1 (4.3d) is

i 2, (y+1- i)(pi,)un + Pye1i) + . 2 G- (‘y+1))(p;,7+1 + Py+1,4) (4.5)
i<y+1 P>yl

The contribution to the new E[S] (4.3a) by cylinder v, located at cylinder y+1, is
the expected distance traversed by the head during transitions to and from cylinder y + 1.
This is just the sum over all cylinders of the probability of making transitions to and from
Y times the distance from each cylinder to y+1. Ignoring transitions between y and y+ 1
because the distance between y and y+ 1 remains unchanged, the contribution to the new
E[Slbyyis :

L O+1=+p)+ T G =+ +py). (4.6)

i<y i>y+1

Finally, the contribution to the new E[S] due to placing cylinder y + 1 in location vy is
2 y— D@yt Py + L G~ Y (Piyar1 + Pyss) “.n
i<y i>y+1

Substituting (4.4) through (4.7) into (4.3) and rearranging terms gives the change in
the expected seek distance due to swapping cylinders y and y+1:
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AEISI= T (py+pu)— T (piy+py) (4.8)

i<y i>y+l

-2 (Piys1 + Pyars) + 2. (Piys1 ¥ Pys1i)
i<y i>y+l :

Equation (4.8) indicates that each cylinder seeks its own “center of probability”. In
other words, each cylinder tries to place itself in the center of the set of other cylinders
that are likely to precede or follow it in the request stream. Cylinders that are accessed
more frequently “dominate” those that are accessed less frequently, so after a number of
swaps have taken place, each set of interdependent cylinders is arranged with the most fre-
quently accessed cylinders in the middle of each set. At the same time, these sets of inter-
dependent cylinders are moved toward each other.

The greedy reorganization algorithm is straightforward (see Figure 2). Each pair of
adjacent physical cylinders is examined in sequence, and swaps are performed whenever
AE[S] is less than zero. Whenever a swap is done, a table that maps “logical” to “physi-
cal” cylinders is updated. Although we do not show the details here, it is easy to see that
the most significant computation in the algorithm, calculating A E[S], can be performed in
O(1) time by storing the sums in Equation (4.8). These sums must be updated whenever
cylinders are swapped. :

Algorithm Greedy-p
repeat
Jor y 1 to M-1
if AEIS] < O then
swap cylindess (y, ¥+ 1)
update map
until satisfied

Algorithm Annealing-p
T~ Ty
repeat
¥ + uniform random integer between ( and M-1
if AE[S] < O then
swap cylinders (y, y+1)
update map
else
r < uniform zrandom real between 0.0 and 1.0
if r < exp{—AE[SYT) then
swap cylinders (y, y+1)
update map
if sufficiently large number of swaps have been done then
T « kT
until frozen

F1G. 2. Qreedy and annealing algorithms based on dependent accesses.
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One difficulty arises in determining the stopping criteria. In our experiments we sim-
ply stopped after a sufficiently large number of swaps had been considered (10%). While
potentially inefficient, the results described in the next section show that the method works
reasonably well.

The second algorithm is based on the process of simulated annealing [15] (Figure 2).
Simulated annealing is a Monte-Carlo technique originally developed in the study of
metals. The technique simulates the process of annealing, by which molten metals are
cooled in a controlled fashion to yield a low-energy, stable structure. The application of
simulated annealing to combinatorial optimization problems is shown in [10] to yield satis-
factory results for problems such as traveling-salesperson and optimal wire-routing.

In the simulated annealing approach, a cylinder that might be swapped with its neigh-
bor is randomly selected. If the move is a good one (AE[S] € 0) then the swap is
accepted. If not, then the swap is accepted with & probability based on the “current tem-
perature” and AE[S]. The temperature is initially high, so that much random movement
occurs; this simulates the random motion of molecules in a molten metal. As the process
continues, the temperature is lowered gradually so that random motion diminishes and a
stable, near optimal configuration is reached; this simulates the forming of a stable, crystal-
line (low-energy) structure in the metal.

4.3. Experimental Results

To determine the effectiveness of the two algorithms, we applied them to cylinder
trace data measured on a UNIX-based computer system. The results presented in this sec~
tion show that cylinder reorganization can yield impressive performance improvements.

The computer system used for the tests is a Digital Equipment Corporation VAX
11/780. The system runs the 4.2 Berkeley version of the UNIX operating system, and serves
a community of approximately 200 users. At any given time, 25 to 35 users are logged in.
The disk drives are 400-megabyte Fujitsu EAGLEs.

The trace data were obtained by modifying the UNIX kernel to maintain a list of

cylinders accessed for a particular disk drive. After a sufficiently large? number of accesses
are recorded, the kernel stops saving requests and a user-level program reads the list from
memory and saves it in a disk file. The process of recording accesses does not disturb the
measurement; the disk file is written only after measurement is complete.®> Each trace
encompasses approximately one day.

Trace Original Greedy Greedy Annealing Annealing

Mean Seek Algorithm Algorithm Algorithm Algorithm
Distance Mean Seek Mean Seek Mean Seek Mean Seek

{cvlinders) Distance (% of original} Distance (% of original)

1 110.4 39.6 36% 384 35%
2 75.5 30.2 40% 274 36%
3 141.1 40.9 29% ‘ 36.3 26%

FIG. 3. Table of results for dependent probability (p) algorithms.

2 Qur experiments cach recorded 200,000 accesses.

¥ The measurement is disturbed slightly, in that when trace data are taken less space is available for I/Q buffering
in the kernel.
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Results from three cylinder traces are summarized in Figure 3. Traces one and three
represent days of typical user activity. Note that the final values of E[S] are similar for
both algorithms operating on these two traces. Trace two was measured while several
large, computationally intensive programs were running; the swapping load on the system
was more significant than usual. A lower final value of E[S] was achieved for trace two
because a small set of cylinders (those in the swapping area) were accessed frequently.

The results show that little benefit was achieved by using the slightly more compli-
cated annealing algorithm. It may be the case that our trace data, by coincidence, did not
produce the “local optimum™ phenomenon to which the greedy algorithm is susceptible.
Accordingly. we feel that the simulated annealing approach is the most appropriate, despite
the small increase in computation time.

Figure 4 shows the cylinder access histograms for trace three. The three graphs
represent (a) the original cylinder access histogram, (b) the histogram after the greedy
algorithm has been applied, and (c) the histogram after the simulated annealing algorithm
has been applied. Notice that both the greedy algorithm and the annealing algorithm move
the large peaks toward the “center of probability”. The greedy algorithm produces three
pronounced groups of cylinders. The annealing algorithm produces the same three groups,
but tends to move the groups closer together, resulting in a smaller final value of E[S].
Notice also that neither algorithm moves the largest peaks toward the physical center of
the disk. This somewhat surprising result is explained by the observation that the position
of ﬂie infrequenﬁy accessed cylinders that surround the large peaks makes little difference
in E|S].

5. INDEPENDENT PROBABILITY MODEL

Disk system models based on probabilistically independent cylinder accesses have
been studied before. However, we present such a model here for two reasons. First, the
independent model uses linear, rather than quadratic space; this may be more appropriate
where disk reorganization is implemented in constrained environments, such as inside a’
disk controller. Second, we use additional techniques to improve the performance of the
independent model: the disk is treated as a self-organizing list [13] with a cost function
based on a specialization of Equation (4.8). Such techniques yield better resulis than might
be expected from a purely independent model.

5.1. Model

Suppose that requests are probabilistically independent. The probability that the next
request is for cylinder j is independent of the current cylinder i; that is, p; = m;, the
steady state probability that the head is in position j. The long-term probability that the
head moves from cylinder ¢ to cylinder j is the probability that the head is at cylinder i,
times the probability that the next request is for cylinder j:

Piyy =WW;T;. (5.1

Now, suppose that we measure only the ;. We can implement the Greedy-p or the
Annealing-p algorithm by first computing A E[S], given the form of the p;; in Equation
(5.1). by substituting into Equation (4.8):

AE[SI“ Z (27ri1rym21r;1ry.,.1)- Z (213";11'?"'217,'17’.4.1).
i<y i>y+1

which reduces to
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(a) Original distribution

(b) After application of Greedy-p algorithm

'y .

{¢) After application of Annealing-p algorithm

FIG. 4. Cylinder access histograms for trace 3, p algorithms.
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AE[S]=2(my ~my L mi— T, m). (5.2)

i<y i>y+1

Equation (5.2) indicates that exchanging the two cylinders, y and ¥y + 1, is beneficial
when the more probable cylinder (of y and ¥+ 1) moves toward the more probable (right
or left) set of other cylinders. Thus, Equation (5.2) attempts to place the most probable
cylinders in the middle of the distribution, like Equation (4.8), but without clustering sets
of related cylinders together.

5.2. Algorithms

Grossman and Silverman show in [9] that. given probabilistically independent
cylinder accesses, the permutation of the matrix § (with elements ; 'rrj) that minimizes
E[S] is found by placing the most frequently accessed cylinder in the middle of the distri-
bution, with successively less probably cylinders placed on alternate sides. Thus, a
polynomial-time algorithm for minimizing E[S] exists; the problem is no longer NP-
Complete.

Unfortunately, if the cylinder accesses are assumed to be independent, then the
resulting minimization of E[S] may have little or no correspondence with the actual sys-
tem, in which accesses are not independent. In this section we present two algorithms that
use the steady state position probabilities 7;, Equation (5.2), and the actual sequence of
cylinder requests to mitigate this potential inaccuracy. The algorithms have one advantage
over those presented in the previous section: since they require that only the m; be meas-
ured, they can be implemented in linear space.

The first algorithm is a greedy one. A pair of cylinders, ¥ and ¥y + 1, is selected, and
AE[S] is computed as in Equation (5.2). If AE[S] is negative, then the two cylinders are
exchanged.

The key feature of this algorithm is the method for selecting ¥ (and thus y+1).
Instead of allowing 7y to iterate through the cylinders in increasing order, we iterate
through the sequence of reguested cylinders. If the position of the “next” cylinder is
greater than (to the right of) the “current” cylinder, then we let y be the current cylinder.
If the position of the next cylinder is less than (to the left of) the current cylinder, then we
let ¥ be the current cylinder minus one. This method implements a heuristic that moves
two successively accessed cylinders (i.e., one after the other) closer together whenever
doing so is beneficial (AE[S] < 0). Thus, the heuristic is much like the transpose heuristic
used for self-organizing lists [17). '

The second algorithm is based on simulated annealing. In effect, it is the same as the
Annealing-p algorithm presented in the last section, except that the choice of ¥ is made as
in the Greedy-m algorithm, and that AE[S] is computed as in Equation (5.2). Both of the
7 algorithms are shown in Figure 5.

5.3. Experimental Results

The algorithms based on independent probabilities are inherently less powerful than
those based on dependent probabilities, since they do not take into account the natural
cylinder grouping discussed in Section 2. Nonetheless, our experiments indicate that with
the addition of the transpose heuristic, the 7 algorithms compare favorably with the p
algorithms discussed in Section 4. The results suggest that the 7 algorithms are of practi-
cal use when memory is at a premium.

The gréedy and annealing algorithms were applied to the three measured cylinder
traces described in the previous section. The results are summarized in Figure 6. As
expected, the reduction in expected seek distance was less significant than with the p algo-
rithms.
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Algorithm Greedy-mw
current cylinder « first cylinder request
repeat
next cylinder ¢ next cylinder requested
if next cylinder > current cylinder + 1 then
¥y & current cylinder
else If next cylinder < current cylinder - 1 then
vy « current cylinder - 1
{fFAE[S] < O then
swap cylinders (y, y+1)
update map
current cylinder + next cylinder
unitil satished

Algorithm Annealing-w
T Tg
~ current cylinder «- first cylinder request
repeat
next cylinder « next cylinder requested
if next cylinder > current cylinder + 1 then
y < current cylinder
else If next cylinder < current cylinder - 1 then
y + current ¢cylinder - 1
if AEIS] < O then
swap cylinders (y, y+1)
update map
else
r « uniform random real between 0.0 and 1.0
if r < exp(—AEISYT) then
swap cylindess (y, y+1)
update map

if sufliciently large number of swaps have been done then

T & kT :
until frozen

FIG. 5. Greedy and annealing algorithms based on independent accesses.
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Trace Original Greedy Greedy Annealing Annealing

Mean Seek Algorithm Algorithm Algorithm Algorithm

Distance Mean Seek Mean Seck Mean Seek Mean Seek

(cylinders) Distance (% of original) Distance (% of original)

1 110.4 60.8 55% 45.9 41%
2 75.5 41.8 55% 388 51%
3 i41.1 48.3 34% 43.3 30%

FIG. 6. Table of results for independent probability (z) algorithms.

It appears that the greedy algorithm became “stuck” at a local optimum when applied
to trace one (Figure 6). With traces two and three the results of the greedy algorithm are
slightly worse than those of the annealing algorithm. However, with trace one the greedy
algorithm produced a larger final value of E[S] than expected.

The cylinder access histograms for the two o algorithms are shown in Figure 7. Note
the absence of pronounced groups of cylinders compared with Figure 4. This is a direct
result of the way AE[S] is computed: the sole objective of Equation (5.2) is to place fre-
quently accessed cylinders in the center of the distribution, with less frequently accessed
cylinders surrounding them. Note also that the results of the greedy algorithm and the
results of the annealing algorithm are nearly indistinguishable.

6. SEEK TIME CALCULATIONS

So far we have used seek distance as a minimization criterion, because the integer dis-
tances inherent in the disk mechanism are convenient algebraically. Seek time is an
equivalent metric; the matrix & (Equation 4.2) is of the same form: symmetric, Toeplitz,
and monotonic. In this section we briefly summarize the results obtained thus far, showing
the improvements in seek time resulting from disk reorganization.

Seek time on modern disks, like the EAGLE, increases as a function of the distance
between two cylinders (Toeplitz form). For very light head mechanisms, the acceleration
and deceleration of the head become negligible?, and seek time can be approximated accu-
rately with a linear function. This function contains a constant term that reflects a con-
stant delay in starting head motion. Thus, the seek time function, for any two cylinders i
and j, is

T(l’:.j)=' |i-—j§c;+c2, (61)

where ¢ and ¢; are parameters of the disk drive.

For the Fujitsu EAGLE disk drive, the single-track seek time is 5 milliseconds, and the
worst-case seek time (cylinder O to cylinder 841) is 35 milliseconds [16]. This gives
parameters ¢ = 4.96 milliseconds, and ¢; = 0.0357 milliseconds per cylinder.

Substituting the seek distance results from Figures 3 and 6 into Equation (6.1), we
obtain the seek time resuits shown in Figure 8. Results are shown for both annealing and
greedy versions of the two {(p and ) algorithms. While the percent improvement in seek
time is somewhat smaller than the improvement in seek distance, the results continue to
indicate a significant benefit.

4M;n-e properly, the acceleration and deceleration are absorbed into the constant ¢,
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(a) Original distribution

(b) After application of Greedy-w algorithm

A

(c) After application of Annealing-m algorithm

FIG. 7. Cylinder access histograms for trace 3, 7 aigorﬁthm,s.
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Trace Original Greedy p Annealing p Greedy 7 | Annealing 7
Mean Seek | Mean Seck Mean Seck Mean Seck Mean Seek
Time Time/ Time/ Time/  Time/
(msec) % of Orig, % of Orig. % of Orig, % of Orig,
1 8.90 6.37/72% 6.33/71% 7.13/80% 6.60/74%
2 7.66 6.04/79% 5.94/78% 6.45/84% 6.35/83%
3 10.00 6.42/64% 6.25/63% 6.68/67% 6.51/65%

FIG. 8. Table of seek time results for all algorithms.

7. APPLICATIONS

The two disk reorganization methods discussed in this paper can be used in real com-
puter systems to restructure disks over time. The different properties of the dependent and
independent probability methods suggest that they are each useful in different applications.
In this section we discuss ways in which the p and  algorithms might be applied. Addi-
tionally, we consider the problem of determining the length of time over which the algo-
rithms should adapt. '

_ The dependent-probability-based algorithms yield the best results, but require consid-
erable space. Thus, they are only suitable for implementation on systems with large
amounts of main (or virtual) memory. An implementation envisioned by the authors
works as follows.

The “disk driver” is normally a part of the operating system kernel®>. Thus, memory
that it uses is typically not swappable; the corresponding physical memory is unavailable
for any other use. It is often inappropriate to dedicate sufficient memory to store either the
p matrix or a trace of disk accesses. Thus, some other method must be used.

One possible implementation consists of a queue of disk accesses (cylinder numbers)
that is maintained by the disk driver. The queue can be read from kernel memory by a
user-level program. The user-level program executes the Annealing-p algorithm, storing
the p matrix in virtual memory. Once a near-optimal cylinder configuration has been
obtained, the user program formulates a sequence of cylinder exchanges that results in the
final configuration, and requests that the disk driver perform the swaps.

The independent-probability-based algorithms are somewhat easier to implement.
Since both # algorithms require only a histogram of cylinder accesses (and thus only linear
space), the 7 algorithms can be executed directly by the disk driver. The stream of incom-
ing cylinder requests drives the algorithm, as shown in Figure 5. The reorganized cylinder
configuration is maintained as a permutation, and at during some period of inactivity the
permutation is applied to the physical cylinders. :

The simplicity of the 7 algorithms suggests that they are suited to a wide variety of
applications. For example, the # algorithms might be implemented within a disk con-
troller, resulting in a physical device that adapts itself to access patterns independently of
the computer system. Additionally, existing software disk drivers can be simply
retrofitted for adaptive reorganization.

One question that arises-involves selecting an appropriate period of time over which
the algorithms are applied. The data sets that drive the experiments reported in this paper
were each measured over the course of one day. Since the access distributions differ from
day to day, it may be that the reorganization process must be applied over a longer period
to yield good results. The danger in selecting an adaptation period that is too short is that
access patterns of the recent past might be a poor indication of those of the near future.

5This is true of all UNIX systems.
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Preliminary investigation has shown that, while cylinder access patterns do change
from day to day, patterns observed over several days maintain a non-uniform shape, with
some cylinders accessed several orders of magnitude more frequently than others.
Although more research is needed before conclusive results can be stated, it appears that
the reorganization techniques discussed in this paper will yield significant savings in seek
time when applied over longer periods of time.

8. CONCLUSION

This paper discusses two approaches to solving the NP-complete Optimal Disk
Cylinder Arrangement problem: a direct method based on dependent probabilities and an
heuristic method that uses independent probabilities. The results obtained thus far suggest
that further research in this area is promising. The authors are currently pursuing two
research directions.

The first area of research involves investigating other heuristics for solving the reor-
ganization problem. The fundamental problem is related to several wire-routing and
matrix manipulation problems. It remains to be seen whether other methods for solving
NP-complete problems, such as “divide and conquer.” might be applied to this problem.

Another research topic that deserves further attention is the interaction between head
scheduling disciplines and disk reorganization. This study does not take queueing into
account. Instead. we compare mean seek distances for FCFS schedules, before and after
cylinder reorganization. Under the SCAN discipline that UNIX uses, it is reasonable to
expect that the seek distance falls when queueing takes place with or without cylinder
reorganization. Of course, reorganization makes queueing less likely, so the process of
adapting to request patterns while head scheduling takes place is not straightforward.

The results presented in this paper show that disk performance can be significantly
improved by changing the location of information on the disk. The study differs from oth-
ers in that it describes an adaptive method that is based on cylinder access patterns.
Further, the paper describes practical algorithms that are effective, yet easy to implement
on modern computer systems.
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