
Finite Horizon QoS Prediction of Reconfigurable Firm Real-Time Systems∗

Mehdi Amirijoo, Aleksandra Tesanovic, Torgny Andersson
Dept. of Computer and Information Science

Linköping University, Sweden
{meham,alete,-}@ida.liu.se

Jörgen Hansson
Software Engineering Institute

Carnegie Mellon University, USA
hansson@sei.cmu.edu.

Sang H. Son
Dept. of Computer Science
University of Virginia, USA

son@cs.virginia.edu

Abstract

Updating real-time system software is often needed in re-
sponse to errors and added requirements to the software.
Stopping a running application, updating the software, and
then restarting the application is not suitable for systems
with high availability requirements. On the other hand, dy-
namically updating a system may increase the execution
time of the tasks, thus, degrading the performance of the
system. Degradation is not acceptable for performance-
critical real-time systems as there are strict requirements
on the performance. In this paper we present an approach
that enables dynamic reconfiguration of a real-time system,
where the performance of the system during a reconfigu-
ration satisfies a given worst-case performance specifica-
tion. Evaluation shows that the presented method is efficient
in guaranteeing the worst-case performance of dynamically
reconfigurable firm real-time systems.

1. Introduction

Successful deployment of real-time and embedded sys-
tems strongly depends on low development costs, a short
time to market, and a high degree of reconfigurability.
Component-based software development (CBSD) [6] has
been developed specifically to address the same type of

∗ This work was funded, in part by CUGS (the National Gradu-
ate School in Computer Science, Sweden), Swedish Foundation
for Strategic Research (SSF) via the SAVE project (SAfety criti-
cal component-based VEhicular systems), CENIIT (Center for Indus-
trial Information Technology) under contract 01.07, and NSF grants
IIS-0208578 and CCR-0329609.
Aleksandra Tesanovic is currently at Philips Research Lab-
oratories, Eindhoven, The Netherlands, e-mail: aleksan-
dra.tesanovic@philips.com.

problems that real-time software development is facing to-
day. Namely, CBSD enables systems to be developed out
of pre-defined software components to fit a specific appli-
cation. This enhances reusability and reduces the resources
allocated to the development of the system. Moreover, using
CBSD principles software systems are developed with plug-
and-play capabilities, which implies that system reconfig-
uration can be done dynamically by simply plugging new
or additional components to the system during run-time,
thereby ensuring that systems are able to efficiently evolve.

However, the real-time research community has not yet
fully capitalized on CBSD benefits due to the unpredictable
nature of dynamic reconfiguration in real-time environ-
ments. Namely, a dynamic reconfiguration of a real-time
system changes the temporal properties of the tasks in a sys-
tem, which in turn affects the quality of service (QoS) neg-
atively. For example, changing the software of the system
may result in an increase in the execution time of the tasks,
thus, permanently increasing the utilization or deadline miss
ratio. For these reasons, the majority of current component-
based real-time systems are monolithic and, hence, are not
dynamically reconfigurable, e.g., [5, 8]. However, reconfig-
uring a system on-line is desirable for embedded real-time
systems that require continuous hardware and software up-
grades in response to technological advancements, environ-
mental change, or alteration of system goals during sys-
tem operation. Consequently, there are strong reasons for
enabling dynamic reconfiguration of real-time systems, but
only under the condition that QoS can be guaranteed in the
reconfigured system.

In our previous work we have shown that reconfigura-
bility can indeed be achieved for firm and soft real-time
systems, even though the execution time of the tasks vary
when adding, removing, or changing components [7]. We
addressed the problem of changing temporal properties of

2%

time

v
al

u
e

T

M

-+s

p
reference

Figure 1. Definition of settling time (Ts) and
overshoot (Mp)

tasks by using feedback control [3] to continuously force the
QoS to converge toward a reference level, see Figure 1. Al-
though the QoS of the system reaches the reference in the
steady-state, significant overshoots (Mp) and long settling
times (Ts) could be observed for reconfiguration instances
that heavily affected the execution time and the arrival pat-
tern of the tasks, e.g., we noted great overshoots in deadline
miss ratio for reconfigurations that resulted in increased ex-
ecution time of the tasks. However, for performance-critical
soft and firm real-time systems, e.g., telecommunication,
video streaming, and web services, it is of paramount im-
portance that the overshoot and the settling time are within
acceptable limits, as a large overshoot in deadline miss ratio
may not be acceptable since too many deadlines are missed.

According to the discussions above and our previous
studies [7], we have concluded that using feedback-based
QoS management for guaranteeing the performance of dy-
namically reconfigurable real-time systems is beneficial but
not enough. We need to ensure that the reconfiguration can
take place without violating a given QoS specification in
terms of a maximum tolerable overshoot and longest accept-
able settling time. One way to ensure that the QoS does not
violate the QoS specification is to determine the overshoot
and settling time before the actual reconfiguration, i.e., to
predict the overshoot and settling time, and only carry out
the reconfiguration if it is possible to meet the given speci-
fication. If the QoS specification cannot be met, then the re-
configuration specification, i.e., the choice of components
for adding, removing, or exchanging, has to be altered. This
way the system is reconfigurable, meaning that the con-
stituents of the software are alterable, and the reconfigura-
tion can be safely executed.

The problem that we consider in this paper is how to pre-
dict the overshoot and settling time of QoS, defined by the
deadline miss ratiom(k) and utilizationu(k), in the face
of a reconfiguration. We contribute by introducing a pre-
diction framework that given a prediction specification con-
sisting of (see Figure 4) (i) the desired QoS specification
of the system in terms of the maximum tolerable overshoot
and longest acceptable settling time form(k) andu(k), (ii)
the reconfiguration specification that contains the informa-
tion about components that are going to be added, removed,

+ Controller
Controlled

System)(klδ

-1

system configuration
Component framework

c1 c2 c3 c4

)(km

)(kmr

)(kuor)(kur

or

Figure 2. Feedback loop structure.

or exchanged in the system, and (iii) the prediction interface
of the system that contains the specification of components
and tasks that already exist in the system, is able to forecast
the overshoot and the settling time of the reconfigured sys-
tem. The framework returns a positive answer (i.e. OK) if
the system can undergo the reconfiguration without violat-
ing its QoS specification, otherwise a negative answer (i.e.
NotOK) is returned. The forecast is done using a method
that predicts QoS over a finite horizon.1 To the best of our
knowledge, this is the first paper describing a QoS predic-
tion methodology for firm reconfigurable real-time systems.

The remainder of this paper is organized as follows. In
Section 2 we give an overview on dynamic reconfigura-
tion of real-time systems. Section 3 presents the prediction
framework, and in Section 4 we evaluate the accuracy of the
prediction framework. Conclusions are given in Section 5.

2. Overview on Reconfiguration

This section briefly describes the reconfiguration mech-
anisms normally used by component-based systems resid-
ing in real-time and embedded environments. In this paper
we focus on QoS prediction and, therefore, we refer to [1,7]
for a detailed description on how reconfiguration is carried
out.

To facilitate reconfiguration, component-based systems
have a middleware layer that handles inter-component com-
munication and stores states of components during system
reconfiguration (see system configuration in Figure 2). Ad-
ditionally, for ensuring substitutability of components, each
component has functional interfaces, where a set of oper-
ations that a component provides to other components in
the system is declared. A system can be reconfigured by (i)
removing a component, (ii) adding a component, and (iii)
exchanging a component with another. We illustrate what
happens in a system under reconfiguration by giving a ba-
sic example where a current version of a componentc1, de-
notedc1

1, is exchanged with a new version,c2
1, in the sys-

1 By finite horizon we mean a finite interval of time in the future.

c1

c2

c3

c4

t1

t2
t3

Figure 3. An example of the relation between
tasks and components.

tem configuration in Figure 2. Note that, an exchange of a
component encompasses all the dimensions of the dynamic
reconfiguration as it also includes removal of the current
version of a component and the addition of a new version.
When the reconfiguration is initiated, the system undergoes
three phases: pre-reconfiguration, reconfiguration, and post-
reconfiguration phase.

In the pre-reconfiguration phase (pre-RP), the new ver-
sion of the componentc2

1 is loadedinto the memory. At this
point,c2

1 is not added to the system, but we loadc2
1 into the

memory to carry out the reconfiguration as fast possible by
minimizing the delay of removingc1

1 and addingc2
1. Now,

we have to ensure that the system can undergo reconfigu-
ration without interrupting the execution of the tasks. This
means that tasks using the operations of componentc1

1 have
to be completed before the reconfiguration is carried out. If
the componentsc1, . . . , c4 would be executed by the three
taskst1, . . . , t3, as shown in Figure 3, then exchangingc1

1

running on taskst1 and t2 requires both of these tasks to
complete executing before the system can enter the recon-
figuration phase (RP).

Pre-RP ends when there are no executing tasks usingc1
1.

Hence, at the beginning of RP the state ofc1
1 will not change

since the state ofc1
1 changes only through operation calls.

Therefore, we can now removec1
1 from the system byex-

porting its state into the middleware layer. The new compo-
nentc2

1 is then added to the system byimportingthe state of
c1
1, i.e., we transfer the state ofc1

1 to c2
1. The pointers to op-

erations ofc1
1 are redirected to the operations ofc2

1, hence,
all future operations calls toc1

1 are directed toc2
1. Updat-

ing the operation pointers marks the end of RP. In the post-
reconfiguration phase (post-RP),c1

1 is unloadedfrom the
memory, and tasks that are using the componentc1 are al-
lowed to execute sincec2

1 has been loaded and added into
the system. Note that the reconfiguration has to be com-
pleted as soon as possible for the system to resume normal
operation.

3. Approach

In this section we present the assumed system and re-
configuration model, followed by the definition of the pre-
diction specification, which gives how to specify the worst-

case QoS, reconfiguration, and the knowledge of the com-
ponents and tasks in the system. Finally, we give the method
for predicting the overshoot and settling time of the con-
trolled variable, which represents the QoS.

3.1. System and Reconfiguration Model

As the goal of this work is to develop a prediction
method for determining the behavior of a component-based
real-time system before the reconfiguration takes place, we
first need to establish a model of the component-based real-
time system. The model should be general enough to en-
sure that existing and future component-based real-time ap-
proaches are captured, and, consequently, can effectively
use the presented prediction method. We first define a real-
time system as a collection of interacting components and
tasks, and then elaborate on each of the system constituents.
Finally, we discuss the way reconfiguration is modeled in
the system.

Definition 1 (System) A component-based real-time sys-
temR is a tuple 〈 T , C 〉, whereT is the set of all tasks
that can execute in the system, andC is the set of compo-
nents constituting the system.

The following definition of a component captures the
fact that a component provides operations to other compo-
nents in the system and maintains an internal state, which
needs to be preserved under reconfiguration.

Definition 2 (Component) A componentc ∈ C is a tuple
〈S,O〉, whereS is the internal state of the component, and
O is a set of operations{o1, o2, ..., oP } provided by com-
ponentc.

We now establish the definition of a task with regard
to its necessary temporal characteristics and components it
executes. We consider a firm real-time system as the con-
trolled system, where there is one CPU as the main process-
ing element. Hence, deadline misses are allowed, however,
late results are of no value and are discarded. A taskτ ∈ T
is classified as either a periodic or an aperiodic task and is
defined as follows.

Definition 3 (Task) LetR=〈T , C〉 be a real-time system. A
taskτ ∈ T is a tuple 〈x, x̂, xi, d, i, î〉, wherex is the ac-
tual execution time,̂x is the estimated execution time,xi

is the internal execution time not related to calling opera-
tions,d is the relative deadline,i is the actual inter-arrival
time, and̂i is the estimated inter-arrival time ofτ .

If τ ∈ T is periodic, then the actual inter-arrival-time
equals the estimated inter-arrival time, i.e.,i = î. If τ ∈ T
is aperiodic we definei as the mean inter-arrival-time, andî
as the estimated mean inter-arrival-time. The actual execu-
tion timex of a taskτ is not known in advance. We say that

a task completes when it has finished its execution, and we
say that it terminates when it completes or misses its dead-
line. We now give the definition of an active task, which is
needed later (in Section 3.3.2) for deriving the changes in
load in response to a reconfiguration.

Definition 4 (Active Task) Let τ ∈ T be a task and leta
denote the time whenτ is admitted. The taskτ is active at
timet if and only ifa ≤ t < a + î.

We consider the following admission model. Upon ar-
rival to the system, an instance of a task is inserted in an ar-
rival queue, which is sorted according to the arrival time.
Task instances are removed from the front of the arrival
queue and admitted if and only if the sum of the task in-
stance load and the load of admitted tasks is less than the
requested load of admitted tasks. The deadline miss ratio is
computed over admitted tasks only.

Without loss of generality we hereafter focus primarily
on the reconfiguration of one component in the system; all
introduced notions are easily applicable to an arbitrary num-
ber of components as we show in our experimental evalua-
tions in Section 4. Recall that the system reconfiguration is
of type add, remove, or exchange (of components). The re-
configuration, therefore transforms the original systemR
into the modified systemR′. We introduceρ to denote the
actions involved in the reconfiguration of the system. The
impact of reconfiguration is straightforward. When adding
or exchanging a component, a set of new tasksT + may
be added to the system. An exchange of componentc ∈ C
with cρ in R = 〈 T , C 〉, would result in a new system
R′=〈T ′, C′ 〉, whereT ′=T ∪ T + andC′=C ∪ {cρ} \ {c}.
To meet the requirements on urgency of reconfiguration dis-
cussed in Section 2, we assume that reconfigurationρ of R
is carried out by a separate non-preemptive task,τρ, exe-
cuting in the system with the highest priority. Let the start
of the pre-RP, RP, and post-RP be denoted with the sam-
pling instantskpre, krp, andkpost. The reconfiguration task
τρ is released and executed atkrp andτρ completes atkpost.
We consider post-RP, and therefore the overall reconfigura-
tion, completed when the system reaches steady-state (see
Ts in Figure 1), which occurs at the sampling instantkend.

We assume the following feedback control scheduling
architecture (see Figure 2). The controlled system is com-
posed out of components forming a specific configuration.
The deadline miss ratiom(k) or the utilizationu(k) is con-
trolled using the feedback structure. Lety(k) denote the
controlled variable, i.e.,m(k) or u(k). Input to the con-
troller is the difference between the referenceyr(k), rep-
resenting the desired performance of the controlled system,
and the actual system performance given by the measured
variabley(k). Based on the performance erroryr(k)−y(k)
the controller computes a changeδl(k) to the estimated ad-
mitted workloadl(k), such that the difference between the

Reconfiguration
specification (provided by
the component developer)

<τρ , Iρ>

QoS specification
(set by the system

operator)

Qs

OK or NotOK to reconfigure

Decision maker

System
prediction
interface

(provided by
the system
operator)

IR

Prediction
method

Prediction
specfification

Predicted QoS

Model of the
controlled system

Figure 4. The prediction framework.

desired performance and the actual performance is mini-
mized.

3.2. Prediction Specification

The prediction of the system behavior, as shown in Fig-
ure 4, is done using the specification consisting of (i) the
system prediction interfaceIR that contains the necessary
system information needed for reconfiguration prediction,
(ii) the reconfiguration specification〈τρ, Iρ〉 containing in-
formation about the reconfiguration in terms of the reconfig-
uration taskτρ and the component prediction interfaceIρ of
the new component, and (iii) the QoS specificationQS , de-
scribing the worst-case tolerable system performance dur-
ing a reconfiguration. In this section we give definitions of
the constituents of the prediction specification as follows.

Definition 5 (Component Prediction Interface) LetR =
〈T , C 〉 be a component-based real-time system. A predic-
tion interfaceIc of a componentc = 〈S,O〉 ∈ C is de-
fined as a tuple〈x̂o1 , x̂o2 , ..., x̂oP

〉, wherex̂oi is the esti-
mated execution time of the operationoi ∈ O provided by
c.

To define the system prediction interface, we first define
the prediction interface of a task as follows.

Definition 6 (Task Prediction Interface) LetR = 〈T , C〉
be a component-based real-time system. A prediction inter-
faceIτ of a taskτ ∈ T is defined by a tuple〈xi, î, Cτ ,F〉,
wherexi is the internal execution time ofτ , î is the esti-
mated inter-arrival time ofτ , Cτ ⊆ C is the set of compo-
nents executed byτ , andF = {〈o, n〉 | o is an operation of
somec ∈ Cτ , andn is the number of timesτ callso}.

Task prediction interface, therefore, captures the effects
of mapping components to tasks. This is achieved by hav-
ing the internal execution timexi to account for the time it
takes to execute the internal code of the task, i.e., the code
handling the operations, and the functionF that gives both

+
Model of

the
controller

Model of the
controlled

system

)(ˆ km

)(ˆ klδ)(kmr

-1
)(ˆ kuor)(kur

or

Figure 5. Prediction of QoS.

operations executed by the task and the number of times an
operation is called by the task.

Definition 7 (System Prediction Interface) Let
R = 〈 T , C 〉 be a component-based real-time sys-
tem consisting of componentsC, running on a set of tasks
T . Let each taskτj ∈ T be associated with a task pre-
diction interfaceIτj and each componentck ∈ C be as-
sociated with a component prediction interfaceIck

. The
prediction interface of a systemIR is defined as a tu-
ple〈Iτ1 , . . . , IτN

, Ic1 , . . . , IcM
〉, whereN is the number of

tasks andM is the number of components.

The QoS specification is compared to the predicted over-
shoot and settling time of the utilization or deadline miss ra-
tio in order to determine whether or not the predicted behav-
ior is acceptable (as shown in Figure 4). The QoS specifica-
tion is defined as follows.

Definition 8 (QoS specification)Let R = 〈 T , C 〉 be a
component-based real-time system. A QoS specificationQS

is a member of{QM , QU}, where,
• QM = 〈MM

P , TM
s 〉 gives the maximum overshootMM

P

and the longest settling timeTM
s allowed for the dead-

line miss ratio, and
• QU = 〈MU

P , TU
s 〉 gives the maximum overshootMU

P

and the longest settling timeTU
s allowed for the uti-

lization.

Hence,QS is expressed in terms of deadline miss ratio or
utilization. If the predicted overshoot and the settling time
are less or equal to the overshoot and settling time specified
inQS , then the reconfiguration satisfiesQS . Otherwise, the
reconfiguration does not satisfyQS .

3.3. QoS Prediction Method

In this section we discuss the prediction method consist-
ing of a decision maker and a model of the controlled sys-
tem, see Figure 4. For the remainder of this paper, letT de-
note the prediction step and letz(k) be the value ofz at time
kT .

3.3.1. Decision MakerThe decision maker utilizes the in-
formation from the model of the controlled system to decide
whether a reconfiguration satisfies a QoS specificationQS

(given by Definition 8). The model of the controlled sys-
tem describes the effect of the manipulated variableδl(k)
on the controlled variables deadline miss ratiom(k) and
utilization u(k), i.e., the model predicts the deadline miss
ratio or utilization givenδl(k). Let m̂(k) denote the pre-
diction of m(k), and û(k) denote the prediction ofu(k).
We insert the model of the controlled system into the feed-
back loop as shown in Figure 5, along with the model of
the controller, i.e., a relation between the performance er-
rorsmr(k)−m(k) andur(k)− u(k), and the manipulated
variableδl(k). The decision maker then predicts the val-
ues ofm(k), u(k), andδl(k), i.e., m̂(k), û(k), and δ̂l(k),
for each samplek. This is done by starting with an ini-
tial value of the deadline miss ratiôm(0) and utilization
û(0), e.g.,m̂(0) = 0 andû(0) = 0, and computinĝδl(1).
Having δ̂l(1), we can computêm(1) andû(1), thus, we ob-
tain δ̂l(2), and so on. The computation ofδ̂l(k), m̂(k), and
û(k) is continued until the post-RP ends, which is marked
by the point in timekend when m̂(k) and û(k) have set-
tled around the reference (see the definition of the settling
time in Figure 1). By computinĝm(k) and û(k) for all k,
we can also compute the predicted overshoot by finding the
greatestm̂(k) and û(k). The predicted deadline miss ra-
tio overshootM̂M

P and utilization overshoot̂MU
P are then

computed as the percentage by whichm̂(k) and û(k) are
greater than the corresponding reference, see Figure 1. The
predicted settling time for deadline miss ratiôTM

s and uti-
lization T̂U

s are computed as the time it takes form̂(k) and
û(k) to settle around the reference, see Figure 1.

The decision maker returns OK if and only if the pre-
dicted overshoot and predicted settling time are smaller than
the overshoot and settling time given by the QoS specifica-
tionQS . If m(k) is the controlled variable, then OK is re-
turned if and only ifM̂M

P ≤ MM
P andT̂M

s ≤ TM
s . If u(k)

is the controlled variable, then OK is returned if and only if
M̂U

P ≤ MU
P andT̂U

s ≤ TU
s . Otherwise NotOK is returned.

3.3.2. Model of the Controller and the Controlled Sys-
tem Any controller that can be realized in discrete time
using difference equations (including non-linear equations)
may be used in combination with the prediction method.
This means that commonly used controllers such as pro-
portional integral derivative (PID) controllers, state space
controller, and linear quadratic controllers [3] are compat-
ible with the prediction method. For example, a utilization
PI controller, which computes the control signal according
to δl(k) = δl(k − 1) + KP ((KI + 1)e(k) − e(k − 1)),
wheree(k) = ur(k)− u(k), may be used since it is in dis-
crete time form.

We now model the controlled system and we start with
defining the estimated load of a task. Let the estimated load
of a τ be l̂ = x̂

î
, wherex̂ and î are the estimated execu-

tion time and inter-arrival time ofτ , respectively. The esti-

)(klδ

)(klR

min

)(klX

L(k)
)(ˆ kl −

)1(ˆ −kl

)(ˆ kl

×

)(kgA

-
)(ˆ km

)(ˆ ku

Admission Controller

-
)(ˆ kl +

Controlled System
∆

+ +∑

)(ˆ klA

Figure 6. The Model of the Controlled System.

mated execution time ofτ is computed as the sum of the in-
ternal execution timexi of τ and the execution timêxo of
each operationo called byτ . Recall that the task predic-
tion interface (see Definition 6) ofτ , gives the internal ex-
ecution timexi of τ and the number of timesn a certain
operationo is called byτ . The component prediction inter-
face (see Definition 5) gives the estimated execution time
x̂o of the component operationo. Hence, by using the sys-
tem prediction interface (see Definition 7), which consists
of the task prediction interface and the component predic-
tion interface, we can compute the estimated execution time
of the tasks. This gives that the load is computed as follows:

l̂ =
x̂

î
=

xi +
∑
∀f∈F x̂on

î
. (1)

Figure 6 gives the model used for predicting QoS.2 Let
us start from the output from the controller, namely the de-
sired change in the estimated admitted workload denoted
with δl(k) (compare with Figure 2). The requested ad-
mitted workloadlR(k) is the summation overδl(k), i.e.,
lR(k) = lR(k− 1)+ δl(k). The admission controller has to
ensure that the level of admitted workload is kept atlR(k).
Therefore the requested admitted workload is compared to
the estimated admitted workloadl̂(k) and the difference be-
tween the two is computed.3 If lR(k) is less than̂l(k), then
we have to reject all arriving tasks and wait until some of the
admitted tasks are terminated, since we cannot reject any of
the already admitted tasks. Recall from Section 2 that tasks
using a component that is to be exchanged or removed are
not eligible for execution. Therefore, iflR(k) is greater than
l̂(k), then the amount of estimated workload that is admit-
ted, denoted witĥl+(k), is the minimum of thelR(k)− l̂(k)
and lX(k), wherelX(k) is the total workload of tasks eli-
gible for execution and that arrive during the time interval
[(k−1)T, kT]. The workloadlX(k) is derived from the sys-

2 Note, the model can be further reduced in size. However, a reduction
implies a more detailed and complicated discussion and, thus, for the
sake of simplicity, we have not reduced the model.

3 Since we do not have access to accurate execution times, we have to
resort to estimations of execution time and, hence, we use the esti-
mated admitted workload.

tem prediction interface, by summing the estimated work-
load of tasks that do not use the component that is to be re-
moved or exchanged.

Let l̂−(k) denote the aggregated workload of tasks that
become inactive during the time interval[(k−1)T, kT] (see
Definition 4). Hence,̂l−(k) models the amount of workload
leaving the system during the time interval[(k − 1)T, kT].
Now, the amount of admitted workload at timekT is the
sum of the admitted load at time(k − 1)T and the amount
of estimated workload admitted during[(k − 1)T, kT], mi-
nus the amount of estimated workload of tasks that leave
the system during the time interval[(k − 1)T, kT], i.e.,

l̂(k) = l̂(k − 1) + l̂+(k)− l̂−(k). (2)

We note that̂l+(k) andl̂−(k) are related, since tasks that
are admitted leave the system at some time in the future. The
number of tasks leaving the system increases as the num-
ber of admitted tasks increases, consequently, an increase in
l+(k) results in an increase inl−(k + b) for b ≥ 0. We use
L(k) to relate the estimated workload that leaves the system
and the estimated workload that is admitted into the system,
i.e., L(k) relateŝl−(k) and the previously admitted work-
load given bŷl+(k − b), whereb ≥ 0. The relationL(k) is
derived using the estimated load and the inter-arrival time of
the tasks, which is obtained using the system prediction in-
terface. For details on how to computeL(k) we refer to [1].
At this point we have expressions forl̂+(k) andl̂−(k), and
it is straightforward to compute the estimated load in the
system̂l(k) by using equation (2).

A model describing the QoS of a reconfigurable system
must encompass changes in the temporal properties of the
tasks and, as such, the load in the system. After a reconfig-
uration, the actual load in the system may increase or de-
crease depending on the increase or decrease in the exe-
cution time of the tasks. Recall that using the system pre-
diction interface we can compute the estimated execution
time of the tasks using equation (1). Since we have the esti-
mated execution timêxo of the operations of the new com-
ponent, which is to be added or exchanged, we can compute
the estimated execution time of the tasks after a reconfigura-
tion, again using equation (1). Having the estimated execu-

kpre kpre kpost kend

)(klX

k

kpre kpre kpost kend

1

)(kgA

k

max

min

Figure 7. An example of how model variables
vary during each RP.

tion times before and after a reconfiguration, we can com-
pute the load of the tasks before and after the reconfigura-
tion. We model the change in the total workload by intro-
ducing a factorgA(k) that gives the changes in load, based
on the new component and the tasks that use it. Specifi-

cally, gA(k) = l̂A(k)

l̂(k)
, wherel̂A(k) is the estimated admit-

ted workload after RP and̂l(k) is the estimated admitted
workload before and during RP. If a reconfiguration results
in an increase in load, thengA(k) > 1. Conversely, if a re-
configuration results in a decrease in load, thengA(k) < 1.

We finally model the relationship betweenl̂A(k), m̂(k),
and û(k). We adopt the model presented by Lu et al. [4],
which we briefly describe below. The relationship between
the admitted workload̂lA(k) and the utilization̂u(k) is non-
linear. As shown in Figure 6, when̂lA(k) is less or equal
to one, i.e. the CPU is underutilized, thenû(k) is equal to
l̂A(k). However, when̂lA(k) is greater than one, then̂u(k)
remains at one, aŝu(k) per definition cannot be greater
than one. Continuing with the deadline miss ratiom̂(k),
let ltm be the greatest workload threshold for which admit-
ted tasks are schedulable. We note thatm̂(k) is zero when
l̂A(k) ≤ ltm, since all tasks meet their deadlines. However,
whenl̂A(k) > ltm, thenm̂(k) increases witĥlA(k).

In summary we have developed a model of the controlled
system, from the inputδl(k) to the outputŝm(k) andû(k).
Next, we study howlX(k) andgA(k) vary during the recon-
figuration phases, as well as how the length of each phase
is predicted. An example of howlX(k) andgA(k) vary dur-
ing each reconfiguration phase is given in Figure 7.

3.3.3. Reconfiguration PhasesDuring the pre-RP the
system has to make sure that admitted tasks do not use
the componentc that is to be removed or exchanged. This
means that newly arrived tasks usingc cannot be admit-
ted and the system has to wait until previously admit-
ted tasks that usec and are executing, will terminate.
As such, the workload of executable taskslX(k) de-
creases during pre-RP if at least one task usesc. This is

shown in Figure 7, where tasks that usec must be rejected.
The length of the pre-RP is the time it takes for admit-
ted tasks that usec to terminate. When adding a new com-
ponentcρ, no tasks have to be rejected, hence,lX(k) does
not decrease. ConsideringgA(k), at this point the execu-
tion time and the load of the tasks have not changed, since
the reconfiguration has not been implemented yet. There-
fore, the variablegA(k) is one.

During the reconfiguration phase, the reconfiguration
task τρ is released and executed. This does not affect the
set of executable taskslX(k). Similarly, the execution time
of the tasks do not change untilkpost, hence,gA(k) does
not change during RP and is equal to one.

During post-RP, the execution time of the tasks changes
due to the reconfiguration. Therefore,gA(k) may increase
or decrease according to the discussion in Section 3.3.2. If
a component is exchanged, then the tasks that were rejected
during the pre-RP and RP are eligible for execution again
during post-RP. Therefore, iflX(k) decreases during pre-
RP, then during post-RPlX(k) increases to the same level
as before pre-RP, as illustrated in Figure 7. For component
removal,lX(k) stays unchanged and is equal tolX(k) dur-
ing pre-RP and RP.

4. Performance Evaluation

The goal of the performance evaluation is to determine
the accuracy of the prediction method (shown in Figure 4).
The reliability of the decision maker, in terms of providing
a correct answer, increases as the accuracy of the controlled
system model increases. Below we describe the method we
use to evaluate the precision of the controlled system model,
followed by the simulation setup and the result of the exper-
iments.

4.1. Evaluation Method

We validate the model of the controlled system by estab-
lishing the difference between the predictions and the actual
outcome of the controlled system (i.e., QoS) when carry-
ing out reconfigurations under feedback control. If the dif-
ference between the predictions and the actual outcome is
small, then we say that the model of the controlled system
is accurate.

The performance evaluation is undertaken by a set of
simulation experiments where we have varied the increase
in execution time after a reconfiguration and the number
of tasks in the system. Considering the first parameter, we
stated earlier in Section 1 that a reconfiguration may result
in an increase in the execution time of the tasks, causing
overshoots in deadline miss ratio and utilization. Since our
aim is to derive a method for predicting the overshoot and
settling time, we consider the case when the execution time

increases as a result of a reconfiguration. Further, the be-
havior of a real-time system depends on the number of tasks
in the system. Therefore, we study the prediction when the
number of tasks are varied.

Recall from Section 1 that an exchange of a component
encompasses all the dimensions of the dynamic reconfig-
uration as it includes also a removal of the old version of
a component and the addition of a new version. Therefore,
we evaluate the prediction method when exchanging com-
ponents, as the exchange procedure is more intricate and
has greater effects on the QoS. Further, in the experiments
we define QoS in terms of utilization, as utilization gives us
more information when analyzing the results. For example,
it is easier to estimate the increase or decrease in load when
analyzing utilization rather than deadline miss ratio. We re-
fer to [1] for experiments on removing and adding compo-
nents, and prediction of deadline miss ratio.

4.2. Simulation Setup

In the experiments we use two different task sets de-
notedT A andT B , see Table 1 (U refers to a uniform dis-
tribution). Furthermore, each one of these task sets con-
sists of two subsets, where we denote the individual sub-
sets by appending a subscript to the name of the task set,
e.g.,T A

1 andT A
2 denote the two subsets ofT A. We con-

sider a taskτ to have the following properties: estimated
execution time in the pre-RP̂xPRE, estimated execution time
in the post-RPx̂POST, estimated inter-arrival time,̂i, and
the number of tasksN in the task set. The actual execu-
tion time of τ in the pre-RP and post-RP is distributed ac-
cording toU : (x̂PRE(1 − xV), x̂PRE(1 + xV)) and U :
(x̂POST(1 − xV), x̂POST(1 + xV)), respectively. The varia-
tion xV introduces additional uncertainty in the actual ex-
ecution times, thus, making the prediction more challeng-
ing. Similarly, the actual inter-arrival time is distributed as
U : (̂i(1 − iV), î(1 + iV)), whereiV is uniformly distrib-
uted. We set the execution time ofτρ to 0.030s (see [1] for
more details). The tasks used in this evaluation have vary-
ing actual execution times, where the actual execution times
are not known. Further, the arrival times of the tasks are un-
predictable, which in combination with inaccurate execu-
tion time estimates, simulate a realistic real-time system.

The prediction stepT is set to0.1s for all experiments,
i.e., the admission controller is invoked andû(k) computed
every0.1s. The sampling period of the utilization is set to
10s, i.e., the utilization is sampled and the controller in-
voked every10s. Earliest deadline first (EDF) is used to
schedule the tasks (e.g. see [2]). To quantify overshoots we
need to set the reference such thatu(k) is less than100% at
all times. If we set the utilization close to100%, then the uti-
lization stays100% whenu(k) overshoots, hence, we can-
not see the extent of the overshoot. Therefore for the pur-

pose of the evaluation we set the utilization reference to
70%, which gives us some slack to100%. This way we are
able to fully examine the accuracy of the controlled system
model.

Using the task setT A and T B we are able to evalu-
ate the prediction method when the execution time of the
tasks increases after RP (compare the distribution ofx̂PRE

and x̂POST). An increase in execution time represents the
worst-case scenario since this causes overshoots in dead-
line miss ratio and utilization. Hence, by increasing the ex-
ecution time, we evaluate the prediction capability of the
model during a system state that gives overshoots. Also, by
increasing the execution time of all the tasks we simulate
the case when multiple components are exchanged, since
exchanging several components in the worst case increases
the execution time of all tasks. Further,T A andT B dif-
fer in that the number of tasks in task setT A is less than
the number of tasks inT B . Hence, we also capture the case
when the number of tasks in the system vary. This means
that usingT A andT B , we satisfy the goal of the perfor-
mance evaluation.

4.3. Results

In this section we evaluate the accuracy of the controlled
system model and we show that the difference between the
predictions and the actual outcome of the QoS is very small,
i.e., we achieve very accurate predictions.

Figures 8(a) and 8(b) show the results whenT A andT B

are used. The grey lines represent the actual QoS outcome,
while the dark dashed lines represent the QoS prediction ob-
tained from the model of the controlled system. At time10s
we start the pre-RP. Pre-RP and RP are rather short, since al-
lowing the tasks, which use the component under exchange,
to terminate and executingτρ is carried out quickly. At the
beginning of the post-RP the system is reconfigured, which
results in an increase of the execution time of the tasks. Con-
sequently, the load of the tasks increases, causing an over-
shoot in utilization. This can be seen by studying the actual
QoS outcome in Figures 8(a) and 8(b).

We also see that the utilization drops at times20s, 30s,
40s, and so on. We have found out that this is caused by
the admission controller, trying to reduce the workload such
that l̂(k) equalslR(k), see Figure 6 (refer to [1] for details).
The drops in utilization at times20s, 30s, and40s are not
important for the model to capture since we are focusing
on overshoots and settling times of utilization and deadline
miss ratio. We can therefore ignore modeling this particu-
lar behavior.

Considering the predictions in Figures 8(a) and 8(b), we
see that the predicted QoS, represented by the dark dashed
lines, follows the actual outcome closely. This means that
the model of the controlled system is very accurate in cap-

Property T A
1 T A

2
x̂PRE (s) U : (0.020, 0.050) U : (0.010, 0.020)
x̂POST (s) U : (0.040, 0.050) U : (0.015, 0.022)

xV U : (0.10, 0.20) U : (0.10, 0.20)

î (s) U : (0.2, 1.5) U : (0.5, 10)
iV 0 U : (0.03, 0.1)
N 20 15

Property T B
1 T B

2
x̂PRE (s) U : (0.015, 0.025) U : (0.020, 0.050)
x̂POST (s) U : (0.018, 0.028) U : (0.030, 0.060)

xV U : (0.10, 0.20) U : (0.10, 0.20)

î (s) U : (0.2, 5) U : (0.1, 50)
iV U : (0.01, .1) U : (0.01, 0.1)
N 80 40

Table 1. Task sets used in the experiments.

0 20 40 60 80 100
65

70

75

80

Time (s)

U
ti
li
za

ti
o
n

(%
)

outcome
prediction

(a) Task setT A

0 20 40 60 80 100
60

65

70

75

80

Time (s)

U
ti
li
za

ti
on

(%
)

outcome
prediction

(b) Task setT B

Figure 8. Prediction of the utilization.

turing the behavior of QoS when carrying out reconfigura-
tions. An accurate model implies that the decision maker
is fed with a prediction of high quality, and that the out-
put from the decision maker is of high confidence. Thus,
our evaluation shows that the model of the controlled sys-
tem is accurate and, as such, the result of the decision maker
is very reliable.

5. Conclusions

In this paper we introduced a framework for predicting
the QoS of a component-based firm real-time system that
is about to undergo dynamic reconfiguration, i.e., adding,
removing, or exchanging components on-line. The frame-
work ensures that reconfigurations can take place without
violating a given QoS specification of a system in terms

of a maximum tolerable overshoot and longest acceptable
settling time. This is done by determining, i.e., predicting,
the overshoot and settling time before an actual reconfigu-
ration is made. The framework returns a positive answer if
the system can undergo the reconfiguration without violat-
ing its QoS specification, or a negative answer if the QoS
specification cannot be satisfied. With our framework we
enable dynamic reconfiguration of component-based firm
real-time systems, by making it possible to guarantee sys-
tem performance when adding, removing, and exchanging
components.

In our future work we intend to develop a feedback-
feedforward control structure where we use the predicted
QoS to proact, rather than react to changes in QoS due to
a reconfiguration. This way we are able to improve QoS by
suppressing overshoots and achieve lower settling time.

References

[1] M. Amirijoo, A. Tesanovic, T. Andersson, J. Hansson, and
S. H. Son. Finite horizon QoS prediction of reconfigurable
firm real-time systems. Technical Report XYZ, University of
Virginia, Computer Science Department, 2006.

[2] G. C. Buttazzo.Hard Real-Time Computing Systems. Kluwer
Academic Publishers, 1997.

[3] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury.Feed-
back Control of Computing Systems. Wiley-IEEE Press, 2004.

[4] C. Lu, J. A. Stankovic, G. Tao, and S. H. Son. Feedback
control real-time scheduling: Framework, modeling and algo-
rithms. Real-time Systems, 23(1/2), July/September 2002.

[5] D. B. Stewart, R. Volpe, and P. K. Khosla. Design of dynam-
ically reconfigurable real-time software using port-based ob-
jects. IEEE Transactions on Software Engineering, 23(12),
1997.

[6] C. Szyperski.Component Software - Beyond Object-Oriented
Programming. Addison-Wesley, 1999.

[7] A. Tesanovic, M. Amirijoo, D. Nilsson, H. Norin, and J. Hans-
son. Ensuring real-time performance guarantees in dynami-
cally reconfigurable embedded systems. InIFIP Conference
on Embedded And Ubiquitous Computing (EUC), 2005.

[8] R. van Ommering. Building product populations with soft-
ware components. InProceedings of the 24th international
conference on Software engineering, pages 255–265, Orlando,
Florida, USA, May 2002. ACM Press.

