A Tutorial for Suit: The Simple
User Interface Toolkit

Randy Pausch

Computer Science Report No, TR-90-29
September 1, 1990

A Tutorial For SUIT, the Simple User Interface ToolKit

Randy Pausch
Computer Science Department
University of Virginia

electronic responses:
graphics@uvacs.cs.virginia.edu

NOTE: This is a draft document: it would be greatly appreciated if you would send electronic mail
to graphics@uvacs.cs. virginia.edu about any erors, unclear sections, missing information,
or anything else you'd like to tell us. SUIT is currently under active development. Any questions or
comments mailed to graphicsguvacs.cs. virginia.edu will be answered promptly. We know
this draft of the tutorial does not answer all the questions you might have, and we ask that you please
make use of the electronic mail address to answer questions that come up. Thanks!

SUIT, The Simple User Interface Toolkit, is a subroutine library which helps C programmers create
graphical user interfaces. A C programmer can invest approximately two hours with this tutorial and be
able to create SUIT programs which run on UNIX/X-Windows, IBM-PC/DOS, and Macintosh platforms.
SUIT is like having a window manager for interface components — as SUIT-based programs execute,
users may change the location, appearance, and functionality of screen objects such as buttons, sliders,
menus, etc. All changes are saved with the program S0 later invocations will reflect the interface changes.

Thanks for SUTT are due to its original author, Nathaniel Young, and to Roderic Collins, Matt Con-
way, Jim Defay, Pramod Dwivedi, Robett DeLine, Brandon Furlich, Rich Gossweiler, Ken Kestner, and
Kimberly Passarella. _

(C) 1990 Copyright Rector and Visitors of the University of Virginia

This work was suppotted in part by the National Science Foundation, the United Cerebral Palsy Foundation, the Virginia Engineering Founda-
tion, the Virginia Center for Innovative Technology, and SAIC.

This tutorial begins by having you use SUIT to
interactively modify an existing graphical interface.
You are then given a brief overview of SUIT which is
followed by examples of how to develop your own C
programs using the SUIT subroutine library. After
approximately two howrs with this document, you
should be able to construct simple SUIT programs.
This document is meant to be read as you sit at a color
display and try things out; if you have any questions or
comments gbout SUIT or this tutorial, send electronic
mail o0 graphics@uvacs.cs.virginia.edu
and it will be answered as soon as possible.

Running an Existing SUIT Application

The first program you’ll run will draw regular,
N-sided polygons. If you're running on a PC, the pro-
gram will use the entire screen. If you're running on a
UNIX workstation you should be running the X win-
dow system, because the program will nin in a new X
window. If you're not already running X, you may be
able to do so by typing:

startx

This tutorial gives command/path names for the unix
version, but you should find all necessary files in the
appropriate locations on whatever machine you are
using. Type

The object on the right is a slider and it controls
the number of sides in the polygon on the left. The
three buttons in the lower right hand corer appear in
most SUIT applications; they allow you to gracefully
exit the program (DONE), leave the program without
saving your work (ABORT), or pop to a command
shell (SHELL). The ABORT button is covered with a
guard, indicating it’s a dangerous command.

You can change the number of sides in the
polygon by moving the mouse cursor over the slider
and either clicking (pressing and releasing) any mouse
button, or pressing down on any mouse button and
dragging the slider up and down until you release. Try
making the polygon have seven sides. You can also
reposition screen objects, but doing so requires telling
SUIT that you’d like to move a screen object, not
interact with it. For example, you would like to move
the slider around with the mouse, but you can’t just
click on the slider and move it around the screen,
because when you click on the slider, the slider
responds by sliding up or down. To tell SUIT that
you'd like to move an object, rather than interact with it
normally, you need to sort of “‘raise one hand™” to tell
SUIT to listen to you, and then use your other hand to
manipulate the mouse. You can do this by pressing
{(and holding down) both the CONTROL and SHIFT
keys. While you’re holding down CONTROL and
SHIFT with one hand, move the cursor near the center
of the slider and press and hold down the leftmost
mouse button, A dashed outline of the slider shouid
appear and follow the cursor until you release the
mouse button, and the slider will now move to the new
location, You can now release the SHIFT and CON-
TROL keys. Try moving the slider to the upper left of
the polygon, to get a picture like:

fusers/graphics/suit/examples/poly

to invoke the first application. It may take 10 or 15
seconds for the application fire up; this delay will
disappear in later versions. If things take longer than
about 30 seconds, something is wrong and you should
contact a member of the SUIT staff, When the poly
application fires up, you should see something like:

I A Polygon Drawing Program]

|

—

FDRAFT* University of Virginia

i A Polygon Drawing Program l

SHELL

Note that once you have moved the slider and
released the CONTROL and SHIFT keys, you can once
again use the leftmost mouse button to adjust the
slider’s value. Play with both moving the slider around
and adjusting its value ~ just remember that whenever
you're holding down the CONTROL and SHIFT keys,

SUIT Tutorial *DRAFT*

you're talking to SUIT, and whenever you're not,
you're talking to the application. As a shorthand, the
rest of this document will use the notation SUIT-
click to mean “‘talk to SUIT by holding down the
CONTROL and SHIFT keys, and us¢ the lefimost
mouse button.”’

SUTIT-click can be used to change the size or
shape of an object by SUIT-click’ing on the object
close to a border. Hold down CONTROL and SHIFT,
move the cursor near an edge or comner you wish to
adjust, and then press the leftmost mouse button down
and hold it. The familiar dashed rectangle appears; you
should now move the mouse outward to push the edge
or comer out. To make an object smaller, you
SUTT-click it near an edge or comer, drag out to
grab the edge or comer, and then bring the edge back
in. Note that you must start off slightly inside the
_object. Make sure you're comfortable with move and
résize; don’t go on until you can make the screen look
something like:

l A Poiygon Drawing Program J

SHELL

—

Holding down both CONTROL and SHIFT is
awkward. On some systems, you can avoid this by
holding down the ALT key. The ALT key is often to
the left of the space bar; on some keyboards, it is
labeled LEFT, instead of ALT. Not all systems support
using ALT instead of CONTROL and SHIFT. If your
system does, you can simply hold down the ALT key,
instead of CONTROL and SHIFT, whenever you want
to SUIT-click.

You can also invoke SUIT commands via the
keyboard. For example, you can explicitly force a
repaint of the screen by using SUIT-r (that is, hold
down the CONTROL and SHIFT keys and press the 'r’

key on the keyboard, and then release all three keys.)

Again, if your system lets you, you may be able to just
hold down ALT instead of both CONTROL and
SHIFT.

DRAFT University of Virginia

-

Changing Your Interface’s Appearance

SUIT allows you to interactively change many
aspects of your application’s interface. For example,
the slider is a screen component which displays a
bounded value between 3 and 20. This can be
displayed in several ways; SUIT allows you to switch
between them. To cycle the slider between possible
display styles, move the cursor © the center of the
slider object and use the SUIT-C command. The
bounded value can appear in several different ways,
including as a slider that slides up and down, a slider
that slides left and right, and a speedometer. Click on
the bounded value when it's displayed as a speedome-
ter and see what happens. Now cycle back to the up
and down slider, since you'll use it in the next example.

Each SUIT object has various properties which
you can change with SUIT’s built in property editor.
To change the slider object’s properties, move the cur-
sor to the center of the slider object and use SUIT-e.
1o invoke the property editor for that object. When
interacting with the property editor, you don’t need to
hold down CONTROL, SHIFT, or ALT; you'll be able
to just click with the mouse. One portion of the screen
is labeled Object Properties and contains the different
aspects of the bounded value object. The property edi-
tor always displays the properties in alphabetical order.
The slider object has a boolean property called has
border. If you click on that property (remember, just
click with the left mouse button, you don’t need © hold
down CONTROL, SHIFT, or ALT), it will change, and
you should see the slider redraw itself without a border.
By clicking on the property again, you can turn the
border back on. If you want to change a color pro-
perty, select a color from the color chips, and then click
on the property you want to be that color, Try to make
the slider have a blue border.

 When a SUIT object draws itself, it looks up
various properties about itself, like “‘what color should
my border be?”” If these properties were always stored
with each object in a program, it would be hard to
enforce consistency. For example, if all the sliders
were green, and you decided to make them all red, it
would require changing them one by one SUIT
addresses these problems by providing a hierarchical
property data structure. When an object asks a ques-
tion like ““what color should my border be?”’, SUIT
first looks to see if the object has specified a value for
that property. If so, SUIT retums the property’s value.
If the object does not have a property with that name,
SUIT then looks in a data structure for the object’s
class (all SUIT objects belong to a class. All sliders
are in the bounded value class. This name was chosen
because their current value is always within minimum

SUIT Tutorial *DRAFT*

and maximum bounds). When SUIT looks up the
border color property for the "bounded value" class,
SUIT finds the color each bounded value should default
to if it does not specify its own color.

If SUIT still doesn’t find the named property at
the class level, it looks in a data structure for the global
properties. Each of these property lists (object, class,
and global) is displayed on the screen in the property
editor. If you're wondering about the area with the
header display properties, SUIT looks in a data struc-
ture for the current display style before locking at the
object level. In that way, you can have a bounded
value object with a red border when displayed as an up
& down slider, but a green border when displayed as a
speedometer,

To see how this all works, click on a pink color
chip and set the global property for foreground to
pink. Now exit the property editor by clicking on the
DONE editing properties button, and notice that all
objects are now displayed in pink.

The one exception is the bounded value; it
specified its own foreground color, so it doesn’t default
to the global property. If you want to have the bounded
value default to the global property, you must destroy
its specification of foreground at the object level. To
do that, put the mouse cursor back over the slider and
use SUTIT-e to go back into the property editor,
Now, move the cursor over the foreground property in
the object properties area and press down with any
mouse button. While holding the mouse buiton down,
drag the property (which will appear as a dashed rec-
tangle while you drag it) over to the trash can and then
release the mouse button. (Make sure that your cursor
is on top of the trash can when you let up.) The
bounded value no longer specifies its foreground pro-
perty at the object level, and falls back on the global
specification and becomes pink, This might be a good
titne to change the global property for background to a
dark shade of blue,

Boolean and color properties change when you
click on themy; for other properties, such as strings and
numbers, you must click with the left mouse button on
the desired property and then type in the new value.
When typing in a value, you can use emacs editing
commands, and you must hit RETURN when you're
done typing the new property value, If you would like
to specify a property at the object level that doesn’t
already exist there, you can make a copy of it from
some other level, For example, if you drag a global
property to the object area (as opposed to dragging it to
the trash can), it makes a copy of the global property at
the object level.

DRAFT University of Virginia

3.

Try making the polygon widget have a different
background color than the rest of the screen. Move the
cursor to the center of the polygon object and use
SUIT-e to get back into the property editor. Copy the
background global property to the object level, and
then change it to be green.

Now is a good time to see all the existing types
of screen objects, sometimes called widgets, that SUIT
allows you 1o use off-the-shelf. Exit out of the current
program by clicking on the DONE button and then type

fusers/graphics/suitfexamplesfuseall

to see a program that demonstrates all the widgets in
the widget library. This is a brain-dead application; it
contains a bunch of widgets you can poke at, but noth-
ing is going to happen because they aren’t connected fo
any program functionality, So, you can poke at the
colorchip widget, which in a real application might be
hooked up to something, but in this application it
doesn’t do anything. The exceptions are the menu and
radio button widgets, which print out the selections
when they are made. This causes a console window to
appear in the Macintosh version of SUIT. Suggested
fun things to try with the useall program are:

Discover the many different University of Vir-
ginia logos (cycle between alternate displays by
using SUIT-c).

Cycle the menu widget to see its vertical, hor-
izontal, and pull-down display styles.

Make a very wide but short Rotunda.

Change the label at the top of the screen from
*‘SUIT -. The Simple User Interface Toolkit™ to
*“SUIT -- It’s fun’’ (invoke the property editor
and type in the new label).

Change the colors to make things look really
garrish.

M
@

3
4)

)

When you’re done, click on the DONE bation to
exit the program.

SUIT Tutorial *DRAFT*

Portability

SUIT is capable of running on several different
platforms because it is built in layers:

SUIT applications

SUIT widget set

GP (floating point) graphics package

SUIT
SRGP SRGP SRGP
X-windows Mac Toolbox Metawindows
Workstation Macintosh IBM-PC

SRGP (the Simple Raster Graphics Package) has
been implemented on three platforms, UNIX worksta-
tions, Macintoshes, and IBM-PCs running DOS. In
each case SRGP was ported quickly by utilizing an
existing graphics package. SRGP provides a common
ability to draw lines, text, and other graphics primitives
across all the platforms. Most SUIT graphics use a
slightly more sophisticated package, GP (Graphics
Package), which allows screen objects to automatically
scale to0 any given size or shape. SUIT contains the
code for maintaining the objects within an application,
and a standard widget set is provided for application
use. All of SUIT is written in ANSI-C, and applica-
tions can be moved from one platform to another by
recompilation. Information describing the state of user
interfaces, such as object positions and sizes, is stored
in files with the sui extension. These interface
description files are human readable and can be carried
with an application from one platform to another.

Separation of Form and Function

As you have already seen, SUIT provides a fairly
powerful set of interactive tools for modifying a
program’s user interface. One of the goals of SUIT is
to remove user interface decisions from the program-
mer. We distinguish between function, which must be
specified by programmers in C code, and form, which
should be specified (potentially by non-programmers)
using the interactive tools. Beginning SUIT program-
mers typically ask questions like ““When I create an

DRAFT University of Virginia

e

object, how to I specify that it should be red?”’ In most
cases, it is better to simply create the object and then
use the interactive tools to position it and change its
properties. While this seems unnatural o many pro-
grammers, try to always distinguish between form and
function, and remember than form should be able to
specified by someone like a graphic artist using the
interactive tools.

As an extreme example of this, consider that the
menu widget can cycle between vertical, horizontal,
and pull-down styles, and that the application is not
aware that this has happened. The application decides
that a set of functionality should be provided via a
menuy, and the interface designer, perhaps a graphic
artist, uses the interactive tools to decide how that
menu should be presenied w the end user. All these
decisions are stored in sui files that SUIT creates in
the same directory as the application’s executable file,

The information stored in sui files quickly
becomes as important as C code and you will find that
you should not delete & sui file lightly, since it may
represent a fair amount of specification effort. Also,
multiple sui files can exist for a single application. A
suit program named foo (or foo.EXE, ona DOS
machine) normally looks for a file called foo.sui
but by passing the -f bar.sui switkch, any SUIT
application can be asked to use an alternate interface
description stored in the file bar,sui. Unless told
otherwise, SUIT applications expect to find their sui
file in the same directory as the executable, not the
directory the user was in when running the program,
This means that if a program lives in a ceniral location
and is used by several users, they will (assuming they
all have write permission to the file) all be using the
same sui file. This will be fixed in later versions of
SUIT.

One final note about the interactive tools: There
is no written manual of the properties used by each of
the widgets provided in the standard set. Programmers
often need o access (usually to examine, but some-
times to change) properties of an object. There is no
manual to go to “‘look up’’ the properties used by a
widget; instead, the programmer should use the interac-
tive property editor to find ont the name of the relevant
property. In this way, SUIT is self-documenting.

The Architecture of SUIT

The heart of SUIT is an array of screen objects,
where each object is stored as:

SUIT Tutorial *DRAFT*

fx, v, width, height, paintProc, hitProc]

For example, the polygon program you used had
five screen objects: the polygon object, the slider
object, and three buttons, each of which was an object.
The (x,y,width,height) are the location and size of the
screen object, the paintProc is a procedure to cail to
draw that object on the screen, and the hitProc is a pro-
cedure to call when the user clicks or types while the
mouse is over that object. For example, the paintProc
for the DONE bution draws the word “DONE”’ in a
rectangle, and the hitProc for the DONE button causes
the program to exit. When SUIT needs to paint an
object or process an input action by the user, it can cail
the appropriate procedure. A procedure which is stored
in a data structure and later invoked is sometimes
referred to as a callback because it has been registered
to be “‘called back™ at a later time.

When SUIT needs to paint the entire screen
{when the program is first starting, or when you later
us¢ SUIT-r to force a repaint), SUIT runs down the
array and calls each of the paintProcs. Picking is done
in a similar fashion; when you click or type, SUIT runs
down the table searching for an object the mouse’s
{x,y) falls within. If you are holding down CONTROL
and SHIFT {or possibly just ALT), SUIT then handles
the input. This is how you can move objects — SUIT
recognizes that you are talking to it, paints the dashed
rectangle that follows the mouse, and then changes the
object’s {x,y) in the array and repaints the object by
calling its paintProc. When you are nof holding down
CONTROL and SHIFT (or just ALT), SUIT sends the
input event on to the object by calling the object’s
hitproc. The basic structare of a SUIT program is:

create all the screen objects by putting them in the array

do forever
begin
get the next (x,y) mouse click
run down the tzble and find an object it's within
if user is talking to SUIT (CONTROL & SHIFT are down}
then
process move, resize, cycle, etc.

efse

call that object’s hitProc
scan the table and repaint any objects that need updating
end

DRAFT University of Virginia

This style of programming is sometimes called
the external control model, because you do not expli-
citly direct your program’s thread of control. Instead,
you register pieces of functionality which are later
invoked at appropriate times. Also note that, contrary
to most people’s intuition, hitProcs do not paint any-
thing on the screen. Instead they rely on the appropri-
ate paintprocs to be called later. This allows SUIT o
be very efficient about updating the screen. For exam-
ple, if the user is typing very fast in a type-in box, each
character will cause the type-in object’s hitProc o be
called, and it will append that character to the string
stored in the object’s current string property.
When SUIT later calls the paintProc, it looks up the
object’'s current string property in order fo
know what to paint on the screen. Divorcing process-
ing input from painting buys SUIT a great deal of flexi-
bility. As a simple example, consider what would hap-
pen if the hitProc either painted on the screen, or itself
called the paintProc. The user might get farther and
farther ahead of the screen update (painting to the
screen is almost always a bottleneck). By separating
input processing and painting, SUIT can allow several
input actions to be processed by calls to the hitProc
before calling the type-in box’s paintProc,

SUIT is actally somewhat clever about deciding
when to repaint screen objects. For example, SUIT is
smart enough to know that if you change a property,
that object will require redisplay, but only if the new
value for the property is different than the old one. If
you want to explicitly tell SUIT that an object will
require redisplay, you can call

SUIT_redisplayRequired(joe)

but only this causes SUIT to record the fact that the
object joe should be repainted, and to perform the
necessary call to joe's paintProc when SUIT deems it
convenient.

Properties

Properties are stored in the property list attached
to each object. Each item in the list is simply a
[name, value] pair, such as [border width,
3] or {current string, 'now 1is the
time for’l. In addition to the property list
attached to each object, there is a property list for each
class of objects and a global property list. Each

SUIT Tutorial *DRAFT*

property is either permanent or temporary.
Permanent properties are written 10 the sui file when
the program exits, but temporary properties are not.
Most properties are permanent. Properties can be
examined by calling

Pointer SUIT_ getPropenty(SUIT_object obj,
char *propertyName,
char *property Type};

which returns a generic pointer to the area in memory
containing the data for the current value of the pro-
perty. Note that the type of all properties is expli-
citly specified. For many common types, convenience
macros are defined, such as

someValue = SUIT_getInieger(someObiect, "property name");

for example,

numSides = SUIT_getInteger(polygon, "number of sides™);

Similarly, properiies can be set by calling

void SUTT _setProperty{SUIT_object obj,
char *propertyName,
char *property Type,
Pointer propertyPir, /* pointer to the new value */
int propertyLength, /* number of bytes of data */
int level, /* DISPLAY, OBJECT, CLASS, or GLOBAL */
int permanence); /* PERMANENT or TEMPORARY ¥/

but for common data types, macros such as

SUIT _setDouble(someObject, "some propeny”, 2.345)

can be used. The macros assume that you are getting
or setting permanent properties; if you are not, similar
versions with names like

DRAFT University of Virginia -6-

SUIT_ deluxeGetInteger can be found in the
include files.

Each property is of a specific fype which is sim-
ply a name given as a character string. SUIT already
knows about many common types, such as integers,
doubles (floating point numbers), text strings, colors,
etc. If you want to use a new type of your own choos-
ing, you will have to first register the type by calling
SUIT registerType.

Several SUIT properties are not intuitive, so we
mention them briefly here. First, colors are actually a
record with two fields. The first field is what the color
should be on a color monitor, such as red, and the
second tells what the color should be on a black and
white screen. The interactive property editor allows
you to change the portion of the record that is appropri-
ate on whichever screen you are using. In this way, the
same sui file can be used to specify an interface that
works well on both color and monochrome screens. As
a programmer, you will probably not need to worry
about this, because your only use of colors will look
like:

GP_seiColor (SUIT_getColor (someObject, "foreground color”))

which tells the GP graphics package to set the current
color 10 be whatever the foreground coloz pro-
perty is for the current object. GP takes the color
record and does the appropriate thing on whatever type
of display you are using.

Another tricky property is

visibility,
which should be set by calling :

SUTT_setVisibility(SUTT_object, booleany;

rather than using the normal property mechanisms, in
order to cause the proper screen update.

A Simple SUIT Application

Many programs can be written by creating
objects from the existing library of widget types. Let’s
begin by looking at the simplest possible SUIT

SUIT Tutorial *DRAFT*

program, which is:

#include "swith”

* paint pro<s, hit procs, and other code should be added here *f

void
main {int arge, char *argvil)

{
SUIT init{&ergc, argvh
J* cbject creation calls should be added here *f

SUI'I‘_b-cginSzandardApplicaﬁm(NULL);
}

To get your own COpy of this program, make sure
you're in a directory where you want to the program to
be and then type

-

cp Iusersfgraphics!suiu‘tmnplate!suiq)rog.c .
op fusers/| graphicslsuitftmpiaw,fMakeﬁlc .

The program includes suit.h which defines
she routines and datatypes provided by SUIT and the
SUIT widget set The initialization call to
SUIT _init allows every SUIT-based program 10
accept a common collection of command line options.
This is implemented by passing &argc and argv
parameters (0 SUIT_ init, which extracts SUIT-
related command line options and returns the remaining
command line options 10 the main program. (For a
complete list of the SUIT command line options, type
*_gyithelp” as a command line option to any SUIT-
based program). The cail 10
SUIT__“beginStandardApplication creates the
familiar SHELL, ABORT, and DONE buttons found in

most SUIT applications, and then begins the infinite
loop of input processing.
The single parameter o

SUI'I.'m_beginstandardApplicats’.on can be used
to specify a function 10 be calied just before the pro-
gram exists. In keeping with the external control
model, this function will be called by SUIT when the
user clicks on the DONE button, but that the function
silently performs its task and does not prompt the user
with a question like “Do you really want 1o exit?” If

DRAFT University of Virginia

-

you are not used to the external control model, you will
probably find it quite strange to ““give up’’ the fiow of
control like this. One drawback of this model is that
your program must wait for the user o actually provide
input before it proceeds. If your program needs to per-
form real-time computation (such as a video game that
needs to keep a ball bouncing around), you can replace
the call to SUIT__beginStandardApplication
with

-

SUH,creaIeStanda:dApplicalion(NULL); P+ or your Done function */
SUIT_beginDisplayOs

for (i)
rnove the ball by setting some object{s) properties
SUI’TwchecscAndProceSSInput(O);
}

1f the user has already clicked or typed,

SUIT__checkAndchcessl’nput processes the
input (calling any necessary caliback hit procedures),
and then retarns. If input isn’t already waiting, the
parameter is used as the number of 60ths of a second 10
wait for input. If zero is passed, the routine does not
wait at all.

Let’s try compiling and running
type make 10 compile the progranm, and then type
suitprog tomun it. You should see the familiar three
buttons, but that’s all. You can still use the property
editor, but your application jiself doesn’t do anything,
as you might have guessed from the source code.

In order to make a program that actally does
something, you need 10 create screen objects and attach
them to pieces of the program. Let's create a program
that has three integers, 00e of which is always com-
puted to be the average of the other tWo. The program
should look something Like:

-

EIKE

SUIT Tutorial *PDRAFT*

Go into your favorite text editor and modify your
program to look like: ‘

#include "suit.h"

SUIT _object number], number2, average;

void Average(SUIT_object object)

{

double total;

total = SUIT_getDouble(number], "current value") +
SUIT_getDouble(number2, "current value"),

SUIT_setDouble(average, "current value", total/2);

}

void
main {int argc, char *argv(})

{
SUIT_init(&argc, argv);
number] = CreateBoundedValue ("number 1", Average);
number2 = CreateBoundedValue ("pumber 2", Average);

average = CreateBoundedValue ("average”, Average);

SUIT_beginStandard Application(NULLY),

Your program now has three global variables,
one for each of the three sliders. Each slider object is
created via a call 10 CreateBoundedvalue
{remember, sliders are really of class bounded value,
because they represent a bounded number that can be
displayed as a slider, speedometer, etc.). With each
call to CreateBoundedvValue, the second param-
eter is a subroutine that the slider will call each time its
value changes. If including the declaration of the type
SUIT object of the parameter object in the
parameter list to Average looks unusual to you, it's a
feature of ANSI-standard C,

By attaching three sliders to the Average func-
tion, the program guarantees that each time any slider
is changed, the average shider's current value is
recomputed. The Average function looks up the
current value property for the numberl and
number? objects, and sets the current value
property for the average object to be their numerical
average. Because an object’s property is changed,
SUIT will know to automatically redisplay that object.

DRAFT University of Virginia

So, when you click on one of the other two sliders, the
Average procedure will be called, the computation
will be performed, and SUIT will then redisplay what-
ever is necessary. :

Type make to compile the program. Then type
suitprog to run it. You should see the familiar but-
tons appear in the lower right hand corner, and you
should also see things appearing in the lower left hand
corner. When you first create an object, SUIT doesn’t
know where on the screen to put it. Rather than frying
to guess, SUIT always puts things in the lower left
hand comer, and assumes you’ll move them to where
you'd like them. Try moving and resizing your sliders
to make the screen look like:

But which slider is which? You can figure out
the name of an object by making it iconic (use SUTT-),
and then clicking on the icon to make it full size again.
Make your sliders be in order (from left to right)
numberl, average, and numberZ. Now when
you change either the leftmost or rightmost slider, the
middle one will display their average. Note that you
can still move and resize these widgets, and cycle them
1o make them all look like speedometers. You now
understand the basics of “*widget programming.”” In
widget programming, you create instances of screen

. objects provided by a library, and specify your own C

functions to be called at appropriate times. To make
sure you've got it, try adding a button to your program
with a call like

clearButton = CreateButton("clear”, myClearFunction)

and then write myClearfunction (which takes a
single parameter of type SUIT_object}, which sets all
three sliders to zero. Note that you can either create
variables of type SUIT object or reference your
objects by their string names, by calling the function

SUIT Tutorial *DRAFT*

SUIT_name("some string”);

which will reurn the SUIT_object whose name
was specified to be some string when it was
created.

Graphics

As previous stated, SUIT is a layered system,
The lowest level basic graphics package, SRGP (Sim-
ple Raster Graphics Package), does all the screen draw-
ing for SUIT. On top of this we have provided a thin
layer known as GP, This additional layer is needed for
two reasons, one is that SRGP does all of its drawing in
screen pixel coordinates, and the other involves colors.

The problem with drawing in pixels is that each
time an object paints, it would need 1o calculate how to
lay itself out within its viewport, that area of the screen
where you placed the object. To get around this prob-
lem, each object is given a floating point window coor-
dinate system to specify graphics output primitives.
SUIT initially sets this window to range from 0.0 to 1.0
in both x and y, The GP function calls, such as
GP_lineCoord then converts these floating point
coordinate calls into the appropriate screen pixel coor-
dinates.

GP also supports color in a way that allows
applications to run nicely on either black and white or
color displays. To understand the problem, imagine
that we were ranning on a color machine and specified
a UVA logo with a red foreground and a green back-
ground. If we then ran the program, using the sui file
we had created on a monochrome display, SRGP would
map all non-white colors to be black, and the logo
would be black on black; clearly the wrong thing. GP
defines the type SUIT_color as a record with two
fields: the color (stored as a string like "red") tobe on a
color display, and a boolean indicating whether to be
black or white when running on a monochrome display.
Note that the property editor is smart enough to deter-
mine the type of display you're working on during any
given execution, and only displays the appropriate por-
tion of this record.

The GP_pushGraphicsState and
GP_popGraphicsState calls, which take no
parameters, are used to save and restore the current
graphics state (current color, pattern, etc.) onto a siack.

DRAFT University of Virginia

It's a good programming practice to use these calls in
any routine where you are painting.

GP and SRGP both ¢lip output primitives that
would fall outside the legal coordinates, SUIT
automatically provides each object with a clip rectangle
for the object’s screen viewport before calling the paint
procedure. Thus, when an object paints itself, it cannot
draw outside its given arca of the screen.

Because GP and SRGP are so similar, it would
be redundant to supply detailed manuais on both. The
document SRGP for ANSI-C, available as the posiscript
file /users/graphics/srgp/doc/srgp.ps,

"~ contains full documentation on SRGP. The file

/users/graphics/suit/sre/suit/gp.h
contains the headers for the routines you will probably
want to use in your widgets. You will note that most
GP calls are simple renaming of SRGP calls, but they
take double (floating point) window coordinate, not
integer screen pixel coordinate parameters. We
strongly recomment you use the GP cails and not the
SRGP calls in your code.

Making Your Own Class of SUIT Objects

You now know how to use SUIT to change the
location, size, and other properties of your scréen
objects, and how to use the standard library of screen
widgets. This section will show you how to create your
own application-specific types of screen widgets. The
tutorial goes step-by-step through the creation of a vec-
tor widget, which will allow the user to interactively
control a two-dimensional vector, as might be usefui in
a physics simulation. To see an example of the final
version of the program, run

fusers/graphics/suit/examplesfvector3

and drag the vectors around. The left mouse button
moves the head of the vector, and the rightmost mouse
button moves the tail of the vector, Note that you can
press down with the mouse and literally drag the ends
of the vectors around. Each vector’s head should be
drawn as an arrow, but this program just draws it as an
ellipse because its author was too lazy to figure out the
angles for the arrowhead,

SUIT Tutorial *DRAFT*

What you just ran is the final version of the pro-
gram this tutorial will show you how to develop. The
first version of the program you’ll is a very simple, and
later versions continue to add functionality to build up
to the program you just ran,

The first version of the program has three rou-
tines, which allow us o

(1) Paint a vector widget
(2} Hita vector widget {send user input to if)
(3) Create a vector widget

The first version of the program looks like:

DRAFT University of Virginia

#include "suith”

void
PaintVector{SUIT_object object)

{

double headx = SUIT_getDouble(object, "head x");
double heady = SUTT_getDouble(object, "head y™);

GP_lineCoord(0.0, 0.0, headx, heady);
}

void
HitVector(SUIT_object object, SUTT_event event)

{

SUIT_setDouble{chiject, "head x”, event. worldLocation.x});
SUIT_setDouble{object, "head y", event. worldLocation.y};

}

SUIT _object
CreateVector(char *name)

{

SUIT_object new(uy;

newGuy = SUIT_ createObject(name, "vector"),
SUIT_addDisplayToObject{ newQuy, "standard”,

HitVector, PaintVecior);
return(newGuy);

}

void
main (int argc, char *argv(})

{

SUIT _init(&arge, argv);

{void) Create Vector("fred");

SUIT beginStandard Application(NULL);
}

The PaintVector routine is called with a sin-
gle parameter which is the SUIT object o be painted.
SUIT programs draw their graphics primitives with a
graphics package called GP. Before SUIT calls your
paintProc, it first paints your area of the screen with the

-10- SUIT Tutorial *DRAFT*

background color and sets GP to use the proper fore-
ground color, SUIT also takes care of things like draw-
ing an object’s border, if it has one. This means that
simple widgets can just draw their graphics primitives.
In this case, the widget wants to draw a vector from the
lower left hand comer to wherever the tip of the vector
is. This drawing must be specified with respect to a
well-defined coordinate system,

The reason that SUIT widgets stretch when they
are resized is because their graphics are drawn in a
world coordinate system, not in screen coordinaies.
You can set the bounds of your world coordinate sys-
tem to be whatever you wish, by default they range 0.0
to 1.0 in both x and y. By drawing in world coordi-
nates, you allow the GP graphics package to scale and
shape your graphics to fit into the current shape of the
widget on the screen, In order o actally draw the
line, you call GP_lineCoord to draw a line from
(0.0,0.0) to (headx, heady). (The origin of GP’s coor-
dinate systems is the lower left.) The tail of the vector
is always at (0.0, 0.0), and the widget determines where
the head of the vector is by looking up two floating
point properties, called head xand head vy.

Whenever the user interactively moves the vec-
tor, our HitProc will change those properties for us.
Whenever the user clicks on a vector widget, the
HitProc is cailed with the current input event. Part of
the input event record is the floating point (x.y) loca-
tion where the mouse was clicked. The HitProc uses
these numbers to set the head x and head y pro-
perties for the object. Setting these properties will
cause SUIT to automatically call the paint procedure
for the object, so the hitprocs never need to do any
painting on the screen,

The CreatevVector routine can be called to
create a new widget of type vector. The first line
creates the object, and the second line attaches your
HitVector and PaintVector routines, The
name standard is needed becanse you might create
a widget with more than one way of displaying itself,
and you would want to give a unigue name to each pair
of [hit/paint] procedures. You can run this version of
the program by typing:

fusers/graphics/suit/examples/vectorl

Your vector will initially come up with its head at (0.0,
0.0), since your double properties will defaalt to
zero. As soon as you click in your widget, you’ll be
controlling the vector, You can move and resize your

DRAFT University of Virginia

~11-

widget, and use the property editor to change your fore-
ground and background colors.

The next version of the program youw'll see
allows the vector to optionally have an arrowhead
(actnally, just a circle, because it's easier to draw).
This version also creates several instances of the vector
widget. This version fooks hike:

SUIT Tutorial ¥DRAFT*

#include "suit.h"

void
PaintVector(SUIT_object object)

{

double
double

headx = SUIT_getDouble(object, "head x");
heady = SUIT_getDouble(object, "head y");

GP_lineCoord (0.0, 0.0, headx, heady),
perekerikid THIS HAS BEEN ADDED #+##stxuk/
if (SUIT_getBoolean{cbject, "draw arrowhead") }

GP_ellipseCoord(headx-0.05, heady-0.05, headx+0.05, heady+0.05);
!ﬁ********* TI-*IS HAS BEEN ADDED *********#I

}

void
HitVector{SUIT_object object, SULT_event event)

{

SUIT_setDouble(object, "head x", event.worldEocation.x);
SUIT_setDouble(object, "head y", event.worldLocation.y);

}

SUIT_object
CreateVector(char *name)

{

SUIT, object newGuy;

newGuy = SUIT_createObject(name, "vector™);
SUIT_addDisplay ToObject({ newGuy, "standard”,

HitVector, PaintVector),
remm{newGuy);

}

void
main (int arge, char *argv[]}

{

SUIT_init(&arge, argv);

{void) CreateVector("fred”);

prweiknrsnk THIS HAS BEEN ADDED #####bdorksf
{void) CreateVector("sally™);

(void) CreateVector{"debbie");

/****1#**** '[‘I-IIS HAS BEEN ADDED **********l
SUIT_beginStandardApplication(NULL);

}

The paintproc now examines a boolean property
and if it is TRUE, paints an arrowhead (drawn as an
ellipse which is specified by its bounding rectangle).
Once you ask for a property, it will be created and set

DRAFT University of Virginia

-12-

to some default value. If you don’t like if, you can
change it with the property editor. To see how this ver-
sion of the program performs, type:

fusers/graphics/suit/examples/vectorZ

Note that none of yowr vectors have arrowheads.
When you ask for a property for the very first time,
SUIT creates it at the class level with some default
value (FALSE for booleans). Use the property editor
and make the vectors class default to having red arrows
with arrowheads (set the foreground and draw
arrowhead properties at the class level). Then make
the sally object be blue, without an arrowhead, by
overriding the class’ defaults at her object level. You
can determine which one is sally by using the icon-
ize command; move the cursor over an object and use
SUIT-i to make an open object iconic. Clicking on
the icon will open the object back up.

The next (and finaf) version of the vector widget
will tell the difference between different kinds of input.

Look at the file

fusers/graphics/suit/examplesfvector3.c

and notice that the only difference in its paintproc is
that it now looks for the tail x and tail y pro-
perties.

The major change is in the hitproc; the widget
now distinguishes between input events via the left
mouse button, right mouse button, and keyboard. All
SUIT events are named; left down indicate the left
mouse bution went down, and right down indi-
cates the rightmost button when down. If the event
name is keyboard, the field event.keyboard
contains the character that was pressed. The head of
the vector can now be moved with the left mouse but-
ton, or the tail with the right mouse button. By typing
characters at the vector, you can tell it to change its
color.

Writing Your Own Programs Using SUIT

SUIT Tutorial *DRAFT*

To start making your own applications, make a
new directory and copy

fasers/graphics/suit/template/suitprog.c
fasers/graphics/suit/template/Makefile

to that directory. Now, you can edit suitprog.c
and type make to recompile it.

Where to Go for Help

The files

fusers/graphics/suit/examplesfuseall.c
fusers/graphics/suit/srcfwidget/widget.h
fasers/graphics/suit/srefsuit/gph
fusers/graphics/suit/sre/suivhasesnith

are good starting points to find the calis you might want
to make. Remember: this introductory documentation
is only a draft, so we anticipate lots of questions and
problems using the system. If you have any questions
or comments, please mail them to
graphlcs@uvacs.cs.virginia.edu and they
will be answered as soon as possible.

DRAFT University of Virginia

13-

SUIT Tutorial *DRAFT*

Advanced Section
selection
delete props stuff
undo in property editor

DRAFT University of Virginia -14- SUIT Tutorial *“DRAFT*

