EFFICIENT ALGORITHMS FOR PATH PARTITIONS
Craig Williams
Dana Richards

Computer Science Report No, TR-87-15
July 15, 1987

Efficient Algorithms for Path Partitions

Craig Williams
Dana Richards

Department of Computer Science
University of Virginia

ABSTRACT

An [a, b] path partition is a decomposition of the edges of a graph into g independent path sets and b
matchings, where an independent path set is a set of paths that do not interesect each other. The path par-
tition problem is related to other edge partition problems, such as edge coloring. It is shown that every
graph with maximum degree 3 has a [2,0] path partition, and every graph with maximum degree 4 has a
[2,1] path partition. Algorithmic proofs are given. The algorithms have linear-time sequential implemen-
tations and log-time parallel implementations.

1. Introduction

We present a new property of graphs, the path partition, and present algorithmic proofs for some cases of
small maximum degree. Path partitions are related to edge-coloring and other edge partition problems. As an exam-
ple of a path partition problem we ask whether the edges of a cubic graph can be colored blue and red so that there
are only red paths and blue paths and no blue (red) path intersects with another blue (red) path? Alternatively, can
we decompose a cubic graph into a set of disjoint paths so that the paths can be partitioned into a red set and a blue
set, where no paths of the same color intersect? We show that such a partition exists by giving an algorithm that
always finds such a partition. We present efficient sequential and parallel algorithms. Similar results are given for

regular graphs of degree 4, and a generalization for larger degrees is presented.

Let an independent path set be a set of vertex disjoint paths. A matching is a special independent path set in
which the length of each path is 1. An [a, b] path partition is a partition of the edges of a graph into g independent
path sets and b matchings. We prove that any simple graph G with A(G) =3 has a {2,0] path partition and that any
simple graph with A(G) =4 has a [2,1] path partition, where A(G) is the maximum degree in the graph G. In a
sense these results are best possible. There are graphs with A(G) =3 which do not have a [1,1] path partition and
there are graphs with A(G) = 4 which do not have a {2,0] path partition. We restrict our attention in this paper to

simpie graphs. Unless otherwise specified, graph refers to a simple graph.

There is no known previous work on this problem. However our problem is related to a number of other edge

partition problems. Other edge partition problems include finding the path number of a graph, determining whether

a graph has a [1,2]-factor, and coloring the edges of a graph. The path number of a graph G is the minimum number
of edge disjoint paths whose union is G. The results on path numbers provide very loose upper bounds on the
minimum number of independent paths into which the edges of the graph can be partitioned. For example, it is

known that the edges of any cubic graph with n vertices can be covered by n/2 edge-disjoint paths [7).

A [1,2]-factor of a graph is a spanning subgraph where each component is a path or cycle. By removing an
edge from every cycle of a [1,2]-factor a corresponding independent path set ils produced that spans the graph. In
general an {r,7+1}-graph is graph in which each vertex has degree is r or r+1, and a {k,k+1]—factor is a spanning
(kk+1]-subgraph. Tutte proved that every r-regular general graph has a [k k+1}-factor where k is an integer such
that 0 < &k <r, [9]. Thomassen extended this result to show that if G is a general [r,r+1]-graph, G has a [k.k+1]-

factor where k is an integer such that 1 £k < r. [8].

Tutte’s theorem implies that cubic graphs have a [2,1] path partition. Removing the independent path set
corresponding to a {1,2]-factor leaves a graph with maximum degree 2 which may contain cycles. Removing one
edge from each cycle partitions this graph into a matching and a second set of independent paths. Similarly, using
both Tutte and Thomassen’s theorems, we can show that a 4-regular graph has [3,1] path partiion. Removing the
independent path set corresponding to a [1,2]-factor leaves a [2,3)-graph. Removing a second independent palh set

leaves a [1,2]-graph which can be partitioned, as above, into a matching and a third set of independent paths.

Results on edge-coloring of graphs provide similar results. An edge-coloring of a graph is an assignment of a
color to each edge so that at every vertex no pair of incident edges is colored the same. The chromatic index,
denoted '(G), is the minimum number of colors needed to edge-color G. It is easy to see that X'(G) = A(G). Viz-
ing proved that for every graph, X(G) < A(G) + 1 [10}. Determining whether x(G) is A(G) or A(G) + 1 is NP-

complete [4], but there are polynomial-time algorithms for finding a2 A(G) + 1 edge-coloring, e.g., [1].

The fact that the edge set of every graph with A(G) = 3 is 4-colorable implies that each such graph has a [2,1)
path partition. Recolor the edges originally colored 1 and 2 blue and recolor the edges originally colored 3 and 4
red. Let B be a set of edges formed by removing an edge from each red or blue cycle. Since no two cycles intersect
in a cubic graph, the edges removed to eliminate cycles form a matching. Similarly, a 5<coloring of the edges of a
graph with A(G) =4 gives rise to a [3,1] path partition. Begin as above. Note that the edges colored 5 combined
with the set B form a set of paths and cycles, since no three can meet at one vertex. These edges can be partitioned

into a third independent path set and a matching.

Note that our results give a stronger characterization than Vizing’s theorem for graphs of maximum degree 3
and 4. A [2,0] path partition of a graph implies a 4-coloring and a [2,1] path partition implies a 5-coloring but the
converse is not true. For example, a 4-colorable 4-regular graph cannot have a [2,0] path partition. (In fact no 4-
regular graph can, since each vertex must be an internal point on two paths.) Further, there are 5-colorable 5-
regular graphs that do not have a (2,1] path partition. A {2,1] path partition of a 5-regular graph implies that the
matching must be a perfect matching, but removing a perfect matching reduces the problem to finding a [2,0] path
partition of a 4-regular graph.

Our proofs are constructive; we exhibit algorithms for finding the path partitions. Let the graph G have n ver-
tices and m edges. Our algorithms can be executed in O (n +m) time on a RAM and in O(log n) time using
O (n + m) processors on a concurrent-read concurrent-write shared memory model of computation, i.e., a CRCW
PRAM. The partitions can then be used to find a A(G) + 1 edge-coloring within the same time bounds. Karloff and
Shmoys have shown that edge-coloring a graph with A(G) + 1 colors is in NC when A(G) = O (log®™® n) {5]. They
give a 0 (A(G)°P1og?® n) time algorithm using O (n°™) processors on a CRCW PRAM and an O (log n) algo-
rithm using O (n + m) processors for coloring multigraphs of maximum degree 3. Since the constant exponents are

greater than 1, the algorithm we describe is faster for the special case where A(G) is 4.

2. Constructing the path partition for A(G) =3

Let G = (V,E) be a cubic graph. Note that a graph with maximum degree 3 that is not cubic can be converted
into a cubic graph by adding a linear number of edges and that a path partition of the resulting graph gives a
corresponding path partition for the original graph, Algorithm_] finds two independent path sets, a set of red paths

and a set of blue paths,
THEOREM 1. Any graph G with A(G} = 3 has a [2,0] path partition.

Proof. Let G,eq (Gypue) be the subgraph of G induced by the red (blue) edges of G. We show that Algorithm_I con-
structs a partition of G into 2 independent path sets by showing that after step 3, G,,.; and Gy, have the following
properties:

(1) AGrea) = MGue) =2.

(2} G,z and Gy, are acyclic.

STEP1 {Obtain an initial coloring of G such that for all ve V, v is incident to either 2 red and 1 blue or 1 red and 2
blue edges.]

1.1 Construct G’ from G by adding a special vertex v" and an edge from V' to every vertex in G. Note
that G” is eulerian.

1.2 Find an eulerian circuit in G°.

1.3 Alternately color the edges of the euler circuit red and blue. Delete v’ and the edges incident to v/ to
: obtain the original graph G. The edges of G are partitioned inio red paths and cycles and blue paths
and cycles.

STEP2 [Eliminate all original cycles, i.¢., all cycles created in the initial coloring.]

2.1 Identify all cycles.
2.2 Choose one edge on every red (blue) cycle and flip it, i.e., color it blue (red).

STEP3 [Eliminate all new cycles, i.¢., cycles created by the preceding step.]
31 Identify all cycles.
32 For each red cycle, choose one edge that was originally in a blue cycle and **shift’* the red edge

along that blue cycle, i.e., recolor the edge blue and color an adjacent blue edge red. Perform the
analogous step for blue cycles.

Algorithm_1 - Finding a {2,0] path partition for & 3-regular graph.

Since step 1 colors all edges and no edge is uncolored or simuitaneously colored 2 colors, the cdgeé of Gy, and

(.4 partition £ into 2 independent path sets.

Property 1 is clearly true after step 1. In the remaining steps, only edges on the original cycles can change
color. Every edge on an original red (blue) path remains red (blue). In step 2, each original cycle chooses one edge
to flip. In step 3 some subset of the original cycles restore the original color to their flipped edge and flip an adja-
cent edge along the cycle, in effect changing their initial choice as to which edge to flip. Since at most one edge
along any original blue (red) cycle is colored red (blue) and all the red (blue) edges incident to the cycle are on ori-

ginal paths and therefore remain red (blue), no vertex has degree 3 in Gy, (G..u).

We show G, is acyclic at the end of step 3; Gy, is handled similarly. Since the shift operation eliminates

every red cycle existing at the end of step 2 we show that the shift operation cannot introduce red cycles. First

consider a shift along a blue cycle. Let {v;,v;} be an edge on an original blue cycle colored red in step 2 and let
{v;,v) be an adjacent edge colored red in step 3 as a result of the shift operation. At the béginning of step 3 {v;,v;}
is on a new red cycle and v; is the endpoint of an original red path. Note that since G is a simple graph v, # v;.
Coloring (v;,v:) red in the shift operation can create a cycle only if a red path connects v; and v, that avoids edge
{v;,vi}. However v; is still connected by a red path 0 v; and v; now has degree 1 in G,,4. Now consider a shift
along a red cycle. The new red edge will have an endpoint with degree 1 in G,z and hence cannot contribute to a

red cycle. [

Karloff and Shmoys’s algorithm for edge-coloring multigraphs of maximum degree 3 also obtains the initial
coloring using the technique of aliernately coloring the edges of an euler circuit, but breaks only odd cycles, leaving
even cycles intact, and thus does not induce a partition of the edges into 2 independent path sets. (Indeed, cubic mul-

tigraphs cannot, in general, be partitioned into 2 independent path sets.)

The algorithm runs in linear time on a uniprocessor, i.e., a RAM. Steps 2.2 and 3.2 each take constant time
per cycle and the remaining steps take time linear in the number of edges. The algorithm can be directly cast as a
parallel algorithm in the shared memory model of parallel computation; in particular we use CRCW PRAM model.
By using a known parallel algorithm to find the euler circuit and standard technicjues based on recursive doubling to
color the euler circuit and identify cycles, the algorithm can be executed in parallel on a CRCW PRAM with
O {n + m) processors in & (log n) time. (For a discussion of recursive doubling techniques sea {6].) Atallah and
Vishkin and Awerbuch, Israeli, and Shiloach have described parallel algorithms for finding a euler circuit in
O(log n) time on a CRCW PRAM [2,3].

3. Censtructing the path partition for A(G) =4

Let G = (V,E) be a 4-regular graph. Algorithm_2 partitions G into 2 independent path sets, one red and one
blue, and a matching consisting of edges colored green. Note that a {2,1] path partition is the best possible, A [2,0]
path partition of G would imply that every vertex is incident to 2 edges from each set. If no vertex is the endpoint of
a path, each set is a collection of cycles, not paths.

THEOREM 2. Any graph G with A(G) =4 has a {2,1] path partition.

Proof. Let G be a 4-regular graph as defined above. Note that a 4-regular graph can be constructed from any graph
with maximum degree 4 that is not a 4-regular graph by the addition of a linear number of edges. A [2,1] path parti-

STEP1 [Obtain an initial coloring of G such that for all ve V, v is incident to 2 red and 2 blue edges.]

1.1 Find an eulerian circuit in G.
1.2 Alternately color the edges of the euler circuit red and blue. (The edges of G are partitioned into red
cycles and blue cycles.)

STEP2 [Mark 1 edge on every cycle as a special edge]

21 Identify all cycles.
22 Choose one edge on every red cycle and mark it as the cycle’s special edge.

23 Choose one edge one every blue cycle and mark it as the cycle’s special edge. Choose an edge adja-
cent to as many red special edges as possible.

STEF3 [Eliminate all special cycles and recolor paths of special edges.)

3.1 For each cycle of special edges select two adjacent edges, a blue {x, v} and a red {v, w}. Let {x, ¥)
be the other blue edge incident on v. If x is incident 1o a special edge then remove the special mark
from {u, v] and mark (x, v} special. (This has the effect of breaking that special cycle and splicing it
onto another path.) Otherwise flip the color of every edge on the cycle and remove the special mark
from every edge on the special cycle except for {u, v} and {v, w}. (This step combines all the red
and blue cycles that contribute an edge o the special cycle into just a red and a blue cycle, each with
a single special edge adjacent to the special edge of the other cycle.,)

32 Color every special edge that is incident 1o the endpoint of a path of special edges green and fip the
color of all the other special edges. (This step breaks each of the red and blue cycles with a special
edge on the path; either with a green edge or by splicing the cycles to form one long red and onre long
blue path.)

STEP4 (Eliminate all green paths of length 2.]

4.1 For each green path of length 2 color blue the edge that was originally red.

42 For each initial blue cycle, choose one endpoint of the special edge as the special vertex, where an
initial blue (red) cycle is a blue (red) cycle existing at the beginning of step 3.2. If possible, choose
the special vertex so that of the two incident edges that are not on the initial blue cycle one is colored
red and the other is colored blue. '

4.3 For every initial blue cycle, if the special edge was the middie edge on a path of special edges of
length 3 (i.c., if the special edge is now red and both vertices incident to the special edge are incident
to 2 red edges, 1 green and 1 blue edge) and there is a vertex on the cycle incident to 3 blue edges,
recolor the special edge blue.

4.4 For every initial blue cycle, traverse the cycle visiting every vertex in such a way that the special ver-
tex is visited first and last and the special edge is traversed last. Whenever a ventex incident to 3 blue
edges is visited, recolor the edge just traversed green if the last vertex visited is incident to 2 red
edges and red otherwise.

Algorithm_2 - Finding a {2,1] path partition for 4-regular graphs

tion of the resulting graph partitions the original graph into at most 2 independent path sets and a matching. We
show that Algorithm 2 constructs a [2,1] path partition for G by showing that at the end of the algorithm Gy, and
G reqy 85 defined above, and G yreen» defined analogously, have the following properties:

(1) AlGrg) = AGpp) = 2.
(2) A(Ggruu) =1
(3) G,y and Gy, are acyclic.

We define the blue degree of a vertex to be the degree of the vertex in Gy,,, and define red degree and green degree
similarly,

Notice that the effect of step 3.1 is to leave a coloring and marking that could have been produced by steps 1
and 2 that just happened to have no cycles of special edges. Actually step 3.1 does not simulate step 2.3 faithfully in
that blue edges m;a:ked by step 3.1 as special edges may not be adjacent to as many special red edges as possible,
but we only require that the following weaker claim holds.

CLAIM: After step 3.1, if {v, w) isa special blue edge, w is an endpoint of a path of special edges, and {v, x}
is also blue then there is no special edge incident to x. Further, afier step 3.1, if any vertex of a blue cycle is

incident to a special red edge then the special edge of the blue cycle is ad jacent to a special red edge.
This follows immediately from the details of steps 2.3 and 3.1,

(AG,.2)=2) Atthe beginning of step 4 no vertex has red degree greater than 2. In the remainder of the
algorithm only step 4.4 can color an edge red and step 4.4 can color an edge red only if one endpoint has blue
degree 3 and the other has red degree not equal to 2. Given that there are initially no vertices of red degree greater
than 2, step 4.4 cannot create a vertex of red degree greater than 2 and MGrey) = 2.

AlGppe)=2) Atthe beginning of step 4 no vertex has blue degree greater than 2. Step 4.1 introduces 1
vertex of blue degree 3 for every path of special edges of length 2, but step 4.4 decreases the blue degree of every
such vertex by recoloring an edge incident to the vertex red or green. Every edge recolored by step 4.4 was blue so
every recoloring reduces the.blue degree of the incident vertices, To see that every edge recolored by step 4.4 was
blue note that the only edge on an initial blue cycle that can be not blue at the beginning of step 4.4 is the special
edge and that step 4.4 can recolor an edge only if it is on a blue initial cycle and is not special. The special edge

cannot be recolored by step 4.4 because neither endpoint can have blue degree 3. (The special edge, with one

exception, is not blue and at least one of the edges at each endpoint remains red. The exception is the case
described in step 4.3 in which the special edge is blue but both endpoints are incident on two non-blue edges.)
Since every vertex in G is on an initial blue cycle, every vertex with blue degree 3 is visited in step 4.4 and has its

blue degree reduced.

(A(Ggreen) = 1) The green edges are a matching at the beginning of step 4.2. The only remaining opportun-
ity to color an edge green is in step 4.4, and it recolors an edge green only if the vertex currently visited, w, has blue
degree 3 and the previous vertex, v, has red degree 2. We show that neither w nor v is already incident to a green
edge. The only edge incident to w that is not blue must be red since every edge on an initial red cycle except the
special edge remains red. We show that the green degree of v is 0 by contradiction. If we assume the before edge
{v, w} is recolored v already has green degree 1 and also has red degree 2 then v must be the special vertex of its
initial blue cycle. (If v is not special then it will be incident not 1o one, but to two blue edges. We showed above
that the edge from v to w that will be recolored green in step 4.4 is blue. If v is not special and v did not have blue
degree when it was visited in step 4.4, then the edge preceding v on the initial blue cycle is also blue. If v is not
special and it did have blue degree 3, then one of the two edges incident to v that are not on the blue cycle is
blue.) Given that v is the special vertex and has green degree 1 and red degree 2, there are two cases to consider,

either the special edge, {v, u], of the blue initial cycle is red or it is green.

Assume that {v, u} is green. Both of the edges incident to v that belong to the initial red cycle containing v are
red and neither is special. Therefore, since w was incident to a special edge we know from the above claim that u
must be incident to a special edge from an initial red cycle. The edges incident to # that are not on the initial blue
cycle are therefore the special edge from an ihitial red cycle and an edge that has remained red from the same cycle.
This special edge must be blue; no special edge from a red initial cycle remains red and the edge cannot be green.
(The edge could have been colored green in step 3.2 if it was incident to the endpoint of a path of speciai'edges. but
it would then have been recolored blue in step 4.1 since the adjacent edge {v, u} is also incident to the endpoint of a
path of special edges.) By the rule for selecting a special vertex (step 4.2) « must be chosen as the special vertex,

contradicting the assumption that v is the special vertex.

Assume instead that {v, u} is red. Of the edges incident to v that are not on the initial blue cycle one is red
and the other is green. It follows that u must have been incident to a special red edge. The edges incident to u that

are not on the initial blue cycle must be either red and blue or red and green, They cannot be red and green because

then {v, u)] would have been recoiored blue in step 4.3. Therefore, they are red and blue. But the rule for selecting
a special vertex would then dictate that u be selected as the special vertex, again contradicting the assumption that v
is the special vertex,

We have shown that whenever an edge is colored green in step 4.4 neither of endpoints is already incident to

a green edge. Step 4.4 therefore preserves the property that the green edges form a matching.

(G.qisacyclic) Suppose Cisacycle in Gy. It easy to see that no red cycle exists at the beginning of step
4, 50 at least one edge of C must be an edge colored red in 4.4. Let {1, u} be that edge and v be the vertex with blue
degree 3 which forced the recoloring of {r, u] and let B be the initial blue cycle containing 4. Cycle C must leave B
at u. (The other edge incident to u along B cannot also be red or 4 would have red degree 3.) Let {«, v} on the ini-
tial red cycle R be the blue edge incident to B at u. Edge {u, v} is an edge on a path of special edges of length 2.
Since no red path can leave an initial red cycle except at the vertices incident to the cycle’s special edge and the red
degree of v is 1, the sequence of red edges leaving B at u must end at v. (The red degree of v before step 4.4 is 1.
and that step will not recolor any edge incident to v, In particular, the blue edge {v, x} from the initial blue cycle
containing v will remain blue since x cannot have blue degree 3, by the claim given above.) Therefore C cannot

exist and G,,, is acyclic.

(Goue 18 acyclic) Assume Gy, contains a cycle, C. Since no blue cycle exists at the beginning of step 4
and only steps 4.1 and 4.3 in the remainder of the algorithm can color an edge blue, at least one edge on C must
have been colored blue in step 4.1 or 4.3. Assume that C contains an edge colored blue in step 4.1 and let {1,v) be
that edge. Edge {u,v] is the special edge of a red cycle and is an edge on a path of special edges of length 2. Let
{v,w] be the other edge on that path; {v,w} is on an initial blue cycle B, and was colored green in step 3.2. Vertex
w is the endpoint of a special path and is incident to 2 red edges. If no edge incident to B was colored blue in step
4.1 then {u,v} is on a blue path ending at w. Therefore, C enters B at vertex v, uses one or more blue edges in B
and leaves B on an edge also colored blue in 4.1 at some vertex x on B. But by the rule for selecting a special ver-
tex, v is B’s special vertex. (The edges incident to w that are not on B are both red and the edges incident to v that
are not on B are red and blue.) Since v is B’s special vertex the edge encountered before x on the traversal of B is
colored green or red in step 4.4 and the blue path léaving v ends before reaching x. Therefore no cycle of blue
edges can contain an edge colored blue in step 4.1. If C avoids edges colored in 4.1, it must contain at least one

edge colored in step 4.3. Let {v,w} on the initial blue cycle B be that edge. Cycle B is not the same as C since we

do not recolor [v,w} blue unless we know that we will color some edge of B green or red in step 4.4. Therefore ¢
uses the edge {v,w} and leaves B on 2 blue edges incident to B. We have shown that no edge of C can be an edge
colored blue in 4.1. The only other points at which blue edges can touch B are at the vertices incident to B's special
edge, {v,w}. But {v,w) is the middle edge in a path of special edges of length 3 and the edges incident to fv,w] that

are not on B are red and green. Therefore Gope 18 acyclic, [

Algorithm_2, like the previous algorithm, has efficient sequential and parallel implementations, In a sequen-
tial version, it is clear in each Step every edge is seen a constant number of times, Hence it runs in linear time. The
only nontrivial steps for a parallel implementation involve cycle processing, such as finding and coloring euler cir-
cuits and identifying cycles of special edges. A nontrivial section is step 4.4, For this step each block of contiguous
nodes of blue degree 3 is identified. The first (in the direction specified by the special vertex) node before each
block is checked and its number of red edges determines the coloring of all the blue edges for that block (by a sim-
ple parity check). This can be done with standard recursive doubling code. Hence the algorithm can be executed on
a CRCW PRAM with O (n +m) processors in O (log n) time.

4. Conclusions

We have presented a new graph property, the [a, 5] path partition, and have given sharp results for graphs
with maximum degree < 4. How can our theorems be generalized? The most obvious conjecture, for any graph G
with A(G) = £, is that there exists a {(k+1)/2, 0] path partition when k is odd, and there exists a [k/2, 1] path parti-
tion when £ is even. For reasons such as stated in the first section, these conjectures are best possible. Of course
these imply Vizing’s theorem.

It is not clear how the algorithmic proofs could be extended. For example, step 1, when £ is even could be
generalized to find a edge coloring using &/2 colors, with each color occuring twice at each vertex. This does not

seem to be trivial, except for special cases such as & being a power of two.

We have an unpublished linear-time algorithm for cubic graphs which can transform an arbitrary [2,1] path
partition, which is relatively easy to find, into a [2,0] path partition. Another algorithmic approach for a general

result would be to extend this sort of algorithm to graphs with larger degrees. We have not been able to do that.

- 8. References

10.

E. Arjomandi, An Efficient Algorithm for Colouring the Edges of a Graph with A+1 Colours, INFOR, 20,

1982, pp. 82-101.

M. Atallah and U, Vishkin, Finding Euler Tours in Parallel, J. Computer and Syst. Sciences, 29, 1984, pp.
330-337.

B. Awerbuch, A. Isracli and Y. Shiloach, Finding Euler Circuits in Logarithmic Parallel Time, Proc. 16th

ACM Symp. on Theory of Computing, 1984, pD. 249-257.
L. Holyer, The NP-Completeness of Edge-Coloring, SIAM J, Computing, 10, 1981, pp. 718-720.

H. J. Karloff and D. B. Shmoys, Efficient Parallel Algorithms for Edge Coloring Problems, J. Algorithms, 8,

1987, pp. 39-52.

C. P. Kruskal, L. Rudolph and M. Snir, The Power of Parallel Prefix, JEEE Trans. Computers, C-34, 1985, pp.
965-968.

L. Lovasz, On Covering of Graphs, in Theory of Graphs, P. Erdos, et al. (ed.), Academic Press, 1968, 231-

236.

C. Thomassen, A Remark on the Factor Theorems of Lovasz and Tutte, J. Graph Theory, 5, 1981, pp. 441-

442,
W. T. Tutte, The Subgraph Problem, Annals Discrete Math., 3, 1978, pp. 289-295.

V. G. Vizing, On an Estimate of the Chromatic Class of a p-graph [in Russian}, Diskret. Analiz., 3, 1964, pp.
25-30.

