
DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF VIRGINIA
THORNTON HALL
CHARLOTTESVILLE, VIRGINIA 22903-2442
(804) 982-2200 FAX: (804) 982-2214

Support for Object Placement in Wide Area
Heterogeneous Distributed Systems

John F. Karpovich

University of Virginia

University of Virginia Department of Computer Science
Technical Report CS-96-03. Also available at

ftp://ftp.cs.virginia.edu/pub/techreports/CS-96-03.ps.Z

January 16, 1996

Abstract
One of the open challenges in distributed computing systems is determining how to

place tasks onto processors when they are needed (in the Legion project being developed at
UVA the basic computational units are modelled as objects, so the problem is one of object
placement). The placement decision is crucial because it determines the run-time behavior
of an object, including performance, cost and whether it can run at all. Many approaches
have been developed to address this problem in a distributed system environment, but it is
our claim that these efforts do not take the proper approach for supporting the needs of the
large wide area heterogeneous virtual computer systems we envision will exist in the future.
In particular, the systems developed to date are inadequate because they 1) focus on
solutions for a narrow set of application types, environments, or user objectives, and 2)
often inadequately support the full complexity and features of large distributed systems.

We propose to better support the placement process in distributed systems by
employing a new approach. Our approach is different from previous ones in that we
propose to design a framework for supporting a wide range of different placement
problems, user objectives and placement algorithms, rather than building a system that
supports a single placement technique. The goal of the framework is to provide
programmers with the basic mechanisms to support each facet of the placement process
which will enable them to implement the placement policies and techniques that meet their
needs. On the other hand, individuals will be competing for limited resources owned by
different people or organizations. Therefore, the framework must also contain mechanisms
to enforce the policies of resource owners and to resolve conflicts between users.

The research effort proposed here will focus on developing the mechanisms needed
to support flexible distributed object placement. To identify the main components of the
placement process and the key issues that must be resolved, we will first develop a general
model of the placement process. Using this model, we will next develop and implement a
framework to support object placement within the Legion system. Developing such a
framework will lend insight into our placement model and will also provide a proof of
concept for our approach. Finally, we will demonstrate the usefulness of our framework
approach by mapping a range of placement algorithms to the Legion framework and
evaluating the performance of several algorithms versus that provided by the system today.

1/16/96

Page 1

1 Introduction
The development of very high speed network technologies has opened the door to new

possibilities in distributed and remote computing. High bandwidth communication capabilities enable
distributed sites to more quickly and efficiently exchange information. As a consequence, it is possible to
run many new types of applications in a distributed environment without incurring the unacceptable
performance penalties that were previously unavoidable1. Existing applications can also receive a
performance boost, providing faster end-user turn around times or enabling larger or more complex
problems to be studied.

The potential benefits of exploiting the resources of a distributed environment are enormous.
Benefits to the user community include increased resource sharing among sites, easier and more effective
collaboration among colleagues, more efficient utilization of computational resources, and better
performance for applications. Unfortunately, there are significant obstacles that must be overcome before
distributed computing will be able to realize much of this potential. Large scale distributed systems are
extremely complex due to the number and wide variety of components that comprise them. In the current
development environment, distributed application programmers must explicitly manage much of this
complexity which poses a significant barrier to the creation of new distributed applications and limits the
extent to which distributed computing is exploited today (recent experience at Supercomputing 95
highlighted the difficulties of managing distributed environments).

The Legion project [12,16] at UVA is an effort to lower the barriers to exploiting distributed
computing technology. Legion is designed to provide a software framework that manages and hides
much of the complexity of the underlying system, allowing developers and users to focus more on their
problem rather than on managing system resources. The goal is to provide an environment that is flexible
enough to support a wide range of application types, including high performance applications, is easy to
use and program, and can support a very large number of distributed resources efficiently.

The Legion model follows an object oriented approach, i.e. objects are the basic units in the
Legion system. All Legion objects are instances of a Legion class, have a name that is universal within
the system, and may persist over long periods of time. Each object has an interface, determined by its
class, that defines the member functions to which it will respond. Users accomplish tasks by invoking the
appropriate member functions on objects, which in turn perform their task and issue an appropriate
response.

One of the open challenges in the Legion project is determining how to place objects onto
processors when they are needed, so that they can perform their tasks. Object placement is an important
concern because it can greatly influence an object’s run-time behavior, e.g. its performance. In fact, an
improper placement decision can cause an object to not be able to perform its tasks at all, for example
because no implementation exists for the target platform or because some key resource is not locally
accessible. Such improper placement decisions are calledinfeasible. Obviously, a placement decision
must be feasible in order to be useful. However, a feasible placement decision does not guarantee that the
decision is a good one from the user’s perspective. Every user has his own goals and priorities when
running a task, e.g. minimizing execution time or cost, or striking some balance between the two. A
"good" placement decision, therefore, is a very personal choice and may differ from user to user and
from task to task.

Determining good object placements in a large distributed, heterogeneous environment can be
very difficult because of the complexity of the underlying system and because object behavior can be
influenced by many different factors. Such factors include system status (number, type, and load of
components), hardware capabilities (processor, network, I/O, memory, etc.), interactions between

1. Of course, not all applications will be efficient in a distributed environment, as communication latency cannot be
reduced beyond a certain limit. Therefore, a wide-area distributed system is likely to be unsuitable for latency intoler-
ant applications.

1/16/96

Page 2

objects, object-specific characteristics (size, location of persistent state, estimated function performance,
etc.) and many others. The factors that are relevant for a given placement decision are determined by the
properties of objects involved and the objectives of the user. These factors are often expressed
mathematically as anobjective function which models the expected user satisfaction of each possible
placement mapping. Other factors, such as security concerns, fault tolerance objectives, implementation
availability and special resource requirements, may place hard restrictions on where an object can
feasibly be placed. These factors are usually expressed as constraints on the placement decision, perhaps
using a constraint language.

Given an objective function and placement constraints, an optimal placement decision can be
made by finding the feasible placement mapping that maximizes the objective function. Unfortunately, it
has been proven that in the general case finding such an optimal placement mapping is prohibitively
expensive. In light of this, many past research efforts have focused on finding either near-optimal
solutions or optimal solutions to very constrained cases. These efforts have developed a wide variety of
algorithms and systems for generating good task placement decisions for certain placement problem
types or user goals.

However, it is our claim that the approaches developed to date do not adequately support the
object placement process for a large wide-area distributed environment. First, no single approach can
generate good placement decisions for all of the diverse problem types and user objectives likely to be
found in such a system. In fact, many of the approaches work well only for a very select group of
applications and a single objective function. Second, many of the approaches were not designed to
handle the complexity that such a system involves. Specifically, many approaches are deficient in at least
one of the following areas: 1) scalability, 2) support/exploitation of heterogeneous resources, 3) ability to
cope with uncertain or outdated information, and 4) consideration of uncertain and irregular
communication costs. Finally, most previous approaches do not handle the problems introduced by
having a persistent and shared object space, i.e. problems associated with managing an object’s persistent
representation and resolving placement conflicts for shared objects.

The goal of the research proposed here is to develop a new approach to adequately support the
placement process in a large scale wide-area distributed system. Our approach is different from previous
ones in that we will design aframework for supporting a wide range of different placement problems,
user objectives and placement algorithms, rather than simply designing a new algorithm. In order to meet
our goals the new framework at a minimum must exhibit the following properties:
• Support for definition of new placement algorithms - To exploit the placement approaches already

developed and to allow for the evolution of new approaches, the framework must be flexible and
robust enough to support the incorporation of new algorithms.

• Support for user selection of placement approach - Users must be allowed to employ the placement
approach that best suits their needs in each placement situation;

• Support for resolving placement conflicts - In a system that supports shared objects and resources, it
is almost guaranteed that some conflicts will arise over their use. The framework must define the
behavior of the system during such conflicts and provide mechanisms for resolving them.

• Ease of use - The framework must not be prohibitively difficult to use, otherwise users will avoid
exploiting it and will either suffer with poorer service than necessary or will abandon using Legion
entirely. The framework should also support specification of default placement mechanisms so that
users who do not require sophisticated placement decisions are not unnecessarily burdened with
choosing placement algorithms and learning how to manipulate the framework;

• Low overhead - The framework must not impose unnecessary performance penalties for users who
do not require sophisticated placement decisions - this follows the Legion design rule of "pay only
for what you need";

• Integration with other Legion services - The framework must support and cooperate with other
Legion services, such as security or fault tolerance mechanisms.

• Scalability - Mechanisms must be designed to allow the system to gracefully grow to at least

1/16/96

Page 3

millions of resources and objects.

Our agenda is to first develop a general model of the object/task placement process. Such a
model will determine the key issues that must be addressed by the subsequent framework design and will
also serve as the foundation for future research and discussion of placement issues. Next, we will design
and implement a placement framework within the Legion system1. Legion provides a convenient
platform for applying our approach to a real distributed environment. Finally, we will test how
successfully the framework met our goals. At the conclusion of this effort we will have a detailed model
of the placement process, a proof of concept for our placement framework approach and the useful
artifact of a flexible placement mechanism for the Legion system.

Section 2 presents a model we have developed to describe the object placement process. Creating
such a model has helped us to decompose the problem and to identify the key issues that need to be
addressed by our framework. These key issues are described as part of the discussion on the model.
Section 3 discusses the research agenda for this effort and section 4 presents related work on task
placement/scheduling.

2 Placement Process Model

2.1 Overview
To design a framework to support object placement it is important to understand how the

placement process works. Figure 1 shows a high level model for the general placement decision process.
When a need arises to make a placement decision, some program or object will detect this need and
begin the process. This entity, referred to in the model as the initiator, selects a placement mapping
generator, or mapper, to create the placement decision and sends it a request describing the placement
problem. Once the mapper receives the request, it is responsible for gathering whatever additional
information is necessary for making its decision. At a minimum, the mapper must determine which
objects are involved in the problem, the placement constraints for these objects, and the target resources
that are available at the current time. More sophisticated mappers may also require additional
information about the problem, the underlying system, or the objects involved. The mapper gathers all of

1. Even though our framework design will be implemented in Legion, there is no reason to believe that our basic
approach and framework concepts will not apply to other distributed environments. In fact, it is one of our goals to
keep the design as general as possible.

sys. in
fo

User
Objects

Mapper

Figure 1 - Placement Problem Decomposition

System

implemented mappingplacement needs

additional info

placement decision

sys. info requests

fo
r

sy
s.

 in
fo

Initiator Mapping
Implementorrequests

fo
r ad

d
tl in

fo

 ad
d

tl in
fo

1/16/96

Page 4

this information either from the initial placement request, via requests to other objects, or from its own
internal state. Using this information a mapper determines a proper placement strategy for the problem.
The placement strategy is then used by an implementor which attempts to realize the placement decision
by activating the objects on the designated processors. If the implementor is successful, the needed
objects will be active and ready to respond to user requests. The process is completed by doing any
necessary bookkeeping and responding to the initiator that everything is now ready.

The following example illustrates how the process may work in a simple but realistic scenario. A
user wishes to search a large digital image library to find images with certain characteristics. The user
has at his disposal an application designed for just such a purpose that provides a nice graphical user
interface and a rich query language for searching images based on their characteristics. Behind the
scenes, the application has the structure shown in Figure 2. The application front end issues high level
queries to a separate object which contains the actual search engine functionality. The search engine
object then translates the high level query into a series of low level queries that the digital library
supports. These low level queries are then sent to the digital library to retrieve candidate images, which
are analyzed by the search engine and matched to the criteria of the higher level query. These results are
passed back to the front-end application for display, etc.

The developers of the image searching application software wanted to sell lots of copies of their
product, so they were very concerned about its run-time performance. They analyzed the application
components and determined that the key performance bottlenecks were 1) the computation time involved
in extracting and matching image characteristics within the search engine and 2) the time to transfer the
data between the components. Therefore the application’s performance is highly dependent on the
placement of the search engine and library objects. They then developed a model to estimate the
completion time of a query based on the following factors: network bandwidth and latency between each
component, MIPs rating and current load of the search engine processor, and certain query parameters.
This model then became the core of a placement routine that gathered the appropriate data and searched
for a good coordinated placement for the search engine and library objects.

Figure 3 shows how the placement process works in the example application. The application
front end acts as the initiator by sending the necessary query parameters to the placement routine
(mapper) before each query. The placement routine gathers the necessary input for its placement model
as follows: the objects involved are known and fixed within the model; the available processors and their
current loads are determined from system daemons; and the processor MIPs ratings and network
capabilities are found in a database containing information about system resources. The placement
routine employs a heuristic search algorithm to find a good pair of processors for the objects and returns
these values to the application front end. The front end then implements the placement decision itself and
begins the query.

2.2 Placement Model Issues
The model presented in Figure 1 gives a high level picture of the basic components of the

placement process and provides a foundation for building an object placement framework. However,

Figure 2 - Example: Digital Image Library Search Application

Front End
Application

Search
Engine

Digital
Library

high level queries

result images

low level queries

result images

1/16/96

Page 5

there are many issues that must be resolved in order for the framework to be effective. These issues
involve the functionality of the components, the mechanisms for maintaining and describing placement
related information and the protocols required to manage the placement process. The sections that follow
discuss each component in turn and the major framework issues associated with them.

One issue that spans several different design areas is that there must be a common mechanism
for identifying the resources in the system and describing their important attributes. Within the placement
process, this information is needed in at least three areas: 1) describing the system configuration and
current resources available, 2) specifying placement constraints, and 3) describing placement decisions.
The mechanism must be flexible enough to allow the addition of new resource types and new resource
properties as technology and mapper needs evolve in the future. The mechanisms to describe system
resources and their properties should also be flexible enough to describe user objects and their properties.
In this way, developers and users would only have to learn one mechanism for both tasks.

2.2.1 Placement Initiator
Placement decisions can be initiated in two ways. First, when an object needs to interact with

other objects, it can manually start and manage the placement process for these objects itself. Both user
and Legion system objects will employ this method whenever the object developer or user feels that the
placement decision is important enough to warrant the effort. However, it does not seem reasonable to
force all Legion users to explicitly manage the placement process. After all, one of the main goals of
Legion is to provide an environment where a user need not be unnecessarily concerned with the details
of locating and managing objects with which they wish to interact. Therefore, a second object placement
mechanism is required to automatically place and activate objects when necessary1.

Automatic Object Activation

When an object or program invokes a member function on another object, the call should be
completed without further effort required by the user (assuming the called object exists and that the call
is valid). If the called object is not active, someone must automatically activate the object, and as part of

1. Such a mechanism may not always produce a good placement decision in all cases, but the hope is that is can do a
good job most of the time, thus completely freeing most users from the burden of object placement and activation.

reso
u

rces avail.

Placement
Routine

(Mapper)

Figure 3 - Placement Process for Digital Image Library Search Example

System
Configuration

query parameters SE host, library host

requests

fo
r

sy
s.

 in
fo

Front End
requests

fo
r reso

u
rce in

fo

p
ro

c.
 M

IP
s

Resource
Info DB

n
et

. B
W

 &
 la

te
n

cy

p
ro

cesso
r lo

ad

1/16/96

Page 6

this process, some default placement mechanism must be invoked to determine where to activate the
object. One possible solution is to define a system-wide default placement mapper that is invoked
whenever automatic activation is initiated. The advantage of this approach is that it is simple - since there
is only one default mapper, the automatic placement mechanism only needs to understand one mapper
interface.

However, the single default mapper approach ignores the fact that all users and objects are
different and have different placement needs. Employing a single mapper for all automatic placement
decisions will force object users to either accept unnecessarily poor placement decisions or to manually
manage object placement more often than they should have to. A better scheme is to allow developers or
users to define default mappers at the class or even object level to provide more pin-point placement
decisions during automatic placement. Hopefully, in most cases, the developer will do a good job
designing a default mapper for the class and most users will never need to be involved in the placement
process at all.

Initiator Tasks

Each placement initiator must perform three tasks, regardless of whether the initiation is done
manually or via the automatic activation mechanism. The first task an initiator must perform is to select a
mapper to make the placement decision. Selecting the proper mapper is important because each mapper
will use a different technique and apply different criteria in determining a "good" placement for the
problem. The mapper should have the same objectives as the user, e.g. reducing completion time,
reducing cost, etc. The mapper itself will require time and resources to make its decision, so its
performance and cost must be weighed against its anticipated benefits. When an object is manually
managing the object placement process, it is up to that object to find the appropriate mapper. However,
for automatic activation, there must be a mechanism to determine which mapper to employ. Class objects
are a natural place to store object and class default mapper information. If this approach is used then
finding the default mapper is a straightforward process - simply ask the object’s class object.

The second task of an initiator is to send the selected mapper a properly formatted placement
request to begin the mapping process. The question is what is the format of this request? Each mapper
will implement a different algorithm, require different information, and operate on different types of
problems. Therefore, it is possible that each mapper will require a different description of the problem1.
For example, a sophisticated mapper may require a complete annotated precedence graph for the
problem, while another mapper may only require the name of each object involved. For objects manually
managing the placement process, it is their responsibility to format the placement request properly for the
mapper used. However, there must be a way for the automatic activation mechanism to determine the
proper format for a mapper request. Two possibilities are 1) develop a mapper input description language
which can be used to determine the proper format for mapper input or 2) develop a standard interface that
all default mappers must adhere to - additional information about the problem can be gathered explicitly
by the mapper after it has been started.

The third task of the initiator is to specify problem-specific placement constraints to the mapper2.
There are several approaches that can be taken to support this. The first is to not support it at all. If a user
wants to restrict the placement of a problem, he can create/derive a new mapper that follows the proper
constraints. However, this does not seem like a very user-friendly approach. Two other approaches are 1)
to pass constraints to the mapper as part of the placement request or 2) develop a protocol for the mapper
to request the constraints from the initiator after it receives the placement request. In either case, an
important issue is how to describe problem constraints - should it be an issue solved individually by each

1. A single mapper may even understand multiple different problem description formats to support different users or
legacy codes.

2. The constraints discussed here are specific to a single placement request and are in addition to object and class con-
straints (section 2.2.4) which define restrictions on where individual objects must be placed during all requests.

1/16/96

Page 7

mapper or should there be a common constraint language for all mappers.

2.2.2 Placement Mapper
The placement mapper is at the heart of the object placement process and therefore its

requirements drive the design of the placement framework. It is important to understand the main tasks
that mappers will typically perform, even though the internal structure of each individual mapper is
outside of the control of the framework (the programmer who develops the mapper has complete control
over its internal structure). Figure 1 shows the main tasks that mappers typically perform and the types of
information they require.
• Determining Placement Problem Needs - The mapper must first extract the details of the placement

problem from the problem description provided by the initiator - e.g., what objects are involved,
what constraints are imposed on their placement, and what resources are needed to fulfill the request
(see section 2.2.1 for discussion of problem description format).

• Determining Resources Available - In order to make a placement decision the mapper must
determine which target resources are available. As part of this process, the mapper must decide on a
strategy for how far and where to search for candidate resources. This is an important decision
because the potential scale of a Legion system makes it impractical to search for all resources
available. Section 2.2.3 discusses gathering information on available resources in more detail.

• Gathering Object Information - Mappers will also need information about the objects involved in
the placement decision, including object properties, placement constraints, current location, etc.
Mappers will collect this information from various sources such as databases, class objects, etc. See
section 2.2.4 for more detail.

• Determining Placement Decision - The ultimate goal of the mapper is to use the information it has
gathered to make a good placement decision for the problem. The algorithm used for this can be of
any form - e.g. the mapper may break the problem into pieces, solving each piece in a different
manner, possibly even sub-contracting another mapper to solve some pieces of the problem. Once a
placement is determined, the mapper must format the placement decision in such a way that it can be
understood by an implementor. Section 2.2.5 discusses the format of placement decisions in more
detail.

Figure 4 - Typical Mapper Functionality

problem
Determine
Placement

Needs

Information
Needed

Resources

description

I

N

T

E

R

F

A

C

E
Objects
Involved

Determine
Resources
Available

Gather
Object

Info

Constraints

Resources
Available

Other Info

Determine
Placement
Mapping

placement
decision

1/16/96

Page 8

2.2.3 System Supported Information
One of the key components in making any placement decision is gathering all the necessary

information that will drive the decision process. Certain types of information will be needed by many or
all of the different placement mappers that will exist in Legion. To facilitate the task of developing
placement mappers, the system should maintain and provide access to commonly needed placement data
whenever practical. The challenge is to determine which types of information are worth maintaining,
what their precise semantics are, how they will be maintained efficiently, and how they will be accessed
by mappers (and other objects as well). Some types of information that may fit into this category are:
• Current Resources Available - This information will be used by every mapper in order to make

proper placement decisions. The design of such a mechanism must consider several attributes of this
type of data, including the scale of the system, the high variability of resource availability, and the
fact that placement decisions can be greatly affected if this information is unavailable (may want to
consider replication or fault-tolerance mechanisms). One possible design is to create a number of
distributed daemons each responsible for gathering data about a portion of the overall system (this
approach has been used many times in distributed systems). Information about larger portions of the
system can be collected by retrieving data from the appropriate local daemons.

• Host Attributes - This includes both (relatively) static information (e.g. processor type, OS type/
version, attached devices, memory size, CPU performance metrics, security policies, and reservation
policies) and dynamic information (CPU load, memory available, run queue length, temporary and
swap space available). The Legion design includes the notion of host objects, which are responsible
for loading and starting object implementations on local hosts once a placement decision has been
made. These host objects are a natural place to maintain information about host characteristics.

• Networking Attributes - The capabilities of the underlying network can be a key factor in
determining the placement of distributed objects. Network performance properties, e.g. latency,
bandwidth and current network load, affect inter-object communication properties and therefore
affect the performance of tasks that involve multiple distributed objects. For applications which need
network performance guarantees, such as video or soft real-time applications, it is necessary to know
what quality of service guarantees are supported between hosts. Modelling network capabilities for a
large system is a very difficult challenge and needs to be addressed in distributed system research.
However, an in depth analysis of providing network information in a distributed system is beyond
the scope of our work.

2.2.4 User Level Information
The key ingredient to the success of any placement mapping mechanism is accurate and detailed

information. All mapping techniques require some information about each of the objects involved in a
placement problem. At a minimum the mapper must know about placement constraints for each object
(see below), but may also require additional information that is specific to each object or its class. Some
examples are the number of records or total size of a data object, or the average FLOPs required per data
item for a filtering object. Because every object and class is different, the mechanism for describing
object/class specific data must be very flexible to allow specification of new types of information as new
classes develop. One possible approach is to model the data as a 2-tuple, consisting of a name string and
a value string1. This mechanism is very flexible and extensible as long as name conflicts are avoided.

Since object-specific placement information is often needed while the object is inactive, it cannot
be placed within the object itself. A natural place to store this information is within an object’s class
object, which already is responsible for maintaining other information about the object. The class object
can also store class wide information that applies to all objects of that class. The definition of the class
base class can be modified to add storage, update, and retrieval functionality for both class and object

1. This is the same approach as that taken for shell variables in Unix.

1/16/96

Page 9

specific data. All Legion classes are derived from the class base class, so this functionality will be
automatically inherited by all Legion classes.

Object Placement Constraints

In order to determine the feasibility of a placement mapping, one must know the placement
constraints for each object in the mapping. Constraints are not hints - they place hard restrictions on
where objects can be placed. Object placement constraints arise due to several factors, including 1) target
resource properties required by the object, 2) implementation availability, 3) security concerns, and 4)
fault-tolerance concerns.

In order to perform properly, each object must be placed on a host that contains all of the
necessary hardware and software required to support it. For instance, the host must have enough
memory, swap space and temporary storage to properly execute the object’s implementation. The host
must also have all of the necessary system software available to support the object. Some objects may
require that special hardware be available to the target host, such as a printer, display device, camera, etc.
In addition, the object must have an implementation available for the type of processor and operating
system found on the host.

Security concerns may also place some restrictions on where an object is executed. When an
object is executed remotely, the machine on which it runs may ultimately be under someone else’s
control. For objects that require tight security, this poses a risk because the root user (to use Unix
terminology) can look into the object, e.g. by looking at memory or by forcing it to produce a core file.
So, objects may only trust hosts at certain locations or of certain types.

One of the design goals for the Legion placement mechanism is to allow users to employ
different placement mappers in different situations. This means that the placement decision for an object
may be made by potentially many different mappers over the course of its existence. Also, the same
mapper may operate on different objects and classes of objects over time. Therefore it is crucial that there
be a common method of describing constraints within Legion. Otherwise mappers will be very
constrained in the types of objects with which they can work and vice versa1.

2.2.5 Placement Decision Implementation
In order to discuss the role of the placement implementor, it is important to understand how

objects will be activated in Legion. Legion is purposely designed to provide a high degree of autonomy
to each member organization. Ultimately, each organization has final authority over its resources - when
they are available to the system, which objects are permitted to execute on them, etc. To enable local
control of resources, Legion supports the notion of local jurisdictions for each organization. Each
jurisdiction encompasses a set of resources, i.e. hosts, and is managed by a local jurisdiction magistrate
(JM) object which enforces the policies of the organization for that group of resources. All requests to
place objects on resources within the jurisdiction, must go through the JM, which will decide if the
activation request will be honored or not. The magistrate may reject the request for any reason, e.g. the
resource is now unavailable, is too highly loaded, is reserved by someone else, or the security or other
policies of the jurisdiction do not permit execution of the particular object or class of object.

On the other hand, Legion also supports the sovereignty of each object. Each object may have
constraints on where it can be placed (section 2.2.4) for reasons ranging from the hardware and software
requirements to security issues. These constraints are enforced by restricting access to the object
persistent representation (OPR) of the object which is needed to execute any persistent object. At any
time the OPR of an object is stored and managed by some JM which the object trusts. It is the job of the
JM to enforce the placement policies of the object by not transferring its OPR to another JM that the

1. Note that a common constraint description mechanism does not imply that all mappers will work with all objects -
there are other issues, such as the types of information available about the object, etc.

1/16/96

Page 10

object does not trust.
It is the job of a placement implementor to translate the placement decision of a mapper into an

activation plan and then to carry out the plan by issuing the proper requests to the appropriate JM’s.
There are several interesting design issues that must be resolved for the implementation process:
• Mapper/Implementor Interface - The biggest challenge is defining how to describe the placement

decisions. A simple solution is for the mapper to produce a set of object ID/host ID pairs specifying
which objects are to be activated and on which hosts. Unfortunately, this simple solution is not very
flexible. A better design would allow the mapper to specify a number of equivalent resources for an
object or a series of alternative solutions in case the first mapping cannot be implemented. The
mapper should also be able to describe any reservations which it has negotiated, so that the
implementor can use them (or release them if for some reason the placement fails). Finally, to help
resolve conflicts over shared objects (see exceptions section, below) the mapper may wish to specify
the priority of the placement of each object.

• Design Jurisdiction Manager Interface - A thorough and precise interface must be defined to
handle all aspects of activating objects, including placement failures, object migration and
deactivation, querying of jurisdiction placement, security, and reservation policies, OPR transfer and
storage, etc.

• Placement Implementation Exception Handling - There are several reasons why the
implementation of a placement decision may fail, e.g. the object’s placement constraints are violated,
the destination host rejects the request or becomes unavailable, some key object fails, or a placement
conflict arises for a shared object. As alluded to above, part of the answer to placement
implementation failures may be to try another alternative mapping supplied by the mapper. However,
when a problem cannot be resolved the failure semantics of the implementor must be defined.

• Placement Implementation Bookkeeping - The final part to implementing a placement decision is
making sure that any bookkeeping required by the system is completed. For example, a newly
activated/migrated object’s location and other placement information (e.g. priority) must be recorded
(probably in its class object) and appropriate objects must be notified (e.g. the initiator or some
object that will monitor the activated object’s progress).

3 Research Agenda
The research proposed in this document has two primary goals. The first goal is to analyze the

distributed system placement process in detail to determine the key components involved and key issues
that need to be resolved. Documenting the placement process and developing a model to describe it is not
only a necessary prerequisite for the remainder of the research proposed here, but also provides a
foundation for future research and discussion of placement issues within the research community. As
such, the placement process model and description will be one of the key contributions of this research.

The second goal is to design a framework to support the placement process within the Legion
system. Such a framework will serve several purposes. The design and implementation of an actual
framework will provide additional insight into the placement problem, which will in turn drive new
refinements to our model of the placement process. Furthermore, the Legion design will provide a
specific instance of a placement framework as a proof of concept for our approach. This is the crux of the
research agenda - to prove that our framework approach can support the placement needs of a large
diverse distributed system. The Legion design and implementation will provide the platform upon which
to evaluate how well our framework approach is able to meet the goals identified in section 1. Finally,
the implemented framework will be a useful artifact and become the actual Legion placement mechanism
(assuming our design proves to be acceptable).

The rest of this section describes the research agenda in greater detail. Section 3.1 describes the
development of the placement process model. Section 3.2 describes our approach for developing the
Legion object placement framework. An initial "strawman" design for the Legion framework is presented

1/16/96

Page 11

in Appendices A and B (Appendix A describes the design while Appendix B presents class interface
definitions). Finally, section 3.3 details how we will evaluate our Legion framework design.

3.1 Development of a Placement Process Description and Model
The analysis and decomposition of the distributed system placement problem has already been

partially completed as part of the research for this proposal. The placement process model and
component descriptions presented in Section 2 detail a portion of the work accomplished to date in this
area. The description of the placement process will be further refined as feedback is provided by
experience gained in designing the prototype framework and by the continued development of other parts
of the Legion system - e.g. the security and fault-tolerance mechanisms.

3.2 Design and Implementation of Object Placement Framework
Because designing and implementing an object placement framework is breaking new ground, it

is difficult to assess the effort and risks involved in doing so, especially since the underlying software
infrastructure (Legion) is not yet complete. It is important to realize this element of risk and to plan the
research agenda accordingly. Development of the placement framework will follow the spiral model [5]
of software engineering, which is a risk-driven approach to the development and enhancement of
software. What this means is that we will start with an initial framework design (presented in Appendices
A and B) and iteratively enhance pieces of the design that were found to be deficient during evaluation of
an earlier phase. Each phase will begin with the specification of a framework feature to be added or
enhanced. Some examples include upgrading the placement constraint specification mechanism to be
more expressive, adding support to gather and store information about network properties, or enhancing
the placement conflict resolution mechanism. After alternative designs have been identified, the benefits
and risks associated with each alternative will be evaluated. Only if a design alternative is perceived to be
beneficial enough to warrant the risks involved will the feature be implemented. In this manner, the best
implementation can be developed within a reasonable amount of time. Some of the risks anticipated in
this effort include overambitious design (implementation effort must be in line with the time frame given
for the project and not preclude finishing the rest of the research agenda) and dependence on unfinished
or volatile functionality under someone else’s control.

The design of the Legion placement framework will focus on resolving the key issues identified
in section 2 and will be driven by the design goals defined in section 1. At a minimum the Legion
framework must include functionality in two basic areas: 1) mechanisms to describe, store, and acquire
information about resource availability and resource and object attributes; and 2) mechanisms to effect a
placement decision. These two mechanisms represent the core functionality necessary for supporting user
developed placement mappers - (1) provides the necessary inputs and (2) provides the vehicle to carry
out mapping decisions. Using our spiral development model, the design will proceed in phases, each
phase improving upon the previous phase. Before accepting each successive phase, the suitability of the
new design will be verified by translating a representative set of placement algorithms using the
proposed new design. This process will hopefully expose design flaws before excess time is wasted on
implementation. Appendix C describes several application domains that not only are representative of the
types of applications we expect to run in the Legion environment, but also are diverse in their placement
needs. Placement algorithms suitable for these domains will form the basis for the design verification
suite.

3.3 Analysis of Framework Design
The final part to the research effort proposed here is to analyze the Legion framework we

develop. The first part of our analysis is to justify our design by showing that it is in fact sufficient to
support object placement for diverse placement mappers. We will use two approaches for justifying the
sufficiency of our design. The first approach will be written arguments about the power of the

1/16/96

Page 12

mechanisms we have designed - these will be developed both during the design process and afterwards as
a post-design phase. The second approach will be to do a detailed paper design of a diverse and
representative group of placement algorithms. This is basically the same process we will use to evaluate
intermediate designs, except for the level of detail and number of algorithms employed. Results of the
paper design process will be documented, including any exposed shortcomings of our framework, ease of
design, etc. To further analyze the framework we will implement several of the simple placement
algorithms using the framework implementation.

The second part of our analysis will focus on whether our approach to supporting user definition
of placement algorithms adds value to the object placement process. To do this we will compare the
performance achieved by several applications/objects using simple user defined placement mappers
tailored to their needs versus random placement and perhaps another general placement technique.
Through this, we hope to demonstrate the potential that our approach holds, even employing relatively
simple placement algorithms.

3.4 Summary of Research Artifacts
The research proposed in this document will generate several lasting (and hopefully useful)

artifacts.
• High Level General Model of Placement Process - this model will provide a basis for discussion of

placement issues and will hopefully be extended and refined in future efforts.
• Legion Object Placement Framework - the specification of the framework will define the Legion

placement mechanism and can be used as both a reference and as the basis for testing the compliance
of Legion system placement mechanisms. The framework design will also include a justification of
the design, in particular that the mechanisms provided are sufficient to support a wide range of
possible placement mappers.

• Implementation of Legion Placement Framework - the framework implementation developed as
part of this research will be incorporated into the implementation of the full Legion system.

• Evaluation of Framework Design - we will provide the results of our evaluation of the placement
framework. In particular, the evaluation will include 1) a brief performance analysis of several
simple mappers versus random or round-robin placement; and 2) analysis of the framework’s ability
to support a diverse range of mappers.

4 Related Work
The problem of placing tasks on shared resources is certainly not new. The object placement

problem is really a special case of the general task scheduling problem, which has been studied at great
length in the computer science, systems and operational research literature. Research efforts have
spanned a wide range of issues and viewpoints. Some of the different efforts have included development
of mathematical models for scheduling problems [8], proofs of the complexity of optimal placement
determination, modelling of computer system behavior, and the development of a large number and
variety of scheduling and placement algorithms and systems. One of the principle results of scheduling
theory research is that optimally solving general forms of the scheduling problem has been proven to be
NP-hard. In practice this means that optimally solving most scheduling problems (or in our case
placement problems) is intractable.

Point Solutions

Since the complexity of the scheduling problem was proven, much of the research in resource
scheduling has been devoted to finding either 1) constrained situations for which determining the optimal
schedule is tractable or 2) methods to generate near-optimal or at least good scheduling decisions. The
search for tractable optimal scheduling cases has had limited success - more often than not these efforts

1/16/96

Page 13

have produced either solutions with limited applicability or proofs of more NP-hard situations. The
efforts aimed at finding good approximate schedules have had significantly more success. These efforts
can roughly be grouped into two non-mutually exclusive approaches. The first approach has focused on
producing better searching algorithms that can more efficiently and accurately search the solution space.
Examples of such techniques include heuristically directed search engines, simulated annealing, and
genetic algorithms. The second approach has focused on improving the accuracy of the objective
functions or the precision of their inputs. Research has included identifying indicators that more
accurately estimate actual system and program performance and constructing more sophisticated models
of programs, computer resources and their interactions.

All of these efforts have produced literally hundreds of different scheduling algorithms and
systems. In order to fine tune scheduling decisions, many of these algorithms are highly specialized for
specific program types or resource configurations. For example, algorithms have been tailored to exploit
knowledge of certain common communication patterns (e.g. 1D, 2D, ring, or tree), or to exploit the
specific properties of popular supercomputer architectures (e.g. their model of parallelism,
interconnection topology, I/O properties, etc.). Each of these algorithms performs well for certain classes
of scheduling problems and user goals, but no single algorithm has emerged that can satisfy the needs of
all users. I like to think of each algorithm as being well suited for a particular point in the space of all
scheduling situations. Hence I call these algorithms and systems point solutions.

While none of the myriad of point solutions presented in the literature solves the general task
placement problem, they are related to our work in the sense that each of these solutions can be
transformed into a placement mapper in our model1. Therefore, existing algorithms and new research
efforts and trends (e.g., the recent trend towards exploiting heterogeneous supercomputer resources)
suggest guidelines for the design of our placement framework.

Load Sharing and Load Balancing Systems

Many algorithms and systems have been developed to support load sharing2 among a set of
distributed hosts. These efforts share a common goal with Legion - to better utilize the power of a
distributed computer system by supporting remote sharing of resources. The load sharing systems
developed to date vary widely in a number of dimensions, e.g. transparency of remote execution,
scalability, support for heterogeneous resources, placement objective function(s), and assumptions about
system configuration just to name a few. The following section describes the significant current or recent
research efforts aimed at load sharing in distributed systems. Each of these efforts is aimed at a particular
category of placement problems and therefore amount to point solutions. However, studying them is
important to understand where current research is headed and how the effort proposed here is truly
unique.

The Utopia system [22] developed at the University of Toronto was designed with many of the
same objectives that we have identified for our proposed framework. Utopia is designed to support
remote execution of tasks transparently, to be scalable to at least 1000s of hosts, to support and exploit
host heterogeneity of various kinds3, and to support a wide range of application types, including
interactive and parallel applications. However, while the objectives are similar, the philosophy for how to
achieve them is very different. Utopia was designed to support a particular placement policy deemed to
be good enough for most placement requests. Because of this, the design of Utopia is tailored to

1. Unfortunately, many algorithms will likely be inappropriate or will need to be modified to work in a dynamic distrib-
uted environment.

2. Load balancing systems are a subset of load sharing systems. In load balancing systems, such as LoadLeveler [14],
NQS [15] or its successor PBS [13], the objective function is designed to balance work across all available proces-
sors. Load sharing systems support other objective functions as well, e.g. minimizing completion time of an applica-
tion.

3. Configurational, architectural and operating system heterogeneity.

1/16/96

Page 14

specifically support the chosen placement algorithm. For example, the types of information available
about hosts and other resources are built into the system design and fixed. The same is true of the types
of placement constraints that can be specified as well as many other pieces of the system. Because of the
closed nature of the Utopia design employing different placement strategies can be difficult depending on
the placement algorithm.

Two other contemporary load sharing projects deserve mention. The NOW (Network Of
Workstations) project at Berkeley [1] is focusing on harnessing the power of relatively cheaper
workstations for applications that have traditionally been the purview of expensive supercomputers. The
ultimate goal is to provide both better application performance while significantly reducing the cost of
system hardware components. Their approach is to better exploit all of the resources of a cluster of
workstations to attack three of the main performance bottlenecks for applications by: 1) expanding the
memory available to a single application without requiring costly swaps to disk by using available RAM
on other workstations (i.e. network RAM); 2) improving I/O performance by caching files across all
workstations; and 3) supporting parallel computation across all workstation nodes. Another effort
connected with the NOW project is exploring the effects of running parallel programs in a non-dedicated
rather then a dedicated environment [3] and developing methods for better supporting parallel program
scheduling in a non-dedicated environment [9].

The Condor project [6,17] at the University of Wisconsin is a somewhat earlier attempt (1990-
1991) at supporting load sharing in a workstation environment. Condor is designed as a distributed batch
system, i.e. jobs are submitted to the Condor system which determines a "fair" placement for each job.
One of the interesting policies chosen by the Condor developers is to ensure that machine owners are
impacted as little as possible by Condor scheduled jobs. To implement this policy, Condor automatically
checkpoints jobs and migrates them to another machine as soon as it detects that the machine’s owner
has returned. Overall, the basic Condor system is a simple and effective load sharing mechanism.
However, it is fairly rudimentary in its functionality and has several drawbacks for the large scale diverse
environment we wish to support, e.g. it supports only one simple placement and migration policy,
requires a centralized "machine manager" (scalability problem), contains no support for co-scheduling,
etc. A recent extension to Condor, the Condor Application Resource Management Interface (CARMI)
[18] was developed to address several of these drawbacks with respect to resource management. CARMI
provides resource management services to allow applications to explicitly acquire new resources (hosts),
create new processes on acquired resources, and be notified when resources are lost or reclaimed by
workstation owners. The mechanisms for describing resource attributes and defining resource classes
deserve special attention. Resource attributes are exported by each resource using what appears to be a
very similar mechanism to the name-value tuple mechanism discussed in our strawman design
(Appendix A). Resource classes are defined using logical expressions which can reference attributes
exported about the resources - this is very similar to one of the design possibilities we identified - the use
of a PROLOG-like language to describe placement constraints (Appendix A).

Distributed Heterogeneous Supercomputing (DHS)

Perhaps the hottest research topic in the area of scheduling/placement in distributed systems is
developing methods to best exploit heterogeneous supercomputing resources. The advent of gigabit
networks makes cooperative computation using multiple supercomputers more feasible while the high
cost of supercomputers provides plenty of economic incentive for maximizing their productivity. Freund
and Conwel introduced the concept of superconcurrency [10,20], which is an approach for maximizing
the performance of a given suite of heterogeneous computers by placing tasks on the best-matching
machine1. By minimizing the computation time for each task in the system, superconcurrency strives to
improve both system throughput and application performance. Freund, et al, are now applying the

1. Matching tasks to machines is achieved through code profiling and analytical benchmarking.

1/16/96

Page 15

superconcurrency approach to the SmartNet project at the Naval Research and Development (NRaD)
facility, but unfortunately there are no publications available yet.

The Superconcurrency/SmartNet work does not account for some important application
characteristics, such as I/O properties. The work by Ghafoor and Yang on the Distributed Heterogeneous
Supercomputing Management System (DHSMS) [11] at Purdue University addresses some of these
issues and provides a systematic methodology for code profiling and analytical benchmarking. They
propose a framework for hierarchically classifying supercomputer characteristics that forms the basis for
machine categorization, code profiling and analytical benchmarking. One advantage of their
classification scheme is that it is general and flexible - each site can define its own classification scheme
based on the properties of its machines.

Other Related Work

The Zoom project [2] has focused on developing a model to describe heterogeneous applications.
The model is hierarchical in that it supports three levels of detail. The first level describes only the
overall structure of the application; the second level elaborates the first by adding the available
implementations for each program component and by further describing the communication patterns and
characteristics of the application; finally the third level adds details about communication granularity,
data conversion requirements and legal pairings of component implementations. The goal of this effort is
to provide an abstract representation for heterogeneous programs that can be used as a foundation for
developing heterogeneous program development and scheduling tools. To this end, a further effort [21]
has explored coupling the Zoom representation with the HeNCE graphical language and design tool to
develop heterogeneous programs on top of PVM. A current focus of the Zoom project is exploring how
to use the information provided by the Zoom model to develop scheduling support for heterogeneous
applications. Such a research effort will provide valuable guidance in our own effort to develop a
placement framework. We currently have a working relationship with Rich Wolski and hope to work
closely with him. If possible we would like his scheduling work to be implemented on top of our Legion
framework.

Related Work Conclusion

Unfortunately, none of the systems to date adequately supports all of the objectives of the Legion
placement process. In particular most systems fall short in at least one of the following areas: scalability,
support for heterogeneous resources, or user customizability of the placement mapping process. In
addition, the current systems view tasks as the basic placement/scheduling unit, whereas Legion views
objects as the basic unit. Therefore, these systems do not address object-related issues such as retrieving
object persistent state or resolving placement conflicts for shared objects. In the final analysis, there are
no scheduling/placement research efforts that approach the problem in the same manner as the work
proposed here. There is a certain amount of synergy between the research discussed in this section and
our proposed work in that the techniques employed by these systems provide the guidelines for what is
needed in a general purpose object placement framework.

5 References
[1] Thomas E. Anderson, David E. Culler, David A. Patterson, et al, "A Case for NOW (Network of Worksta-

tions)", Principles of Distributed Computing, August 1994, also http://now.cs.berkeley.edu/Case/case.html.

[2] Cosimo Anglano, Jennifer Schopf, Rich Wolski, Francine Berman, "Zoom: A Hierarchical Representation
for Heterogeneous Applications", University of California San Diego Technical report CS95-451, October
1995.

[3] Remzi H. Arpaci, Andrea C. Dusseau, Lok T. Liu, "The Effects of a Non-Dedicated Environment on Parallel
Applications", http://http.cs.berkeley.edu/~dusseau/Papers/papers.html, 1993.

[4] Larry Bergman, Hans-Werner Braun, et al, "CASA Gigabit Testbed: 1993 Annual Report", Caltech Concur-

1/16/96

Page 16

rent Supercomputing Facilities Technical Report CCSF-33, May 1993.

[5] Barry Boehm, "A Spiral Model of Software Development and Enhancement", IEEE Computer, Vol. 21, pp.
61-72, May 1988.

[6] Allan Bricker, Michael Litzkow, Miron Livny, "Condor Technical Summary", University of Wisconsin
Department of Computer Sciences Technical Report 1069, January 1992.

[7] W.F. Clocksin, C. S. Mellish, Programming in Prolog, 2nd Edition, Springer-Verlag, Berlin, 1984.

[8] Edward G. Coffman, Jr., Editor, Computer and Job/Shop Scheduling Theory, John Wiley and Sons, New
York, New York, 1976.

[9] Andrea Dusseau, Remzi H. Arpaci, David E. Culler, "Re-examining Scheduling and Communication in Par-
allel Programs", University of California at Berkeley Computer Science Technical Report UCB/CSD-95-
881, 1995.

[10] Richard F. Freund, D. S. Conwel, "Superconcurrency: A Form of Distributed Heterogeneous Supercomput-
ing", Supercomputing Rev., Vol. 3, No. 10, October 1990, pp. 47-50.

[11] Arif Ghafoor and Jaehyung Yang, "A Distributed Heterogeneous Supercomputing Management System",
IEEE Computer, Vol. 26, No. 6, June 1993, pp. 78-86.

[12] Andrew S. Grimshaw, William A. Wulf, Jim C. French, Alfred C. Weaver, Paul F. Reynolds, Jr., "Legion:
The Next Logical Step Towards a Nationwide Virtual Computer", UVA CS Technical Report CS-94-21,
June 1994.

[13] Robert L. Henderson and Dave Tweten, "Portable Batch System - Requirements Specification Revision 1.5",
NASA Ames Research Center, April 1995.

[14] IBM Corporation, IBM LoadLeveler: User’s Guide, 1993.

[15] Brent A. Kingsbury, "The Network Queuing System", Sterling Software, Palo Alto, CA, September 1994.

[16] Mike Lewis, Andrew S. Grimshaw, "The Core Legion Object Model", UVA CS Technical Report CS-95-35,
August 1995.

[17] Mike Litzkow, Miron Livny, "Experience with the Condor Distributed Batch System", IEEE Workshop on
Experimental Distributed Systems, Huntsville, AL, October 1990.

[18] Jim Pruyne and Miron Livny, "Parallel Processing on Dynamic Resources with CARMI", Workshop on Jon
Scheduling Strategies for Parallel Processing, International Parallel Processing Symposium (IPPS), April
1995.

[19] Bjarne Stroustrup, The C++ Programming Language, 2nd Edition, Addison-Wesley, Reading, Mass., 1994.

[20] Mu-Cheng Wang, Shin-Dug Kim, Mark A. Nichols, Richard F. Freund, Howard Jay Seigel, Wayne G.
Nation, "Augmenting the Optimal Selection Theory for Superconcurrency", Proceedings Workshop on Het-
erogeneous Processing, 1992, pp. 13-22.

[21] Richard Wolski, Cosimo Anglano, Jennifer Schopf, Francine Berman, "Developing Heterogeneous Applica-
tions Using Zoom and HeNCE", Proceedings of the Workshop on Heterogeneous Computing Scientific Com-
puting, Santa Barbara, CA, April 1995.

[22] Songian Zhou, Xiaohu Zheng, Jingwen Wang, Pierre Delisle, "Utopia: A Load Sharing Facility for Large,
Heterogeneous Distributed Computer Systems", Software Practice and Experience, Vol. 23, No. 12, Decem-
ber 1993, pp. 1305-1336.

1/16/96

Page 17

Appendix A - Initial Framework Design
The following sections describe an initial "strawman" design for the object placement

framework. It is intended to provide a concrete starting point for the design process while also
demonstrating the feasibility of the placement framework proposed in this document. This strawman
design is definitely not intended to be the final design. Subsequent refinement phases will lead to a richer
and more capable framework.

A.1 Object Data
Data about objects is important for making placement decisions and therefore, there must exist

mechanisms to describe, store, and access information about each object in Legion. The first question
that must be answered is how such data will be represented. For the strawman design, this data will be
represented as a list of named data items. The syntax chosen for object data description is similar to that
used in PROLOG [7] for describing facts, i.e. name(value_list). There are two reasons for choosing
such a representation. First, it is simple and expressive enough to describe a wide range of data types,
including lists and structured data. Second, one of the options under consideration for describing
placement constraints in future designs is to use PROLOG-like rules statements. So using a PROLOG-
like data representation may yield benefits later. Figure 2 shows the syntax for data items and some
examples.

Object data will be stored in two places - the object itself and in the object’s class object. While
the object is active, it will be the authoritative location to access its data. However, when an object is
inactive, some of its data must still be accessible (e.g. to make placement decisions). Therefore, this type
of information will be stored in the object’s class object. Access to such data (retrieval, update removal)
will be accomplished via member functions in the Legion class and Legion object base classes.

A.2 System Provided Data
The Legion system will initially provide information only about system hosts. To accomplish

this, a "host" base class will be created which among other tasks, will maintain certain types of host-
related information. Since instances of the host class will be Legion objects, this information will be
represented and stored just like object information for any other Legion object (see above). Host
information maintained will include: processor type, operating system type and version, memory size,
temporary disk space available, swap space available, current load, frequency of update for current load,
5 minute load average, 15 minute load average, current queue length, MIPs rating, FLOPs rating,
SPECMarks rating, special devices attached, etc.

Figure 5 - Object Data Description Syntax and Examples

Syntax:
DATA_ITEM => ID(VALUE_LIST).
VALUE => INTEGER | FLOAT | STRING | [VALUE_LIST]
VALUE_LIST => VALUE, VALUE_LIST | VALUE

Examples:
size(100).
current_load(1.2).
supported_platforms([’sparc2/SunOS5.x’, ’sparc2/SunOS4.x’, ’mips/IRIX5.x’]).
platform_implementation(’sparc2/SunOS5.x’, ’implementation1_ID’).
platform_implementation(’mips/IRIX5.x’, ’implementation2_ID’).

1/16/96

Page 18

A.3 Selecting Object Implementation
In order to realize a placement decision, the implementor must be able to determine whether an

executable exists for the specified host type and if so where it is (mappers may also use this information
to avoid making infeasible decisions). In the initial design, this information will be stored in the object’s
class object just like any other data. The data format will be a series of data items named
"platform_implementation", each containing a tuple of string values - 1) the name of the platform (some
standard for platform names will need to be determined), and 2) the name of the implementation for the
specified platform. The last two lines in Figure 2 show examples of object implementation entries. If no
entry is made for a particular platform, that implies that the platform is not supported.

A.4 Placement Decision Description
Once a mapper has determined what it thinks is a good placement mapping it must describe its

decision so that it can be implemented. For the strawman design, placement decisions will be represented
as a set of individual object placement descriptions, each of which will contain the ID of the object and
an ordered list of host IDs. The first host in the list defines the primary choice of the mapper for placing
the specified object; the remaining hosts in the list provide an ordered sequence of alternative selections
in case the placement on the primary host fails for some reason.

A.5 Object Placement Constraints
To keep the initial design simple, only rudimentary support will be given for defining constraints

for object placement. Object constraints will consist of either 1) a list of good hosts and/or magistrates
OR 2) a list of prohibited hosts and/or magistrates. This information will be stored with the rest of an
object’s data in its class object. The following defines the format and meaning of each type of constraint.
• "Positive" constraints - the combination of hosts defined by "good_hosts" and "good_magistrates"

are the ONLY hosts that are suitable for the object.
- good_hosts([HOST_ID1, HOST_ID2, ...]). - any host in list is acceptable.
- good_magistrates([MAG_ID1, MAG_ID2, ...]). - any host watched over by the given
magistrates are acceptable.

• "Negative" constraints - the combination of host defined by "bad_hosts" and "bad_magistrates" are
the ONLY hosts that are NOT suitable for the object.

- bad_hosts([HOST_ID1, HOST_ID2, ...]). - all hosts in list are unacceptable.
- bad_magistrates([MAG_ID1, MAG_ID2, ...]). - no host watched over by the given
magistrates is acceptable.

A.6 Mapper Interface and Placement Problem Description
Each mapper can define its own interface if its designer wishes. However, to support automatic

placement there needs to be a standard interface that all default mappers use. To encourage non-default
mappers to also support a common interface, the standard interface provides a bit more functionality than
is strictly needed for default placement. The standard mapper interface is described below:

placement_mapping create_mapping(object_description_list, problem_data_list)
• placement_mapping has the format described in section A.4.
• object_description_list has the form [object_desc1, object_desc2, ...].
• each object_desc has the following format:
• object_desc(object_ID, [data_item1, data_item2,...]).

each data_item uses the standard format of object data items (see section A.1).
• problem_data_list allows the caller to pass in additional, problem-wide information to

the mapper - the format is the same as the data_item list within object_desc.

1/16/96

Page 19

A.7 Automatic Activation Support
In order to enable the system to perform automatic object activation, the system must be able to

select the appropriate default mapper, issue a properly formatted request to the selected mapper, and
receive the placement decision so that the system can implement it. To support default mapper selection,
each Legion object will add a data item (default_mapper(MAPPER_ID)) to its object information
database stored in its class object (if no default mapper is specified, then a system-wide default mapper
will be invoked). To enable the system to properly invoke the default mapper, all default mappers will be
required to support the standard interface described above (section A.6). The automatic activation
mechanism is responsible for formatting the required arguments and invoking the default mapper. The
object_description_list will consist of a single object description while the problem_data_list will
include a single data item - the ID and current address of the caller whose invocation started the
automatic placement process. The latter allows the mapper to determine the location of the caller and to
possibly retrieve additional about it and its intended use of the to-be-placed object.

1/16/96

Page 20

Appendix B - Strawman Class Interfaces
For the strawman design introduced in section A, the following sections describe the basic

interface features for the classes involved in the object placement within Legion. The interfaces are by no
means complete, but provide some insight into what is needed and how the classes will be used. The
interfaces are described using C++-like function declaration syntax [19].

B.1 Legion Object Base Class

Accessing Object Info

data_item_list get_all_data_items();
data_item get_data_item(data_item_name);
data_item_list get_data_item_list(data_item_name_list);
boolean update_data_item(data_item or data_item_list);
boolean remove_data_item(data_item_name or name_list);

B.2 Legion Class Base Class

Accessing Object Info

These are the mechanisms for accessing data about individual objects of a particular class. This
information is stored in the object’s class object so that it can be accessed while the object is inactive.

data_item_list get_all_object_data(object_ID);
data_item get_object_data_item(object_ID, data_item_name);
data_item_list get_object_data_item_list(object_ID, data_item_name_list);
boolean host_OK(object_ID, host_ID); // is host suitable for executing this object?
boolean update_object_data_items(object_ID, data_item_list);
boolean remove_object_data_items(object_ID, data_item_name_list);

Accessing Class-Wide Info

Some data about objects will be stored on a class-wide basis because it is common to all or most
class instances. If the same data item is defined at both the class and object level, than the object level
data overrides the class level information.

data_item_list get_all_class_data(object_ID);
data_item get_class_data_item(object_ID, data_item_name);
data_item_list get_class_data_item_list(object_ID, data_item_name_list);
boolean update_class_data_items(object_ID, data_item_list);
boolean remove_class_data_items(object_ID, data_item_name_list);

Locating and/or Activating Objects

Legion_addr get_object_address(object_ID); // get address if object is active
Legion_addr activate_object(object_ID, host_ID); // activate object on specified host.
boolean deactivate_object(object_ID, Legion_addr); // deactivate object.

B.3 Legion Host Base Class

Accessing Host Info

Host objects are full-blown Legion objects and will therefore derive the basic object information
manipulation functions. In addition, hosts will have:

boolean object_OK(object_ID); // does host allow object to execute locally?

Activating/Deactivating Objects

1/16/96

Page 21

Legion_addr execute(implementation_ID);
boolean deactivate(Legion_addr);

B.4 Legion Magistrate Base Class

Finding Available Hosts

These functions are used to gather information about available hosts in the system.
host_list get_all_avail_hosts(); // return all hosts currently available within jurisdiction.
host_list get_avail_hosts(host_ID_list); // return hosts available out of given list.
host_list get_hosts_accepting_object(object_ID); // return hosts that accept given object.

Activating Object/Migrating Object Persistent Representation

boolean store_OPR(object_ID, OPR);
OPR get_OPR(object_ID);
boolean move_OPR(object_ID, magistrate_ID);
Legion_addr activate(object_ID, host_ID);
boolean deactivate(object_ID, Legion_addr);

1/16/96

Page 22

Appendix C - Placement Scenarios
To determine the needs for the Legion placement framework one must study the different

scenarios under which it will likely be used. After looking at a number of possible scenarios I have
grouped them into two categories: single object scenarios and multiple object scenarios. Roughly
speaking, single object placement is the placement of one object at a time independent of the placement
of other objects, while multiple object placement is the coordinated placement of more than one object at
once. There is a grey area when only one object is placed, but its placement process relies on information
about the current location of other objects. I have chosen to include this case under single object
placement, though an argument can be made to the contrary.

This single/multiple object placement categorization is useful for a number of reasons. First, the
single object placement problem is easier to analyze and easier to understand and therefore makes for a
good starting point on the subject. However, single object placement can be viewed as a special case of
multiple object placement and therefore any observations about single object placement will provide
insight into multiple object placement as well (i.e. commonalities and differences between them will
emerge - both of which are important). Second, it is likely that single object placement will be the
dominant placement method in Legion and therefore deserves special attention. Whenever possible, the
mechanisms for single object placement should take advantage of any knowledge of their constrained
nature. Third, single and multiple object placement will potentially be used in very different situations.
Multiple object placement will only be employed when the user or class developer feels that for some
reason a group of objects must be placed in a cooperative manner. In contrast, many users who are less
sensitive to an object’s run-time behavior, will simply want the objects they use to be placed anywhere
that will enable them to perform their functions. For these users, placing objects independently is
adequate.

The following sections describe a number of placement scenarios in more detail. The single
object placement scenarios have been lumped into two general categories, one for placement during
automatic object activation and one for "coordinated single object placement" - the case when the caller
wants to guide the placement of an object with which it interacts. The multiple object placement
scenarios, on the other hand, are more complex and cover a wide range of application types, each with
different placement approaches or special requirements. To capture this diversity, the multiple object
placement section discusses a number of different application domains and their particular requirements
and tolerances. The seven application types presented in the multi-object section were chosen because
they represent a wide range of important existing or likely future parallel and distributed applications that
are likely to run in the Legion environment1. In particular, these were chosen because they span a wide
range of placement approaches and needs.

C.1 Single Object Placement

C.1.1 Automatic Default Object Placement
One of the goals of Legion is to provide an environment where a user need not be unnecessarily

concerned with the details of locating and managing objects with which they wish to interact. When a
user object invokes a member function on another object, the call should be completed without further
effort required by the user (assuming that the call is valid and the called object exists). This is relatively
easy to do if the object is actively running - all that is needed is to find the address of the object’s
associated process and to invoke the called member function2. However, due to the large number of

1. Of course, one must be aware of the inevitable emergence of new applications domains, especially as sup-
port software for distributed computing, like Legion, matures and becomes more wide spread.

2. Actually, even if the object is active, it may be desirable to explore the possibility of migrating the object
to provide better performance.

1/16/96

Page 23

objects anticipated in a large scale Legion system, it will not be possible or desirable to keep all objects
active at once. Therefore, in order to maintain transparency to users, a mechanism must be built into
Legion that will automatically activate objects when necessary. As part of this activation process, an
object placement decision is required.

From an application developers viewpoint, exploiting this automatic mechanism is very
desirable. We believe that for most object invocations the automatic placement decision will provide an
adequate decision to satisfy the caller. We base this on the belief that many invocations will fall into one
or more of the following categories: 1) The automatic mechanism does a reasonably good job of placing
the object for the given invocation; 2) Behavior of the invoked member function is not very sensitive to
placement decisions, either because the member function does little work or because the object is highly
constrained to run on fairly homogeneous resources; or 3) The caller is not very sensitive to object run-
time variations and will not mind a poorer placement decision, at least up to some threshold.

For these reasons, we envision that automatic activation and placement will be one of the most
used mechanisms in the Legion system. As such, special care must be taken to ensure that the
mechanisms developed are:
• Easy to use - that is, easy for developers to implement default object placement routines;

• Flexible - developers must be able to employ the appropriate placement techniques for their objects,
otherwise placement decisions will suffer unnecessarily (we must recognize that every object/class is
potentially different and should be treated that way);

• Low overhead - the basic mechanism should not impose a significant amount of overhead. If there is
a large overhead cost, some applications, e.g. those interacting with using many objects, may
experience unacceptably poor performance due solely to the mechanism.

A final note about automatic object activation. Though it is desirable for the object activation
mechanism to be automatic, it is also desirable that the placement decisions made by default mappers be
as accurate as possible. Otherwise, users affected by poor decisions will be forced to enter into the
activation process in order to improve the placement of called objects. Often, all that is needed to
improve a mapper’s accuracy is some additional information that the caller has readily available. For
example, knowing the intended future use of the object or the location of the caller may improve the
mapper’s decision. Therefore, the automatic activation mechanism must provide a way for the caller to
provide this necessary information to the default placement mapper so it can make more informed
decisions without the caller having to take direct control (of course the default mapper must be designed
to exploit this added information, else the point is moot).

C.1.2 Single Object - Caller Guided Placement
Though automatic object activation and placement is certainly desirable, there will remain times

when the performance of a default scheduler will not be adequate for all invocations. The reason for this
is that for some classes it is likely that even the developers of classes will not realize all of the potential
uses for their class objects. It is unrealistic to assume that in such a case the developer will have the
ability or even the desire to provide a default mapper that produces excellent decisions under all
circumstances. In these cases there must be a mechanism to override the default mapper when it cannot
adequately do the job.

To make the point more concretely, take the example of a simple Unix-like (i.e. byte oriented,
randomly accessible) file object. Such file objects can be used in many different ways and can represent
very different size files. The placement decision for such an object will depend on the size of the file, the
location of the calling object, the number, pattern, type (read, write) and volume of requests from the
caller, and potentially the anticipated request patterns from other objects. It may be very difficult to
construct a mapper that deals well with certain uses, e.g. very irregular access patterns. In such a case it
seems more practical to expect the caller to worry about such unusual uses if he deems it necessary,

1/16/96

Page 24

rather than expect the file class developer to think of and handle all possible access patterns.

C.2 Multiple Object Cooperative Placement

C.2.1 Data Parallel Applications
The data parallel (DP) application domain is very important because it is widely used in the

parallel computing community, especially in the scientific computing community. The reason for the DP
model’s popularity is that it is easy to understand and implement and it fits the needs of many problem
domains, e.g. low-level image processing, climate modelling, and many codes that employ mathematical
solvers using large matrix operations.

In general, DP applications (DPAs) tend to work on large data sets, which are divided among
some number of workers. Data distribution usually falls into one of two scenarios: 1) the entire data set is
split up at the beginning of the computation by assigning a piece to each worker; or 2) data is distributed
as needed in a receiver initiated fashion, i.e. whenever a worker is ready to process more work, it
acquires a new piece of the data set to work on. On the macro level, operations are employed on the data
set as a whole, but these operations are carried out in parallel, each worker operating on its piece of data.
Often, the amount of work per data element to perform an operation is very regular and predictable.
Between operations, workers are often required to synchronize and to exchange partial results of the
previous operation before work may continue on the next operation (barrier synchronizations).

The properties of DPAs pose many challenges and opportunities for scheduling them. What
follows is a list of some of the relevant DP characteristics and their effect on placement.
• Large data sets - the anticipated performance of data access operations on the input and output data

object(s) is often a critical factor in determining the overall placement for DP application objects.
Data object performance is effected by such factors as network performance, disk performance,
processor performance and load, data access patterns and data volume.

• Predictable amount of work per operation - this can be exploited by mappers to derive very accurate
estimates of worker execution times and in conjunction with good estimates of worker
communications costs, can be used to accurately derive the computation granularity of the workers.

• Interoperation synchronization points - for those DP applications that must synchronize in between
certain operations, this poses is difficult challenge to mappers. The problem is that each worker must
wait at the barrier until all other workers have finished the operation. Therefore, the performance of
the application is extremely sensitive to imbalances among the workers and the placement decision
must be just right to avoid unnecessary delays.

• Inter-worker communication - For DPAs whose workers exchange data in between operations, the
placement decision must be sensitive to the effects that communication will have on the performance
of the overall application.

Due to the popularity of the DP model and its employment in very large problem domains, a lot
of research has gone into optimizing the performance of DPAs, including algorithm and language design,
specialized scheduling techniques and even hardware design. The literature contains a large number of
specialized DP placement and scheduling algorithms or systems and many are tuned for a specific
problem domain, inter-worker communication topology, hardware configuration, etc. The applicability of
each technique to a specific DP problem varies widely, as does the information each requires and the
quality of the placement decision. The important point is that even within the domain of DPAs, there will
need to be many placement algorithms to best support different applications or platforms.

C.2.2 User Interactive Applications
The defining characteristic of user interactive applications, as the name implies, is that a user

1/16/96

Page 25

actively interacts with and/or steers what the application does using some input and output device(s).
Many applications fall into this category, including many of the applications we run everyday, for
example word processing or text editing, interactive "talk" sessions, world wide web browsing,
interactive terminal sessions, games, and many others.

From a placement viewpoint, interactive applications in general have certain common
requirements. Placement of objects responsible for input from or output to users must be constrained to
processors that can access the required I/O devices. Since users are physically waiting for responses to
their input, performance of interactive applications is very important and has special requirements. Many
studies have researched the response time limits that human users find acceptable for various I/O devices
and application types. The studies have generally found that users are most happy with consistent
response times that do not exceed certain thresholds. They also found that since users work on human
time scales - on the order of 10’s, 100’s or 1000’s of milliseconds depending on the situation - that there
is often little perceived benefit to users when response times are much shorter than required. Therefore,
the key goal for placing interactive applications is not necessarily the minimization of total run time, but
to provide consistently adequate performance throughout the duration of the application. One way to
accomplish this goal is to negotiate for dedicated resources or guaranteed resource quality of service
commitments.

C.2.3 Video Applications
Due to recent and expected future advances in network technologies, applications requiring high

resolution video such as teleconferencing and video playback from remote repositories will soon be a
reality. We anticipate that the number of such applications will increase dramatically in the near future
when advanced network technologies reach the main stream. However, providing smooth, jitter free
video display is very demanding on currently available technology and requires that the involved
resources be very well managed. To guarantee a level of quality for the video transmission, usually some
guarantees on performance must be negotiated from the network, the transmitting and receiving
machines, the I/O devices producing or displaying the video and/or the storage system on which the
video resides.

These requirements make placement of the various components of such an application a very
challenging and demanding job. In particular, the placement mechanism will need to have access to
information about network capabilities and load, and the capabilities of the display and storage devices.
Placement mappers will also need mechanisms to negotiate for dedicated service or at least a guarantee
of a minimum level of service from various devices.

C.2.4 Multi-Disciplinary Applications
A recent trend, especially with scientific modelling applications, has been to merge or couple

previously separate applications into larger more comprehensive applications. For example, as part of the
CASA gigabit network testbed project [4], researchers have coupled together a global atmospheric model
and a global water model to form a more comprehensive global climate modelling application. The
practice of fine tuning these types of applications is often referred to as multi-disciplinary optimization
because they are formed from applications in different disciplines and the goal is to optimize the
performance of the resultant mixed or multi-disciplinary application. From a placement standpoint, these
applications are interesting because 1) each component is often a large, computationally intensive
program in its own right, 2) each component is often well suited to a particular type of parallelism and
consequently its implementation is often already highly optimized for one or more computer
architectures, particularly supercomputers, and 3) the components often have a well known
communication pattern among themselves. Due to their computationally intensive nature, large problem
sizes, and the fact that each component often has a strong affinity to particular architectures, component
placement is crucial to the overall performance of these applications. Because of these attributes, MDAs

1/16/96

Page 26

are often the focus of scheduling research in the distributed heterogeneous supercomputing community.

C.2.5 Parallel Simulations
Parallel simulations are employed in many fields, from weather forecasting to high energy

physics or to economic or social forecasting applications. These codes are usually very large and long
running, hence the reason for running them in parallel, and are often very complex. Computation times
for different subtasks are often driven by the data or events occurring within the simulation, so predicting
computation times a priori can be difficult or impossible. Also, since data values are continually
changing within the simulation, the amount of computation done by a particular subtask may vary over
time. Inter-task communication patterns can also vary from simple or complex, but for many subtasks
communication is constrained to a relatively small group of other subtasks (this communication group
may change during the simulation).

A key feature of simulations is that the individual subtasks are all modelling the state of one
large process and the events that effect it over time. As such, the progress of each subtask through
simulated time must be kept even (or nearly so), so that an event generated by one subtask is received by
another effected subtask before it proceeds beyond the event time in simulated time (the requirement that
subtasks proceed at the same rate is similar to data parallel applications where all subtasks must finish
one phase at the same time before moving to the next). The combination of needing nearly even progress
across subtasks (at least within groups) and data or event driven computation times may encourage the
use of dynamic subtask migration to maintain the balance of subtask progress and minimize overall
simulation execution time. To adequately support these types of applications, the placement framework
will likely have to supply object migration functionality.

C.2.6 Soft Real-Time Applications
Soft-real time applications are deadline driven and the primary goal is not necessarily to achieve

peak performance, but rather to achieve steady, reliable performance for each component within some
specified bounds. Video applications can be thought of as a special case of soft real-time applications,
where deadlines are established for the receipt and display of each video frame. User interactive
applications also share many qualities with soft-real time applications, though the real-time goals of such
applications may be even more "soft" than in true soft real-time applications. Like video and user
interactive applications, placing soft real-time program objects requires in depth knowledge of resources
attributes, including the processor and network, and may require service guarantees from various devices.

C.2.7 General Task Parallel Applications
Task parallel applications, as the name implies, achieve high performance by executing different

subtasks of the overall program concurrently. This form of parallelism is the most general form - there
are no restrictions placed on the interactions between subtasks other those the programmer chooses to
enforce. Because of this the program graphs for task parallel applications can vary from simple and
regular graphs to highly complex and irregular graphs. All of the other parallel application domains
discussed in this section are special cases of the general task parallel model. However, there are many
other important parallel applications which do not fit nicely into another classification, so general task
parallel applications are important in their own right.

The approach to making good placement decisions for unrestricted task parallel applications is
often somewhat different from the approach taken when the problem can be constrained in some way.
For one, optimally solving the general case is NP-hard and therefore intractable in practice, so a heuristic
or approximate approach must be used. Also, there is no special knowledge that can be brought to bear to
help guide the search. One characteristic that is common to many approaches is the requirement of a task
graph or precedence graph, possibly annotated with additional information, as input to the placement
mapping process. Our placement framework will have to be able to handle such applications.

